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On the Kalman-Yakubovich-Popov Lemma for Positive Systems

Anders Rantzer

Abstract—The classical Kalman-Yakubovich-Popov
lemma gives conditions for solvability of a certain
inequality in terms of a symmetric matrix. The lemma
has numerous applications in systems theory and
control. Recently, it has been shown that for positive
systems, important versions of the lemma can equiv-
alently be stated in terms of a diagonal matrix rather
than a general symmetric one. This paper generalizes
these results and a new proof is given.

It was shown in [7] that the Kalman-Yakubovich-
Popov lemma [8], [5], [3] (also known as the bounded
real lemma) can be considerably simplified for “in-
ternally positive” systems. In particular, the matrix

inequality can be restricted to diagonal matrices. This

result enabled the authors of [7] to design decentral-
ized control laws by convex optimization.

Earlier this year, a discrete time version was proved

by [4] with weaker assumptions. The purpose of this
note is to generalize and unify these results and to give

a new proof. After some notation, we state the result

both for continuous time and discrete time:

The matrix A ∈ R
n$n is said to be Hurwitz if

all eigenvalues have negative real part. It is Schur

if all eigenvalues are strictly inside the unit circle.

Finally, a matrix is said to beMetzler if all off-diagonal

elements are non-negative. The expression pxp2P is short
for xTPx.

Theorem 1: Let A ∈ R
n$n be Metzler and Hurwitz,

while B ∈ R
n$m
+ and the pair (A, B) is controllable.

Suppose that all entries of Q ∈ R
(n+m)$(n+m) are

non-negative, except for the last m diagonal elements.

Then the following statements are equivalent:

(1.1) For ω ∈ [0,∞] is is true that
[

(iω I − A)−1B
I

]

∗

Q

[

(iω I − A)−1B
I

]

5 0

(1.2)
[

−A−1B
I

]

∗

Q

[

−A−1B
I

]

5 0.

(1.3) There exists a diagonal P 4 0 such that

Q +
[

ATP+ PA PB

BTP 0

]

5 0

Moreover, if all inequalities are taken to be strict, then

the equivalences hold even without the controllability

assumption.

A. Rantzer is with Automatic Control LTH, Lund University, Box
118, SE-221 00 Lund, Sweden, rantzer at control.lth.se.

Remark 1. For A = −1, B = 0, Q = [

0 1

1 0

]

, condition

(1.1) holds, but not (1.3). This demonstrates that
the controllability assumption is essential when the

inequalities are non-strict.

Theorem 2: Let A ∈ R
n$n
+ be Schur, while B ∈ R

n$m
+

and the pair (A, B) is controllable. Suppose that all
entries of Q ∈ R

(n+m)$(n+m) are non-negative, except
for the last m diagonal elements. Then the following

statements are equivalent:

(2.1) For ω ∈ [0,∞] is is true that
[

(eiω I − A)−1B
I

]

∗

Q

[

(eiω I − A)−1B
I

]

5 0

(2.2)
[

(I − A)−1B
I

]

∗

Q

[

(I − A)−1B
I

]

5 0

(2.3) There exists a diagonal P 4 0 such that

Q +
[

ATPA− P ATPB

BTPA BTPB

]

5 0

Moreover, if all inequalities are taken to be strict, then

the equivalences hold even without the controllability

assumption.

Remark 2. The results of [7] and [4] are recovered
by the strict inequality versions of Theorem 1 and

Theorem 2 with

Q =
[

I 0

0 −I

]

The proofs of Theorem 1 and Theorem 2 will be based

on the following extension of [1, Theorem 3.1]:
Proposition 1 (Positive Quadratic Programming):

Suppose M0, . . . ,MK are Metzler and b1, . . . , bK ∈ R.

Then

max xTM0x = max trace(M0X )
x ∈ R

n
+ xTMkx ≥ bk X 4 0 trace(MkX ) ≥ bk
k = 1, . . . , K k = 1, . . . , K

(1)
The value on the right hand side remains the same if

the condition X 4 0 is relaxed to X ∈ X, where X is

the set of symmetric matrices (xi j) ∈ R
n$n satisfying

xii ≥ 0 and x2i j ≤ xiix j j for all i, j. Moreover, if

there exists a matrix X in the interior of X with

trace(MkX ) ≥ bk for every k, then the maximum of (1)
equals the minimum of −

∑

kτ kbk over τ1, . . . ,τ K ≥ 0
such that M0 +

∑

kτ kMk 5 0.
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Remark 3. The problem on the right of (1) is always
convex and readily solvable by semidefinite program-

ming. The problem on the left is generally not a convex

program, since the matrices Mk may be indefinite.

