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Abstract—The graphical notion of effective resistance has
found wide-ranging applications in many areas of pure math-
ematics, applied mathematics and control theory. By the nature
of its construction, effective resistance can only be computed
in undirected graphs and yet in several areas of its application,
directed graphs arise as naturally (or more naturally) than undi-
rected ones. In part I of this work, we propose a generalization of
effective resistance to directed graphs that preserves its control-
theoretic properties in relation to consensus-type dynamics. We
proceed to analyze the dependence of our algebraic definition
on the structural properties of the graph and the relationship
between our construction and a graphical distance. The results
make possible the calculation of effective resistance between any
two nodes in any directed graph and provide a solid foundation
for the application of effective resistance to problems involving
directed graphs.

Index Terms—Graph theory, networks, networked control
systems, directed graphs, effective resistance

I. INTRODUCTION

THE concept of effective resistance has been used in rela-
tion to graphs for some time [1]. This concept stems from

considering a graph, consisting of a set of nodes connected
by weighted edges, to represent a network of resistors (one
resistor corresponding to each edge) with resistances equal
to the inverse of the corresponding edge weights. Then, the
effective resistance between nodes k and j, denoted rj,k, can
be found by the resistance offered by the network when a
voltage source is connected between these two nodes. One
of the useful properties of the effective resistance is that it
defines a distance function on a graph that takes into account
all paths between two nodes, not just the shortest path [1].
This allows the effective resistance to be used in place of the
shortest-path distance to analyze problems involving random
motion, percolation and flows over networks.

Effective resistance has proven to have a number of in-
terpretations and applications over a wide variety of fields.
One of the earliest interpretations was in the study of random
walks and Markov chains on networks [2], [3], [4], [5],
where the effective resistance between a pair of nodes was
related to expected commute, cover and hitting times and the
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probabilities of a random walk reaching a node or traversing
an edge. More direct applications have arisen in the study
of power dissipation and time delays in electrical networks
[6]. In addition, the effective resistance has been shown to
have combinatorial interpretations, relating to spanning trees
and forests [7] as well as the number of nodes and edges in
the graph [1]. Following the work of Klein and Randić [1],
there has been a substantial literature investigating the use of
effective resistance and the Kirchhoff index in the study of
molecular graphs [8], [9], [10], [11], [12].

More recently, effective resistance has arisen in control
theory, in the study of control, estimation and synchronization
over networks. Barooah and Hespanha described in [13] how
effective resistance can be used to measure the performance of
collective formation control, rendezvous and estimation prob-
lems. They developed the theory of estimation from relative
measurements further in [14], [15]. A number of authors have
demonstrated the use of effective resistance in investigating
the problem of selecting leaders to maximize agreement or
coherence in a network [16], [17], [18], [19]. Dörfler and Bullo
used effective resistance in their study of synchronization of
oscillators in power networks [20], and subsequently devel-
oped a theoretical analysis involving resistance for a graph
reduction technique [21]. We have also used the concept of
effective resistance to measure the robustness to noise of linear
consensus over networks [22], [23] as well as the performance
of nodes in networks of stochastic decision-makers [24].

By the nature of its definition, effective resistance is re-
stricted to undirected graphs, and in many applications, includ-
ing the study of molecular graphs and electrical networks, it is
natural to focus solely on undirected graphs. However, in many
other applications, including random walks and networked
control systems, directed graphs arise just as naturally as
undirected ones (which can be thought of as special cases
of directed graphs in which every edge also exists in the
opposite direction and with equal weight). For example, if the
nodes in a graph represent agents and the edges interactions,
directed edges result from interactions in which one agent
reacts to another but the second either has no reaction to the
first or reacts with a different strength or rule. Only in highly
constrained circumstances would such a network result in an
undirected graph.

Accordingly, it would be particularly useful if the concept
of effective resistance could be extended to apply to any
directed or undirected graph, so that analysis that is currently
only applicable to undirected graphs could be applied in the
more general case. Indeed in [13], [14], [15], the authors
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investigated directed measurement graphs, but assumed undi-
rected communication in order to analyze their systems using
effective resistance. Similarly, in [22], [23], [24], we began
our investigations using directed graphs and then specialized
to undirected graphs when we used effective resistance.

In this work we propose a generalized definition of effective
resistance for any graph, constructed in such a way that
it preserves the connection between effective resistance and
networked control and decision systems [22], [23], [24]. This
new definition produces a well-defined pairwise property of
nodes that depends only on the connections between the nodes.
Although it is no longer always a metric on the nodes of a
graph, our notion of effective resistance does allow for the
construction of a resistance-based metric for any graph. This
is in contrast with a (perhaps) more intuitive generalization
based on the use of pseudoinverses, which does not yield
a resistance-based metric in the general case. Further, this
suggests that our construction should prove to be useful for
applications other than those we have presented here. In the
companion paper we explore some of the implications of our
new approach by computing effective resistances in several
canonical directed graphs.

This paper is organized as follows. In Section II we provide
an overview of the notation and definitions used throughout the
paper. In Section III we define our extended notion of effective
resistance. In Section IV we analyze some basic properties of
our definition, including its well-definedness, its dependence
on connections between nodes and its relationship to a metric.
We conclude and offer some final thoughts in Section V.

II. BACKGROUND AND NOTATION

In this section we provide a summary of the notation used
throughout this two-part paper and then explain some of the
basic definitions and terminology of graph theory, as it applies
to this work. There are competing definitions for many of the
basic concepts of graph theory, mainly due to varying scope
amongst authors. For our purposes, we restrict our attention
to directed graphs as they may arise in control theory, and
so our definitions mostly follow [25], with some taken from
[26]. Two notable exceptions are our definition of connectivity,
which falls between the standard notions of weak and strong
connectivity but is more applicable to control over graphs [22],
[27], and our definition of connections in directed graphs,
which have interesting parallels to paths in undirected graphs.

