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Kalman Filtering With Relays Over Wireless Fading Channels
Alex S. Leong and Daniel E. Quevedo

Abstract—This note studies the use of relays to improve the perfor-
mance of Kalman filtering over packet dropping links. Packet reception
probabilities are governed by time-varying fading channelgains, and the
sensor and relay transmit powers. We consider situations with multiple
sensors and relays, where each relay can either forward one of the
sensors’ measurements to the gateway/fusion center, or perform a simple
linear network coding operation on some of the sensor measurements.
Using an expected error covariance performance measure, weconsider
optimal and suboptimal methods for finding the best relay configuration,
and power control problems for optimizing the Kalman filter p erfor-
mance. Our methods show that significant performance gains can be
obtained through the use of relays, network coding and powercontrol,
with at least 30-40% less power consumption for a given expected error
covariance specification.

I. I NTRODUCTION

Since the seminal work of [2], which showed the existence of a
critical threshold on the packet arrival rate for stabilityof the Kalman
filter with i.i.d. Bernoulli packet losses, the problem of Kalman
filtering over unreliable channels has received considerable attention.
Extensions of [2] include the case of multiple sensors [3], [4], further
characterizations of the critical threshold [5], probabilistic notions of
performance [6], the consideration of delays [7], correlated packet
losses [4], [8], and power control for stability [9].

In digital communications, channel coding is often used to improve
the quality of transmissions over unreliable channels. Theconcept of
network coding [10], [11], where in a network with many nodes,
throughput can be increased by allowing intermediate nodesto
perform simple operations (such as linear transformations[10]) on
its received information, has attracted much attention in recent years.
Kalman filtering with power control and coding was considered in
[12], [13]. The recent work [13] included a study of network coding,
where one could choose to utilize a relay to perform a network
coding operation, and the energy tradeoffs involved. The use of relays
in combating the effects of fading and increasing channel capacity
has been extensively studied in wireless communications, see e.g.
[14], [15]. Indeed, cooperative communications via the useof relays
has been identified as one of the key enabling technologies for fifth
generation (5G) mobile networks [16]. The use of a relay in control
has been studied in [17], which showed that for the case of a single
sensor the stability region for stabilizing an unstable LTIplant can be
increased in some situations, and also in applications towards control
of unmanned aerial vehicles (UAVS) [18].

In this note, we study remote estimation using relay nodes, and
investigate what information the individual relays shouldsend to
the gateway/fusion center. In a related setup considered in[13],
the relay could only perform network coding that linearly combines
two of the sensor transmissions using an XOR operation [10].Here,
we allow for the possibility of the relay combining multiplesensor
transmissions using XOR operations [19], as well as the possibility
of the relay forwarding the sensors’ transmissions, which can give
better performance in certain situations. The current workextends
our recent contribution [1], which considered the situation with two
sensors and one relay, and i.i.d. packet dropping links. In this note
we generalize [1] to multiple sensors and relays, and additionally
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consider time-varying packet reception probabilities governed by
time-varying fading channel gains and the transmission power over
this channel.

II. SYSTEM MODEL

Throughout this note,k will denote the discrete time index,i will
be used to denote the sensor indices, andl the relay index. The
process is a discrete time linear system

xk+1 = Axk +wk (1)

wherexk ∈ R
n and {wk} is i.i.d. Gaussian with zero mean and

covariance matrixQ > 0.1 The process is observed byM sensors
with measurements

yi,k = Cixk + vi,k, i = 1, . . . ,M (2)

with yi,k ∈ R, ∀i and{vi,k} are i.i.d. Gaussian with zero mean and
varianceRi ≥ 0, i = 1, . . . ,M . The processes{vi,k} and {wk}
are assumed to be mutually independent, with(A,C) detectable and
(A,Q1/2) stabilizable, whereC , col(C1, . . . , CM ).

We assume that the measurementsyi,k have undergone source
coding and can be grouped into packets ofb bits, with each packet
short enough to be transmitted within one time step. In particular,
the uniform quantizer of [20] will be used here. Under the additive
noise model for quantization (which in general is quite accurate for
bit rates as low as three bits per sample [21]), the quantizedvalue of
yi,k can be written as

yq
i,k = yi,k + qi,k

where the quantization noiseqi,k has varianceδbE[y2
i,k], with

δb =
4b ln 2

3× 22b

when using the uniform quantizer of [20]. The measurementsyq
i,k are

transmitted over orthogonal/parallel channels to a gateway, which will
perform the Kalman filtering operation. Letγi,k, for i = 1, . . . ,M ,
be random variables such thatγi,k = 1 if yq

i,k is successfully
transmitted to the gateway by sensori, andγi,k = 0 otherwise.

