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Abstract

The aim of this paper is to propose a new numerical approximation of the Kalman–
Bucy filter for semi-Markov jump linear systems. This approximation is based on the
selection of typical trajectories of the driving semi-Markov chain of the process by
using an optimal quantization technique. The main advantage of this approach is that
it makes pre-computations possible. We derive a Lipschitz property for the solution
of the Riccati equation and a general result on the convergence of perturbed solutions
of semi-Markov switching Riccati equations when the perturbation comes from the
driving semi-Markov chain. Based on these results, we prove the convergence of our
approximation scheme in a general infinite countable state space framework and derive
an error bound in terms of the quantization error and time discretization step. We
employ the proposed filter in a magnetic levitation example with markovian failures
and compare its performance with both the Kalman–Bucy filter and the Markovian
linear minimum mean squares estimator.
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1 Introduction

Markov jump linear systems (MJLS) have been largely studied and disseminated during
the last decades. MJLS have a relatively simple structure that allows for useful, strong
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properties [9, 10, 14, 15], and provide suitable models for applications [13, 33, 32], with a
booming field in web/internet based control [17, 20]. One limitation of MJLS is that the
sojourn times between jumps is a time-homogeneous exponential random variable, thus
motivating the study of a wider class of systems with general sojourn-time distributions,
the so-called semi-Markov jump linear systems (sMJLS) or sojourn-time-dependent MJLS
[20, 6, 31, 19, 21].

In this paper, we consider continuous-time sMJLS with instantaneous (or close to in-
stantaneous) observation of the state of the semi-Markov chain at time instant t, denoted
here by θ(t). The state space of the semi-Markov chain may be infinite. We seek for
an approximate optimal filter for the variable x(t) that composes the state of the sMJLS
jointly with θ(t). Of course, estimating the state component x(t) is highly relevant and
allows the use of standard control strategies like linear state feedback.

It is well known that the optimal estimator for x(t) is given by the standard Kalman–
Bucy filter (KBF) [1, 22, 23, 24, 26] because, given the observation of the past values of θ,
the distribution of the random variable x(t) is exactly the same as in a time varying system.
The main problem faced when implementing the KBF for MJLS or sMJLS, particularly
in continuous time, is the pre-computation. Pre-computation refers to the computation
of the relevant parameters of the KBF and storage in the controller/computer memory
prior to the system operation, which makes the implementation of the filter fast enough
to couple with a wide range of applications. Unfortunately, pre-computation is not viable
for (s)MJLS in continuous time, as it involves solving a Riccati differential equation that
branches at every jump time Tk, and the jumps can occur at any time instant according
to an exponential distribution, so that pre-computation would involve computation of an
infinite number of branches. Another way to explain this drawback of the KBF is to say
that the KBF is not a Markovian linear estimator because the gain at time t does not
depend only on θ(t) but on the whole trajectory {θ(s), 0 ≤ s ≤ t}. This drawback of
the KBF has motivated the development of other filters for MJLS, and one of the most
successful ones is the Markovian linear minimum mean squares estimator (LMMSE) that
has been derived in [16], whose parameters can be pre-computed, see also [10, 8]. To our
best knowledge, there is no pre-computable filter for sMJLS.

The filter proposed here is built in several steps. The first step is the discretization by
quantization of the Markov chain, providing a finite number of typical trajectories. The
second step consists in solving the Riccati differential equation on each of these trajectories
and store the results. To compute the filter in real time, one just needs to select the
appropriate pre-computed branch at each jump time and follow it until the next jump
time. This selection step is made by looking up the projection of the real jump time in the
quantization grid and choosing the corresponding Riccati branch. In case the real jump
time is observed with some delay (non-instantaneous observation of θ), then the observed
jump time is projected in the quantization grid instead, see Remarks 4.7, 4.13.

The quantization technique selects optimized typical trajectories of the semi-Markov
chain. Optimal quantization methods have been developed recently in numerical probabil-
ity, nonlinear filtering or optimal stochastic control for diffusion processes with applications
in finance [2, 3, 27, 28, 29, 30] or for piecewise deterministic Markov processes with ap-
plications in reliability [4, 5, 11, 12]. To our best knowledge, this technique has not been
applied to MJLS or sMJLS yet. The optimal quantization of a random variable X consists
in finding a finite grid such that the projection X̂ of X on this grid minimizes some Lp

norm of the difference X − X̂. Roughly speaking, such a grid will have more points in
the areas of high density of X. One interesting feature of this procedure is that the con-
struction of the optimized grids using the CLVQ algorithm (competitive learning vector
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quantization) [27, 18] only requires a simulator of the process and no special knowledge
about the distribution of X.

As explained for instance in [30], for the convergence of the quantized process towards
the original process, some Lipschitz-continuity conditions are needed, hence we start inves-
tigating the Lipschitz continuity of solutions of Riccati equations. Of course, this involves
evaluating the difference of two Riccati solutions, which is not a positive semi-definite nor
a negative-definite matrix, preventing us to directly use the positive invariance property
of Riccati equations, thus introducing some complication in the analysis given in Theorem
4.2. A by product of our procedure is a general result on the convergence of perturbed
solutions of semi-Markov switching Riccati equations, when the perturbation comes from
the driving semi-Markov chain and can be either a random perturbation of the jump times
or a deterministic delay, or both, see Remark 4.7. Regarding the proposed filter, we ob-
tain an error bound w.r.t. the exact KBF depending on the quantization error and time
discretization step. It goes to zero when the number of points in the grids goes to infinity.

The approximation results are illustrated and compared with the exact KBF and the
LMMSE in the Markovian framework for a numerical example of a magnetic suspension
system, confirming via Monte Carlo simulation that the proposed filter is effective for state
estimation even when a comparatively low number of points in the discretization grids is
considered.

The paper is organized as follows. Section 2 presents the KBF and the sMJLS setup.
The KBF approximation scheme is explained in Section 3, and its convergence is studied
in Section 4. The results are illustrated in a magnetic suspension system, see Section 5,
and some concluding remarks are presented in Section 6.

2 Problem setting

We start with some general notation. For z, ẑ ∈ R, z ∧ ẑ = min{z, ẑ} is the minimum
between z and ẑ. For a vector X = (x1, . . . , xn) ∈ Rn, |X| denotes its Euclidean norm
|X|2 =

∑
x2
i and X

′ denotes its transpose. Let C(n) be the set of n×n symmetric positive
definite matrices and In (or I when there is no ambiguity) the identity matrix of size n×n.
For any two symmetric positive semi-definite matrices M and M̂ , M ≥ M̂ means that
M − M̂ is positive semidefinite and M > M̂ means that M − M̂ ∈ C(n). Let λmin(M) and
λmax(M) denote the lowest and highest eigenvalue of matrix M ∈ C(n) respectively. For
a matrix M ∈ Rn×n, M ′ is the transpose of M and ‖M‖ stands for its L2 matrix norm
‖M‖2 = λmax(M ′M).

Let (Ω,F ,P) be a probability space, E denote the expectation with respect to P, and
V ar(X) is the variance-covariance matrix of the random vector X. Let {θ(t), t ≥ 0} be a
semi-Markov jump process on the countable state space S. We denote by Fi the cumulative
distribution function of the sojourn time of θ in state i. For a family {Mi, i ∈ S} of square
matrices indexed by S, we set ‖M‖S = supi∈S ‖Mi‖ ≤ ∞.

