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Globally monotonic tracking control
of multivariable systems

Lorenzo Ntogramatzidis, Jean-François Trégouët, Robert Schmid and Augusto Ferrante

Abstract—In this paper we present a method for designing a lin-
ear time invariant (LTI) state-feedback controller to monotonically
track a step reference at any desired rate of convergence for any
initial condition. This method is developed for multi-input multi-
output (MIMO) systems, and can be applied to strictly/nonstrictly
proper systems, and also minimum/nonminimum-phase systems.
This framework shows that for MIMO systems the objectives of
achieving a rapid settling time, while at the same time avoiding
overshoot/undershoot, are not always competing objectives.

I. INTRODUCTION

The problem of improving the shape of the step response
curve for linear time invariant (LTI) systems is as old as control
theory. Its relevance is seen in countless applications such
as heating/cooling systems, elevator and satellite positioning,
automobile cruise control and the positioning of a CD disk
read/write head. When dealing with the transient performance,
one is usually concerned with the task of reducing both
the overshoot and the undershoot, or, ideally, of achieving
a monotonic response that rapidly converges to the steady-
state value. It is commonly understood that the objectives of
achieving a rapid settling time, while at the same time avoiding
overshoot and undershoot, are competing objectives in the
controller design, and must be dealt with by seeking a trade-
off, see e.g. [1]. While this is certainly the case for single-input
single-output (SISO) systems, the control methods we develop
in this paper challenge this widely-held perception for the
MIMO case. We show that in the case of LTI MIMO systems,
it is possible to achieve arbitrarily fast settling time and a
monotonic step response in all outputs for any initial condition,
which implies the avoidance of overshoot/undershoot, even in
the presence of nonminimum-phase zeros.

In contrast with the extensive literature for SISO systems,
which includes [2]–[8], to date there have been very few papers
offering methods for avoiding undershoot or overshoot in the
step response of MIMO systems, see e.g. [9]. The most famous
among the classical methods that deal with tracking control
problems is the model matching problem, see e.g. [10], [11].

A recent contribution offering design methods for MIMO
systems is [12], where a procedure is proposed for the design
of a state-feedback controller to yield a non-overshooting step
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response for LTI MIMO systems, by constraining the closed-
loop eigenstructure so that each component of the tracking
error is driven only by a single real-valued closed-loop mode,
which means that the output of the system is monotonic in
each output component regardless of the initial condition, see
also [13]. A key limitation of the methods in [12], [13] is the
lack of conditions, given in terms of the system structure, that
ensure the existence of a controller that delivers the desired
transient response. Moreover, the design method involves a
search for suitable closed-loop eigenvalues, and while this
search can be conducted efficiently, the authors were unable
to give conditions ensuring a satisfactory search outcome. The
objective of this paper is to revisit the method of [12] to
the end of developing conditions expressed in terms of the
parameters of the system that guarantee that the design method
will deliver a state-feedback controller that yields a monotonic
step response from any initial condition and for any constant
reference signal. When this goal is achievable, we say that
the control yields a globally monotonic response, by which
we mean that the same feedback matrix yields a monotonic
response from all initial conditions, and with respect to all
possible step references.

We also offer a parameterisation of all the feedback matrices
that achieve global monotonicity, thus opening the door to the
formulation of optimisation problems whose goal is to exploit
the available freedom to address further objectives such as
minimum gain or improved robustness of the closed-loop
eigenstructure in the same spirit of [14]. For some less
essential proofs, many examples and additional discussion
we refer to a much longer and more detailed manuscript in [15].

Notation. The image and the kernel of matrix A are denoted
by im A and ker A, respectively. The Moore-Penrose pseudo-
inverse of A is denoted by A†. When A is square, we denote
by σ(A) the spectrum of A. If A : X −→ Y is a linear map
and if J ⊆X , the restriction of the map A to J is denoted
by A |J . If X = Y and J is A-invariant, the eigenstructure
of A restricted to J is denoted by σ (A |J ). If J1 and J2
are A-invariant subspaces and J1⊆J2, the mapping induced
by A on the quotient space J2/J1 is denoted by A |J2/J1,
and its spectrum is denoted by σ (A |J2/J1). The symbol ⊕
stands for the direct sum of subspaces. The symbol ] denotes
union with any common elements repeated. Given a map
A : X −→X and a subspace B of X , we denote by 〈A,B〉
the smallest A-invariant subspace of X containing B. Given
a complex matrix M, the symbol M∗ denotes the conjugate
transpose of M. Moreover, we denote by Mi its i-th row and
by M j its j-th column, respectively. Given a finite set S, the
symbol 2S denotes the power set of S, while card(S) stands for
the cardinality of S. Consider the set Φ = {π ∈Rn |Π(π) = 1},
where Π : Rn −→{0,1}. If Φ is nonempty and its complement
is formed by the solutions to finitely many polynomial equa-
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tions pi(x1, . . . ,xn) = 0 (i = 1, . . . ,k) where the coefficients of
the pi are real, then we say that almost all π ∈ Rn satisfy Π.

