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Abstract—Given an unstable linear scalar differential equation
z(t) = ax(t) (o > 0), we will show that the discrete-time
stochastic feedback control cx([t/7]7)dB(t) can stabilize it.
That is, we will show that the stochastically controlled system
dz(t) = ax(t)dt+oz([t/7]7)dB(t) is almost surely exponentially
stable when o> > 2a and 7 > 0 is sufficiently small, where B(t) is
a Brownian motion and [t/7] is the integer part of ¢/7. We will
also discuss the nonlinear stabilization problem by a discrete-
time stochastic feedback control. The reason why we consider
the discrete-time stochastic feedback control is because that the
state of the given system is in fact observed only at discrete
times, say O, 7, 27, - - -, for example, where 7 > 0 is the duration
between two consecutive observations. Accordingly, the stochastic
feedback control should be designed based on these discrete-time
observations, namely the stochastic feedback control should be
of the form ox([t/7]7)dB(t). From the point of control cost, it
is cheaper if one only needs to observe the state less frequently.
It is therefore useful to give a bound on 7 from below as larger
as better.

Index Terms—Brownian motion, stochastic differential delay
equations, difference equations, almost sure exponential stability,
discrete-time feedback control, stochastic stabilization.

1. INTRODUCTION

It is well known that noise can be used to stabilize a given
unstable system or to make a system even more stable when
it is already stable. For example, the linear scalar differential
equation #(¢) = ax(t) is unstable when o > 0 but it can be
stabilized by a Brownian motion. In fact, the linear stochastic
differential equation (SDE)

dz(t) = ax(t)dt + ox(t)dB(t) (1.1)

is almost surely exponentially stable if and only if 02 > 2«
(see e.g. [3], [12], [18], [25]). From the point of control theory,
it is the stochastic feedback control oz (t)dB(t) that stabilizes
the unstable system & (¢) = ax(t). The pioneering work in this
area was due to Hasminskii [12], who stabilized a system by
using two white noise sources. Later, Arnold et al. [4] showed
that the multi-dimensional linear system (t) = Az(t) can
be stabilized by zero mean stationary parameter noise if and
only if trace(A) < 0. In the nonlinear case, Scheutzow [26]
provided us with some examples on stabilization and destabi-
lization in the plane. Mao [17] developed a general theory on
stabilization and destabilization by Brownian motion. In [17],
Mao showed that given a multi-dimensional unstable nonlinear
system &(t) = f(x(t),t) whose coefficient satisfies the linear
growth condition |f(x,t)| < K|z| (K is a positive constant),
it is possible to design a linear stochastic feedback control

X. Mao is with the Department of Mathematics and Statistics, University
of Strathclyde, Glasgow G1 1XH, UK. x .mao@strath.ac.uk

Az(t)dB(t) based on a scalar Brownian motion B(t) so that
the stochastically controlled system

dz(t) = f(z(¢t),t)dt + Az(t)dB(t) (1.2)

becomes almost surely exponentially stable. Appleby and Mao
[2] generalized the results above in order to stabilize a class
of functional differential equations by noise.