Throughout this paper we will represent matrices using
capital letters. A matrix M can also be written [mi,j ], where
mi,j denotes the scalar entry in the (i, j) th position. The
identity matrix in Rn×n will be denoted by In, and a zero
matrix (with dimensions inferred from context) will be denoted
by 0/ . Entries of a matrix whose values are not relevant may
be denoted by ∗. We will represent vectors using bold, lower
case letters and their scalar entries with the same (non-bold)
lower case letter with a single subscript. In particular, we use
e
(k)
n to denote the kth standard basis vector of Rn. That is,

e
(k)
n contains a zero in every position except the kth position,

which is a 1. In addition, we use 1n to denote the vector in Rn

containing a 1 in every entry and 0 to denote the zero vector

(with size inferred from context). We will use diag(k)(v) to
denote a k-diagonal matrix, with the entries of v along the
kth diagonal and zeros elsewhere (and the dimensions inferred
from the length of v and k). A diagonal matrix will be denoted
by diag(v).

A graph (also directed graph or digraph) G consists of the
triple (V, E , A), where V = {1, 2, . . . , N} is the set of nodes,
E ⊆ V × V is the set of edges and A ∈ RN×N is a weighted
adjacency matrix with non-negative entries ai,j . Each ai,j will
be positive if and only if (i, j) ∈ E , otherwise ai,j = 0. Note
that by viewing E as a subset of V ×V , G can contain at most
one edge between any ordered pair of nodes. In addition, we
restrict our attention to graphs which do not contain any self-
cycles (edges connecting a node to itself).

The graph G is said to be undirected if (i, j) ∈ E implies
(j, i) ∈ E and ai,j = aj,i. Thus, a graph will be undirected
if and only if its adjacency matrix is symmetric. We use the
term undirected edge to refer to a pair of edges between two
nodes (one in each direction), with equal weights.

A graph can be drawn by representing each node with a
distinct, non-overlapping circle and representing each edge
(i, j) by a line joining the circles for nodes i and j. The
direction of the edge is indicated by adding an arrow to the
line pointing to the circle for node j. The edge weight can
be written adjacent to the line representing an edge. If no
weight is written next to an edge, it is assumed that the edge
weight is 1. An undirected edge (corresponding to (i, j) ∈ E ,
(j, i) ∈ E and ai,j = aj,i) can be represented by a single line
either without any arrows or with arrows in both directions,
and with the single edge weight written next to the line.

The out-degree (respectively in-degree) of node k is defined
as dout

k =
∑N

j=1 ak,j (respectively din
k =

∑N
j=1 aj,k). A graph

is said to be balanced if for every node, the out-degree and in-
degree are equal. For balanced graphs (including all undirected
graphs), the term degree is used to refer to both the out-degree
and in-degree.
G has an associated Laplacian matrix L, defined by L =

D − A, where D is the diagonal matrix of node out-degrees,
that is D = diag (dout

1 , dout
2 , . . . , dout

N ). The row sums of the
Laplacian matrix are zero, that is L1N = 0. Thus 0 is always
an eigenvalue of L with corresponding eigenvector 1N . It can
be shown that all the eigenvalues of L are either 0 or have
positive real part [28]. A graph will be undirected if and only if
its Laplacian matrix is symmetric, and then all the eigenvalues
of L will be real and non-negative.

The set of neighbors of node k, denoted Nk, is the set of
nodes j for which the edge (k, j) ∈ E .

A path in G is a (finite) sequence of nodes such that each
node is a neighbor of the previous one. A path is called simple
if no internal nodes (i.e. other than the initial or final nodes) are
repeated. The length of a path is the number of edges traversed.
Thus a single node is considered to be a path of length 0.
A directed (respectively, undirected) path graph on N nodes
is a graph containing exactly N − 1 directed (respectively,
undirected) edges and which admits a path of length N − 1
containing every node in the graph.

A cycle in G is a non-trivial closed path. That is, a cycle
is a path of length greater than zero in which the initial and
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(a) (b)

Fig. 1. A directed graph on 9 nodes with: (a) a direct connection (i.e. a path)
between nodes 3 and 7 highlighted, and (b) an indirect connection between
nodes 3 and 7 highlighted.

final nodes are the same. A simple cycle is a non-trivial closed
simple path. Since we are only considering graphs which do
not contain self-cycles, the minimum length of a cycle is
two. A directed (respectively, undirected) cycle graph on N
nodes is a graph containing exactly N directed (respectively,
undirected) edges and which admits a simple cycle of length N
containing every node in the graph. Note however, that while
a directed cycle graph on 2 nodes is possible, the minimum
number of nodes in an undirected cycle graph is 3.

We define a connection in G between nodes k and j to
consist of two paths, one starting at k and the other at j and
which both terminate at the same node. A direct connection
between nodes k and j is a connection in which one path is
trivial (i.e. either only node k or only node j) - thus a direct
connection is equivalent to a path. Conversely, an indirect
connection is one in which the terminal node of the two paths
is neither node k nor node j. Examples of direct and indirect
connections are shown in Fig. 1. A simple connection is a
connection that consists of two simple paths. Note that in both
a connection and a simple connection, multiple nodes may be
common between the two paths.

The graph G is connected if it contains a globally reachable
node k; i.e. there exists a node k such that there is a path in
G from i to k for every node i. Equivalently, G is connected
if and only if a connection exists between any pair of nodes.
The eigenvalue 0 is simple if and only if G is connected [28].
An undirected graph is connected if and only if there is a path
between any pair of nodes.

A directed (respectively, undirected) tree is a connected
graph on N nodes that contains exactly N − 1 directed
(respectively, undirected) edges. A leaf in a directed tree is
any node with zero in-degree, and a leaf in an undirected tree
is any node with only one neighbor. The root of a directed tree
is a node with zero out-degree; note that every directed tree
will contain precisely one such node. A branch of a directed
tree is a path from a leaf to the root.