II. PROBLEM FORMULATION

Consider the continuous-time LTI system Σ governed by

Σ :
{

ẋ(t) = Ax(t)+Bu(t), x(0) = x0,
y(t) = C x(t)+Du(t),

(1)

where, for all t ∈R, x(t)∈X =Rn is the state, u(t)∈U =Rm

is the control input, y(t) ∈ Y = Rp is the output, and A, B,
C and D are appropriate dimensional constant matrices. We
assume that all the columns of

[
B
D

]
and all the rows of [C D ]

are linearly independent. The Rosenbrock matrix is defined as

PΣ(λ )
def
=

[
A−λ In B

C D

]
, λ ∈ C. (2)

The invariant zeros of Σ are the values of λ ∈C for which the
rank of PΣ(λ ) is strictly smaller than its normal rank. The set
of zeros of Σ is denoted by Z , and the set of minimum-phase
(lying in the left-hand complex plane) zeros of Σ is Zg.

We denote by V ? the largest output-nulling subspace of Σ,
i.e., the largest subspace V of X for which a matrix F∈Rm×n

exists such that (A + BF)V ⊆ V ⊆ ker(C +DF). Any real
matrix F satisfying this inclusion is called a friend of V .
We denote by F(V ) the set of friends of V . The symbol R?

denotes the so-called output-nulling reachability subspace on
V ?. The closed-loop spectrum can be partitioned as σ(A+
BF) = σ(A+BF |V ?)]σ(A+BF |X /V ?). Further, we have
σ(A+BF |V ?) =σ(A+BF |R?)]σ (A+BF |V ?/R?), where
σ(A+BF |R?) is freely assignable with a suitable F ∈ F(V ?),
whereas σ (A+BF |V ?/R?) is fixed for every F ∈ F(V ?) and
coincide with the invariant zero structure of Σ, [16, Theorem
7.19]. Finally, the symbol V ?

g denotes the largest stabilisability
output-nulling subspace of Σ.

A. The tracking control problem

In this paper, we are concerned with the problem of the
design of a state-feedback control law for (1) such that for
all initial conditions the output y tracks a step reference
r ∈ Y with zero steady-state error and is monotonic in all
components. The following assumption ensures that any target
r can be tracked from any x0:

Assumption 2.1: System Σ is right invertible and stabilisable,
and has no invariant zeros at the origin.

We also make the following assumption.

Assumption 2.2: Σ has no coincident minimum-phase zeros.

This assumption does not lead to a significant loss of
generality. In fact, the case of coincident zeros can be dealt with
by using the procedure described in [17]. Both Assumptions
2.1-2.2 are standing assumptions in this paper.

Given the step reference r ∈ Y to track, let F be such that
A+BF is asymptotically stable. Let xss ∈X and uss ∈U be
such that, for the given r ∈ Y , there hold

0 = Axss +Buss, r =C xss +Duss. (3)

Applying the state-feedback control law

u(t) = F
(
x(t)− xss

)
+uss (4)

to (1), changing variable ξ
def
= x− xss and defining the tracking

error ε(t) def
= y(t)− r(t) gives the closed-loop system

Σaut :
{

ξ̇ (t) = (A+BF)ξ (t), ξ (0) = ξ0 = x0− xss,
ε(t) = (C+DF)ξ (t).

(5)
Since A+BF is asymptotically stable, x converges to xss, ξ

converges to zero and y converges to r as t goes to infinity.
In this paper we are concerned with the problem of finding

a matrix F such that the closed-loop system obtained using
(4) achieves a monotonic response at any desired rate of
convergence, from all initial conditions. We shall describe this
property as global monotonicity.

Problem 1: Let ρ < 0. Find F that yields an asymptotically
stable system Σaut for which ε(t) converges monotonically to
0 at an exponential rate of at least ρ in all outputs from all x0.

If we achieve a tracking error ε(t) that has a single ex-
ponential per component and we can choose each λk so that
λk ≤ ρ , then we solve Problem 1, since exponentials of λk are
monotonic functions. Thus, a possible way of solving Problem
1 consists in the solution of the following problem.

Problem 2: Let ρ < 0. Find F that yields an asymptotically
stable system Σaut for which ε(t) is given, from all x0, by

ε(t) =
[
β1 eλ1 t β2 eλ2 t . . . βp eλp t

]>
(6)

for some real coefficients {βk}
p
k=1 depending only upon ξ0 and

for some real values λ1,λ2, · · · ,λp satisfying λk ≤ ρ .
Solutions of Problem 2 solve Problem 1. In [15, Lemma

1] it is shown that the converse is also true. In other words,
Problem 1 is equivalent to Problem 2.

Another important and useful problem is one in which the
requirements include a specified choice of the closed-loop
modes that are visible in each component of the tracking error:

Problem 3: Let λ1, · · · ,λp ∈ R−. Find F that yields an
asymptotically stable closed-loop system Σaut for which, from
x0 and r, the tracking error term ε is given by (6).