We consider a sMJLS satisfying{
dx(t) = Aθ(t)x(t)dt+ Eθ(t)dw(t),

dy(t) = Cθ(t)x(t)dt+Dθ(t)dv(t),

for 0 ≤ t ≤ T , where T is a given time horizon,
(
x(t), θ(t)

)
∈ Rn1 × S is the state process,

y(t) ∈ Rn2 is the measurement process, {w(t), 0 ≤ t ≤ T} and {v(t), 0 ≤ t ≤ T} are
independent standard Wiener processes with respective dimensions n3 and n4, independent
from {θ(t), t ≥ 0}, and {Ai, i ∈ S}, {Ci, i ∈ S}, {Di, i ∈ S} and {Ei, i ∈ S} are families of
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matrices with respective size n1 × n1, n2 × n1, n2 × n4 and n1 × n3 such that DiD
′
i > 0 is

nonsingular for all i (nonsingular measurement noise).
We use two different sets of assumptions for the parameters of our problems. The first

one is more restrictive but relevant for applications, and the second more general one will
be used in the convergence proofs.

Assumption 2.1 The state space S is finite, S = {1, 2, . . . , N} and the cumulative distri-
bution functions of the sojourn times Fi are Lipschitz continuous with Lipschitz constant
λi, i ∈ S.

Assumption 2.2 The state space S is countable, the quantities ‖A‖S , ‖C‖S , ‖D‖S , ‖DD′‖S
and ‖E‖S are finite. The cumulative distribution functions of the sojourn times Fi are Lip-
schitz continuous with Lipschitz constant λi, i ∈ S and

λ = sup
i∈S
{λi} <∞.

Note that the extra assumptions in the infinite case hold true automatically in the finite
case, and that the Lipschitz assumptions hold true automatically for MJLS (i.e., when the
distributions of Fi are exponential).

We address the filtering problem of estimating the value of x(t) given the observations
{y(s), θ(s), 0 ≤ s ≤ t} for 0 ≤ t ≤ T . It is well-known that the KBF is the optimal estimator
because the problem is equivalent to estimating the state of a linear time-varying system
(with no jumps), taking into account that the past values of θ are available. The KBF
satisfies the following equation

dx̂KB(t)=Aθ(t)x̂KB(t)dt+KKB(t)(dy(t)− Cθ(t)x̂KB(t)dt),

for 0 ≤ t ≤ T , with initial condition x̂KB(0) = E[x(0)] and gain matrix

KKB(t) = PKB(t)C ′θ(t)(Dθ(t)D
′
θ(t))

−1, (1)

for 0 ≤ t ≤ T , where PKB(t) is an n1 × n1 matrix-valued process satisfying the Riccati
matrix differential equation{

dPKB(t) = R(PKB(t), θ(t))dt,
PKB(0) = V ar(x(0)),

(2)

for 0 ≤ t ≤ T , where R : Rn1×n1 × S → Rn1×n1 is defined for any M ∈ Rn1×n1 and i ∈ S
by

R(M, i) = AiM +MA′i + EiE
′
i −MC ′i(DiD

′
i)
−1CiM. (3)

It is usually not possible to pre-compute a solution for this system (prior to the obser-
vation of θ(s), 0 ≤ s ≤ t). Moreover, to solve it in real time after observing θ would require
instantaneous computation of P (t); one can obtain a delayed solution P (t− δ) where δ is
the time required to solve the system, however using this solution as if it was the actual
P (t) in the filter may bring considerable error to the obtained estimate depending on δ
and on the system parameters (e.g., many jumps may occur between t− δ and t).

The aim of this paper is to propose a new filter based on suitably chosen pre-computed
solutions of Eq. (2) under the finiteness assumption 2.1 and to show convergence of our
estimate to the optimal KBF when the number of discretization points goes to infinity
under the more general countable assumption 2.2. We also compare its performance with
the Fragoso-Costa LMMSE filter [16] on a real-world application.
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3 Approximate Kalman–Bucy filter

The estimator is constructed as follows. We first select an optimized finite set of typical
possible trajectories of {θ(t), 0 ≤ t ≤ T} by discretizing the semi-Markov chain and for
each such trajectory we solve Eqs. (2), (1) and store the results. In real time, the estimate
is obtained by looking up the pre-computed solutions and selecting the suitable gain given
the current value of θ(t).

3.1 Discretization of the semi-Markov chain

The approach relies on the construction of optimized typical trajectories of the semi-Markov
chain {θ(t), 0 ≤ t ≤ T}. First we need to rewrite this semi-Markov chain in terms of
its jump times and post-jump locations. Let T0 = 0 and Tk be the k-th jump time of
{θ(t), 0 ≤ t ≤ T} for k ≥ 1,

Tk = inf{t ≥ Tk−1; θ(t) 6= θ(Tk−1)}.

For k ≥ 0 let Zk = θ(Tk) be the post-jump locations of the chain. Let S0 = 0 and for
k ≥ 1, Sk = Tk − Tk−1 be the inter-arrival times of the Markov process {θ(t), 0 ≤ t ≤ T}.
Using this notation, θ(t) can be rewritten as

θ(t) =

∞∑
k=0

Zk1{Tk≤t<Tk+1} =

∞∑
k=0

Zk1{0≤t−Tk<Sk+1}. (4)

Under the finiteness assumption 2.1, as the state space S of {θ(t), 0 ≤ t ≤ T} (and hence
of {Zk}) is finite, to obtain a fully discretized approximation of {θ(t), 0 ≤ t ≤ T} one only
needs to discretize the inter-arrival times {Sk} on a finite state space. One thus constructs
a finite set of typical possible trajectories of {θ(t), 0 ≤ t ≤ T} up to a given jump time
horizon Tn selected such that Tn ≥ T with high enough probability.

To discretize the inter-arrival times {Sk}, we choose a quantization approach that has
been recently developed in numerical probability. Its main advantage is that the discretiza-
tion is optimal in some way explained below. There exists an extensive literature on quanti-
zation methods for random variables and processes. The interested reader may for instance,
consult the following works [2, 18, 27] and references therein. Consider X an Rm-valued
random variable such that E[|X|2] <∞ and ν a fixed integer; the optimal L2-quantization
of the random variable X consists in finding the best possible L2-approximation of X by a
random vector X̂ taking at most ν different values, which can be carried out in two steps.
First, find a finite weighted grid Γ ⊂ Rm with Γ = {γ1, . . . , γν}. Second, set X̂ = X̂Γ

where X̂Γ = projΓ(X) with projΓ denoting the closest neighbor projection on Γ. The
asymptotic properties of the L2-quantization are given in e.g. [27].

Theorem 3.1 If E[|X|2+ε] < +∞ for some ε > 0 then one has

lim
ν→∞

ν1/m min
|Γ|≤ν

E[|X − X̂Γ|2]1/2 = C,

for some contant C depending only on m and the law of X and where |Γ| denote the
cardinality of Γ.

Therefore the L2 norm of the difference between X and its quantized approximation
X̂ goes to zero with rate ν−1/m as the number of points ν in the quantization grid goes
to infinity. The competitive learning vector quantization algorithm (CLVQ) provides the
optimal grid based on a random simulator of the law ofX and a stochastic gradient method.

In the following, we will denote by Ŝk the quantized approximation of the random
variable Sk and T̂k = Ŝ1 + · · ·+ Ŝk for all k.