Let Π := IN − 1
N 1N1T

N denote the orthogonal projection
matrix onto the subspace of RN perpendicular to 1N . We will
make a slight abuse of notation and use 1⊥N to denote this
subspace, instead of span{1N}⊥. The matrix Π is symmetric
and since L1N = 0, LΠ = L and ΠLT = LT for any graph.
Furthermore, ΠL = L for any balanced graph (including every

undirected graph).
Let Q ∈ R(N−1)×N be a matrix whose rows form an

orthonormal basis for 1⊥N . This is equivalent to requiring that[
1√
N
1N QT

]
is an orthogonal matrix, or more explicitly,

Q1N = 0, QQT = IN−1 and QTQ = Π. (1)

Using these properties, it follows that QΠ = Q and ΠQT =
QT .

III. AN EXTENDED DEFINITION OF EFFECTIVE RESISTANCE

We now proceed to examine the derivation of effective
resistance for undirected graphs and compare the matrices
involved to those that arise in control-theoretic applications.
Using this comparison, we propose a generalization of effec-
tive resistance to directed graphs that preserves key control-
theoretic properties related to consensus-type dynamics.

A complete derivation of the standard notion of effective
resistance is given in [1], in which the effective resistance
between two nodes in an undirected graph can be calculated
by appropriately applying Kirchhoff’s voltage and current
laws. This calculation relies on what the authors call the
“generalized inverse” of the Laplacian matrix, a matrix X
which satisfies

XL = LX = Π and XΠ = ΠX = X. (2)

Then, if we let X = [xi,j ], the effective resistance is given by

rk,j =
(
e
(k)
N −e

(j)
N

)T
X
(
e
(k)
N −e

(j)
N

)
= xk,k+xj,j−2xk,j . (3)

Although (2) are not the defining equations for the Moore-
Penrose generalized inverse, it is easy to show that for a
symmetric Laplacian matrix L, any solution to (2) will indeed
be the Moore-Penrose generalized inverse of L (as well as the
group inverse of L). In fact, it is standard practice to define the
effective resistance in terms of the Moore-Penrose generalized
inverse [29].

In [1], the authors describe X in the following way (with
notation changed to match this paper):

Definition 1 (Klein and Randić, [1]). X is equal on 1⊥N to
the inverse of L and is otherwise 0/ .

It is therefore instructive to characterize the action of
L restricted to the subspace 1⊥N . Suppose we choose an
orthonormal basis for 1⊥N and let Q ∈ R(N−1)×N be the
matrix formed with these basis vectors as rows. Then for any
v ∈ RN , v := Qv is a coordinate vector (with respect to the
chosen basis) of the orthogonal projection of v onto 1⊥N and
for any M ∈ RN×N , M := QMQT is the (N − 1)×(N − 1)
matrix whose action on 1⊥N is identical to M , in the sense that
Mv = Mv for any v ∈ 1⊥N .

Thus on 1⊥N , the Laplacian matrix is equivalent to

L = QLQT , (4)

which we refer to as the reduced Laplacian. We can see that
L is a symmetric matrix if and only if the graph is undirected.
The reduced Laplacian has the same eigenvalues as L except
for a single 0 eigenvalue [22]. Hence, for a connected graph,



4

L is invertible. For undirected graphs, this allows us to give
an explicit construction for X as

X = QTL
−1
Q, (5)

which satisfies Definition 1 since X1N = 0 and Xv = L
−1

v
for any v ∈ RN . Furthermore, we can use (1) and the fact
that L = LΠ = ΠL for undirected graphs to show that (5)
satisfies (2) when the graph is undirected.

It should be noted that L is not unique, since it depends
on the choice of Q. However, if Q and Q′ both satisfy
(1), we can define P := Q′QT . Then Q′ = PQ and
P is orthogonal. Hence X ′ := Q′T

(
Q′LQ′T

)−1
Q′ =

QTPT
(
PQLQTPT

)−1
PQ = X and thus the computation

of X in (5) is independent of the choice of Q.
These multiple ways (the Moore-Penrose generalized in-

verse, Definition 1, (2) and (5)) to describe the matrix X
no longer agree when the graph is directed. While (5) still
satisfies Definition 1, it does not satisfy (2) (specifically, LX
no longer equals Π). Furthermore, the Moore-Penrose gener-
alized inverse satisfies neither (2) nor (5) for non-symmetric
Laplacian matrices. Thus, instead of seeking to extend the
notion of effective resistance to directed graphs using one of
the above descriptions (which all arose through an analysis of
electrical networks that were, by definition, undirected), we
draw inspiration from a different context not as fundamentally
tied to electrical networks.

In previous work on distributed consensus-formation and
evidence-accumulation for decision-making ([22], [23], [24]),
effective resistances arose due to a correspondence between
covariance matrices and the matrix X as described above (in
the case of undirected graphs). These applications involved
stochastic systems evolving on graphs with dynamics driven
by the Laplacian matrix, and covariance matrices were sought
to describe the distribution of node values. For general (i.e.
directed or undirected) graphs, these covariance matrices were
computed using integrals of the form

Σ1 =

∫ ∞
0

QT e−Lte−L
T
tQ dt and (6)

Σ =

∫ ∞
0

e−Lte−L
T
t dt. (7)

Now, we can observe that Σ1 = QT ΣQ, and that Σ can also
be expressed as the solution to the Lyapunov equation [30]

LΣ + ΣL
T

= IN−1. (8)

It should be noted that (8) has a unique positive definite
solution when all the eigenvalues of L have positive real part
(i.e. when the graph is connected) [30]. It is then clear that
for undirected graphs (where L is symmetric),

Σ =
1

2
L
−1
, (9)

and so (using (5)),

Σ1 =
1

2
X.

It is this relationship that links these covariance matrices to
the generalized inverse X , and hence to effective resistances.