Remark 1: An anonymous reviewer proposed the following
solution to these problems in the case where D is the zero
matrix, which consists in decomposing the system as

A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C = [ 0 Ip ],

so that the problem is to guarantee by means of a state feedback
K = [ K1 K2 ] that x2 = y has a monotonic behavior for
all initial states. This problem is easily seen to be equivalent
to the solvability of the following conditions: i) The equation
A21 +B2 K1 = 0 has a solution; if this is the case, we param-
eterize its solutions as K1 = K̄1 +H K̃1, where H is a basis
matrix of kerB2 and K̃1 is arbitrary; ii) A11 +B1 K1 is asymp-
totically stable, i.e.,

(
A11 + B1 K̄1,B1 T

)
is stabilizable; iii)

A22 +B2 K2 = Λ has a solution, where Λ = diag{λ1, · · · ,λp}.
Hence, this solution, when D = 0, characterizes the solvability
of our problem since, using this feedback, the closed-loop
matrix becomes

[
A11+B1 K1 A12+B1 K2

0 Λ

]
. The rest of this paper

is devoted to finding solvability conditions for this problem
expressed in terms of the problem data. This will offer new
insight into how the solution changes in terms of the variations
of the problem data, and will allow us to recover well-known
results on the impossibility of obtaining a monotonic response
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for SISO strictly proper systems with a real nonminimum-
phase zero.

III. MATHEMATICAL BACKGROUND

The first tool needed in this paper is V ?
g , which is made

up of the sum of two parts. The first part is R?. The second
is the subspace spanned by the directions associated with the
minimum-phase invariant zeros of Σ. We recall some important
results concerning the relations between these subspaces and
the null-space of the Rosenbrock matrix PΣ. Given µ ∈ C, the
symbol NΣ(µ) denotes a basis matrix for kerPΣ(µ).

The following result, see [14], presents a procedure for the
computation of a basis for V ?

g and R? and for the parameteri-
sation of all their friends that place the free eigenvalues of the
closed-loop restricted to them at arbitrary locations.

The complex numbers µ1, . . . ,µh are said to be s-indexed
if 2s ≤ h and µ1, . . . ,µ2s are in C \R, while the remaining
µ2s+1, . . . ,µh are real, and for all odd k≤ 2s we have µk+1 =
µ∗k . For every odd i∈ {1, . . . ,2s}, let the basis matrix NΣ(µi+1)
be constructed as NΣ(µi+1) = NΣ(µi

∗) = NΣ(µi)
∗.

Lemma 1: ([14]). Let r = dimR?. Let z1, . . . ,zt be the sz-
indexed minimum-phase invariant zeros of Σ. Let µ1, . . . ,µr ∈
R\Z be s-indexed. Let also

MΣ(zk)
def
=


NΣ(zk)+NΣ(zk+1) if k ∈ {1, . . . ,2sz} is odd

i [NΣ(zk)−NΣ(zk−1)] if k ∈ {1, . . . ,2sz} is even

NΣ(zk) if k ∈ {2sz +1, . . . , t}

and
[

V̂g

Ŵg

]
def
=
[

NΣ(µ1) . . . NΣ(µr) MΣ(z1) . . . MΣ(zt)
]
.

Then, the columns of V̂g span V ?
g . Let `k and ηk be the

number of columns of NΣ(µk) and MΣ(zk), respectively. Then,
the columns of VK,H

def
= V̂g diag{K,H}, with K def

= diag{k1, . . . ,kr}
and H def

= diag{h1, . . . ,ht} are a basis for V ?
g adapted to

R? for almost all ki ∈ R`i and hi ∈ Rηi . Finally, defining
WK,H

def
= Ŵg diag{K,H}, the set of all friends F of V ?

g such that
σ(A+BF |V ?

g ) = {µ1, . . . ,µr}] {z1, . . . ,zt} is parameterised
in K and H as FK,H =WK,H V †

K,H , where K and H are such that
rankVK,H = dimV ?

g .

If in Lemma 1 we construct
[

V̂g

Ŵg

]
without MΣ(zi), the

columns of VK
def
= V̂g K, with K def

= diag{k1, . . . ,kr} are a basis
for R? for almost all ki ∈R`i , and defining WK

def
= Ŵg K, the set

of friends F of R? such that σ(A+BF |R?) = {µ1, . . . ,µr}
is parameterised in K as FK = WK V †

K , where K is such that
rankVK = dimR?. Thus, we can write a spanning set of R? as

R? = R?(µ1)+ · · ·+R?(µr), (7)

where µ1, · · · ,µr ∈ R\Z , and where

R?(µ)
def
=
{

v ∈X
∣∣∣ ∃w ∈U :

[
A−µ In B

C D

][ v
w

]
= 0
}
. (8)

IV. SOLUTION TO PROBLEM 3

As explained above, achieving a globally monotonic step
response is equivalent to finding F that distributes (at most) p
modes into the tracking error with one mode per component.
To achieve this goal, let λ ∈ R, and define

R̂ j(λ )
def
=
{

v ∈X
∣∣∣ ∃β ∈ R\{0}, ∃w ∈U :[

A−λ In B
C D

][ v
w

]
=
[

0
βe j

]}
, (9)

for al j ∈ {1, . . . , p}. The set R̂ j(λ ) represents the set of
initial states such that a feedback matrix F exists that renders
all the output components identically zero with the only
exception of the j-th component, which must be non-zero.
Given v ∈ R̂ j(λ ) with v 6= 0 and β ∈R\{0} and w ∈U such
that

[
A−λ In B

C D

][ v
w

]
=
[

0
βe j

]
, the feedback matrices satisfying

F v = w guarantee that for any ξ0 ∈ span{v} there hold εk ≡ 0
for all k ∈ {1, . . . , p}\{ j} and ε j 6= 0.