5



3.2 Pre-computation of a family of solutions to Riccati equation

We start by rewriting the Riccati equation (2) in order to have a similar expression to
Eq. (4). As operator R does not depend on time, the solution {P (t), 0 ≤ t ≤ T} to Eq. (2)
corresponding to a given trajectory {θ(t), 0 ≤ t ≤ T} can be rewritten as

P (t) =

∞∑
k=0

Pk(t− Tk)1{0≤t−Tk<Sk+1},

for 0 ≤ t ≤ T , where {P0(t), 0 ≤ t ≤ T} is the solution of the system{
dP0(t) = R(P0(t), Z0)dt,
P0(0) = p0,

for 0 ≤ t ≤ T , with p0 = V ar(x(0)), and for k ≥ 1, {Pk(t), 0 ≤ t ≤ T} is recursively
defined as the solution of {

dPk(t) = R(Pk(t), Zk)dt,
Pk(0) = Pk−1(Sk).

Given the quantized approximation {Ŝk} of the sequence {Sk}, we propose the following
approximations {P̂k(t), 0 ≤ t ≤ T} of {Pk(t), 0 ≤ t ≤ T} for all k. First, {P̂0(t), 0 ≤ t ≤ T}
is the solution of {

dP̂0(t) = R(P̂0(t), Z0)dt,

P̂0(0) = p0,

and for k ≥ 1, {P̂k(t), 0 ≤ t ≤ T} is recursively defined as the solution of{
dP̂k(t) = R(P̂k(t), Zk)dt,

P̂k(0) = P̂k−1(Ŝk).

Hence Pk and P̂k are defined with the same dynamics, the same horizon T , but different
starting values, and all the P̂k can be computed off-line for each of the finitely many possible
values of (Zk, Ŝk) (under the finiteness assumption 2.1 and for a finite number of jumps)
and stored.

3.3 On line approximation

We suppose that on-line computations are made on a regular time grid with constant step
δt. Note that in most applications δt is small compared to the time δ of instantaneous
computation of P (t). The state of the semi-Markov chain {θ(t), 0 ≤ t ≤ T} is observed,
but the jumps can only be considered, in the filter operation, at the next point in the time
grid. Set T̃0 = 0, and for k ≥ 1 define T̃k as

T̃k = inf{j; Tk < jδt}δt,

hence T̃k is the effective time at which the k-th jump is taken into account. One has
T̃k > Tk and the difference between T̃k and Tk is at most δt. We also set S̃k = T̃k − T̃k−1

for k ≥ 1. Now we construct our approximation {P̃ (t), 0 ≤ t ≤ T} of {P (t), 0 ≤ t ≤ T} as
follows

P̃ (t) =
∞∑
k=0

P̂k(t− T̃k)1{0≤t−T̃k<S̃k+1}1{t≤T}.
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Thus we just select the appropriate pre-computed solutions and paste them at the approx-
imate jumps times {T̃k}, which can be done on-line. The approximate gain matrices are
simply defined by

K̃(t) = P̃ (t)C ′θ(t)(Dθ(t)D
′
θ(t))

−1,

and the estimated trajectory satisfies

dx̃(t) = Aθ(t)x̃(t)dt+ K̃(t)(dy(t)− Cθ(t)x̃(t)dt),

for 0 ≤ t ≤ T , with initial condition x̃(0) = E[x(0)].

4 Convergence of the approximation procedure

The investigation of the convergence of our approximation scheme under the general as-
sumption 2.2, is made in several steps again. The first one is the evaluation of the error
between P (t) and P̃ (t) up to the time horizon T and requires some Lipschitz regular-
ity assumptions on the solution of Riccati equations. First, we establish these regularity
properties. Then we derive the error between P and P̃ , and finally we evaluate the error
between the real KBF filter x̂KB and its quantized approximation x̃.

4.1 Regularity of the solutions of Riccati equations

For all t ≥ 0, suitable matrix p ∈ C(n1) and i ∈ S denote by φi(p, t) the solution at time t
of the following Riccati equation starting from p at time 0,{

dP (t) = R(P (t), i)dt,
P (0) = p,

for t ≥ 0. We start with a boundedness result.

Lemma 4.1 Under Assumption 2.2, for all p̄0 ∈ C(n1), there exist a matrix p̄1 ∈ C(n1)
such that p̄1 ≥ p̄0 and for p ≤ p̄0, i ∈ S and times 0 ≤ t ≤ T , one has φi(p, t) ≤ p̄1.

Proof. The Riccati equation can be rearranged in the following form

dP (t)

dt
= Aaux(t)P (t) + P (t)Aaux(t)′ + EiE

′
i

+Ki(t)DiD
′
iKi(t)

′,

where Ki(t) = P (t)C ′i(DiD
′
i)
−1 and Aaux(t) = Ai − Ki(t)Ci. For any matrix L with

suitable dimensions, from the optimality of the KBF we have that φi(p, t) ≤ φL(p, t) where
φL(p, t) is the covariance of a linear state observer with gain L, so that φL(p, t) is the
solution of

dP (t)

dt
= (Ai − LCi)(t)P (t) + P (t)(Ai − LCi)′

+EiE
′
i + LDiD

′
iL
′,

P (0) = p.

In particular, we can set L = 0, and φL(p, t) is now the solution of the linear differential
equation

dP (t)

dt
= AiP (t) + P (t)A′i + EiE

′
i, P (0) = p, (5)

which can be expressed in the form φL(p, t) = Φ1(t)p + Φ2(t) where Φ1 ≤ βeα‖Ai‖t‖p‖I
and Φ2 ≤

∫ t
0 βe

α‖Ai‖τ‖EiEi‖Idτ for some scalars α, β that do not depend on p, i. Set
p̄1 = βeαT‖A‖S (‖p̄0‖p0 + T‖E‖2SI), thus completing the proof. �
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Theorem 4.2 Under Assumption 2.2, for each p̃ ∈ C(n1) there exist `, η > 0 such that for
all i ∈ S and 0 ≤ t, t̂ ≤ T and p, p̂ ≤ p̃ one has

‖φi(p, t)− φi(p̂, t̂)‖ ≤ `|t− t̂|+ η‖p− p̂‖.

Proof. It follows directly from the definition of R in Eq. (3) that one has

dφi(p, t)− dφi(p̂, t)
dt

= Aiφi(p, t) + φi(p, t)A
′
i + EiE

′
i

−φi(p, t)C ′i(DiD
′
i)
−1Ciφi(p, t)

−
(
Aiφi(p̂, t) + φi(p̂, t)A

′
i + EiE

′
i

−φi(p̂, t)C ′i(DiD
′
i)
−1Ciφi(p̂, t)

)
= Ai(φi(p, t)− φi(p̂, t)) + (φi(p, t)− φi(p̂, t))A′i
−φi(p̂, t)C ′i(DiD

′
i)
−1Ci(φi(p, t)− φi(p̂, t))

−(φi(p, t)− φi(p̂, t))C ′i(DiD
′
i)
−1Ciφi(p̂, t)

−(φi(p, t)− φi(p̂, t))C ′i(DiD
′
i)
−1Ci

×(φi(p, t)− φi(p̂, t))
= (Ai − φi(p̂, t)C ′i(DiD

′
i)
−1Ci)(φi(p, t)− φi(p̂, t))

+(φi(p, t)− φi(p̂, t))(A′i − C ′i(DiD
′
i)
−1Ciφi(p̂, t))