Since these covariance matrices arise naturally from directed
graphs as well as undirected graphs, we use their solutions
to define effective resistances on directed graphs. Thus, for
any connected digraph, we let Σ be the unique solution to the
Lyapunov equation (8). Then, we let

X := 2QT ΣQ, (10)

and notice that X will be symmetric for any graph because
Σ is always symmetric. Finally we can use (3) to define the
effective resistance between any two nodes in the graph.

Definition 2. Let G be a connected graph with N nodes and
Laplacian matrix L. Then the effective resistance between
nodes k and j in G is defined as

rk,j =
(
e
(k)
N − e

(j)
N

)T
X
(
e
(k)
N − e

(j)
N

)
= xk,k + xj,j − 2xk,j , (11)

where
X = 2QT ΣQ,

LΣ + ΣL
T

= IN−1,

L = QLQT ,

(12)

and Q is a matrix satisfying (1).

By summing all distinct effective resistances in a graph, we
define the Kirchhoff index, Kf , of the graph, that is,

Kf :=
∑
k<j

rk,j . (13)

Our definition of Kf generalizes the Kirchhoff index defined
for undirected graphs [29].

Remark 1. In previous work ([22], [23]) we noted that an
H2 norm H related to linear consensus can be expressed in
terms of the Kirchhoff index (for an undirected graph) as

H =

(
Kf

2N

) 1
2

, (14)

since this H2 norm is derived from the trace of the matrix Σ
which solves (8). Therefore, if we take (13) to be the definition
of the Kirchhoff index for directed graphs as well, we find
that (14) continues to hold. Thus our definition of effective
resistance immediately connects to the robustness to noise of
linear consensus on directed graphs. In a similar fashion, the
variance of each node in a balanced network of stochastic
decision-makers can be computed (in part) using the diagonal
entries of the matrix Σ1 from (6). Then the variance of any
particular node can be found using this definition of effective
resistance [24].

IV. BASIC PROPERTIES OF OUR DEFINITION

Although Definition 2 ensures that effective resistance
maintains our desired relationship with some control-theoretic
properties, such as those discussed above, by itself it remains
an algebraic construction that yields little insight into the ways
in which effective resistance depends on the graph structure.
We now proceed to analyze our definition to understand some
of its fundamental properties. In Section IV-A we verify that



5

Definition 2 results in a well-defined property of pairs of nodes
in a connected digraph. In Section IV-B we investigate how
effective resistances depend on connections in the graph and
extend Definition 2 further to apply to disconnected graphs.
Finally in Section IV-C we determine that effective resistance
is a distance-like function and explore the limitations of the
triangle inequality for effective resistances in directed graphs.

A. Effective resistance is well-defined

By construction, (11) will yield the regular effective resis-
tance for any undirected graph. However, we must confirm
that our concept of effective resistance for directed graphs is
well-defined. This is achieved by the following two lemmas.

Lemma 1. The value of the effective resistance between two
nodes in a connected digraph is independent of the choice of
Q.

Proof: Let Q and Q′ be two matrices that satisfy (1),
and let rk,j and r′k,j be the corresponding effective resistances
between nodes k and j, computed by using Q and Q′ in (11),
respectively. Furthermore, let W := Q′QT . Then by (1), Q′ =
WQ and WWT = WTW = IN−1. Now, we can use (4) and
the properties of W to write L

′
= WLWT .

Next, substituting this expression into (8) for L
′
, we see that

Σ′ = WΣWT . Finally, we find that X ′ = 2Q′T Σ′Q′ = X,
and hence, r′k,j = rk,j .

From Lemma 1 we see that the no matter how it is
computed, the effective resistance between two nodes will be
the same unique number. Next, we will show in Lemma 2
that the effective resistance is a property of a pair of nodes,
irrespective of the way in which they are labelled.

Lemma 2. The value of the effective resistance between two
nodes in a connected digraph is independent of the labeling
of the nodes.

Proof: Any two labelings of the nodes in a graph can be
related via a permutation. Suppose L and L′ are two Laplacian
matrices associated with the same graph, but with different
labelings of the nodes. Then L′ can be found from L by
permuting its rows and columns. That is, there exists an N×N
permutation matrix P such that L′ = PLPT . Note that as a
permutation matrix, there is exactly one 1 in every row and
column of P with every other entry equal to 0. Furthermore,
P−1 = PT , P1N = 1N and 1T

NP = 1T
N . Thus we can

observe that QP = PQ, PQT = QTP and P
−1

= P
T
,

where, as usual, P = QPQT .
Now, we can use (4) and the properties of P to write

L
′

= P LP
T

. Then the solution to the Lyapunov equation
associated with L

′
becomes Σ′ = PΣP

T
. Hence, we observe

that X ′ = PXPT .
Thus if P permutes node k to node m and node j to node

`, we find that r′m,` = rk,j .

B. Effective resistance depends on connections between nodes

Next we consider which features of a digraph will affect
the effective resistance between a given pair of nodes. For

Fig. 2. A directed graph on 9 nodes with the reachable subgraph of nodes
3 and 7 highlighted.

undirected graphs, we know that effective resistances depend
on every path between a pair of nodes [1]. The situation
becomes more complicated with directed graphs since there
can exist pairs of nodes in a connected digraph with no path
between them. Instead of looking at paths between nodes, we
therefore have to consider connections. To incorporate all of
the connections between two nodes, we examine the reachable
subgraph, an example of which is shown in Fig. 2.

Definition 3. The reachable subgraph, denoted RG(k, j), of
nodes k and j in the graph G is the graph formed by every
node in G that is reachable from node k or node j and every
edge in G between these nodes.

As we demonstrate in the following lemma, if G is con-
nected the reachable subgraph of nodes k and j is precisely
the subgraph formed by every connection between them.

Lemma 3. If G is connected, then for any pair of nodes k
and j,

(i) RG(k, j) is connected,
(ii) Every node in RG(k, j) is part of a connection between

nodes k and j,
(iii) Every edge in RG(k, j) is part of a connection between

nodes k and j and
(iv) Every connection between nodes k and j is contained

in RG(k, j).