The modes that are not distributed on the tracking
error have to be made invisible from ε(t). This goal
can be achieved using V ?

g . Define VK,H and WK,H as in
Lemma 1 and such that h def

= dimV ?
g = rankVK,H . Let us

partition these matrices as VK,H = [ vg,1 vg,2 . . . vg,h ]
and WK,H = [ wg,1 wg,2 . . . wg,h ]. Then, we have[

A−µi In B

C D

][ vg,i

wg,i

]
= 0 since K and H are block diagonal (here

we assume for the sake of simplicity that all the µi are real).
It follows that there exists a feedback matrix F satisfying
FVK,H = WK,H rendering all the output components identically
zero for any initial states resulting in a linear combination of
columns vectors of VK,H . Thus, solving Problem 3 results in
constructing a set of vectors v1, . . . ,vp such that vi ∈ R̂ j(λ )
which, together with the columns of VK,H , spans X .

Lemma 2: Let λ1, · · · ,λp ∈R−. Problem 3 is solvable if and
only if for all j ∈ {1, . . . , p} there exists v j ∈ R̂ j(λ j) such that

V ?
g + span{v1, · · · ,vp}= X . (10)

A proof of this result can be found in [15, Lemma 4]. Condition
(10) says that:

(i) when dimV ?
g = n− p, then v1, . . . ,vp have to be linearly

independent and they all must be independent from V ?
g . When

this is the case, λ1, . . . ,λp ∈R− are all part of the closed-loop
spectrum for any solution F since the linear equation

FK,H [ VK,H v1 . . . vp ] = [ WK,H w1 . . . wp ]. (11)

is solvable, and any of its solutions FK,H ensures that (A +
BFK,H)VK,H = Xg VK,H for a certain matrix Xg such that σ(Xg) =
{µ1, . . . ,µh} and (C + DFK,H)VK,H = 0, and that there exist
βi 6= 0 such that

[
A−λi In B

C D

][
vi
wi

]
=
[

0
βi ei

]
, which gives (A+

BFK,H)vi = λi vi and (C+DFK,H)vi = βi ei for all i∈ {1, . . . , p}.
Therefore, σ(A+BFK,H) = {λ1, . . . ,λp,µ1, . . . ,µn−p} and

ε(t)=(C+DFK,H)eλ1tv1γ1+. . .+(C+DFK,H)eλptvpγp=

[
β1 γ1 eλ1 t

.

.

.

βp γp eλp t

]
for some γ1, . . . ,γp ∈ R\{0}, as required.

(ii) when dimV ?
g > n− p, it may be possible to exploit

the excess in “good” dimension of V ?
g to compensate for

possibly dependent vector(s) vi. In such a case, not only is the
monotonic tracking control problem solvable, but we are able
to also obtain a response that achieves instantaneous tracking
in some outputs. If (10) is satisfied and dimV ?

g > n− p, for
any vk that is dependent on V ?

g together with the remaining vi,
Problem 3 can be solved with a matrix F such that λk is not
part of the closed-loop spectrum.

Corollary 1: If dimV ?
g < n− p, then Problem 3 does not

admit solutions. Moreover, if Problem 3 is solvable with
a feedback matrix F such that λi /∈ σ(A + BF) for some
i ∈ {1, . . . , p}, then dimV ?

g > n− p.
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Remark 2: Whenever (10) is satisfied, Problem 3 can
be solved with an arbitrary convergence rate. In fact, from
the right invertibility of (A,B,C,D), every uncontrollable
eigenvalue is also an invariant zero of Σ. 1 Hence, every
uncontrollable eigenvalue of the pair (A,B) is rendered
invisible at ε(t), and it does not limit the rate of convergence.

Condition (10) is not easy to test, as the sets R̂ j(λ j) are
not, in general, subspaces of X . We now wish to write (10)
in terms of subspaces which we now define. For each j ∈
{1, . . . , p} let Σ j

def
=(A,B,C( j),D( j)), where C( j) ∈R(p−1)×n and

D( j) ∈ R(p−1)×m are obtained by removing the j-th row from
C and D, respectively. The right invertibility of (A,B,C,D)
guarantees that Z contains the set of zeros Z j of Σ j for any
j ∈ {1, . . . , p}. The largest output nulling reachability subspace
of Σ j is denoted by R?

j . Similarly to what was done for R?

in (7), for distinct µ1, · · · ,µr j ∈ R\Z , we decompose R?
j as

R?
j = R?

j (µ1)+ · · ·+R?
j (µr j ), (12)

where R?
j (µ)

def
=
{

v ∈X
∣∣∣ ∃w ∈U :

[A−µ In B

C( j) D( j)

][ v
w

]
= 0
}

and r j = dimR?
j .