−(φi(p, t)− φi(p̂, t))C ′i(DiD
′
i)
−1Ci

×(φi(p, t)− φi(p̂, t)),

or, by denoting X(t) = φi(p, t)− φi(p̂, t), one has X(0) = p− p̂ and

dX(t)

dt
= Aaux(t)X(t) +X(t)Aaux(t)′

−X(t)C ′i(DiD
′
i)
−1CiX(t), (6)

where we write Aaux(t) = (Ai − φi(p̂, t)C ′i(DiD
′
i)
−1Ci) for ease of notation. By setting

Y (0) = ‖p − p̂‖I ≥ X(0) and using the order preserving property of the Riccati equation
(6) it follows that {Y (t), 0 ≤ t ≤ T} defined as the solution of

dY (t)

dt
= Aaux(t)Y (t) + Y (t)Aaux(t)′

−Y (t)C ′i(DiD
′
i)
−1CiY (t), (7)

satisfies Y (t) ≥ X(t) for all t ≥ 0. The process {Y (t), 0 ≤ t ≤ T} can be interpreted
as the error covariance of a filtering problem1, more precisely the covariance of the error
x̂aux(t)− xaux(t) where {x̂aux(t), 0 ≤ t ≤ T} satisfies

dx̂aux = Aaux(t)x̂auxdt+K(t)(dy − Cauxx̂auxdt),

with Aaux defined above, Caux = (C ′i(DiD
′
i)
−1Ci)

1/2, {K(t), 0 ≤ t ≤ T} is the Kalman
gain, and {

dxaux(t) = Aaux(t)xaux(t)dt,
dyaux(t) = Cauxxaux(t)dt+ dvaux(t),

1Note that this does not hold true for the process {X(t), 0 ≤ t ≤ T} as it may not be positive semidef-
inite.
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where {vaux(t), 0 ≤ t ≤ T} is a standard Wiener process with incremental covariance Idt,
and xaux(0) is a Gaussian random variable with covariance p − p̂. Now, if we replace K
with the (suboptimal) gain L = 0 we obtain a larger error covariance YL(t) ≥ Y (t). With
the trivial gain L = 0 we also have

dx̂aux − dxaux = Aaux(t)(x̂aux − xaux)dt,

so that direct calculation yields

dYL(t)

dt
= Aaux(t)YL(t) + YL(t)Aaux(t)′, (8)

with YL(0) = ‖p − p̂‖I. Recall that p̂ ≤ p̃ by hypothesis, so that from Lemma 4.1 we get
an uniform bound p̄1 for φi(p̂, t), which in turn yields that ‖Aaux‖S is bounded in the time
interval 0 ≤ t ≤ T and for all p̂ ≤ p̃. This allows to write

Y (t) ≤ `1‖p− p̂‖I, 0 ≤ t ≤ T,

for some `1 ≥ 0 (uniform on t, p, p̂ and i). Gathering some of the above inequalities
together, one gets

φi(p, t)− φi(p̂, t) = X(t) ≤ Y (t) ≤ YL(t) ≤ `1‖p− p̂‖I, (9)

0 ≤ t ≤ T . Similarly as above, one can obtain

φi(p̂, t)− φi(p, t) ≤ `2‖p− p̂‖I, 0 ≤ t ≤ T, (10)

where, again, `2 is uniform on t, p, p̂ and i. Eqs. (9), (10) and the fact that φi(p̂, t)−φi(p, t)
is symmetric lead to

−max(`1, `2) ≤ λmin(φi(p̂, t)− φi(p, t)),
λmin(φi(p̂, t)− φi(p, t)) ≤ λmax(φi(p̂, t)− φi(p, t))

≤ max(`1, `2).

Hence, one has
‖φi(p̂, t)− φi(p, t)‖ ≤ max(`1, `2)‖p− p̂‖,

completing the first part of the proof.
For the second part, similarly to the proof of the preceding lemma, we have that φi(p, t)

is bounded from above by X(t) the solution of the linear differential equation Eq.(5) with
initial condition X(0) = p, and it is then simple to find scalars η1, η2 > 0 irrespective of i
such that, for the entire time interval 0 ≤ t ≤ T ,

‖X(t)− p‖S ≤ ‖Φ1(t)‖S + ‖(Φ2(t)− I)p‖S ≤ η1t+ η2t‖p‖.

Hence, one has

φi(p, t)− p ≤ X(t)− p ≤ ‖X(t)− p‖SI ≤ (η1t+ η2t‖p‖)I, (11)

for all t ≥ 0, leading to
‖φi(p, t)− p‖ ≤ η1t+ η2t‖p‖.

As p ≤ p̃ by hypothesis, we have ‖p‖ ≤ n1‖p̃‖ and it follows immediately from the above
inequality that

‖φi(p, t)− p‖ ≤ (η1 + η2n1‖p̃‖)t. (12)
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As operator R does not depend on time, we have φ(p, t1 + t2) = φ(φ(p, t1), t2), t1, t2 ≥ 0,
and defining p̄ = φ(p, t1), one has

‖φi(p, t1 + t2)− φi(p, t1)‖ = ‖φi(p̄, t2)− p̄‖

and Eq. (12) allows to write

‖φi(p, t1 + t2)− φi(p, t1)‖ ≤ (η1 + η2n1‖p̃‖)t2.

The result then follows by setting t1 = t̂ and t2 = t− t̂ if t > t̂ or with t1 = t and t2 = t̂− t
otherwise. �

4.2 Error derivation for gain matrices

We proceed in three steps. The first one is to study the error between Pk(t) and P̂k(t), the
second step is to study the error between P (t) and P̃ (t) and the last step is to compare
the gain matrices KKB(t) and K̃(t), for 0 ≤ t ≤ T . We start with a preliminary important
result that will enable us to use Theorem 4.2 in all the sequel.

Lemma 4.3 Under Assumption 2.2, there exist a matrix p̄ ∈ C(n1) such that for all inte-
gers 0 ≤ k ≤ n and times 0 ≤ t ≤ T , one has

Pk(t) ≤ p̄, P̂k(t) ≤ p̄.

Proof. We prove the result by induction on k. For k = 0, one has p0 ∈ C(n1) and
P0(t) = P̂0(t) = φZ0(p0, t) for all t ≤ T . Lemma 4.1 thus yields the existence of a matrix
p̄0 ∈ C(n1) such that P0(t) ≤ p̄0 for all t ≤ T . Suppose that for a given k ≤ n−1, there exists
a matrix p̄k ∈ C(n1) such that Pk(t) ≤ p̄k and P̂k(t) ≤ p̄k for all t ≤ T . Then in particular,
if Sk ≤ T and Ŝk ≤ T , one has Pk+1(0) = Pk(Sk) ≤ p̄k and P̂k+1(0) = P̂k(Ŝk) ≤ p̄k. Hence,
Lemma 4.1 gives the existence of a matrix p̄k+1 ∈ C(n1) such that Pk+1(t) ≤ p̄k+1 and
P̂k+1(t) ≤ p̄k+1 for all t ≤ T . One thus obtains an increasing sequence (pk) of matrices in
C(n1) and the result is obtained by setting p̄ = p̄n. �

In the following, for p̄ given by Lemma 4.3 we set p̃ = p̄ in Theorem 4.2 and denote
by ¯̀ and η̄ the corresponding Lipschitz constants. We now turn to the investigation of the
error between the processes Pk(t) and P̂k(t).

