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Stabilization of nonlinear systems using event-triggereautput feedback controllers

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz anddnr&lesic

Abstract—The objective is to design output feedback event-triggece
controllers to stabilize a class of nonlinear systems. Onefdhe main
difficulties of the problem is to ensure the existence of a mimum
amount of time between two consecutive transmissions, wiids essential
in practice. We solve this issue by combining techniques fra event-
triggered and time-triggered control. The idea is to turn on the event-
triggering mechanism only after a fixed amount of time has elpsed since
the last transmission. This time is computed based on resdton the
stabilization of time-driven sampled-data systems. The @rall strategy
ensures an asymptotic stability property for the closed-lop system. The
results are proved to be applicable to linear time-invariart (LTI) systems
as a particular case.

. INTRODUCTION

mainly for linear systems. Note that the idea of enforcingiveeny
time between two jumps is linked to time regularization téghes,
see [19].

Our results rely on similar assumptions as [inl[15] whichwallo
us to derive both local and global results. These conditiares
shown to be always verified by LTI systems that are stabileabd
detectable, in which case these are reformulated as a Ima#ix
inequality (LMI). Contrary to [[11], the approach is applia to
nonlinear systems and the output feedback law is not neatlgssa
based on an observer. Compared[td [14], we rely on a diffegent
of assumptions and we conclude a different stability prigpdn
addition, we show that our results are applicable to any ktems
that are stabilizable and detectable, which is a priori hetdase of

Networked control systems (NCS) are systems in which the-coi4]. Furthermore, we apply our results to Lorenz model, althis

munication between the plant and the controller occursutyioa
shared digital channel. Since the network has a limited wadtt

nonlinear and which does not satisfy the conditions_of [14jlike
[10], where LTI systems have been studied, we do not nedlssar

and is typically used by other tasks, it is essential to dgvel consider observer-based output feedbacks and the tniggeoindition
e\ communication-aware control strategies. Event-triggetentrol is does not a priori rely on estimates of the unmeasured states.

a relevant paradigm in this context as it adapts transmmissio the

current state of the plant, seeg.[1]-[5] and the references therein.

In that way, transmissions only occur when it is needed aliegrto
the control objectives.

A fundamental issue in the implementation of event-trigder
controllers is to ensure the existence of a minimum amount
time between two consecutive transmissions to respectwaaed
limitations. This task becomes particularly challengingew we have
to design the controller using only an output of the systeith mot
the full state vector (se€l[6]), in particular when we aim tmgntee
asymptotic stability properties. To the best of our knowkedthis
problem has been first addressed(ih [7] and thenlin [6], [S]}-far
LTI systems and in_[14] for nonlinear systems.

In this paper, we design output feedback event-triggeratraters
for nonlinear systems which guarantee a (global) asyngpstéibility
property and the existence of a uniform strictly positiveréo bound
on the inter-transmission times. The proposed strategybirws the
event-triggering condition of [3] adapted to output measwuents and
the results on time-driven sampled-data systems_ih [1%ledd, the
event-triggering condition is only (continuously) evake after T’
units of times have elapsed since the last transmissionyenfie
corresponds to thenaximum allowable sampling periofMASP)
given by [15]. This two-step procedure is justified by thet that the
adaption of the event-triggering condition 6f [3] to outgaedback
on its own can lead to Zeno phenomenon (see [6]). Although
rationale is intuitive, the analysis is not trivial as wewstia the paper.
This type of triggering rule has been used ini[16] to stabiflinnlinear
singularly perturbed systems under a different set of aptions.
Similar approaches have been followed[inl[11].|[1[7].] [18ktdorce
a lower bound on the inter-transmission times in differemtexts,
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latter has the advantage to lighten the implementationesithe
triggering mechanism only needs to have access to the oofput
the plant, and not the controller variable. Finally, in thertizular
case of LTIl systems, we conclude a global asymptotic stgbili
property as opposed to ultimate boundedness in [6]. It habeto
Abted that the event-triggering mechanism that we propodiferent
from the periodic event-triggered control (PETC) paradigeee.qg.
[20], [21], where the triggering condition is verified only some
periodic sampling instants. In our case, the triggering masm is
continuouslyevaluated, oncd units of time have elapsed since the
last transmission. The first results of this work have beesqmted in
[22]. In comparison to our previous work: we provide all thegfs
of the results; we show how the proposed technique can hifuftyi
employed in the context of state feedback control as a spease,
to directly tune the lower bound on the inter-transmissiones;
we apply the results on a different physical nonlinear eXantp
better motivate our results and we compare our proposegdetiitg
mechanism with the existing results on a linear output faeklb
example.