Proposition 1: Let µ ∈ R\Z . For all j ∈ {1, · · · , p}

R?
j (µ) = R̂ j(µ)∪R?(µ). (13)

Proof: We show that R?
j (µ) ⊇ R̂ j(µ)∪R?(µ). We begin

proving that R̂ j(µ)⊆R?
j (µ). Let v ∈ R̂ j(µ). There exist w ∈

U and β ∈ R \ {0} such that
[

A−µ In B

C D

][ v
w

]
=
[

0
βe j

]
, which

gives C( j) v+D( j) w = 0. Hence, v ∈ R?
j (µ). We prove that

R?(µ)⊆R?
j (µ). Let v∈R?(µ). Then, there exist w∈U such

that
[

A−µ In B
C D

][ v
w

]
=
[

0
0
]
, which again implies that C( j) v+

D( j) w = 0, so that v ∈ R?
j (µ). Hence, R̂ j(µ) ∪R?(µ) ⊆

R?
j (µ) holds. We show that R?

j (µ) ⊆ R̂ j(µ)∪R?(µ). Let

v∈R?
j (µ). There exists w∈U such that

[
A−µ In B

C( j) D( j)

]
[ v
w ] = 0.

Let β = C j v+D j w. Then,
[

A−µ In B
C D

]
[ v
w ] =

[
0

βe j

]
. If β 6= 0,

we have v ∈ R̂ j(µ), whereas if β = 0, we find v ∈ R?(µ).
Thus, v ∈ R̂ j(µ)∪R?(µ).

Proposition 2: Let µ ∈R\Z . For all j ∈ {1, · · · , p}, R?
j (µ)

and R̂ j(µ) coincide almost everywhere.
Proof: Since Σ is right invertible and µ is not a zero, the
inclusion R?(µ)⊆R?

j (µ) from Proposition 1 is strict. Indeed,
in such a case, [C j D j ] is linearly independent from every row
of
[

A−µ In B
C( j) D( j)

]
. Thus, dimR?(µ)< dimR?

j (µ). Proposition 1

ensures that R?
j (µ)\ R̂ j(µ) ⊆R?(µ), which in general does

not hold as an equality since R?(µ) and R̂ j(µ) may have
non-zero intersection.

The fact that R?
j (µ) is a subspace of X and it is coincident

with R̂ j(µ) modulo a set of points belonging to a proper
algebraic variety within R?(µ) motivates its use, in preference
to R̂ j(µ), to establish conditions for our tracking problem.

1Indeed, an uncontrollable eigenvalue λ either belongs to σ(A+
BΦ |X /V ?+〈A, imB〉) or to σ(A+BΦ |V ?/R?), where Φ∈ F(V ?).
Since 〈A, imB〉 is contained in the smallest input-containing subspace
S ? of Σ [16, Chapter 8], and right-invertibility is equivalent to V ?+
S ? =X since [C D ] is full row-rank [16, Theorem 8.27], then V ?+
〈A, imB〉= X . Hence, λ ∈ σ(A+BΦ |V ?/R?) = Z .

A. Solution of Problem 3: The case dimV ?
g = n− p

We begin by presenting a famous result in combinatorics
[18, Theorem 3] due to Radó.

Lemma 3: Let P1, . . . ,Ps be sets of a Euclidean space.
There exists elements pi ∈ Pi for all i ∈ {1, . . . ,s} such that
{p1, . . . , ps} is a linearly independent set if and only if given k
numbers ν1, . . . ,νk such that 1≤ ν1 < ν2 < .. . < νk ≤ s for all
k ∈ {1, . . . ,s}, the union Pν1 ∪Pν2 ∪ . . .∪Pνk contains k linearly
independent elements.

Let us specialise this result for linear subspaces of Rn.
Proposition 3: Let P1, . . . ,Ps be subspaces of X . There

exists elements pi ∈ Pi for all i ∈ {1, . . . ,s} such that
{p1, . . . , ps} is linearly independent if and only if

dim
(
∑
j∈S

P j
)
≥ card(S) ∀S ∈ 2{1,...,s}.

Proof: Let k ∈ {1, . . . ,s} and 1 ≤ ν1 < .. . < νk ≤ s. Then,
Pν1∪. . .∪Pνk contains k linearly independent elements if and
only if Pν1+. . .+Pνk contains k linearly independent elements,
which is equivalent to dim(Pν1+. . .+Pνk )≥ k. 2

Corollary 2: Let n be the dimension of the linear
space X . Let Pg,P1, . . . ,Ps be subspaces of X , and
let dimPg = n− s. There exists a linearly independent set
{pg1 , . . . , pgn−s , p1, . . . , ps} such that span{pg1 , . . . , pgn−s}⊆Pg
and pi ∈Pi for all i ∈ {1, . . . ,s} if and only if

dim
(
Pg + ∑

j∈S
P j
)
≥ (n− s)+ card(S) ∀S ∈ 2{1,...,s}. (14)

Proof: Let X = X1⊕X2 where X1 = Pg. In these coordi-
nates, a basis matrix for Pg is given by

[
In−s

0s×(n−s)