Lemma 4.4 Under Assumption 2.2, for all integers 0 ≤ k ≤ n and times 0 ≤ t ≤ T , one
has

‖Pk(t)− P̂k(t)‖ ≤ ¯̀‖Pk−1(Sk)− P̂k−1(Ŝk)‖.

Proof. One has Pk(t) = φZk
(Pk−1(Sk), t) and P̂k(t) = φZk

(P̂k−1(Ŝk), t). Hence, Lemma 4.3
and Theorem 4.2 yield

‖Pk(t)− P̂k(t)‖
= ‖φZk

(Pk−1(Sk), t)− φZk
(P̂k−1(Ŝk), t)‖

≤ ¯̀‖Pk−1(Sk)− P̂k−1(Ŝk)‖,

if Sk, Ŝk ≤ T , hence the result. �

Lemma 4.5 Under Assumption 2.2, for all integers 0 ≤ k ≤ n satisfying Sk, Ŝk ≤ T , one
has

‖Pk(Sk+1)− P̂k(Ŝk+1)‖ ≤
k∑
j=0

¯̀k−j η̄|Sj+1 − Ŝj+1|.
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Proof. By definition, one has Pk(Sk+1) = φZk
(Pk−1(Sk), Sk+1) and P̂k(t) = φZk

(P̂k−1(Ŝk), Ŝk+1).
Hence as above, one has

‖Pk(Sk+1)− P̂k(Ŝk+1)‖
= ‖φZk

(Pk−1(Sk), Sk+1)− φZk
(P̂k−1(Ŝk), Ŝk+1)‖

≤ ¯̀‖Pk−1(Sk)− P̂k−1(Ŝk)‖+ η̄|Sk+1 − Ŝk+1|.

Then notice that one also has

‖P0(S1)− P̂0(Ŝ1)‖
= ‖φZ0(p0, S1)− φZ0(p0, Ŝ1)‖ ≤ η̄|S1 − Ŝ1|,

and the result is obtained by recursion. �
We can now turn to the error between the processes P (t) and P̃ (t).

Theorem 4.6 Under Assumption 2.2, for all 0 ≤ t < T ∧ Tn+1, one has

E[‖P (t)− P̃ (t)‖21{0≤t≤T∧Tn+1}]
1/2

≤
n−1∑
j=0

¯̀n−j η̄E[|Sj+1 − Ŝj+1|2]1/2

+η̄δt+ n‖p̄‖(λδt)1/2,

where p̄ is defined in Lemma 4.3.

Remark 4.7 Note that the above result is very general. Indeed, we do not use in its proof
that Ŝk is the quantized approximation of Sk. We have established that, given a semi-
Markov chain {θ(t), 0 ≤ t ≤ T} and a process {θ̂(t), 0 ≤ t ≤ T} obtained by a perturbation
of the jump times of {θ(t), 0 ≤ t ≤ T}, the two solutions of the Riccati equations driven by
these two processes respectively are not far away from each other, as long as the real and
perturbed jump times are not far away from each other. We allow two kinds of perturbations,
a random one, given by the replacement of Sk by Ŝk and a deterministic one given by δt
corresponding to a delay in the jumps. In the case of non-instantaneous observation of θ(t)
(i.e., imperfect observation S̃k of Sk), the difference E[|S̃j+1− Ŝj+1|2] may not converge to
zero but is still a valid upper bound for the approximation error of the Riccati solution and
can reasonably be supposed small enough. Note also that the result is still valid for any Lq

norm instead of the L2 norm as the initial value of the Riccati solution is deterministic, as
long as the distributions Fi have moments of order greater than q.
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Proof. By definition, one has for all 0 ≤ t < T ∧ Tn+1

P (t)− P̃ (t)

=
n∑
k=0

Pk(t− Tk)1{0≤t−Tk<Sk+1}

−P̂k(t− T̃k)1{0≤t−T̃k<S̃k+1}

=
n∑
k=0

(
Pk(t− Tk)− P̂k(t− Tk)

)
1{0≤t−Tk<Sk+1}

+

n∑
k=0

(
P̂k(t− Tk − P̂k(t− T̃k)

)
1{0≤t−Tk<Sk+1}

+

n∑
k=0

P̂k(t− T̃k)(1{0≤t−Tk<Sk+1}−1{0≤t−T̃k<S̃k+1})

= ε1(t) + ε2(t) + ε3(t).

From Lemmas 4.4 and 4.5, the first term ε1 can be bounded by

‖ε1(t)‖

≤
∥∥ n∑
k=0

(
Pk(t− Tk)− P̂k(t− Tk)

)
1{0≤t−Tk<Sk+1}

∥∥
≤

n∑
k=0

‖Pk(t− Tk)− P̂k(t− Tk)‖1{0≤t−Tk<Sk+1}

≤
n∑
k=0

`‖Pk−1(Sk)− P̂k−1(Ŝk)‖1{0≤t−Tk<Sk+1}

≤
n∑
k=0

k−1∑
j=0

¯̀k−j η̄|Sj+1 − Ŝj+1|1{Tk≤t<Tk+1}

≤
n−1∑
j=0

¯̀n−j η̄|Sj+1 − Ŝj+1|.

The second term ε2 is bounded by Lemma 4.3 and Theorem 4.2 as follows

‖ε2(t)‖

≤
∥∥ n∑
k=0

(
P̂k(t− Tk − P̂k(t− T̃k)

)
1{0≤t−Tk<Sk+1}

∥∥
≤

n∑
k=0

‖P̂k(t− Tk)− P̂k(t− T̃k)‖1{0≤t−Tk<Sk+1}

≤
n∑
k=0

η̄|Tk − T̃k|1{0≤t−Tk<Sk+1}

≤ η̄δt,

using the fact that the difference between Tk and T̃k is less than δt by construction. Finally,
the last term ε3 is bounded by using Lemma 4.3 and the fact that 0 ≤ Tk ≤ T̃k for all k.
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Indeed, one has

E[‖ε3(t)‖2]1/2

≤ E
[∥∥ n∑

k=0

P̂k(t− T̃k)(1{0≤t−Tk<Sk+1}

−1{0≤t−T̃k<S̃k+1})
∥∥2]1/2

≤ ‖p̄‖
n∑
k=0

E[|1{0≤t−Tk<Sk+1} − 1{0≤t−T̃k<S̃k+1}|
2]1/2

≤ ‖p̄‖
n∑
k=0

P(t− δt ≤ Tk ≤ t)1/2

≤ n‖p̄‖
∑
i∈S

(
λiδt

)1/2P(Zk = i)

≤ n‖p̄‖
(
λδt
)1/2

.

One obtains the result by taking the L2 expectation norm also on both sides of the in-
equalities involving ε1 and ε2. �

Therefore, as the errors E[|Sj+1 − Ŝj+1|2] go to 0 as the number of points in the
discretization grids goes to infinity, we have the convergence of P̃ (t) to P (t) as long as the
time grid step δt also goes to 0. Theorem 4.6 also gives a convergence rate for ‖P (t)−P̃ (t)‖,
providing that 0 ≤ t < T ∧ Tn+1. The convergence rate for the gain matrices is now
straightforward from their definitions.

Corollary 4.8 Under Assumption 2.2, for all 0 ≤ t < T ∧ Tn+1, one has

E[‖KKB(t)− K̃(t)‖21{0≤t≤T∧Tn+1}]
1/2

≤ ‖C ′(DD′)−1‖S
( n−1∑
j=0

¯̀n−j η̄E[|Sj+1 − Ŝj+1|2]1/2

+η̄δt+ n‖p̄‖(λδt)1/2
)
.