Furthermore, there existL intermediate relay nodes that can be
used to aid the transmission of the sensor measurements to the
gateway. Such situations can for instance occur in mesh networks,
where nodes close to the process will make measurements of the
process, while the other nodes don’t make measurements but can
be used to relay the sensor measurements to the gateway [14].A
diagram of the system model for the case ofM = 2 sensors and
L = 2 relays is given in Fig. 1. Each relay can listen to a subset of
the sensor transmissions. DenoteI = {1, . . . ,M} as the set of all
sensors, andIl ⊆ I as the set of sensors which relayl can listen to.
In general the setsIl, l = 1, . . . , L will not necessarily be disjoint,
with possibly multiple relays listening to a given sensor. For i ∈ Il,
let ζli,k be a random variable such thatζli,k = 1 if the transmission at
time k of sensori is received by relayl, andζli,k = 0 otherwise. The
relays can perform some simple local processing before transmitting
over orthogonal channels to the gateway. Letγ̃l,k for l = 1, . . . , L be
random variables such thatγ̃l,k = 1 if transmission at timek from
relay l to the gateway is successful, andγ̃l,k = 0 otherwise.

1We say that a matrixX > 0, if it is positive definite, andX ≥ 0, if it is
positive semi-definite.
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Fig. 1. System model for the case of two sensors and two relays

In this note we will consider a few simple operations that therelay
can perform.2 A relay can either: a) listen to one of the sensors’ trans-
missions, say sensori, and forwardyq

i,k if it is successfully received
by the relay, or b) listen to a number of the sensors’ transmissions,
say sensorsi1, i2, . . . , il, and sendyq

i1,k
⊕ yq

i2,k
⊕ · · · ⊕ yq

il,k
if

yq
i1,k

, yq
i2,k

, . . . yq
il,k

have all been successfully received by the relay,
where⊕ is the XOR operation. The XOR operation is commonly
used in network coding [10], [19]. For instance, if the gateway
receives bothyq

i,k andyq
i,k ⊕ yq

j,k, or bothyq
j,k andyq

i,k ⊕ yq
j,k, then

the gateway can recover bothyq
i,k andyq

j,k with a binary subtraction.
In general, given the transmissions received at the gateway, the
measurements which can be recovered can be determined using
Gaussian elimination overZ2.3 Determining which sensor/s each
relay listens to, and which operation each relay uses, is oneof the
key questions addressed in this work, see Section V. We definea
relay configuration

φk = (φ1,k, . . . , φL,k)

at timek as the set of operationsφl,k that each relay uses at timek.
The set of all possible relay configurations will be denoted by Φ.

The communication channels will be modelled as time-varying
fading channels [23]. We letgi,k, i = 1, . . . ,M be the channel gains
at timek from the sensori to the gateway,̃gl,k, l = 1, . . . , L the chan-
nels gains from relayl to the gateway, andhl

i,k, i ∈ Il, l = 1, . . . ,M
the channel gains from sensori to relay l. We use the block fading
model [24] and assume that{gi,k}, {g̃l,k}, {hl

i,k} vary over timek
in an i.i.d. manner, with the processes being mutually independent.
Denote the transmit powers at timek of the sensors and relays by
ui,k, i = 1, . . . ,M and ũl,k, l = 1, . . . , L respectively. Following
the model of [9], the packet reception probabilities will depend on
both the channel gains and transmit powers as follows: We have
λi,k , P(γi,k = 1|gi,k, ui,k) = p(gi,kui,k) as the time-varying4

packet reception probabilities from sensori to the gateway,̃λl,k ,

P(γ̃l,k = 1|g̃l,k, ũl,k) = p(g̃l,kũl,k) the probabilities from relayl
to the gateway, andρli,k , P(ζli,k = 1|hl

i,k , ui,k) = p(hl
i,kui,k) the

probabilities from sensori to relay l. Herep(.) : [0,∞) → [0, 1] is
a continuous monotonically increasing function whose formdepends
on the particular digital modulation and coding scheme being used
[23]. For example, in the case of uncoded binary phase shift keying

2We assume limited computational power at the relays, thus only simple
operations at a bit-level are considered in this note. If, however, additional
computational capability is available, then other possibilities include the use
of more involved network coding schemes [11] or the computation of local
state estimates at the relays [22].

3While our use of the XOR operation is similar to network coding, our
objectives are not exactly the same. In network coding transmissions are often
regarded as “successful” only if all packets arrive (eventually) at their intended
destinations, whereas in our problem even if some packets are not received
one still can perform state estimation using the available measurements.

4This differs from the i.i.d. Bernoulli packet drop model with constant
packet reception probabilities considered in e.g. [2]

TABLE I
NOTATION FOR DIFFERENT TYPES OF LINKS

Channel Gain Packet Reception Packet Reception
Random Variable Probability

Sensori to Gateway gi,k γi,k λi,k

Relay l to Gateway g̃i,k γ̃i,k λ̃i,k

Sensori to Relayl hl
i,k ζli,k ρli,k

TABLE II
BOOLEAN EXPRESSIONS FORθ1,k AND θ2,k , FOR TWO SENSORS AND ONE

RELAY, UNDER THREE TYPES OF OPERATIONS

φk Forwardyq1,k Forwardyq2,k Sendyq1,k ⊕ yq2,k
θ1,k γ1,k∨(γ̃1,k∧ζ11,k) γ1,k γ1,k∨(γ̃1,k∧γ2,k∧ζ11,k∧ζ12,k)

θ2,k γ2,k γ2,k∨(γ̃1,k∧ζ12,k) γ2,k∨(γ̃1,k∧γ1,k∧ζ11,k∧ζ12,k)

(BPSK) transmission withb bits per packet,p(.) would take the form

p(gu) =

(∫

√
gu

−∞

1√
2π

e−t2/2dt

)b

(3)

where we assume a packet is successfully received if allb bits
are succesfully received. However, if there is channel coding and/or
different digital modulation schemes,p(.) will take on different forms
[25]. In Table I we summarize the notation for the channel gains,
packet reception random variables and packet reception probabilities
for the different types of links.