]
. Denote

by
[

Pi,1
Pi,2

]
a basis matrix for Pi (i ∈ {1, . . . ,s}), where Pi,1

and Pi,2 have n− s and s rows, respectively. We can find a
linearly independent set {pg1 , . . . , pgn−s , p1, . . . , ps} such that
span{pg1 , . . . , pgn−s} ⊆Pg and pi ∈Pi for all i ∈ {1, . . . ,s} if
and only if there exist p̃1 ∈ imP1,2, . . ., p̃s ∈ imPs,2 such that
{ p̃1, . . . , p̃s} is linearly independent. In view of Proposition 3
this happens if and only if dim

(
∑i∈S Pνi,2

)
≥ card(S) for all

S ∈ 2{1,...,s} which readily gives (14).
Since in Lemma 2 it was shown that, when dimV ?

g = n− p,
Problem 3 is solvable if and only if there exist v j ∈ R̂ j(λ j)
(where j ∈ {1, . . . , p}) satisfying V ?

g + span{v1, · · · ,vp}= X ,
and that in Proposition 2 it was shown that for any µ ∈R\Z
the set R̂ j(µ) coincides with the subspace R?

j (µ) modulo a
set of points that are roots of an algebraic equation, Corollary
2 leads to the following result.

Theorem 1: Let dimV ?
g = n − p. Let λ1, · · · ,λp ∈ R−.

Problem 3 is solvable if and only

dim
(
V ?

g +∑
j∈S

R?
j (λ j)

)
≥(n−p)+card(S) ∀S ∈ 2{1,...,p}. (15)

So far we have shown that if condition (15) in Theorem 1 is
satisfied, it is possible to find vi ∈ R̂i(λi) for all i ∈ {1, . . . , p}
such that rank[Vg v1 . . . vp ] = n, and this means that a
feedback matrix with the desired properties exists. However, a

2Since Pν1 + . . .+ Pνk ⊇ Pν1 ∪ . . . ∪Pνk , if Pν1 ∪ . . . ∪Pνk
contains at least k linearly independent elements, then also Pν1 +
. . .+Pνk contains k linearly independent elements. The converse is
also true because Pν1 + . . .+Pνk is the span of Pν1 ∪ . . .∪Pνk .
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much stronger result holds: the vectors v1, . . . ,vp can be chosen
“almost randomly” from within R?

1 (λ1), R?
2 (λ2), . . ., R?

p(λp),
respectively, and the resulting feedback will almost certainly
solve Problem 3 as the following result establishes.

Theorem 2: Let λ1, . . . ,λp ∈ R−. Let r = dimR? and
dimV ?

g = n− p. Let (15) hold. Let V̂g and Ŵg be as in
Lemma 1 for the stable complex numbers µ1, . . . ,µr and for
the minimum-phase invariant zeros z1, . . . ,zt . Let

[
Vi

Wi

]
denote a

basis matrix for kerPΣi(λi)=
[A−λi In B

C(i) D(i)

]
for all i∈{1, . . . , p},

where each Vi and Wi have n and m rows, respectively. Let

VK,H,k1 ,...,kp
def
= [ V̂g diag{K,H} V1 k1 V2 k2 . . . Vp kp ],

WK,H,k1 ,...,kp
def
= [ Ŵg diag{K,H} W1 k1 W2 k2 . . . Wp kp ],

where k1, . . . ,kp 6= 0 are real parameter vectors of appropriate
sizes and K and H are block diagonal parameter matrices
as in Lemma 1 such that im(V̂g diag{K,H}) = V ?

g . Then (1)
rankVK,H,k1 ,...,kp = n for almost all K and H and k1, . . . ,kp 6= 0
as constructed above; (2) The set of all feedback matrices that
solve Problem 3 for the given µ1, . . . ,µr is given by

FK,H,k1 ,...,kp =WK,H,k1 ,...,kp V−1
K,H,k1 ,...,kp . (16)

Proof: In view of Theorem 1 and Lemma 2, there exist v j ∈
R̂ j(λ j) such that (10) holds. Since R̂ j(λ j) ⊆ R?

j (λ j), there
exist real vectors k1, . . . ,kp such that rankA= n, where

A
def
= [ V̂g diag{K,H} V1 . . . Vp ]diag{In−p,k1, . . . ,kp}. (17)

Since rank[ V̂g diag{K,H} V1 . . . Vp ] = n in view of
(15) written for S = {1, . . . , p}, we conclude that A loses rank
only for k1, . . . ,kp that solve a finite set of linear equations.

It remains to show that the parameterisation (16) of the
feedback matrices which solve Problem 3 is exhaustive, i.e.,
that given a feedback F which solves Problem 3 for λ1, . . . ,λp,
there exist H, K, k1, . . ., kp such that, computing VK,H,k1 ,...,kp

and WK,H,k1 ,...,kp as in the statement, F can be written as
WK,H,k1 ,...,kp V−1

K,H,k1 ,...,kp . In view of Lemma 2, F satisfies[
A+BF
C+DF

]
Vg =

[
Vg
0

]
Xg,

[
A+BF

C(i)+D(i) F

]
vi =

[
vi
0

]
λi, (18)

where Vg is a basis matrix for V ?
g , where Xg is asymptotically

stable, and with i∈{1, . . . , p}, where vi ∈ R̂i(λi). Assuming for
simplicity that all the eigenvalues of Xg are real and distinct,3

we can find a change of basis T in X such that X4
def
= T−1 Xg T

is diagonal. Denoting by υi the i-th column of Vg T , and by
{µ1, . . . ,µn−p} the eigenvalues of X4, the first in (18) yields[

A+BF
C+DF

]
[υ1 . . . υn−p]=

[
υ1 . . . υn−p
0 . . . 0

][µη(1)
. . .