Before we introduce the discrete-time control problem, it
is better to compare the above stochastic feedback control
with the deterministic feedback control. Consider an unstable
multi-dimensional linear system 4(¢) = Ax(¢). In the classical
way, we could design a deterministic state feedback control
so that the controlled system g(t) = Ay(t) + Cy(t) becomes
stable. Here we change z(t) into y(¢) in order to indicate
more clearly that the states of the original and controlled
systems are different. As a matter of fact, we know that x(t) #
y(t). On the other hand, one could design a stochastic state
feedback control so that the stochastically controlled system
dz(t) = Az(t)dt+ Cz(t)dB(t) becomes stable, where B(t) is
a Brownian motion. Such a stochastic state feedback control
has its advantage: it preserves the original state in average,
namely Ez(¢) = z(t). In other words, the provided stochastic
feedback control method achieves sample-path stabilization,
while the expectation of the state is, at all times, equal to
the state of the original uncontrolled system. The stochastic
state feedback control has been used in engineering (see e.g.
[12], [22] and the references therein). We should also mention
that this interesting phenomenon has also been observed in
finance and ecosystem. A Nobel Prize winning model, namely
the Black-Scholes model [5] for a share price is described by
the scalar linear SDE dz(t) = az(t)dt + oz(t)dB(t), where
« is the growth rate and o the volatility. The overall (average)
share price z(t) := Ez(t) satisfies the differential equation
z(t) = ax(t) so it will grow exponentially when the growth
rate o > 0. However, if the volatility o is sufficiently large
(namely 0.50% > ), the individual price z(¢) will tend to zero
with probability one. This reveals an important phenomenon
that although the overall market grows, an individual share
holder might still lose a fortune in the large volatility situation.
This concept has been developed in mathematical finance and
is now known as the volatility-stabilized markets (see e.g.
[9]). In ecosystem, the SDE models have revealed another
important phenomenon that the environmental noise might
make a population become extinct (see e.g. [18, Chapter 11]).

Let us now introduce the discrete-time stochastic feedback
control. We observe that a common feature of the stochastic
feedback controls discussed above is that the controls depend
on the current state x(¢) continuously. For example, in the



SDE (1.1), the stochastic feedback control ox(t)dB(t) re-
quires the continuous observation of the state x(t) for all
time ¢ > 0. However, in practice, the state is observed
only at discrete times, say 0,7, 27,---, for example, where
7 > 0 is the duration between two consecutive observations
(see e.g. [8] and the references therein). It also costs less
if 7 is larger. Accordingly, the stochastic feedback control
should be designed based on these discrete-time observations,
namely the stochastic feedback control should be of the form
ox([t/7]7)dB(t), where [t/7] is the integer part of t/7. The
problem is therefore to find out if the following stochastically
controlled system

dx(t) = ax(t)dt + ox([t/7|7)dB(t) (1.3)

is almost surely exponentially stable when o2 > 2a? One of
our key aims in this paper is to give a positive answer to this
problem. We will show that this controlled system is almost
surely exponentially stable for sufficiently small 7, namely
7 < 7% and we will estimate 7* from below.

It should be pointed out that the corresponding problem
for the deterministic differential equations has been studied
by many authors (see e.g. [1], [6], [7], [10], [11]). However,
the almost surely stochastic stabilization problem (1.3) has
not been studied so far. After we prove the stability of the
linear system (1.3) in Section 2, we will generalize our result
to the multi-dimensional non-linear case in Section 3. The
reader may wonder if one could look at the multi-dimensional
nonlinear case first and then, from this, obtain the result for
the scalar linear case. The reason why we do not do so is
because we would not be able to obtain good estimation on
7*, the lower bound for 7 (see above), in the scalar linear case.
In fact, as we will see below that the proof of the scalar linear
case makes the full use of the explicit solution and the bound
on 7* is significantly better than nonlinear case. We do not
have this advantage in the nonlinear case. We therefore have
to develop a completely different approach to the nonlinear
discrete-time controlled problem.

2. SCALAR LINEAR EQUATIONS

Throughout this paper, unless otherwise specified, we let
(Q, F,{Ft}t>0,P) be a complete probability space with a
filtration {F;};>o satisfying the usual conditions (i.e. it is
increasing and right continuous while F{ contains all P-null
sets). Let B(t) be a scalar Brownian motion defined on the
probability space.