In addition, there are feedback links from the gateway to the
sensors and relays which can be used to communicate the relay
configurationφk and power levelsui,k and ũl,k to be used, see
Section V and Section VII. In this note we will assume that
transmissions can occur over a much faster time scale than the
process (1). Thus, delays experienced by the measurements in passing
through intermediate relay nodes will be ignored. For instance, in
the industrial wireless sensor networks standard WirelessHART [26],
transmissions between nodes would typically take around 10ms,
whereas for many estimation and control applications the process
time constant might be 1 sec or more.

III. K ALMAN FILTER WITH PACKET DROPS AND RELAYS

Let θi,k, i = 1, . . . ,M be random variables such thatθi,k = 1
if yq

i,k can be reconstructed at the gateway, andθi,k = 0 otherwise.
Note that in generalθi,k andθj,k, i 6= j are not independent. Values
of θi,k for different relay configurations and combinations ofγi,k,
γ̃l,k, ζli,k, can be written in Boolean algebra form. For example, in
Table II we give the Boolean expressions forθ1,k and θ2,k in the
case of two sensors and one relay, where we use the notation∧ to
denote logical ‘and’ and∨ to denote logical ‘or’. Now define

C̆k , col(θ1,kC1, . . . , θM,kCM ), y̆k , col(θ1,ky
q
1,k, . . . , θM,ky

q
M,k),

x̂k+1|k , E[xk+1|y̆0, . . . , y̆k, C̆0, . . . , C̆k]

Pk+1|k,E[(xk+1−x̂k+1|k)(xk+1−x̂k+1|k)
T|y̆0, . . . , y̆k, C̆0, . . . , C̆k].

(4)

The associated Kalman filter equations which are run at the gateway
can be written as (see e.g. [12])

x̂k+1|k = Ax̂k|k−1 +Kk(y̆k − C̆kx̂k|k−1)

Pk+1|k = APk|k−1A
T +Q−KkC̆kPk|k−1A

T
(5)

where Kk = APk|k−1C̆
T
k (C̆kPk|k−1C̆

T
k + R̆k)

−1, with R̆k =

diag(R̆1,k, . . . , R̆M,k) , diag(R1+δbE[y
2
1,k], . . . , RM+δbE[y

2
M,k]),

similar to [13]. In the sequel, we will also callPk , Pk|k−1.

Remark III.1. As in [13], the Kalman filter (5) uses all successfully
reconstructed measurements, but those measurements whereθi,k = 0
are not taken into account.
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IV. PERFORMANCE OF THEKALMAN FILTER WITH RELAYS

In Section II we have proposed that each relay can either listen
to transmissions from one of the sensors which it then forwards
to the gateway, or it listens to a number of sensors and performs
an XOR operation that is then sent to the gateway. We wish to
investigate which operation each relay should use, and which sensors
each relay should listen to, i.e. determining the relay configuration
φk, in order to give the best performance for the Kalman filter.
This section presents some preliminary results on the performance
of the Kalman filter, with optimal relay configuration selection to be
studied in Section V. For time-varying Kalman filters with packet
drops, one commonly used performance measure is the expected
error covariance. In this note we consider the problem of optimal
relay configuration selection in order to minimize the one step ahead
expected error covarianceE[Pk+1|Pk, gk,φk], where

gk , {g1,k, . . . , gM,k, g̃1,k, . . . , g̃L,k, h
1
1,k, . . . , h

L
M,k} (6)

represents the channel gains at timek, which in turn will determine
the packet reception probabilitiesλi,k, λ̃l,k, ρli,k, i = 1, . . . ,M, l =
1, . . . , L. In order to computeE[Pk+1|Pk, gk,φk], we will further
assume that full channel state information (CSI) at the receiver is
available, so thatgk is known at the gateway.5 Define

fk(X),AXAT+Q−E

[

AXC̆T
k

(

C̆kXC̆T
k+R̆k

)−1

C̆kXAT
∣

∣

∣
gk,φk

]

(7)

where the expectation is with respect toθ1,k, . . . , θM,k in the
definition of C̆k in (4). Equivalently, we can writefk(X) as:

fk(X)=AXAT+Q−
∑

I⊆I
E

[

∏

i∈I

Θi,k

∏

j /∈I

(1−Θj,k)
∣

∣gk,φk

]

AXC̄(I)T

×
(

C̄(I)XC̄(I)T+R̄k(I)
)−1

C̄(I)XAT

(8)

whereC̄(I) = col({Ci, i ∈ I}), R̄k(I) = diag({R̆i,k, i ∈ I}), and
Θi,k, i = 1, . . . ,M are random variables with the same distributions
as θi,k. The quantitiesE