µη(n−p)

]
(19)

where η : {1, . . . ,n− p} −→ {1, . . . ,n− p} is a bijection.
Defining ωi

def
= F υi, we find that

[
υi

ωi

]
∈ ker

[
A−µηi In B

C D

]
.

We can repeat the same argument for the second in (18)
(without the diagonalisation), and defining wi = F vi,
there holds

[
vi
wi

]
∈ ker

[
A−λi In B

C(i) D(i)

]
. Thus, (i) F satisfies

[ω1 . . . ωn−p w1 . . . wp ] = F [υ1 . . . υn−p v1 . . . vp ];

3The case of complex eigenvalues of Xg can be dealt with using the
argument in [14, Theorem 3.1].

(ii) [ ω1 . . . ωn−p w1 . . . wp ] can be written as
WK,H,k1 ,...,kp for a suitable choice of K, H and ki; (iii)
[ υ1 υ2 . . . υn−p v1 . . . vp ] can be written as
VK,H,k1 ,...,kp for suitable values of K, H and ki. Thus,
WK,H,k1 ,...,kp = F VK,H,k1 ,...,kp .

B. Solution of Problem 3: the general case

We now consider the case where h = dimV ?
g ≥ n− p.

The following generalisation of Radó’s Theorem, see [19,
Theorem 1.3], is the key to obtaining a necessary and sufficient
solvability condition for Problem 3 in this general case.

Proposition 4: Let P1, . . . ,Ps be subspaces of X . There
exists k elements p1 ∈ Pi1 , p2 ∈ Pi2 , . . ., pk ∈ Pik for
some 1 ≤ i1 < .. . < ik ≤ s such that {p1, . . . , pk} is linearly
independent if and only if

dim(∑
i∈S

Pi)≥ card(S)− (s− k) (20)

holds for all S ∈ {S ∈ 2{1,...,s} | cardS> s− k}.
As a result of Proposition 4, following the same argument

of the proof of Corollary 2, one easily sees that a necessary
and sufficient condition for Problem 3 is given as follows.

Theorem 3: Let λ1, · · · ,λp ∈ R−. Problem 3 is solvable if
and only if

dim
(
V ?

g + ∑
j∈S

R?
j (λ j)

)
≥ n− p+ card(S)

∀S ∈ {S ∈ 2{1,...,p} | cardS> h− (n− p)}. (21)

It is clear that (21) reduces to (15) when h = dimV ?
g =

n− p. The calculation of the feedback matrix does not change
significantly with respect to the one outlined in Theorem 2
for the case dimV ?

g = n− p. The main difference is that the
n× (h+ p) matrix V

def
= [ V̂g diag{K,H} V1 k1 . . . Vp kp ]

is not full column-rank. On the other hand, the rank of V is n
for suitable values of the parameter matrices, which means that
it is sufficient to eliminate from V exactly h+ p−n columns
that are linearly dependent upon the remaining n columns.

We eliminate the corresponding columns of
[V̂g diag{K,H} V1 . . . Vp ] and [Ŵg diag{K,H} W1 . . . Wp ],
and we also eliminate the corresponding columns and rows
from the parameter matrix diag{Ih,k1,k2, . . . ,kp}. We denote
the matrices thus obtained by ṼK,H,k1 ,...,kp ,ψ , W̃K,H,k1 ,...,kp ,ψ and
K̃K,H,k1 ,...,kp ,ψ respectively, where ψ is a mapping that represents
the choice of the columns that have been eliminated. Now,
the argument of Theorem 2 can be applied to the equation

FK,H,k1 ,...,kp ,ψ ṼK,H,k1 ,...,kp ,ψ = W̃K,H,k1 ,...,kp ,ψ , (22)

which gives the solution to Problem 3 in parameterised form.
We have just proved the following result.

Theorem 4: Let λ1, . . . ,λp ∈ R−. Let r = dimR?, and let
h = dimV ?

g ≥ n− p. Let (21) hold. Let V̂g and Ŵg be con-
structed as in Lemma 1 for the asymptotically stable complex
numbers µ1, . . . ,µr and for the minimum-phase invariant zeros
z1, . . . ,zt . Let

[
Vi
Wi

]
denote a basis for kerPΣi(λi)=

[
A−λi In B

C(i) D(i)