However, the maximization on the left is concave in

(x21, . . . , x2n) [2]. This is because every product xix j is the
geometric mean of two such variables, hence concave.

A proof is included here for completeness:

Proof of Proposition 1. Every x satisfying the con-

straints on the left hand side of (1) corresponds to
a matrix X = xxT satisfying the constraints on the
right hand side. This shows that the right hand side

of (1) is at least as big as the left.
On the other hand, let X = (xi j) be a positive

definite matrix. In particular, the diagonal elements

x11, . . . , xnn are non-negative and xi j ≤ √
xiix j j . Let

x = (√x11, . . . ,
√
xnn). Then the matrix xxT has the

same diagonal elements as X , but has off-diagonal

elements
√
xiix j j instead of xi j . The fact that xx

T has

off-diagonal elements at least as big as those of X ,

together with the assumption that the matrices Mk are

Metzler, gives xTMkx ≥ trace(MkX ) for k = 1, . . . , K .
This shows that the left hand side of (1) is at least as
big as the right. Nothing changes if X is not positive

definite but X ∈ X, so the second statement is also

proved.

For the last statement, note that the conditions

trace(MkX ) ≥ bk are linear in X , so strong duality
holds [6, Theorem 28.2] and the right hand side of (1)
has a finite maximum if and only if M0+

∑K
k=1 τ kMk 5

0 for some τ1, . . . ,τ K ≥ 0. 2

Proof of Theorem 1. One at a time, we will prove the

implications (1.1)[(1.2)[(1.3)[(1.1). Putting ω = 0
immediately gives (1.2) from (1.1).
Assume that (1.2) holds. The matrix −A−1 is non-

negative (because A is Hurwitz and Metzler), so
[

x
w

]T

Q
[

x
w

]

≤ 0 for all x ∈ R
n
+, w ∈ R

m
+ with

x ≤ −A−1Bw (2)

The inequality (4) follows (by multiplication with
−A−1 from the left) from the constraint 0 ≤ Ax+ Bw,
which can also be written 0 ≤ Aix + Biw for i =
1, . . . ,n, where Ai and Bi denote the i:th rows of A

and B respectively. For non-negative x and w, this is

equivalent to

0 ≤ xi(Aix + Biw) i = 1, . . . ,n (3)

Hence (1.2) implies that
[

x
w

]T

Q
[

x
w

]

≤ 0 for x ∈ R
n
+, w ∈

R
m
+ satisfying (5). Proposition 1 with b1 = ⋅ ⋅ ⋅ = bn = 0
will next be used to verify existence of τ1, . . . ,τn ≥ 0
such that the quadratic form

σ (x,w) =
[

x

w

]T

Q

[

x

w

]

+
∑

i

τ ixi(Aix + Biw)

is negative semi-definite. However, it remains to verify

the “Slater condition”; existence of a positive definite

X such that all diagonal elements of

[

A B
]

X

[

I

0

]

are non-negative. The pair (A, B) is controllable, so
there exists K that make all eigenvalues of A + BK
unstable and therefore (A+ BK )Z+ Z(A+ BK )T = I
has a symmetric positive definite solution Z. Hence

the desired X can be constructed as

X =
[

Z ZK T

KZ ∗

]

where the lower right corner is chosen big enough to

make X ≻ 0.
Define P = 1

2
diag(τ1, . . . ,τn) 4 0. Then σ being

negative definite means that

Q +
[

ATP+ PA PB

BTP 0

]

5 0

so (1.3) follows.
Finally, assume that (1.3) holds. Integrating

σ (x(t),w(t)) over time gives

0 ≥
∫ ∞

0





[

x

w

]T

Q

[

x

w

]

+ xTP(Ax + Bw)



 dt

For square integrable solutions to ẋ = Ax+Bw, x(0) =
0 we get

0 ≥
∫ ∞

0





[

x

w

]T

Q

[

x

w

]