[

∏

i∈I Θi,k

∏

j /∈I(1 − Θj,k)
∣

∣gk,φk

]

can

be computed in terms of the packet reception probabilitiesλi,k, λ̃l,k,
ρli,k, i = 1, . . . ,M, l = 1, . . . , L. A systematic procedure for doing
this is as follows:
1) Write out the Boolean expression

∧

i∈I

θi,k
∧

j /∈I

(¬θj,k) (9)

where eachθi,k is written as a Boolean expression,¬θj,k denotes
the negation of the Boolean expression forθj,k, and the notation
∧

i∈I θi,k , θi1,k ∧ · · · ∧ θin,k ∧ . . . for indicesin ∈ I .
2) Convert the Boolean expression (9) into the sum of products
normal form [27]. (Note that this can be done systematically.)
3) E

[

∏

i∈I Θi,k

∏

j /∈I(1 − Θj,k)|gk,φk

]

is then given by taking
the sum of products normal form of (9), and replacing∧ with
multiplication,∨ with addition,γi,k with λi,k, ¬γi,k with 1− λi,k,
γ̃i,k with λ̃i,k, ¬γ̃i,k with 1 − λ̃i,k, ζli,k with ρli,k, and¬ζli,k with
1− ρli,k.

By step 2), each term in the sum will correspond to a dis-
tinct entry of the truth table forθ1,k, . . . , θM,k, thus allowing
E

[

∏

i∈I Θi,k

∏

j /∈I(1−Θj,k)|gk,φk

]

to be easily calculated.
We now give a result on how the packet reception probabilities

affect the expected error covarianceE[Pk+1|Pk, gk,φk] = fk(Pk).
First denote:

Li,k , {λ1,k, . . . , λi,k, . . . , λM,k, λ̃1,k, . . . , λ̃L,k, ρ
1
1,k, . . . , ρ

L
M,k}

Ui,k , {λ1,k, . . . , µi,k, . . . , λM,k, λ̃1,k, . . . , λ̃L,k, ρ
1
1,k, . . . , ρ

L
M,k}

5In practice this can be achieved using channel estimation and prediction
algorithms, see references in [9], [13].

L̃l,k , {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃l,k, . . . , λ̃L,k, ρ
1
1,k, . . . , ρ

L
M,k}

Ũl,k , {λ1,k, . . . , λM,k, λ̃1,k, . . . , µ̃l,k, . . . , λ̃L,k, ρ
1
1,k, . . . , ρ

L
M,k}

Rl
i,k , {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃L,k, ρ

1
1,k, . . . , ρ

l
i,k, . . . , ρ

L
M,k}

S l
i,k , {λ1,k, . . . , λM,k, λ̃1,k, . . . , λ̃L,k, ρ

1
1,k, . . . , σ

l
i,k, . . . , ρ

L
M,k}

Lemma IV.1. Let fXi,k (.) be defined byfk(.) in (7) when the links
have packet reception probabilitiesXi,k. Then, irrespective of which
relay configuration is used,∀i = 1, . . . ,M,∀l = 1, . . . , L,

λi,k ≤ µi,k ⇒ fLi,k(X) ≥ fUi,k(X)

λ̃l,k ≤ µ̃l,k ⇒ fL̃l,k
(X) ≥ fŨl,k

(X)

ρli,k ≤ σl
i,k ⇒ fRl

i,k
(X) ≥ fSl

i,k
(X)

Proof: Consider the caseλi,k ≤ µi,k. Recall that Bernoulli
random variables can be generated fromU(0, 1) uniform random
variables, by comparing the uniform random variable with the
probability that the Bernoulli random variable is equal to one, i.e..
γi,k = 1 when u ≤ λi,k, and γi,k = 0 otherwise, whereu is
U(0, 1). Let ω denote an outcome corresponding toN indepen-
dent realizations ofU(0, 1) random variables, whereN is equal
to the total number of packet dropping links. For eachω, one
can generate corresponding independent Bernoulli random variables
γ1,k, . . . , γM,k, γ̃1,k, . . . , γ̃L,k, ζ

1
1,k, . . . , ζ

L
M,k. One can then con-

struct the Bernoulli random variablesθ1,k, . . . , θM,k, and henceC̆k

as in (4).
Let C̆Li,k(ω) be the matrix C̆k when using packet reception

probabilitiesLi,k andC̆Ui,k(ω) be the matrixC̆k when using packet
reception probabilitiesUi,k. Now note that ifθj,k(ω) = 1 using the
packet reception probabilitiesLi,k, then we also haveθj,k(ω) = 1
when using the packet reception probabilitiesUi,k, by the way in
which θj,k(ω) is constructed, and since an increase in the packet
reception probability of any link cannot decrease the probability of
reconstructing any of the sensor measurements. Hence

AXC̆Li,k(ω)
T
(

C̆Li,k(ω)XC̆Li,k(ω)
T+R̆k

)−1

C̆Li,k(ω)XAT

≥ AXC̆Ui,k(ω)
T
(

C̆Ui,k(ω)XC̆Ui,k(ω)
T+R̆k

)−1

C̆Ui,k(ω)XAT

(10)

Since (10) holds for allω, we have

E

[

AX(C̆Li,k)
T
(

C̆Li,kX(C̆Li,k)
T+R̆k

)−1

C̆Li,kXAT
∣

∣

∣
gk,φk

]

≥ E

[

AX(C̆Ui,k)
T
(

C̆Ui,kX(C̆Ui,k)
T+R̆k

)−1

C̆Ui,kXAT
∣

∣

∣gk,φk

]

which shows thatfLi,k(X) ≥ fUi,k (X). The other two cases can be
proved in a similar manner.