Proof:
(i) Since G is connected, there is a node, `, in G which is

reachable from every other node. Since ` is reachable
from nodes k and j, it is also inRG(k, j). Now, suppose
that m is a node in RG(k, j). Then there is a path in
G from m to `. Since m is reachable from either k
or j, every node along this path is as well. Thus, this
path is contained in RG(k, j) and so ` is reachable (in
RG(k, j)) from every node in RG(k, j).

(ii) Let m be a node inRG(k, j). Then m must be reachable
from either k or j. Without loss of generality, suppose
that m is reachable from k. Then (as we saw in part (i))
there must be a path in RG(k, j) from m to the globally
reachable node ` as well as a path from j to `. Thus m
is part of a connection between k and j.

(iii) Let (m,n) be an edge in RG(k, j). Without loss of
generality, suppose that m is reachable from k. Then
n is also reachable from k. Then (as we saw in part (i))
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there must be a path in RG(k, j) from n to the globally
reachable node ` as well as a path from j to `. Thus
(m,n) is part of a connection between k and j.

(iv) Every node along a path is reachable from the node
where the path started. Thus, every node in a connection
between k and j is reachable from either k or j and
hence in RG(k, j). Since RG(k, j) contains every edge
in G between its nodes, every edge in the connection
must also be in RG(k, j).

Next we proceed to show in Theorem 1 that the effective
resistance between two nodes in a connected digraph can only
depend on the connections between them. The proof relies
on the following lemma, which describes sufficient conditions
under which effective resistances in a subgraph will be equal
to those in the original graph.

Lemma 4. Suppose that G1 is a connected subgraph (contain-
ing N1 nodes and with Laplacian matrix L1) of a connected
graph G (containing N nodes and with Laplacian matrix L)
and suppose that the nodes in G1 are labelled 1 through N1.
Let Q1 ∈ R(N1−1)×N1 be a matrix satisfying (1) and suppose
there is a Q ∈ R(N−1)×N satisfying (1) that can be written
as

Q =

 Q1 0/

α1T
N1

rT

0/ S


for some α ∈ R, r ∈ RN−N1 and S ∈ R(N−N1−1)×(N−N1).
If the solution to (8) for G (with L = QLQT ) can be written
as

Σ =

Σ1 t U
tT v wT

UT w Y

 ,
for some t ∈ RN1−1, U ∈ R(N1−1)×(N−N1−1), v ∈ R, w ∈
RN−N1−1 and Y ∈ R(N−N1−1)×(N−N1−1) with Y = Y T and
where Σ1 ∈ R(N1−1)×(N1−1) is the solution to (8) for G1
(with L1 = Q1L1Q

T
1 ), then for any k, j ≤ N1, the effective

resistance between nodes k and j in G is equal to the effective
resistance between the same two nodes in G1.

Proof: Effective resistances in G1 can be found from
X1 = 2QT

1 Σ1Q1 as

r1 k,j = x1 k,k + x1 j,j − 2x1 k,j .

To compute effective resistances in G, we must examine X =
2QT ΣQ. Using the matrices given above, we obtain

X =

[
2QT

1 Σ1Q1+2α1N1t
TQ1+2αQT

1 t1
T
N1

+2α2v1N11
T
N1

∗
∗
∗

]
.

If we let p := 2αQT
1 t = [pi], we can write

X =

[
X1 + 1N1p

T + p1T
N1

+ 2α2v1N11
T
N1

∗
∗ ∗

]
.

Finally, since nodes k and j are both in G1, we obtain

rk,j = x1 k,k + 2pk + 2α2v + x1 j,j + 2pj + 2α2v − 2x1 k,j

− 2(pk + pj)− 4α2v

= r1 k,j .

Note that the same calculation applies if N = N1 + 1, in
which case the 0/ (N−N1−1)×N1

, S, U , w and Y blocks of Q
and Σ are all empty.

Now we can state our first main result.

Theorem 1. The effective resistance between nodes k and j
in a connected graph G is equal to the effective resistance
between nodes k and j in RG(k, j).

Proof: Let G1 = RG(k, j). Let N1, A1, D1 and L1 be the
number of nodes, the adjacency matrix, the matrix of node out-
degrees and the Laplacian matrix of G1, respectively. Let Q1 ∈
R(N1−1)×N1 satisfy (1). Since G1 is connected by Lemma 3,
we can find matrices L1, Σ1 and X1 from (12) for G1.

Let G2 be the subgraph of G formed by every node in G
which is not in G1 and every edge in G between these nodes.
Then G2 will contain N2 nodes and have associated matrices
A2, D2, L2, Q2 and L2.

Now, if there was an edge (m,n) in G from a node m in
G1 to a node n in G2, then n would be reachable from either k
or j (as m is reachable from one of these nodes). Thus there
are no edges in G leading from nodes in G1 to nodes in G2.
Therefore, if we order the nodes in G with the nodes in G1
listed first, followed by the nodes in G2, then the adjacency
matrix of G can be written as

A =

[
A1 0/

A2,1 A2

]
,

where A2,1 ∈ RN2×N1 contains the edge weights for all edges
in G leading from nodes in G2 to nodes in G1. Similarly, we
can write the matrix of node out-degrees as

D =

[
D1 0/

0/ D2 +D2,1

]
,

where D2,1 is the diagonal matrix containing the row sums of
A2,1 along its diagonal. Utilizing these two expressions, we
find that the Laplacian matrix of G can be written as

L =

[
L1 0/

−A2,1 L2 +D2,1

]
.

Now, let

Q =

 Q1 0/

α1T
N1

−β1T
N2

0/ Q2

 ,
where α =

√
N2

N1 (N1 +N2)
and β =

√
N1

N2 (N1 +N2)
.