Consider the scalar linear stochastic equation

dz(t) = ax(t)dt + ox([t/7]7)dB(t) 2.1

on t > 0 with initial value z(0) = zg € R, where 7 is a
positive constant. Let us form this equation as a stochastic
differential delay equation (SDDE). In fact, if we define a
time-dependent delay function § : [0, 00) — [0, 7] by

6(t)=t—krfortelkr,(k+1)7), k=0,1,2,---, (2.2)
then equation (2.1) can be re-written as the following SDDE

dx(t) = ax(t)dt + ox(t — 6(t))dB(t). (2.3)

It is therefore well known that equation (2.1) has a unique
solution z(¢) on ¢ > 0 and, moreover, any moment of the
solution is finite (see e.g. [13], [14], [15], [16], [23]).
Theorem 2.1: 1f
o2
« 5 <0,

then there is a positive number 7* such that for any initial
value z( € R, the solution of equation (2.1) satisfies

2.4)

1
limsup - log(|z(t)]) <0 a.s.

t—o0 t

(2.5)

provided 7 € (0,7*). In practice, we can choose a positive
number p € (0, 1) for which

1— 2
a— % <0 (2.6)
and let 7* be the smallest positive root to the equation
Hy(1) 4+ Ha(1) =0, 2.7
where
—1)o?
Hir) =p(e” = 1)+ E DT ey o
«
and
1
H2(T):p(p2 )( aT71)2
—1D(p—2
+ p(p ()S(p ) [(ear _ 1)3 + 3(ea7 _ 1)&2}
—-2)2p—T7
+ p(p )8( 14 ) [(ear 1)4 + 6(60”— _ 1)25'2 4 35’4]
—2)(p—14
+ p(p ;(p ) [(e()n' _ 1)5 _|_ 10(6047— _ 1)3’\2
+ 15(e®” — 1)6?
—2)(p—14
+ p(p 4)8(p ) [( aTt 1)6 + 15(66“— 1)4A2
+45(e” — 1)%6* 4 156°], (2.9)
in which
5y (e 1 2.10

Proof. The proof is very technical so we divide it into 4
steps.

Step 1. We choose p € (0, 1) for (2.6) to hold. Clearly, both
Hy(7) and Hy(7) are continuous functions of 7. It is easy to
show that H;(0) = 0 and its derivative at 7 = 0 is

2 2

H{(0) = pa + plp— Lo~ _21)0 = p(a _(d=p)o” —2p)a ) <0,
where the last inequality follows from condition (2.6). More-
over, by definition of &, we see that every term of Ha(7)
has a factor of either (e®” — 1)2 or (e®” — 1)(e?*7 — 1) or
(€227 —1)2. Hence, H2(0) = 0 and H5(0) = 0. Consequently,
H,(0) + H2(0) = 0 and H{(0) + H,(0) < 0. Therefore,
if we let 7* be the smallest positive root to the equation
H,(7) + Hz(7) = 0, then

Hy(t)+ Ha(1) <0, V7 e(0,7%). (2.11)

Step 2. From now on, let us now fix 7 € (0, 7*) arbitrarily.
Let t, = k7 for k = 0,1,2,--- and set x = xz(tx). For



t € [tk,tr+1), x(t) can be regarded as the solution to the
following equation

dx(t) = ax(t)dt + oxpdB(t) (2.12)

with initial value z(tx) = xj at time ¢;. By the well-known
variation-of-constants formula (see e.g. [18, Theorem 3.1 on
page 96]), we have

¢
z(t) = zpettr) —|—/ eo‘(f’_s)axkdB(s). (2.13)
123
In particular,
Tpt1 = (e + 0&y), (2.14)

where &, = jf:“ e®(tk+1-9)dB(s). It is easy to see that & is
independent of z; and it has a normal distribution with mean

0 and variance

tht1 1
Var (&) = / e?(tt1=9) gg — 2—(620‘7 -1).
tr «

Hence, we can write & = /5= (€297 — 1) Zj, where Zj, ~
N(0,1) and is independent of xj. It then follows from (2.14)
that

Tpr1 = xp(e“T 4+ 6Z), (2.15)

where 6 has been defined by (2.10) in the statement of the
theorem. Consequently,