Lemma IV.1 says that increasing the packet arrival rate on any
one of the packet dropping links will give a decrease in the value of
the one step ahead expected error covariance, no matter which relay
configuration is used.

We also wish to determine how the system parameters such as
C1, . . . , CM , R1, . . . , RM will affect the values of the expected error
covariance. Denote:

Ai , {C1, . . . , Ci, . . . , CM , R1, . . . , Ri, . . . , RM}
Bi , {C1, . . . , Di, . . . , CM , R1, . . . , Si, . . . , RM}

Lemma IV.2. Let fYi,k(X) be defined byfk(.) in (8) when the
sensors have parametersYi. Then, irrespective of which relay con-
figuration is used,∀i = 1, . . . ,M ,

CT
i R̆−1

i,kCi ≤ DT
i S̆

−1
i,kDi ⇒ fAi(X) ≥ fBi(X)

The proof of Lemma IV.2 is omitted; a related result is proved
in [1]. The quantityCT

i R̆−1
i,kCi can be regarded as the signal-to-

noise ratio (SNR) for sensori (which includes the quantization
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noise contribution). Thus Lemma IV.2 shows that the expected error
covariance is monotonic in the SNRsCT

i R̆−1
i,kCi.

V. OPTIMAL RELAY CONFIGURATION SELECTION

We now wish to address the question of determining which config-
urations for the relays will give the best Kalman filter performance.
Suppose for now that the sensor transmit powersui,k, i = 1, . . . ,M
and relay transmit powers̃ul,k, l = 1, . . . , L are given or fixed (The
more difficult problem of jointly optimizing the relay configuration
and transmission powers will be considered in Section VII.). We
wish to choose at each time instantk, the relay configurationφ∗

k

that minimizes TrE[Pk+1|Pk, gk,φk], i.e.

φ
∗
k = argmin

φk(Pk,gk)∈Φ

TrE[Pk+1|Pk, gk,φk]. (11)

whereE[Pk+1|Pk, gk,φk] = fk(Pk), see (8).

A. Optimal relay configuration selection

Problem (11) can, in principle, be solved by exhaustive search at
the gateway. The optimal configuration can then be fed back tothe
relays. We will characterize the number of relay configurations that
need to be checked at each time instant for exhaustive search.

Lemma V.1. Let Il be the set of sensors that relayl can listen to,
and letMl = |Il| denote the cardinality ofIl. Suppose that there are
no restrictions on how many relays listen to the same sensor.Then
the number of possible relay configurations forφk is

|Φ| =
L
∏

l=1

(

2Ml − 1
)

(12)

Proof: First fix a relayl, which can listen toMl of the sensors.
This relay can either forward any one of the sensor transmissions,
or perform the XOR operation on two or more of the sensor
transmissions it listens to, resulting inMl +

(

Ml
2

)

+
(

Ml
3

)

+ · · · +
(

Ml
Ml

)

= 2Ml − 1 possible operations. If there are no restrictions on
multiple relays listening to the same sensor, then by the multiplication
principle the number of relay configurations is

∏L
l=1

(

2Ml − 1
)

.
We thus see that the number of configurations that needs to be

checked is in the worst case (where each relay can listen to all
sensors) exponential in the number of relaysL and number of sensors
M . However, in practice, due to geographical considerations, the
number of sensorsMl that each sensorl listens to is often small,
e.g. in [28], [29] it is assumed thatMl ≤ 3.

B. Stability of Kalman filtering with relay configuration selection

We now wish to give a condition for stability of the Kalman filter
with optimal relay configuration selection.

Definition 1. The Kalman filter is said to be exponentially bounded
if there exist finite constantsα and β, and ρ ∈ [0, 1), such that
TrE[Pk] ≤ αρk + β, ∀k.

Theorem V.2. Let {sk} be a stochastic process such thatsk = 1 if
C̆k is full rank, andsk = 0 otherwise. Suppose there exists a policy
φ♯(gk) dependent only ongk, such that

||A||2E[P(sk = 0|gk,φ
♯(gk))] < 1, (13)

where||A|| is the spectral norm ofA. Then the Kalman filter using the
configurations obtained from problem (11) is exponentiallybounded.