Then Q satisfies (1) (note that N = N1 + N2). Substituting
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this matrix into (4) gives us

L =

 L1 0
α1T

N1
L1Q

T
1 + β1T

N2
A2,1Q

T
1 β (α+ β)1T

N2
d2,1

−Q2A2,1Q
T
1 − (α+ β)Q2d2,1

0/

−β1T
N2
L2Q

T
2 − β1T

N2
D2,1Q

T
2

L2 +Q2D2,1Q
T
2

 ,
where d2,1 := D2,11N2

= A2,11N1
.

In order to compute effective resistances in G, we must find
the matrix Σ which solves (8). Since we have partitioned L
into a 3× 3 block matrix, we will do the same for Σ. Let

Σ =

 S t U
tT v wT

UT w Y

 ,
where S ∈ R(N1−1)×(N1−1) and Y ∈ R(N2−1)×(N2−1) are
symmetric matrices, U ∈ R(N1−1)×(N2−1), t ∈ RN1−1, w ∈
RN2−1 and v ∈ R. Then when we multiply out the matrices
of (8) and equate the (1, 1) blocks, we find

L1S + SL
T

1 = IN1−1,

which implies that

S = Σ1.

Thus, by Lemma 4, the effective resistance between two
nodes in G1 is equal to the effective resistance between the
same two nodes in G.

We can use Theorem 1 to partially extend the definition of
effective resistance to disconnected digraphs. To do this, we
will first define connection subgraphs.

Definition 4. A connection subgraph between nodes k and
j in the graph G is a maximal connected subgraph of G in
which every node and edge form part of a connection between
nodes k and j in G. That is, a connection subgraph is formed
from the union of connections between nodes k and j, and the
addition of any other connections would make the subgraph
disconnected. If only one connection subgraph exists in G
between nodes k and j, it is referred to as the connection
subgraph and is denoted by CG(k, j).

From Lemma 3 we know that CG(k, j) = RG(k, j) if G is
connected. However, a disconnected graph may contain 0, 1
or more connection subgraphs between a pair of nodes. There
will be no connection subgraphs precisely when there are no
connections between nodes k and j in G. However, there
may also be multiple connections between a pair of nodes
that lead to multiple connection subgraphs. A simple example
of connection subgraphs in a disconnected graph is shown in
Fig. 3

By definition, whenever it exists, CG(k, j) will be connected,
and we can thus compute effective resistances in it. We can
now define effective resistances between some node pairs in
any digraph, whether or not it is connected, as follows

(a) (b) (c)

(d) (e)

Fig. 3. (a) A disconnected graph on 4 nodes. (b) There are no connection
subgraphs between nodes 1 and 2. (c) The connection subgraph between nodes
1 and 3 is highlighted. (d) One connection subgraph between nodes 3 and 4
is highlighted. (e) A second connection subgraph between nodes 3 and 4 is
highlighted. In this example, the effective resistance between nodes 3 and 4
is undefined.

(a) (b)

Fig. 4. Two simple 4-node graphs: (a) Gpath
4 , a 4-node directed path graph

with unit edge weights, and (b) Gline, similar to Gpath
4 but with the directed

edge (2, 1) replaced by an undirected edge.

Definition 5. The effective resistance between nodes k and j
in a graph G is

rk,j =



∞ if there are no connections
between nodes k and j

rk,j in CG(k, j) if CG(k, j) exists
(computed using (11))

undefined otherwise.

By Theorem 1, this new definition specializes to our original
definition of effective resistance for connected graphs. For
certain applications, there may be an appropriate way to handle
pairs of nodes with multiple connection subgraphs, but that
falls outside the scope of the present work.

In undirected graphs, we know that the effective resistance
between two nodes does not depend on edges that do not
lie on any simple path between the nodes [1]. Unfortunately,
the situation is not as straightforward for directed graphs.
Consider the 4-node graphs shown in Fig. 4. In Gpath

4 , we can
compute that r3,4 = 2. However in G line, even though no new
simple connections were introduced between nodes 3 and 4,
the effective resistance is now r3,4 = 16

9 .
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Despite this (perhaps) unexpected behavior, we are able to
show below that certain parts of the connection subgraph do
not affect the effective resistance between two nodes. The
proof relies on the following lemma, which provides a solution
to Lyapunov equations with a certain structure.

Lemma 5. Suppose that L1 ∈ RN1×N1 is the Laplacian
matrix of a connected graph satisfying LT

1 e
(1)
N1

= 0 and

Q1 ∈ R(N1−1)×N1 satisfies (1). Let α =
1√

N1(N1 + 1)
,

β =
N1√

N1(N1 + 1)
and a > 0. If L1 = Q1L1Q

T
1 , then a

solution to the Lyapunov equation[
L1 + aQ1e

(1)
N1

e
(1)T
N1

QT
1 a(α+ β)Q1e

(1)
N1

α1T
N1
L1Q

T
1 + aαe

(1)T
N1

QT
1

a
N1

] [
S t
tT u

]

+

[
S t
tT u

][
L
T

1 +aQ1e
(1)
N1

e
(1)T
N1

QT
1 αQ1L

T
1 1N1

+aαQ1e
(1)
N1

a(α+ β)e
(1)T
N1

QT
1

a
N1

]

=

[
IN1−1 0
0T 1

]
is

S = Σ1,

t = −N1αΣ1Q1e
(1)
N1

and

u =
N1

2a
+
N2

1α
2

a

(
1T
N1
L1 + ae

(1)T
N1

)
QT

1 Σ1Q1e
(1)
N1
,

(15)

where Σ1 is the solution to (8) for L1.