+ d
dt
(xTPx/2)



 dt

=
∫ ∞

0

[

x(t)
w(t)

]T

Q

[

x(t)
w(t)

]

dt

which in frequency domain implies (1.1). Hence
(1.1)[(1.2)[(1.3)[(1.1).
For strict inequalities, the proofs that

(1.3)[(1.1)[(1.2) remain the same. Assuming

that (1.2) holds with strict inequality, we get
[

−A−1B
I

]

∗

(Q + ǫI)
[

−A−1B
I

]

5 0

for some scalar ǫ > 0. Hence, there exists a diagonal
P 4 0 such that

Q + ǫI +
[

ATP+ PA PB

BTP 0

]

5 0

Adding a small multiple of the identity to P gives P ≻
0 such that

Q +
[

ATP+ PA PB

BTP 0

]

≺ 0

so also (1.3) holds with strict inequality. Hence the
proof of Theorem 1 is complete. 2
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Proof of Theorem 2. In analogy with the

previous proof, we will prove the implications

(2.1)[(2.2)[(2.3)[(2.1). Putting ω = 0 immediately
gives (2.2) from (2.1).
Assume that (2.2) holds. The matrix (I − A)−1 is

non-negative (because A is non-negative and Schur),
so

[

x
w

]T

Q
[

x
w

]

≤ 0 for all x ∈ R
n
+, w ∈ R

m
+ with

x ≤ (I − A)−1Bw (4)
The inequality (4) follows from x ≤ Ax+Bw, which can
also be written xi ≤ Aix + Biw for i = 1, . . . ,n, where
Ai and Bi denote the i:th rows of A and B respectively.

For non-negative x and w, this is equivalent to

x2i ≤ (Aix + Biw)2 i = 1, . . . ,n (5)

Hence (2.2) implies that
[

x
w

]T

Q
[

x
w

]

≤ 0 for x ∈ R
n
+, w ∈

R
m
+ satisfying (5). Proposition 1 with b1 = ⋅ ⋅ ⋅ = bn = 0
will next be used to verify existence of τ1, . . . ,τn ≥ 0
such that the quadratic form

σ (x,w) =
[

x

w

]T

Q

[

x

w

]

+
∑

i

τ i[(Aix + Biw)2 − x2i ]

is negative semi-definite. However, the application of

Proposition 1 requires existence of a positive definite

X such that all diagonal elements of
[

A B
]

X
[

A B
]T −

[

I 0
]

X
[

I 0
]T

are non-negative. The pair (A, B) is controllable, so
there exists K that puts all eigenvalues of A + BK
outside the unit disc and therefore (A + BK )Z(A +
BK )T = Z + I has a symmetric positive definite
solution Z. Hence the desired X can be constructed

as

X =
[

Z ZK T

KZ ∗

]

where the lower right corner is chosen big enough to

make X ≻ 0.
Define P = diag(τ1, . . . ,τn) 4 0. Then σ being

negative definite means that

Q +
[

ATPA− P ATPB

BTPA BTPB

]

5 0

so (2.3) follows.
Finally, assume that (2.3) holds. Summing

σ (x(t),w(t)) over t gives

0 ≥
∞
∑

0





[

x(t)
w(t)

]T

Q

[

x(t)
w(t)

]

+ pAx(t) + Bw(t)p2P − px(t)p2P





For square summable solutions to x+ = Ax + Bw,
x(0) = 0 the telescope sum gives

0 ≥
∞
∑

0

[

x(t)
w(t)

]T

Q

[

x(t)
w(t)

]

which in frequency domain implies (2.1). Hence
(2.1)[(2.2)[(2.3)[(2.1).
For strict inequalities, the proofs that

(2.3)[(2.1)[(2.2) remain the same. Assuming

that (2.2) holds with strict inequality, we get
[

(I − A)−1B
I

]

∗

(Q + ǫI)
[

(I − A)−1B
I

]

5 0

for some scalar ǫ > 0. Hence, there exists a diagonal
P 4 0 such that

Q + ǫI +
[

ATPA− P ATPB

BTPA BTPB

]

5 0

Adding a small multiple of the identity to P gives P ≻
0 such that

Q +
[

ATPA− P ATPB

BTPA BTPB

]

≺ 0

so also (2.3) holds with strict inequality. Hence the
proof of Theorem 2 is complete. 2
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