Il. PRELIMINARIES

Let R := (—o0,00), Rsq := [0,00) andZ>o := {0,1,2,..}. A
continuous functiony : R», — R is of classKC if it is zero at zero,
strictly increasing, and it is of clas§ if in addition v(s) — oo

thg s — co. A continuous functiony : Ry X Rsg — Ry is of

classKL if for eacht € R~q, v(.,t) is of classk, and, for each

5 € Rxg, 7(s,.) is decreasing to zero. We denote the minimum and
maximum eigenvalues of the symmetric matrxas Amin(A) and
Amax(A), respectively. We writeA” to denote the transpose f.

We usel,, to denote the identity matrix of dimension We write
(x,y) to represent the vectde”,y”]” for x € R™ andy € R™.

For a vectorr € R™, we denote byz| := V2T« its Euclidean norm
and for a matrixA € R™*™, we denote by A| := \/Amax(ATA).
We will consider locally Lipschitz Lyapunov functions (thare
not necessarily differentiable everywhere), therefore wit use
the generalized directional derivative of Clarke which &fided as
follows. For a locally Lipschitz functio®’ : R™ — R, and a vector
v € R", VO(z;v) = limsup,_,o+ ,.(V(y + hv) — V(y))/h.
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For a continuously differentiable functioW, V°(z;v) reduces to @—

the standard directional derivativ&V (z), v), whereVV (z) is the
(classical) gradient. We will invoke the following resudgee Lemma

1.1 in [23]. ults) X u(t) Controller <—y(ti)1 y(®)
Lemma 1 (Lemma II.1 [23]). Consider two function$/; : R” — R ! !

and U; : R" — R that have well-defined Clarke derivatives for all ! Sventiagerg - - - !

z € R™ and v € R". Introduce three setsl := {z : Ui(z) > roo mechanism

Uz(z)}, B :={z : Ui(z) < U2(x)}, T := {z : Ui(z) = Uz2(z)}.
Then, for anyv € R", the functionU(z) := max{U1(z),U2(x)}  Fig. 1. Event-triggered control schemaiic [6]
satisfiesU° (z;v) = U7 (x;v) for all z € A, U°(z;v) = Us (x;v)
for all x € B and U°(x;v) < max{U7 (z;v),Us (z;v)} for all

zel. O transmission delays. In that way, we obtain

In this paper, we consider hybrid systems of the followingnfo iy = folzp,d) t € [t tisa]
using the formalism of [24] xi — fi(xfyg) te [ti’ti+1]

i=F(z) ze€C, 2" =G) zeD, ) U = ge(te,9)
gy = 0 t € [ti, tita] (4)

wherez € R" is the state,F’ is the flow map,C is the flow set, @ = 0 t € [ti,tit]
G is the jump map and is the jump set. The vector fields and 9t = yt)
G are assumed to be continuous and the éeiand D are closed. aty) = wu(t),

The solutions to systeni](1) are defined on so-called hybrik ti . . . )
domains. A setfl C R-, x Zso is called acompact hybrid time wherey and 4 respectively de.note the last transmitted values of the
domainif E = U ([t; t,41],7) for some finite sequence plant output and the control input. We assume that zerordrdiel

) j€{0,...,J -1} o L . devices are used to generate the sampled vajuesd @, which
of times0 = o < #1 < ... < t; and it is ahybrid time domainf |o54g o5 — 0 and = 0. We introduce the network-induced error
fpr all (T, J) € EE n ([o, 7] x {0,1, o J}) is a compact hybrld ¢ = (ey, eu) € R™, wheree, := § —y ande, = i — u which are
tlme_do_maln. A fl_Jnctlon<_;5 : E —>']R<” is a hybrid arc_le IS & (eset to0 at each transmission instant.
hybrid time domain and if for each € Zxo,t+ ¢(t,j) is locally \ya model the event-triggered control system using the Hybri
absolutely continuous of¥ := {t: (¢,7) € E}. A hybrid arc¢ is a formalism of [22] as in[[5], [11L], [4], for which a jump corrpends

solution to systeni];) if: (I} (0, 0? € CUD; (i) forany j € Zzo, 5 4 transmission. In that way, the system is modeled as
¢(t,j) € C ando(t,j) = F(¢(t,7)) for almost allt € I7; (iii) for

every (t, j) € dome such that(¢, 5 + 1) € dome, ¢(t,j) € D and & f(z,e)
o(t,j+ 1) = G(¢(t,5)). A solution ¢ to system[{ll) ismaximalif é = g(z,e) (z,e,7) € C,
it cannot be extendeadompleteif its domain, domyp, is unbounded, T 1
- PR (5)
and it isZenoif it is complete andsup, dom¢ < oo. ot .
et = 0 (z,e,7) € D,
I1l. PROBLEM STATEMENT Tt 0
Consider the nonlinear plant model wherez := (zp,z.) € R"™ and7 € Ry, is a clock variable
. which describes the time elapsed since the last juff(p, e) =
Ty = fplwp,u), y = gp(zp), (2 (fo(Zp, ge (e, y + €4) + €4), felze,y+€,)) and