Proof: First we note that Σ1 exists since L1 is the
Laplacian of a connected graph. Next, equating blocks of the
given matrix equation gives us

L1S + SL
T

1 + aQ1e
(1)
N1

e
(1)T
N1

QT
1 S + aSQ1e

(1)
N1

e
(1)T
N1

QT
1

+ a(α+ β)
(
Q1e

(1)
N1

tT + te
(1)T
N1

QT
1

)
= IN1−1, (16)

αSQ1

(
LT
1 1N1 + ae

(1)
N1

)
+ au(α+ β)Q1e

(1)
N1

+

(
a

N1
IN1−1 + L1 + aQ1e

(1)
N1

e
(1)T
N1

QT
1

)
t = 0 and (17)

2au

N1
+ 2α

(
1T
N1
L1 + ae

(1)T
N1

)
QT

1 t = 1. (18)

By directly substituting (15) into (16) and (18) (and noting
that N1α(α+β) = 1), we observe that (15) satisfies (16) and
(18). Hence, we now focus our attention on (17). Substituting
(15) into the left-hand side of (17) gives us

LHS = αΣ1Q1L
T
1 1N1

−N1αL1Σ1Q1e
(1)
N1

+
1

2α
Q1e

(1)
N1

+N1αQ1e
(1)
N1

1T
N1
L1Q

T
1 Σ1Q1e

(1)
N1
. (19)

By (8), we know that L1Σ1 = IN1−1 − Σ1L
T

1 . Therefore,
using (1) and our assumption that LT

1 e
(1)
N1

= 0, we have

L1Σ1Q1e
(1)
N1

= Q1e
(1)
N1

+
1

N1
Σ1Q1L

T
1 1N1 .

Thus N1αL1Σ1Q1e
(1)
N1

= N1αQ1e
(1)
N1

+ αΣ1Q1L
T
1 1N1

, and
(19) becomes

LHS =

(
1

2α
−N1α+N1α1

T
N1
L1Q

T
1 Σ1Q1e

(1)
N1

)
Q1e

(1)
N1
.

(20)
Next, if we define V to be the matrix V := L1Q

T
1 Σ1Q1 +

QT
1 Σ1Q1L

T
1 , we have that V = V T and (using (1)),

1T
N1
V e

(1)
N1

= 1T
N1
L1Q

T
1 Σ1Q1e

(1)
N1
.

But pre- and post-multiplying V by Π = QT
1Q1 and using (8)

gives us ΠVΠ = Π, and then by pre- and post-multiplying by
e
(1)T
N1

and e
(1)
N1

, we find

e
(1)T
N1

V e
(1)
N1
− 2

N1
1T
N1
V e

(1)
N1

+
1

N2
1

1T
N1
V 1N1

=
N1 − 1

N1
(since V is symmetric).

But since LT
1 e

(1)
N1

= 0 and Q11N1 = 0, we know that both
e
(1)T
N1

V e
(1)
N1

= 0 and 1T
N1
V 1N1

= 0. Thus

1T
N1
V e

(1)
N1

=
1−N1

2
⇒ 1T

N1
L1Q

T
1 Σ1Q1e

(1)
N1

=
1−N1

2
,

and so (20) becomes LHS = 0. Thus (15) also satisfies (17)
and is therefore a solution to the given matrix equation.

We can now proceed to state our next main result.

Theorem 2. Suppose G1 is a connected graph containing only
one globally reachable node, and let G be the graph formed by
connecting the globally reachable node in G1 to an additional
node via a directed edge of arbitrary weight. Then the effective
resistance between any two nodes in G1 is equal to the effective
resistance between them in G.

Proof: Let N1, A1, D1 and L1 be the number of nodes,
the adjacency matrix, the matrix of node out-degrees and the
Laplacian matrix of G1, respectively. Let Q1 ∈ R(N1−1)×N1

satisfy (1). Using Q1, we can compute L1 from (4) and since
G1 is connected, we can find matrices Σ1 and X1 from (12).
Without loss of generality, suppose that the globally reachable
node in G1 is node 1. Since this is the only globally reachable
node in G1, no other nodes can be reached from node 1 and
hence dout

1 = 0. Thus

LT
1 e

(1)
N1

= 0. (21)

Let the additional node in G be node N = N1 + 1. We can
see that since node 1 is globally reachable in G1 and node N
is reachable from node 1, node N is globally reachable in G.
Thus G is connected.

Now, we can write the adjacency matrix of G as

A =

[
A1 ae

(1)
N1

0T 0

]
,

where a > 0 is the weight on edge (1, N) in G. Similarly, we
can write the matrix of node out-degrees as

D =

[
D1 + ae

(1)
N1

e
(1)T
N1

0
0T 0

]
.
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Utilizing these two expressions, we find that the Laplacian
matrix of G can be written as

L =

[
L1 + ae

(1)
N1

e
(1)T
N1

−ae(1)N1

0T 0

]
.

Now, let

Q =

[
Q1 0
α1T

N1
−β

]
,

where α =
1√

N1 (N1 + 1)
and β =

N1√
N1 (N1 + 1)

. Then Q

satisfies (1). Substituting this matrix into (4) gives us

L =

[
L1 + aQ1e

(1)
N1

e
(1)T
N1

QT
1 a(α+ β)Q1e

(1)
N1

α1T
N1
L1Q

T
1 + aαe

(1)T
N1

QT
1

a
N1

]
.

In order to compute effective resistances in G, we must find
the matrix Σ which solves (8). Since we have partitioned L
into a 2× 2 block matrix, we will do the same for Σ. Let

Σ =

[
S t
tT u

]
,

where S ∈ R(N1−1)×(N1−1) is a symmetric matrix, t ∈ RN1−1

and u ∈ R. Then Lemma 5 gives a solution to (8) using L
and our desired form of Σ. However, since G is connected,
we know that there must be a unique solution. Thus (15) from
Lemma 5 is the unique solution to the Lyapunov equation, and
in particular,

S = Σ1.

Thus, by Lemma 4, the effective resistance between two
nodes in G1 is equal to the effective resistance between the
same two nodes in G.

Corollary 1. Suppose CG(k, j) consists of a subgraph C′G(k, j)
that is connected via a single edge of arbitrary weight to
the leaf node of a directed path. Then the effective resistance
between nodes k and j in the graph G is equal to the effective
resistance between nodes k and j in C′G(k, j).