4.3 Error derivation for the filtered trajectories

We now turn to the estimation of the error between the exact KBF trajectory and our
approximate one. We start with introducing some new notation. Let b : R×R2n1 → R2n1

and b̃ : R× R2n1 → R2n1 be defined by

b(t, z) =

(
Aθ(t) 0

KKB(t)Cθ(t) Aθ(t) −KKB(t)Cθ(t)

)
z,

b̃(t, z) =

(
Aθ(t) 0

K̃(t)Cθ(t) Aθ(t) − K̃(t)Cθ(t)

)
z

Let also σ : R→ R2n1×(n3+n4) and σ̃ : R→ R2n1×(n3+n4) be defined by

σ(t) =

(
Eθ(t) 0

0 KKB(t)Dθ(t)

)
,

σ̃(t) =

(
Eθ(t) 0

0 K̃(t)Dθ(t)

)
.
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Finally, set W (t) = (w(t)′, v(t)′)′, X(t) = (x(t)′, x̂KB(t)′)′ and X̃(t) = (x(t)′, x̃(t)′)′, so
that the two processes {X(t), 0 ≤ t ≤ T} and {X̃(t), 0 ≤ t ≤ T} have the following
dynamics {

dX(t) = b(t,Xt)dt+ σ(t)dW (t),
X(0) = (x(0)′,E[x(0)]′)′,{
dX̃(t) = b̃(t, X̃t)dt+ σ̃(t)dW (t),

X̃(0) = (x(0)′,E[x(0)]′)′.

The regularity properties of functions b, b̃, σ and σ̃ are quite straightforward from their
definition.

Lemma 4.9 Under Assumption 2.2, for all 0 ≤ t ≤ T and z, ẑ ∈ R2n1, one has

|b(t, z)| ≤ (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)|z|,
|̃b(t, z)| ≤ (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)|z|,
‖σ(t)‖2 ≤ ‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖2‖D‖S ,
‖σ̃(t)‖2 ≤ ‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖S‖D‖S ,

|b(t, z)− b(t, ẑ)| ≤ (‖A‖S + ‖p̄‖‖C‖22‖(DD′)−1‖S)|z − ẑ|,
|̃b(t, z)− b̃(t, ẑ)| ≤ (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)|z − ẑ|,

where p̄ is the matrix defined in Lemma 4.3.

Proof. Upper bounds for ‖KKB(t)‖2 and ‖K̃(t)‖2 come from the upper bounds for Pk(t)
and P̂k(t) given in Lemma 4.3. �

In particular, the processes {X(t), 0 ≤ t ≤ T} and {X̃(t), 0 ≤ t ≤ T} are well defined
and E[supt≤T |X(t)|2] and E[supt≤T |X̃(t)|2] are finite, see e.g. [25]. Set also ∆(t) =

KKB(t)− K̃(t). In order to compare X(t) and X̃(t), one needs first to be able to compare
b with b̃ and σ with σ̃. The following result is straightforward from their definition.

Lemma 4.10 Under Assumption 2.2, for all 0 ≤ t ≤ T and z ∈ R2n1, one has

|b(t, z)− b̃(t, z)| ≤ 2‖C‖S‖∆(t)‖|z|,
‖σ(t)− σ̃(t)‖S ≤ ‖D‖S‖∆(t)‖.

We also need some bounds on the conditional moments of {X(t), 0 ≤ t ≤ T}. Let {Ft, 0 ≤
t ≤ T} be the filtration generated by the semi-Markov process {θ(t), 0 ≤ t ≤ T}, and
Et[·] = E[· | Ft].

Lemma 4.11 Under Assumption 2.2, there exists a constant c2 independent of the param-
eters of the system such that for 0 ≤ t ≤ T one has

ET [ sup
t≤T∧Tn+1

|X(t)|2]

≤ 2c2T (‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖S‖D‖S)2

× exp(2T 2(‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2).

Proof. As {θ(t), 0 ≤ t ≤ T} and the noise sequence {W (t), 0 ≤ t ≤ T} are independent, and
the process {KKB(t), 0 ≤ t ≤ T} is only dependent on {θ(t), 0 ≤ t ≤ T} by construction,
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one has

ET [ sup
u≤t∧T∧Tn+1

|X(u)|2]

≤ 2ET
[

sup
u≤t∧T∧Tn+1

∣∣∣ ∫ u

0
σ(s)dW (s)

∣∣∣2]
+2ET

[
sup

u≤t∧T∧Tn+1

∣∣∣ ∫ u

0
b(s,X(s))ds

∣∣∣2]
≤ 2c2ET

[ ∫ T∧Tn+1

0

∥∥σ(s)
∥∥2
ds
]

+2TET
[ ∫ t∧T∧Tn+1

0

∣∣b(s,X(s))
∣∣2ds],

from convexity and Burkholder–Davis–Gundy inequalities, see e.g. [25], where c2 is a
constant independent of the parameters of the problem. From Lemma 4.9 one gets

ET [ sup
u≤t∧T∧Tn+1

|X(u)|2]

≤ 2c2T (‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖S‖D‖S)2

+2T (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2

×
∫ t

0
ET [ sup

u≤s∧T∧Tn+1

|X(u)|2]ds.

Finally, we use Gronwall’s lemma to obtain

ET [ sup
t≤T∧Tn+1

|X(t)|2]

≤ 2c2T (‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖S‖D‖S)2

× exp(2T 2(‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2)

which proves the result. �
In the sequel, let X be the upper bound given by Lemma 4.11:

X = 2c2T (‖E‖S + ‖p̄‖‖C‖S‖(DD′)−1‖S‖D‖S)2

× exp(2T 2(‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2).

We can now state and prove our convergence result.

Theorem 4.12 Under Assumption 2.2, for 0 ≤ t ≤ T one has

E[|X(t)− X̃(t)|21{0≤t≤T∧Tn+1}] ≤ c1 exp(Tc2),

with

c1 = (2‖D‖S + 8T‖C‖2SX)‖C ′i(DiD
′
i)
−1‖S

×
( n−1∑
j=0

¯̀n−j η̄E[|Sj+1 − Ŝj+1|2]1/2

+η̄δt+ n‖p̄‖(λδt)1/2
)2
,

c2 = 2T (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2.
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Proof. We follow the same lines as in the previous proof. As {θ(t), 0 ≤ t ≤ T} and the
noise sequence {W (t), 0 ≤ t ≤ T} are independent, and the processes {KKB(t), 0 ≤ t ≤ T}
and {K̃(t), 0 ≤ t ≤ T} are only dependent on {θ(t), 0 ≤ t ≤ T} by construction, one has

ET [|X(t)− X̃(t)|21{0≤t≤T∧Tn+1}]

≤ 2ET
[∣∣∣ ∫ t∧T∧Tn+1

0

(
σ(s)− σ̃(s)

)
dW (s)

∣∣∣2]
+2ET

[∣∣∣ ∫ t∧T∧Tn+1

0

(
b(s,X(s))− b̃(s, X̃(s))

)
ds
∣∣∣2]

≤ 2ET
[ ∫ t∧T∧Tn+1

0

∥∥σ(s)− σ̃(s)
∥∥2
ds
]