Proof: Since the distribution ofC̆k depends onPk and
gk, and gk is independent in time and ofPk, we have
P(C̆k|Pk, Pk−1, . . . , P0) = P(C̆k|Pk). Then by (5), the pro-
cess {Pk} is Markovian. Now defineVk , TrPk. Since in

the relay configuration selection problem (11) we are minimizing
E{Vk+1|Pk, gk, φk(Pk, gk)}, we have

E{Vk+1|Pk} = E[E{Vk+1|Pk, gk,φ
∗
k(Pk, gk)}]

≤ E[E{Vk+1|Pk, gk,φ
♯(gk)}]

= E[E{Vk+1|Pk, gk,φ
♯(gk), sk = 1}P{sk = 1|Pk, gk,φ

♯(gk)}
+ E{Vk+1|Pk, gk,φ

♯(gk), sk = 0}P{sk = 0|Pk, gk,φ
♯(gk)}]

≤ W +
(

||A||2Vk + TrQ
)

E[P{sk = 0|gk,φ
♯(gk)}]

where the last inequality is shown using similar arguments to
[9], [13], and W is a positive constant. If||A||2E[P(sk =
0|gk,φ

♯(gk))] < 1 we may then use a stochastic Lyapunov function
argument similar to [13] to show thatE{Vk|P0} ≤ αρk + β,∀k for
someρ ∈ [0, 1) and constantsα andβ, which establishes exponential
boundedness of the Kalman filter.

Theorem V.2 thus provides a sufficient condition for Kalman filter
stability dependent on the system matrixA and the distributions of
the channel gainsgk.

Example V.3. Consider the case of two sensors and one relay, with
C̆k being full rank only whenθ1,k = θ2,k = 1. Then

P(θ1,k = 1, θ2,k = 1|gk,φk) = E[Θ1,kΘ2,k|gk,φk]

= λ1,kλ2,k + (1− λ1,k)λ2,kλ̃1,kρ
1
1,k

Suppose we chooseφ♯ to be the suboptimal policy that always
forwardsyq

1,k, and with the transmit powersu1,k = u2,k = ũ1,k = 1.
The condition (13) then becomes

E[P(sk = 0|gk,φ
♯(gk))] =

∫

(

1−p(g1,k)p(g2,k)

−(1−p(g1,k))p(g2,k)p(g̃1,k)p(h
1
1,k)

)

dP(gk) <
1

||A||2

which can be checked by numerically computing the integral for
specific functionsp(.) and probability distributionsP(gk). If con-
dition (13) is satisfied for this suboptimal policy, then by Theorem
V.2 the Kalman filter using the optimal relay configurations will also
be stable.

C. Suboptimal relay configuration selection

Lemma V.1 has shown that the optimal way of choosing the relay
configuration by checking each configuration is exponentialin the
number of relaysL, which is computationally intensive whenL is
large. To reduce computational complexity, a suboptimal method for
determining a relay configuration is to optimize the operation of each
relay l independently of each other. The motivation for this method
is that sometimes other relays may become unavailable, thusone
should optimize the performance of each relay irrespectiveof what
the other relays are doing. Specifically, consider subsetsIl ⊆ Il. Let
C̄(Il) = col({Ci, i ∈ Il}), R̄k(Il) = diag({R̆i,k, i ∈ Il}), and

fl,k(X) ,AXAT+Q−
∑

Il⊆Il

E
l
[

∏

i∈Il

Θi,k

∏

j /∈Il

(1−Θj,k)|gk, φl,k

]

×AXC̄(Il)
T
(

C̄(Il)XC̄(Il)
T+R̄k(Il)

)−1

C̄(Il)XAT

where the termsEl
[

∏

i∈Il
Θi,k

∏

j /∈Il
(1−Θj,k)|gk, φl,k

]

are com-
puted assuming that relayl is the only relay available. One then
computesfl,k(Pk) for each of the operationsφl,k that relayl can
perform, with the one that gives the smallest value of Tr(fl,k(Pk))
then chosen. This optimization can be carried out for each relay
independently of the other relays. The number of configurations that
need to be checked at each time stepk is then

∑L
l=1

(

2Ml − 1
)

,
which (compare to (12)) is no longer exponential in the number of
relaysL, and withMl usually being small as mentioned at the end
of Section V-A.
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VI. A SPECIAL CASE

Here we consider a special case where additional analyticalresults
can be derived. We will study the effects of varying the packet
reception probabilities and signal-to-noise ratios, which will provide
some insight into the general behaviour.

Recall that in the case of two sensors and one relay, the relay
can either i) forwardy1,k if it is received, ii) forwardy2,k if it is
received, or iii) sendyq

1,k ⊕ yq
2,k if both yq

1,k andyq
2,k are received.