]
for all i ∈ {1, . . . , p}. Let νi denote the number of columns of
Vi. Let ki ∈Rνi for all i∈ {1, . . . , p}. Let ψ1, . . . ,ψn be indexes
of the columns of V = [ V̂g diag{K,H} V1 . . . Vp ] such
that the rank of ṼK,H,k1 ,...,kp ,ψ = [ V ψ1 . . . V ψn ] is n. Let
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W̃K,H,k1 ,...,kp ,ψ = [ W ψ1 . . . W ψn ], and let K̃K,H,k1 ,...,kp ,ψ be ob-
tained from diag{Ih,k1, . . . ,kp} by removing the corresponding
rows and columns. Then: (1) rankṼK,H,k1 ,...,kp ,ψ = n for almost all
K and H as defined in Lemma 1, for all k1, . . . ,kp 6= 0, and for
all the choices ψ such that the matrix obtained by eliminating
h+ p− n columns from V gives a matrix of rank n; (2) The
set of feedback matrices that solve Problem 3 with µ1, . . . ,µr,
z1, . . . ,zt and the given choice of ψ is

FK,H,k1 ,...,kp ,ψ = W̃K,H,k1 ,...,kp ,ψ Ṽ−1
K,H,k1 ,...,kp ,ψ ,

where ki ∈ Rνi , K and H are block-diagonal matrices con-
structed as in Lemma 1 such that im(V̂g diag{K,H}) = V ?

g ,
and ψ is such that the matrix obtained by eliminating h+ p−n
columns from V gives a matrix of rank n.

Remark 3: If h = dimV ?
g > n− p, the natural choice is to

build a feedback using a basis of X that uses as many basis
vectors as possible from V ?

g , because every extra basis vector
beyond the first n− p potentially results in a tracking error with
a zero component. This corresponds to selecting a mapping ψ

which eliminates as many columns Vi ki from V as possible.

V. SOLUTION TO PROBLEM 1

In this section, the solution to Problem 1 is investigated.
Theorem 5: Let h def

= dimV ?
g . Problem 1 is solvable if and

only if
dim
(
V ?

g + ∑
j∈S

R?
j
)
≥ n− p+ card(S) (23)

holds for all S ∈ {S ∈ 2{1,...,p} | cardS> h− (n− p)}.
Proof: Let for simplicity h = n− p. If (23) is not satisfied,
there exists S ∈ 2{1,...,p} such that dim

(
V ?

g +∑ j∈S R?
j
)
< n−

p+ card(S), which gives dim
(
V ?

g +∑ j∈S R?
j (λ j)

)
< n− p+

card(S) for any λ1, · · · ,λp ∈R−, since by (12) R?
j (λ j)⊆R?

j +
V ?

g for all j ∈ {1, · · · , p} and λ j ∈ R. In view of Theorem 1,
Problem 3 is never solvable, which implies that Problem 1 does
not admit solution. Sufficiency follows from Corollary 2.

We now consider the computation of the feedback matrix.
Theorem 6: Let dimV ?

g = n− p. Let the condition in The-
orem 5 hold. Let V̂g and Ŵg be constructed as in Lemma 1.
Let

[
Vi(λi)
Wi(λi)

]
denote a polynomial basis matrix of least degree

for the kernel of PΣi(λi) =
[

A−λi In B
C(i) D(i)

]
for all i ∈ {1, . . . , p},

where each Vi(λi) and Wi(λi) have n and m rows, respectively.
Finally, let νi denote the number of columns of Vi(λi). Let
ki ∈ Rνi denote a parameter vector for all i ∈ {1, . . . , p}. Let

VK,H,k1 ,...,kp(λ1, . . . ,λp)
def
=[V̂g diag{K,H}V1(λ1)k1 . . .Vp(λp)kp ]

WK,H,k1 ,...,kp(λ1, . . . ,λp)
def
=[Ŵg diag{K,H}W1(λ1)k1 . . .Wp(λp)kp ]

Then: (1) rankVK,H,k1 ,...,kp(λ1, . . . ,λp) = n for almost all λi ∈ R,
for almost all diagonal K and H as in Lemma 1 and for all
ki ∈ Rνi \{0} (i ∈ {1, . . . , p}); (2) The feedback matrices

FK,H(λ1, . . . ,λp) =WK,H,k1 ,...,kp(λ1, . . . ,λp)V−1
K,H,k1 ,...,kp(λ1, . . . ,λp)

obtained with ki ∈ Rνi and λi ∈ R− (i ∈ {1, . . . , p}) such that
rankVK,H,k1 ,...,kp(λ1, . . . ,λp) = n are a solution to Problem 1.
The proof follows essentially the steps of that of Theorem 4.

Remark 4: It is well known that a SISO strictly proper sys-
tem with real nonminimum-phase zeros cannot be monotonic
as undershoot must occur, [8]. This also follows as a particular

case of Theorem 5. Indeed, the condition dimV ?
g ≥ n− p

follows from (23) when S = ∅, which is never satisfied
for SISO strictly proper nonminimum-phase systems. In fact,
dimV ?

g ≤ dimV ?≤ dim(kerC)= n−1, where the first inequal-
ity can be an equality only if the system is minimum-phase.

CONCLUDING REMARKS

The problem of achieving a monotonic step response from
any initial condition has been addressed for LTI MIMO sys-
tems. The results presented in this paper can be easily adapted
to discrete-time systems as shown in [15]. Several numerical
examples of the proposed method can also be found in [15].
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