Elzpg1|P = Elzy|P Ele®T + 62, P, (2.16)
Rearrange
e+ 6247 = ([1+e7 =1+ aZk]Q)p/Q
= (14 2V, + Y2)P/2, (2.17)

where Y, = e®7 — 1+ 67, It is easy to see that 2Y), + Y}? >
—1. By the Taylor expansion theory, we can easily have the
inequality

-2
(14+u)?/? <1+ §u+ Z%uz
plp—2)(p—4) ;
+ Y Ta— u (2.18)
for u > —1. We then derive
€™ + 6 Zy|P
-2
<1+ §(2Yk +Y2) + %(2}@ +Y2)?
—2)(p—4
i p(p )(p )(2Yk JrYkz)s
48
-1
:1+ka+P(p2 )Yk2
- 2 —2)(2p —
N p(p ()5(1) )Ykg N p(p )8( p 7)Yk4
—2)(p—4 —2)(p—4

Making use of the properties of the standard normal distribu-
tion
E(ZF") = (2n—1)!! and E(Z?" 1) =0

forn=1,2,3,---, where (2n—1)I! = (2n—1) x (2n — 3) x
--- X 3 x 1, we can compute

EY;, = e —1,
EYk2 — (eom' _ 1)2 Jré.27
EY? = (e —1)% +3(e®” —1)52,
EY? = (e —1)* +6(e*” —1)262 + 3564, (2.20)
EY]? = (e —1)5+10(e*” —1)362 :
+15(e*T — 1)64,
EYS = (e —1)% 4 15(e2™ — 1)*62
+45(e® —1)%26* + 1565,

We hence obtain from (2.19) that
E|le*" + 6 Z;|P <14 Hy(7) + Ha(T), (2.21)

where Hy(7) and Hs(7) have been defined by (2.8) and (2.9),
respectively, in the statement of the theorem.

Step 3. Recalling (2.11), we see that there is a unique € > 0
such that 1 + H;(7) + Ha(7) = e °". It then follows from
(2.16) and (2.21) that

Elzgi1|? < E|zg|Pe .

Since this holds for all £ > 0, we get

—e(k+1)T
)

E|lzki1|? < |zolPe vk > 0. (2.22)

Note from (2.13) that
2(t))")

]E( sup
te <t<tp+1

sup
tr<t<tp41

t p
:E|xk|pE( ea(t=t) +a/ ea(t’s)dB(s)’ )
tr
(2.23)
But, by the elementary inequality |a + b|P < 2P(|alP + |b|P)
for any real numbers a and b, we derive

t
eoz(tftk)_FO_/ ea(tfs)dB(S)‘zv

ty

E( sup
L <t<tp41

¢ P
§2PE( sup [em(t_t’“)—i—\ﬂpemt / e_asdB(s)‘ D
te<t<tkt+1 tr
¢ P
<2PePOT 4 |20|pepat’“+1E( sup / e~ **dB(s) )
e <t<tr41 ' Ji

Furthermore, by the Burkholder-Davis—Gundy inequality (see

e.g. [15], [16]),
/tt efanB(s)‘p) < Cp(/ttkurl e,gasds>p/2

k k

E( sup
tr<t<tp41

< CPTP/QS*POC% ,

where ¢, is a positive number dependent on p only. We
therefore obtain that

sup

t P
IE( eot=t) +a/ eo‘(t’s)dB(s)‘ ) e
te <t<tp41

tr

where C' = 2PeP27 (1 + ¢,|o|P7P/?) independent of k. Sub-
stituting this into (2.23) and then making use of (2.22), we
have

sup |x(t)|p> < ClxolPe ", VE>0. (2.24)

]E(
U <t<tkt1



Step 4. It follows from (2.24) that

E(supy, <i<,., [2(1)1P)
< e—0.5ekT

sup |l‘(t)‘p > 670.56]@7’)

]P)(
b <t<tp41

< C\x0|p6_0‘55k7, Vk > 0.