+2TET
[ ∫ t∧T∧Tn+1

0

∣∣b(s,X(s))− b̃(s, X̃(s))
∣∣2ds],

from the isometry property of Itô integrals and Cauchy–Schwartz inequality. From Lem-
mas 4.9, 4.10 and Fubini one gets

ET [|X(t)− X̃(t)|21{0≤t≤T∧Tn+1}]

≤ 2‖D‖S
∫ t∧T∧Tn+1

0

∥∥∆(s)
∥∥2
ds

+2T‖C‖2S
∫ t∧T∧Tn+1

0

∥∥∆(s)
∥∥2|ET [|X(s)|2]ds

+2T (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2

×ET
[ ∫ t∧T∧Tn+1

0

∣∣X(s)− X̃(s)
∣∣2ds]

≤ (2‖D‖S + 8T‖C‖2SX)

∫ t∧T∧Tn+1

0

∥∥∆(s)
∥∥2
ds

+2T (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2

×
∫ t

0
ET [
∣∣X(s)− X̃(s)

∣∣21{0≤s≤T∧Tn+1}]ds

≤ c̃1 + c̃2

∫ t

0
ET [
∣∣X(s)− X̃(s)

∣∣21{0≤s≤T∧Tn+1}]ds,

from Lemma 4.11, with

c̃1 = (2‖D‖S + 8T‖C‖2SX)

∫ t∧T∧Tn+1

0

∥∥∆(s)
∥∥2
ds,

c̃2 = 2T (‖A‖S + ‖p̄‖‖C‖2S‖(DD′)−1‖S)2.

We use Gronwall’s lemma to obtain

ET [|X(t)− X̃(t)|21{0≤t≤T∧Tn+1}] ≤ c̃1 exp(T c̃2),

and conclude by taking the expectation on both sides and using Corollary 4.8 to bound
E[c̃1]. �

As a consequence of the previous result, |x̂KB(t)− x̃(t)| goes to 0 almost surely as the
number of points in the discretization grids goes to infinity.
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Remark 4.13 As noted in Remark 4.7, in the case of imperfect observation S̃k of Sk, the
errors E[|S̃j+1− Ŝj+1|2] do not necessarily go to 0 if θ is not instantaneously observed, how-
ever the errors are small when the time delays are small. The previous result implies that
the filter performance deterioration is proportional to these errors. Acceptable performances
can still be achieved in applications where θ is not instantaneously observed.

5 Numerical example

We now illustrate our results on a magnetic suspension system presented in [7]. The system
is a laboratory device that consists of a coil whose voltage is controlled by a rather simple
(non-reliable) pulse-width modulation system, and sensors for position of a suspended
metallic sphere and for the coil current. The model around the origin without jumps and
noise is in the form ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), with

A =

 0 1 0
1750 0 −34.1

0 0 −0.0383

 , B =

 0
0

1.9231

 ,

C =

(
1 0 0
0 0 1

)
.

The components of vector x(t) are the position of the sphere, its speed and the coil current.
The coil voltage u(t) is controlled using a stabilizing state feedback control, leading to the
closed loop dynamics ẋ(t) = A1x(t),

A1 =

 0 1 0
1750 0 −34.1

4360.2 104.2 −84.3

 .

We consider the realistic scenario where the system may be operating in normal mode
θ = 1 or in critical failure θ = 2 due e.g. to faults in the pulse-width modulation system,
which is included in the model by making B2 = 0, leading to the closed loop dynamics
ẋ(t) = A2x(t) with A2 = A. Although it is natural is to consider that the system starts in
normal mode a.s. and never recovers from a failure, we want to compare the performance
of the proposed filter with the LMMSE [16] that requires a true Markov chain with positive
probabilities for all modes at all times, then we relax the problem by setting the initial
distribution π(0) = (0.999, 0.001) and the transition rates matrix

Λ =

(
−20 20
0.1 −0.1

)
with the interpretation that the recovery from failure mode is relatively slow.

In the overall model Eq. (2) we set C1 = C2 = C and we also consider that x(0) is
normally distributed with mean E[x(0)] = (0.001, 0, 0)′ and variance V ar(x(0)) = I3,

E1 =E2 =

 1 0.2 −1.9
−0.1 1.4 −0.3
0.1 0.5 1

, D1 =D2 =

(
1 0
0 1

)
,

so that only the position of the sphere and the coil current are measured through some
noise. Speed is not observed. It is worth mentioning that the system is not mean square
stable, so that the time horizon T is usually short for the trajectory to stay close to the
origin and keep the linearized model valid; we can slightly increase the horizons during
simulations for academic purposes only.
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Number of grid points Error for θ(0) = 1 Error for θ(0) = 2

10 5.441×10−3 1017×10−3

50 1.585×10−3 357.5×10−3

100 0.753×10−3 175.2×10−3

500 0.173×10−3 36.22×10−3

1000 0.100×10−3 23.35×10−3

Table 1: Quantization error for the first jump time depending on the number of points in
the discretization grid and the value of the starting point of the Markov chain.

5.1 Markovian linear minimum mean squares estimator

Fragoso and Costa proposed in [16] the so-called Markovian linear minimum mean squares
estimator (LMMSE) for MJLS with finite state space Markov chains. Under Assump-
tion 2.1, the equation of the filter is

dx̂FC(t) = Aθ(t)x̂FC(t)dt

+KFC(θ(t), t)(dy(t)− Cθ(t)x̂FC(t)dt),

for 0 ≤ t ≤ T , with initial condition x̂FC(0) = E[x(0)] and gain matrices

KFC(i, t) = PFC(i, t)C ′i(DiD
′
iπi(t))

−1,

where πi(t) = P(θ(t) = i) = (π(0) exp(tΛ))i and {PFC(i, t), 0 ≤ t ≤ T} satisfies the system
of matrix differential equation

dPFC(i, t) =
(
AiPFC(i, t) + PFC(i, t)A′i

+
N∑
j=1

PFC(j, t)Λji + EiE
′
iπi(t)

−PFC(i, t)C ′θ(t)(Dθ(t)D
′
θ(t)πi(t))

−1

×Cθ(t)PFC(i, t)
)
dt,

PFC(i, 0) = V ar(x(0))πi(0).

The matrices {PFC(i, t), 0 ≤ t ≤ T, i ∈ S} and {KFC(i, t), 0 ≤ t ≤ T, i ∈ S} depend
only on the law of {θ(t), 0 ≤ t ≤ T} and not on its current value. Therefore they can be
computed off line on a discrete time grid and stored but it is sub-optimal compared to the
KBF.

5.2 Approximate filter by quantization

We start with the quantized discretization of the inter-jump times {Sn} of the Markov
chain {θ(t), 0 ≤ t ≤ T}. We use the CLVQ algorithm described for instance in [27].
Table 1 gives the error E[|S1 − Ŝ1|2 | θ(0) = i]1/2 for i = 1, 2 computed with 106 Monte
Carlo simulations for an increasing number of discretization points. This illustrates the
convergence of Theorem 3.1: the error decreases as the number of points increases. The
variance of the first jump time in mode 2 is much higher than in mode 1 which accounts
for the different scales in the errors.