We will consider a scalar example with̃λ1,k = ρ11,k = ρ12,k = 1, ∀k,
corresponding to the case where the channels from the relay to the
gateway, and from the sensors to the relay, are error free. Wewill call
A = a, Q = q, C1 = c1, C2 = c2, R1 = r1, R2 = r2, R̆1,k = r̆1,k,
R̆2,k = r̆2,k. We have

E[Pk+1|Pk, gk,φk]

=



























a2Pk+q− λ2,ka
2P2

k

Pk+
1

c2
1
/r̆1,k+c2

2
/r̆2,k

− (1−λ2,k)a2P2
k

Pk+
1

c2
1
/r̆1,k

, forward yq
1,k

a2Pk+q− λ1,ka
2P2

k

Pk+
1

c2
1
/r̆1,k+c2

2
/r̆2,k

− (1−λ1,k)a2P2
k

Pk+
1

c2
2
/r̆2,k

, forward yq
2,k

a2Pk+q− (λ1,k+λ2,k−λ1,kλ2,k)a
2P2

k

Pk+
1

c2
1
/r̆1,k+c2

2
/r̆2,k

, sendyq
1,k⊕yq

2,k

(14)

We want to see under what conditions the XOR operationyq
1,k ⊕

yq
2,k outperforms forwarding of measurements. First let the terms

c21/r̆1,k and c22/r̆2,k, which can be regarded as the signal-to-noise
ratios (SNRs) of sensors 1 and 2, be fixed. From (14) we see that
sendingyq

1,k ⊕ yq
2,k is better than forwardingyq

1,k when

λ1,k(1− λ2,k)

Pk+
1

c2
1
/r̆1,k+c2

2
/r̆2,k

>
1− λ2,k

Pk+
1

c2
1
/r̆1,k

or λ1,k>
Pk+

1
c2
1
/r̆1,k+c2

2
/r̆2,k

Pk + 1
c2
1
/r̆1,k

(15)
Similarly, sendingyq

1,k ⊕ yq
2,k is better than forwardingyq

2,k when

λ2,k >
Pk + 1

c2
1
/r̆1,k+c2

2
/r̆2,k

Pk + 1
c2
2
/r̆2,k

(16)

From (15)-(16), sendingyq
1,k⊕yq

2,k is best when both packet reception
probabilitiesλ1,k andλ2,k are above certain thresholds, which in turn
implies that the instantaneous channel gainsg1,k andg2,k need to be
above some thresholds. Thus, for lower quality channels, forwarding
of measurements gives better performance than the network coding
operation. The intuitive explanation for this is that when the gateway
receivesyq

1,k ⊕ yq
2,k, it needs one other measurement (eitheryq

1,k or
yq
2,k) in order to be useful. In contrast, if the relay forwardsyq

1,k or
yq
2,k, this value (if received at the gateway) can be used even if the

direct transmissions from the sensors are lost.
Alternatively, regardλ1,k andλ2,k as being fixed. Rewriting (15)

and (16), sendingyq
1,k ⊕ yq

2,k is better than forwardingyq
1,k when

λ1,k

c21/r̆1,k
− 1

c21/r̆1,k + c22/r̆2,k
> Pk(1− λ1,k), (17)

and sendingyq
1,k ⊕ yq

2,k is better than forwardingyq
2,k when

λ2,k

c22/r̆2,k
− 1

c21/r̆1,k + c22/r̆2,k
> Pk(1− λ2,k) (18)

For fixed λ1,k and λ2,k, we see that if eitherc21/r̆1,k or c22/r̆2,k
is sufficiently large, then conditions (17) and (18) cannot both be
simultaneously satisfied. The intuitive reason for requiring the signal-
to-noise ratios to be small in order for network coding to give benefits,
is that the relative performance gains by having both measurements
available at the gateway (vs. just one of the measurements) is greater
at low SNRs than high SNRs.

These qualitative observations, that the XOR operation needs
channel conditions to be good, or for the signal-to-noise ratios to
be low, in order to give benefits over forwarding of measurements,

have been observed in simulations for more general cases of packet
dropping links to and from the relays, and with larger networks.
Similar behaviour has also been reported in the network coding
literature [29].

VII. R ELAY CONFIGURATION SELECTION AND POWER CONTROL

In Section V the sensor and relay transmit powers were assumed to
be fixed. However, the presence of time-varying fading channels will
also allow for the use of power control techniques to furtherimprove
performance. In this section we present one possible formulation
which optimizes the estimation performance subject to a sumof
transmit powers constraint.

As in Section V, we assume that full channel state information
(CSI) is available at the receiver, withgk in (6) representing the
set of all channel gains at timek. The transmit powers of the
sensors and relays can then depend on both the instantaneous
channel gains gk and the error covariancePk, with these
transmit powers being computed at the gateway (which is
assumed to have more computational resources than the sensors
and relays) and fed back to the sensors and relays before
transmission occurs at the next time step. Denoteuk(gk, Pk) ,

{u1,k(gk, Pk), . . . , uM,k(gk, Pk), ũ1,k(gk, Pk), . . . , ũL,k(gk, Pk)}
as the set of all transmit powers at timek.

A. Optimal power control for a given relay configuration

For a given relay configuration, we pose the following power
control problem:

min
uk(gk,Pk)

TrE[Pk+1|Pk, gk,φk]

s.t.
M
∑

i=1

ui,k(gk, Pk) +
L
∑

l=1

ũl,k(gk, Pk) ≤ utot

(19)

which minimizes the expected one-step ahead error covariance subject
to the sum power

∑M
i=1 ui,k(gk, Pk)+

∑L
l=1 ũl,k(gk, Pk) being less

thanutot. Due to the objective being a complicated nonlinear function
of the transmit powersuk, the optimization problem (19) is in general
non-convex and will need to be solved numerically using global
optimization algorithms [30].