By the well-known Borel-Cantelli lemma (see e.g. [18,
Lemma 2.4 on page 7]), we see that

sup  |x(t)|P < e 0-5ekT

te<t<tpt1
holds for all but finitely many k. That is, for almost all w € €,
there is an integer ko = ko(w) such that
sup —0.5¢kt
te<t<tkt1
Therefore, for ¢, <t <tpyq and k > ko,
0.5¢kT
plk+ 1)1’

|z(t,w)|P <e Yk > ko(w).

o[ (t,)) <

Letting t — oo, we get

1 €
limsup - log(|z(t,w)|) < ——
msup 7 logJa(t.))) < —5-

for almost all w € €. The proof is hence complete. O

3. MULTI-DIMENSIONAL NONLINEAR EQUATIONS

Let us now generalize our theory in the previous section
to the multi-dimensional nonlinear case. Consider a nonlinear
n-dimensional unstable ODE di’i—?) = f(y(t)) and its corre-

sponding stochastically controlled system
do(t) = f(z(t))dt + Az(8,)dB(%), 3.1)

where f:R™ — R", A € R"*" and §; = [t/7]7. We impose
the following assumptions.

Assumption 3.1: Assume that f is globally Lipschitz con-
tinuous, namely

[f (@) = f(y)| < alz —yl,

where a > 0. For the stability purpose of this paper, we also
assume that f(0) = 0.

Assumption 3.2: There are two positive constants p; and ps
such that

t>0,

x,y € R, (3.2)

p2 —0.5p1 >« (3.3)

and, for all x € R",

|Az|? < p1|z|® and |27 Az|® > pox|t. (3.4

Note that Assumption 3.1 implies the linear growth condi-
tion

[f(@)] < afzf, =eR™

It is known (see, e.g., [18]) that there are many examples of
the square matrix A that fulfils Assumption 3.2.

Theorem 3.3: Let Assumptions 3.1 and 3.2 hold. Then there
is a positive number 7* such that for any initial value zy € R,
the solution of equation (3.1) satisfies

(3.5)

1
lim sup . log(Jz(t)]) <0 a.s. (3.6)

t—o0

provided 7 € (0,7*). In practice, we can choose a pair of
constants p, e € (0, 1) for (3.8) to hold and let 7* = 7, where
7 > 0 is the unique root to equation (3.13) defined below.

To prove the theorem, we present a couple of lemmas. We
denote by x(t; () the solution of equation (3.1) with initial
value z(0) = 2o € R™ and by y(¢;yo) the solution of the
following SDE

dy(t) = f(y(t))dt + Ay(t)dB(t)

on t > 0 with initial value y(0) = yo € R™.
Lemma 3.4: Let Assumption 3.1 and 3.2 hold. Choose p €
(0,1) sufficiently small for which

3.7

(1-0.5p)p2 — 0.5p1 > a. (3.8)
Then, for all yo € R"”,
Ely(t; yo)[P < lyo[Pe™ ", Vt >0, 3.9)

where v = p[(1 — 0.5p)p2 — 0.5p1 — a.

Proof. We only need to prove the assertion for yg # 0. For
any yo # 0, it is known (see [18, Lemma 3.2 on p120]) that
y(t;yo) # 0 for all ¢ > 0 almost surely. Write y(¢;yo) = y(2).
By the It6 formula and assumptions 3.1 and 3.2, we can derive
that

ay(®)]?) = (05ply) 225" (1) (y(®) + [Ay (D))
— (1= 0.5p) [y~ ly” () Ay () ) de
+ ply(t) P 2y" () Ay(1)aB()
< =y Pdt + ply(@)[P*y" (1) Ay(t)dB(2).
This implies easily that
E(y®I) < Iwol”,

and hence the assertion follows. The proof is complete. O
Lemma 3.5: Let Assumptions 3.1 and 3.2 hold. Then