The second step consists in solving the Riccati equation (2) for all possible trajectories of
{θ(t), 0 ≤ t ≤ T} with inter-jump times in the quantization grids and up to the computation
horizon T = 0.02. Namely, we compute the trajectories {P̂k(t), 0 ≤ t ≤ T}. We chose a
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Figure 1: Pre-computed tree of solutions with 10 grid points.
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Figure 2: Pre-computed tree of solutions with 50 grid points.

regular time grid with time step δt = 10−4. For technical reasons related to the selection
of branches, the time horizon T is added in each grid. One thus obtains a tree of pre-
computed branches that are solutions of Eq. (2), the branching times being the quantized
jump times. Figures 1 and 2 show the pre-computed trees of solutions component-wise for
10 and 50 points respectively in the quantization grids. Note the very different scales of the
coordinates. The number of grid points that are actually used (quantized points below the
horizon T ) are given in Table 2 for each original quantization grid size, together with the
resulting number of pre-computed branches. The number of pre-computed branches grows
exponentially fast when we take into account more grid points. Time taken to pre-compute
the branches grows accordingly. In this example, the number of points used in mode 2 is
low, therefore the number of branches remains tractable.

To compute the filtered trajectory in real time, one starts with the approximation of
the solution of Eq. (2). The first branch corresponds to the pre-computed branch starting
at time 0 from θ(0). When the first jump occurs, one selects the nearest neighbor of the
jump time in the quantization grid and the corresponding pre-computed branch, and so on
for the following jumps. Figure 3 shows the mean of the relative error between the solution
of Eq (2) and its approximation (for the matrix norm 2) for given numbers of points in the
quantization grids and 105 Monte Carlo simulations. Again, it illustrates how the accuracy
of the approximation increases with the number of points in the quantization grids.

Finally, the real-time approximation of Eq (2) is plugged into the filtering equations to
obtain an approximate KBF. Figure 4 shows the mean L2 distance between the real KBF
{x̂KB(t), 0 ≤ t ≤ T} and its approximation {x̃, 0 ≤ t ≤ T} following our procedure for an
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Number of Points below Points below Number of
grid points horizon horizon branches

for θ(0) = 1 for θ(0) = 2

10 4 1 7
50 14 1 17
100 33 1 36
500 161 2 7763
1000 319 3 603784

Table 2: Number of grid points actually used and corresponding number of pre-computed
branches depending on the initial number of points in the discretization grid.

0 0.005 0.01 0.015 0.020

0.005

0.01

0.015

0.02

Figure 3: Average relative error between the solution of Riccati equation and its approx-
imation, from top to bottom: blue: 50 points, red: 100 points, green: 500 point, black:
1000 points in the quantization grids.

increasing number of points in the quantization grids and for 105 Monte Carlo simulations.

5.3 Comparison of the filters

For each filter, we ran 105 Monte Carlo simulations and computed the mean of the following
error between the real trajectory {x(t), 0 ≤ t ≤ T} and the filtered trajectory {x̂(t), 0 ≤
t ≤ T} for all of the three filters presented above, the exact Kalman–Bucy filter being the
reference. ∫ T

0

((
x1(t)− x̂1(t)

)2
+
(
x2(t)− x̂2(t)

)2
+
(
x3(t)− x̂3(t)

)2)
dt.

Table 3 gives this error for given numbers of points in the quantization grids. Of course
only the error for the approximate filter changes with the quantization grids. Note that
our approximate filter is very close to the KBF and performs better than the LMMSE for
as little as 10 points in the quantization grids corresponding to 7 precomputed branches.
We also ran our simulations with longer horizons. The performance of the filters is given
in Table 4 and illustrate that our filter can still perform good with a longer horizon. Note
that the computations of the LMMSE is impossible from an horizon of 0.4 on because the
estimated state space reaches too high values very fast, and they are treated as infinity
numerically. From an horizon of 0.8 on, all computations are impossible because the system
is not mean square stable, as we explained before.
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Figure 4: L2 norm of the difference between x̂KB and its quantized approximation x̃, from
top to bottom: blue: 50 points, red: 100 points, green: 500 point, black: 1000 points in
the quantization grids.

Number of grid points Error for Error for Error for
KBF approximate filter LMMSE

10 3.9244 3.9634 3.9850
50 3.9244 3.9254 3.9850
100 3.9244 3.9246 3.9850
500 3.9244 3.9244 3.9850
1000 3.9244 3.9244 3.9850

Table 3: Average error for the different filters depending on the number of points in the
quantization grids, considering horizon T = 0.02.

6 Conclusion

We have presented a filter for state estimation of sMJLS relying on discretization by quan-
tization of the semi-Markov chain and solving a finite number of filtering Riccati equations.
The difference between the approximated Riccati solution P̃ (t) and the actual Riccati so-
lution P (t) has been studied and we have shown in Theorem 4.6 that it converges to zero
in average when the number of points in the discretization grid goes to infinity; a conver-
gence rate is also provided, allowing to find a convergence rate for the gain matrices, see
Corollary 4.8. Based on this result, and on an upper bound for the conditional second
moment of the KBF that is derived in Lemma 4.11, we have obtained the main conver-
gence result in Theorem 4.12, which implies convergence to zero of E|xKB(t) − x̃(t)|2, so
that x̃(t) approaches xKB(t) almost surely as the number of grid points goes to infinity.
Applications in which θ is not instantaneously observed can also benefit from the proposed
filter, however it may not completely recover the performance of the KBF as explained
in Remark 4.13. The algorithm has been applied to a real-world system and performed
almost as well as the KBF with a small grid of 10 points.

Although the proposed filter can be pre-computed, the number of branches of the
Riccati equation grows exponentially with the time horizon T , making the pre-computation
time too high in some cases. One exception comprises systems with no more than one fast
mode (high transition rates), because in such a situation the slow modes do not branch
much and the number of branches grows in an almost linear fashion with T as long as the
probability of the slow mode to jump before T remains small. Examples of applications
coping with this setup, which can benefit from the proposed filter, are systems with small
probability of failure and quick recovery (the failure mode is fast), or a variable number of
permanent failures (the normal mode is fast), with web-based control as a fertile field of
applications. For general systems, one possible way out of this cardinality issue is to use
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T Grid Branches Error for Error for Error for
points KBF approx. filter LMMSE

0.1 10 12 376.3 425.6 812.5
0.1 50 110 376.3 379.1 812.5
0.1 100 3519 376.3 376.6 812.5
0.2 10 14 8597 10610 13260
0.2 50 2832 8597 9715 13260
0.3 10 14 2.325×104 4.893×106 3.023×105
0.3 50 11248 2.325×104 4.141×106 3.023×105
0.4 10 14 4.913×104 4.663×1010 NaN
0.4 50 50049 4.913×104 2.102×1010 NaN

Table 4: Average error for the different filters depending on the horizon, the number of
points in the quantization grids and the number of branches.

a rolling-horizon scheme where the approximate gains are pre-computed in small batches
during the system operation and sent to the controller memory. Another approach could
be to quantize directly the sequence {Sk, Pk(Sk)} thus keeping the number of branches at
a fixed number, allowing for general transition rate matrices and longer horizons in terms
of the number of jumps. However this approach suffers from a curse of dimensionality as
the quantization error goes to zero with slower and slower rate as the dimension of the
process goes higher, see Theorem 3.1.

Future work will look into a rolling-horizon implementation scheme, implementation
issues and different compositions of the KBF/LMMSE, for instance using time-delayed
solutions of the KBF that can be computed during the system operation as a measure for
discarding unnecessary branches. Alternative schemes for discretization/quantization and
selection of the appropriate pre-computed solutions can be pursued, seeking to reduce the
computational load of the current algorithm while preserving the quality of the estimate.
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