B. Joint relay configuration selection and power control

Problem (19) is for a given relay configuration. To optimally
choose both the relay configuration and transmission powers, we can
in principle solve

∏L
l=1

(

2Ml − 1
)

instances of problem (19) at each
time step (for each of the configurations, see Lemma V.1), andchoose
the relay configuration that gives the smallest value for theobjective
function, which however is very computationally intensive.

A less computationally intensive suboptimal scheme is to first
choose a relay configuration by assuming a simple power allocation
(e.g. that the total powerutot is equally divided between the sensors
and relays), and using the suboptimal method of Section V-C to
choose a relay configuration. For this chosen relay configuration, we
then further optimize the transmission powers by solving the power
control problem (19).

VIII. N UMERICAL STUDIES

We first look at the performance differences between the optimal
relay configuration selection and the suboptimal methods ofSection
V. We consider a situation with two sensors and two relays, where
each of the relays can listen to both sensor transmissions, see Fig.
1. We consider the scalar case witha = 0.95, q = 1, c1 = c2 = 1,
r1 = r2 = 1. For simplicity, we assume that the links from the
sensors to the relays are perfect, with the fading channels (from
the sensors to gateway, and from the relays to gatewary) being
exponentially distributed with mean 1, which models the case of
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Fig. 2. Optimal and suboptimal relay configuration selection

Rayleigh fading [23]. Similar to [9], we assume that the digital
communication uses BPSK transmission withb = 6 bits per packet,
so that the functionp(.) in Section II has the form (3). We distribute
the transmit powers equally between the sensors and relays.Fig. 2
plots the average sum power and expected error covarianceE[Pk]
(obtained by time averaging(xk − x̂k|k−1)(xk − x̂k|k−1)

T over
10000 Monte Carlo iterations), for the optimal and suboptimal relay
configuration selection methods. For comparison we also plot the
performance for the cases of: 1) no relay, 2) a scheme where the
relay always performs the XOR operation [13], 3) a scheme where
the relay sends the two sensor measurements with less accuracy
by removing half the bits6, and 4) a scheme where the gateway
can ask for each lost transmission to be retransmitted once7. In
each case, the expected error covariance decreases as the average
power is increase. Since by (3) larger powers imply higher packet
reception probabilities, this behaviour is in agreement with Lemma
IV.1. We also see that the suboptimal method that optimizes each
relay separately gives very close performance to the optimal method,
and significantly outperforms the other schemes.

We next consider the case of two sensors and one relay, with
Rayleigh fading for each of the fading channels. We chooseg1,k, g2,k
to have mean1, while g̃1,k, h1,k, h2,k have mean4. This models the
case where power decays in free space as1/d2 whered is the distance
from the transmitter [23], with the relay located approximately
halfway between the sensors and gateway. In Fig. 3 we plotE[Pk]
(obtained by time averaging(xk − x̂k|k−1)(xk − x̂k|k−1)

T over
10000 Monte Carlo iterations) for different sum powers, obtained
by solving problem (19) using thefmincon routine in Matlab for
each relay configuration and selecting the best one. We also plot the
performance of the suboptimal scheme where a relay configuration
is first chosen (assuming equal power allocation) and then power
control is performed. We compare this with the case where there is
no power control, with the sensors and relay using the same transmit
power at all times, but with the best relay configuration chosen at
each time step. Additionally, we plot the case where the relay always
performs the XOR operation, and the case without a relay but with
power control. We see that doing power control gives significant
benefits, with the best performance when one optimizes both the
relay configuration and transmit powers. The suboptimal scheme

6Here the relay removes from each quantized sensor measurement the least
significant b/2 bits. Then in the Kalman filter equations(5), for the case
where the direct transmissions are not successful, in the expression forR̆k

we replaceδb = 4b ln 2
3×22b

with δb/2 = 2b ln 2
3×2b

whenever we use a measurement
where half the bits have been removed.

7Here we assume that additional transmit power (same as the power for
a single transmission) is used for each retransmission, with a successfully
retransmitted measurement (from timek) available to the Kalman filter at
time k + 1, which now utilizes a buffer similar to [7].
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Fig. 3. Power control and relay configuration selection

where a relay configuration is first chosen by assuming equal power
allocation, and then the powers are optimized, performs very close to
the optimal scheme. Comparing the plots using power control, we see
that for a given expected error covariance the average powerrequired
is signficantly less (at least 30-40%) when a relay is used.

IX. CONCLUSION

This note has studied the use of relays for Kalman filtering with
multiple sensors over packet dropping links, where the packet recep-
tion probabilities are governed by fading channel gains andsensor
and relay transmit powers. By allowing relays to either forward one of
the sensor’s measurements or perform a network coding operation,
we have considered the problem of determining the optimal relay
configuration at each time step, together with a simpler suboptimal
method. We have also studied the use of power control in addition to
selecting the best relay configuration, to further improve performance.
Numerical results have demonstrated that the use of relays can lead
to power savings of at least 30-40%. Future work will include studies
of other strategies that relays can perform, and extending our setup
to utilize relays in multi-hop networks [31].
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