Ely(t; z0) — x(t; 20)|P

< |zolP K (7, p) [etF314IPNE _1]P/2 (3.10)
for all zo € R and ¢ > 0, where
AT[JA[P (P + [|A]I?) \ P72
K(r,p) = ( ) .
(7.p) 20 + || A]|2
Proof. Fix any zp € R and write z(t;x9) = =(t) and

y(t;zg) = y(t). By the Itd6 formula and Assumption 3.1, it
is easy to show

Elz(t) — y(t)|*

<2+ |AI?) / Elx(s) — y(s)Pds

+2||A||2/OtIE;z:(s) _x(as)ﬂds.

The Gronwall inequality then implies

t
Ely(t) — z(t)? < za%%(wﬂf‘”z)/ Ela(s) — 2(04)[2ds.
0 3.11)



On the other hand, it is very easy to show, by the It6 formula,
that
]E|x(t)|2 < |x0|26(2a+||,4“2)t

and then
Ela(t) — 2(8,)]? < 27(a®r + | A||?)|zo| e 141",
Substituting this into (3.11) yields
Ely(t) — ()|
AT|| AP (0?7 + [IAI%)
- 2a + || A2
A simple application of the Holder inequality implies the
desired assertion (3.10). The proof is complete. O
Lemma 3.6: Let Assumption 3.1 and 3.2 hold. Choose a

pair of constants p,e € (0,1) for (3.8) to hold. Let 7 > 0 be
the unique root to the equation

‘m0‘2[€(4a+3llAllz))t —-1]. (3.12)

K (7, p) [l BIAI7) IrHox(27/2) /7] _1]p/2 —1—¢, (3.13)

where v and K (7,p) have been defined in Lemmas 3.4 and
3.5. Then, for each 7 € (0,7), there is a pair of positive
numbers k& and \ such that, for all initial value 2, € R™, the
solution of equation (3.1) satisfies

Ela(ikr; z0)|P < |zo|Pe F7, Vi=1,2,---. (3.14)

Proof. We first observe that when p is fixed, the right-
hand-side term of equation (3.13) is a continuously increasing
function of 7 > 0 and equals to zero when 7 = 0 so equation
(3.13) must have a unique root 7 > 0. Fix 7 € (0,7) and
zo € R arbitrarily and write z(i7; x) = x; fori = 0,1,2,--.
Choose a positive integer k such that

MSI’KHM, (3.13)
T T
where v has been defined in Lemma 3.4. So
oPeThT < o (3.16)
Write y(k7;79) = yz. By Lemma 3.4,
Elyg|? < lwo[Pe™*". (3.17)

By the elementary inequality (a + b)? < 2P(aP 4 bP) for any
a,b > 0, we have
Elzz[? < 2°Elyz|” + 2PElyg — =¢/”.
Using (3.17) along with (3.16) as well as Lemma 3.5, we get
Elegl? < Jeol? (= + 27K (r, p) [el4o+3IAIMET _ 1]”/22.

(3.18)
But, by (3.15),

da+3]|AIPkT < o (4at3]|A|?)[r+Hlog(2" /€) /7]

el (3.19)

We hence see from (3.13) that
£ + 2P K (1, p) [etat3lIAIDET _ l]p/z
<e + 2K (7, p) [eMot3IAINrHog(2"/2)/7] _ 1}11/ 2
<1.