Proof: This follows by simply applying Theorem 2 re-
peatedly to “prune” away the nodes in the directed path.

We can see from the graphs shown in Fig. 4 that this
“pruning” operation can only be applied to directed edges in
general. There may, however, be other graphical structures that
also do not affect the effective resistance between two nodes.

C. Effective resistance is a distance-like function and its
square root is a metric

One useful property of effective resistance in undirected
graphs is that it is a metric on the nodes of the graph [1].
This allows effective resistance to substitute for the shortest-
path distance in various graphical indices and analyses, as well
as offering an alternative interpretation of effective resistance
that does not rely on an electrical analogy. Although many
of the requirements of a metric follow from the algebraic
construction of the effective resistance, the triangle inequality
depends on Kirchhoff’s laws [1]. Consequently, we shall see
that the effective resistance does not satisfy the triangle in-
equality on general digraphs. Importantly, however, the square

root of the effective resistance is a metric. Therefore, if a true
metric on digraphs is sought which incorporates information
about all connections between two nodes, the square root of
the effective resistance is a valid option. In contrast, if the
effective resistance had been generalized using the Moore-
Penrose generalized inverse instead of our definition, then it
would be neither a metric nor would its square root be a metric.

We note that the only difference in the conditions for a
metric between a function and its square root lies in the
triangle inequality. Furthermore, if a function d(·, ·) is a metric,
then

√
d(·, ·) is by necessity a metric too.

Theorem 3. The square root of the effective resistance is a
metric on the nodes of any connected directed graph. That is,

rk,j ≥ 0 ∀ nodes k and j, (22)
rk,j = 0 ⇔ k = j, (23)
rk,j = rj,k, and (24)

√
rk,` +

√
r`,j ≥

√
rk,j ∀ nodes k, j and `. (25)

Furthermore, the effective resistance itself is not a metric since
it fails to satisfy the triangle inequality.

Proof: From (3), we know that the effective resistance
can be computed as

rk,j =
(
e
(k)
N − e

(j)
N

)T
X
(
e
(k)
N − e

(j)
N

)
,

where X = 2QT ΣQ and Σ is a positive definite matrix. Now,
by (1), we know that the matrix P :=

[
1√
N
1N QT

]
is or-

thogonal and thus X is similar to PTXP =

[
0 0T

0 2Σ

]
. Hence

X has a single 0 eigenvalue and its remaining eigenvalues are
twice those of Σ. Furthermore, X1N = 0 since Q1N = 0.
Thus X is positive semi-definite with null space given by the
span of 1N .

Since X is positive semi-definite, we can find a ma-
trix Y ∈ RN×N such that X = Y TY (e.g. by the
Cholesky decomposition or the positive semi-definite square
root [31]). This means that we can write effective resis-

tances as rk,j =
∥∥∥Y (e(k)N − e

(j)
N

)∥∥∥2
2
, and therefore √rk,j =∥∥∥Y (e(k)N − e

(j)
N

)∥∥∥
2
, where ‖ · ‖2 denotes the regular 2-norm

on RN . Therefore, if we associate each node k of G to the
point pk := Y e

(k)
N ∈ RN , we observe that √rk,j is equal

to the Euclidean distance in RN between pk and pj . Since
e
(k)
N −e

(j)
N is perpendicular to 1N for any k 6= j, e(k)N −e

(j)
N is

not in the null space of Y and so pk 6= pj for k 6= j. Hence√
rk,j is a metric on the nodes of the graph.
Finally, to show that rk,j is not a metric, we consider the

3-node graph shown in Fig. 5. In this case, we find that r1,3 =
20, r1,2 = 131

21 ≈ 6.24 and r2,3 = 37
7 ≈ 5.29. Thus r1,3 >

r1,2 + r2,3 and the triangle inequality does not hold.

Remark 2. We can observe that if effective resistance was
defined using X = L†, then for the graph shown in Fig. 5
the triangle inequality would fail for both rk,j and √rk,j .
Indeed, the counterexample in the proof of Theorem 3 also
demonstrates why the triangle inequality could be expected to



10

Fig. 5. A simple 3-node directed graph, Gtriangle,where the triangle inequality
fails.

fail for any effective resistance definition that respects edge
direction. We can observe that there should be a “low” effec-
tive resistance between nodes 1 and 2 due to the connecting
edge with unit weight. Likewise, nodes 2 and 3 should have a
“low” effective resistance between them for the same reason.
But node 2 does not belong to CGtriangle(1, 3) and so there should
be a “high” effective resistance between nodes 1 and 3 due
to their only connection being an edge with low weight. Thus,
the sum of the effective resistances between nodes 1 and 2
and between nodes 2 and 3 should be lower than the effective
resistance between nodes 1 and 3.

V. CONCLUSIONS

We have generalized the concept of effective resistance
to directed graphs in a way that maintains the connection
between effective resistances and control-theoretic properties
relating to consensus-type dynamics. Despite the algebraic
nature of our generalization, we have shown that effective
resistances in directed graphs bear a fundamental relationship
to the structure of the connections between nodes. Moreover,
the square root of effective resistance provides a well-defined
metric on connected directed graphs, allowing for a notion of
distance between nodes, even in cases where neither node is
reachable from the other.

Although it may have been tempting to use the Moore-
Penrose generalized inverse of a directed graph’s Laplacian
matrix to define effective resistance, we have shown that not
only would this approach ignore the complexity of the deriva-
tion of effective resistance for undirected graphs, but also fail
to lead to a distance function for directed graphs. Instead,
our generalization derives from an analysis of applications of
effective resistance in which directed graphs arise naturally.
We believe that this approach will allow for the application of
this directed version of effective resistance in other situations
than those we presented above.

In the companion paper [32], we demonstrate how to
compute effective resistances in certain prototypical classes
of graphs and we find cases where effective resistances in
directed graphs behave analogously to effective resistances
in undirected graphs as well as cases where they behave in
unexpected ways.
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