We may therefore write
e+ 2PK(1,p) [e(4°‘+3|\AH2)ET _ 1]1”/2 _ T

for some A > 0. It then follows from (3.18) that

E|zz|P < |zolPe 7. (3.20)

Let us now consider the solution z(t) of equation (3.1) on
t > k7. This can be regarded as the solution of equation (3.1)
starting from wxj at t = k7. Due to the time-homogeneous
property of equation (3.1), we therefore see easily that

E(|2az "1 Frp) < |og[Pe 7.
This implies
Elasg|? < BlagPe ™7 < [wglPem .
Repeating this procedure, we have
Elzgl? < Elzg_yilPe ™™ < |zolPe 7, Vi=1,2,---,

as desired. The proof is hence complete. O

Proof of Theorem 3.3. Choose a pair of positive constants
p,e € (0,1) for (3.8) to hold and let 7 = 7, where 7 is the
unique root to equation (3.13). Fix 7 € (0,7*) and 29 € R
arbitrarily and write 2(¢; o) = x(t). Also let k be the same
as in Lemma 3.6 and z,; as defined in the proof of Lemma
3.6. For t € [0, k7], it follows from equation (3.1) that

x(t) = zo —i—/o f(z(s))ds + /OIATL’((SS))dB(S).

By the Holder inequality and the Burkholder-Davis—Gandy
inequality and condition (3.5), we derive that, for 0 < u < kT,

E( sup |x(t)\2)
0<t<u

< ool + 38 ([ [ atetoas])
+ 3E<Oiltl§u /OuA$(5s)dB(S) 2)
<

3|x0|2+3(a2ET+4||A\|2)/ E( sup [2(1)]?)ds.
0

0<t<s

The Gronwall inequality shows that

E( sup |:L‘(t)|2) < 3|$0|263ET(0‘2ET+4‘|AH2).
0<t<kr
The Holder inequality then gives
B(

where K = 3p/2€1.5pET(a2E7+4\|AHz).

sup Ix(t)\”) < K|zol?, (3.21)

0<t<kr

Let us now consider the solution z(¢) of equation (3.1) on
t € [ikT, (i + 1)k7] for i = 1,2,---. This can be regarded as
the solution of equation (3.1) starting from z, at t = k.
Due to the time-homogeneous property of equation (3.1), we
therefore see easily from (3.21) that

sup

E( [2(t)]”
ikT<t<(i+1)kT

fiET) < Kl



This, together with Lemma 3.6, implies
2(
for all ¢« > 1. Consequently
?(

for all ¢ > 1. The well-known Borel-Cantelli lemma yields

‘l‘(t) |p < 6_0‘5/\“;7—

sup

|x(t)|”) < KE|zz|P < K|ag|Pe MF
ikT<t<(i+1)kT

(3.22)

sup |$(t)|p > e—O.E’)AiET) < K|x0|pe—0.5)\ﬁcﬂr

ikt <t<(i+1)kT

sup

ikT<t<(i+1)kT
holds for all but finitely many ¢. That is, for almost all w € €2,
there is an integer iy = ip(w) such that

—0.5\ikT

sup lz(t,w)|P <e Vi > dg(w).

ikr<t<(i+1)kT
Therefore, for ikt <t < (i+ l)l_w and ¢ > i,
1 0.5XikT
~1 t, < -
§ ox(le(t0)]) < ~ 20

Letting t — oo, we get

1 A
lim sup n log(|z(t,w)]) < ~%

t—o0 p

for almost all w € 2. The proof is hence complete. O

4. CONCLUSIONS

It is well known that noise can be used to stabilize a given
unstable system or to make a system even more stable when it
is already stable. However, all results in this area so far require
the stochastic feedback control depend on the current state x(t)
continuously. In this paper we initiate the study of stabilization
by a stochastic feedback control dependent on only discrete-
time states z(k7). We discuss the scalar linear case as well
as the multi-dimensional nonlinear case. Our theory shows
clearly that it is possible to stabilize a given unstable system
by a discrete-time stochastic feedback control. In this paper,
we only use a scalar Brownian motion to avoid the notation
becoming too complicated but our theory works for multi-
dimensional Brownian motions and we leave the details to
the reader. We should piont out that we do not know how to
determine the optimal value for 7%, even in the linear case.
We have a feeling that it is very hard to determine the optimal
value. However, it is very useful in practice even if we could
improve the bound for 7*.
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