d d
wherez, € R"? is the plant statey € R™* is the control input, g(z,e) = (_mgp(l’p)fp(ﬂcmgc(ﬂcc73{+€y)+€u)7 _a—zcgc(“f’my‘f
y € R™ is the measured output of the plant and we focus on genefalfe(Ze,y + €y)). The flow and jump sets of[5) are defined

dynamic controllers of the form according to the triggering condition we will define. As loag the
triggering condition is not violated, the system flows 6hand a
Te = fe(ze,y), u = ge(®e,y), (3) jump occurs when the state entersiin When (z,e,7) € C N D,

the solution may flow only if flowing keepée, e, 7) in C, otherwise
: ; -~ the system experiences a jump. The functighand g are assumed
system Is not necess_anly an observer. l\_/loreo@r, (3) capiskatic y, e continuous and the sefsand D will be closed (which ensure
feedbacks_as a partlcula_lr case by setting= g.(y). We follow that system{5) is well-posed, see Chapter €.1n [24]).

an emulation approach in this paper. Hence, we assume that thThe main objective of this paper is to design the flow and thapju

controller [3) renders the origin of systefd (2) globally mgyotically ts of syst 5) e. the tri : dition. t lobal
stable in the absence of network. Afterwards, we take intmuat Z:ysm(;tost)ils :tr;glit)y;e;;rOSerg??(?rnggsfeorE] (|5|;) n, to ensure a (global)

the communication constraints and we synthesize the tiigge
condition. In particular, we consider the scenario whergradler (3)
communicates with the plant via a digital channel. Hence, glant IV. MAIN RESULTS
output and the control input are sent only at transmissiatairts
ti,1 € Z>0. We are interested in an event-triggered implementati(w
in the sense that the sequence of transmission instantseigrdeed
by a criterion based on the output measurement, see Fijdteehch
transmission instant, the plant output is sent to the ciatravhich
computes a new control input that is instantaneously trétesnto Assumption 1. There existA,, A. > 0, locally Lipschitz positive
the plant. We assume that this process is performed in a gymoirs ~ definite functiond” : R"» — Ry, andW : R™¢ — R+, continuous
manner and we ignore the computation times and the possilfilmction H : R™ — Rs,, real numbersy,L > 0, o, @ € Koo

wherez. € R"¢ is the controller state. We emphasize that the

We first present the conditions that we impose on sysfém{gh t
e present the triggering technique and finally we state thém
result. We make the following assumption on systéin (5), twhéc
inspired by [[15].



and continuous, positive definite functiofs: R™ — Ry, and thatT € (0,7 (v, L)). There existA > 0 and 8 € KL such that any

a:Rso — Ry, such that, for allz € R solution ¢ = (¢z, Pe, ¢-) With |(¢2(0,0), ¢(0,0))| < A satisfies
aflz]) < V(z) <a(lz]), ©)  ¢=(t, )] < B(1(¢2(0,0),6c(0,0))],t+4)  V(¢,5) € doms, (12)
for all |e] < A. and almost all|z| < A, furthermore, if¢ is maximal, then it is complete. If Assumptign 1

holds globally, then[{12) holds globally. |
(VV (@), f(z,e)) < —allz]) = H(z) = 6(y) + ¥’ W?(e) (7)
Example 1. Consider the controlled Lorenz equations which model
fluid convection[[26]41 = —az1 +axa, T2 = br1 —x2 —x123 U,
(VW (e), g(z,e)) < LW (e) + H(x). @) &3 = wi1x2 — crs andy = x1, wherea, b, ¢ > 0. The static outp_ut
feedback lawu = —(£la + b)z1, wherep:,p2 > 0, globally stabi-
We say that Assumpti@h 1 holds globallyfif (7) (8) holceflanost  lizes the origin. This can be proved by using the quadrat&piyov
all z € R™ ande € R™. O function V(z) = piai + pex3 4+ p2x3, which verify condition [6)

iy . . . with a(|z|) = min{p1, p2}|z|* anda(|z|) = max{p1, p2}|z|>. We
Conditions [)}(Y) imply that the system = f(z,¢) is Lo- take into account the network-induced error= § — y (it is not

gain sftab!e fromiV” to (#, \/5)' This property can be analysed bynecessary to consider the errordnas the controller is static) and
Investigating the robustness property of the closed-loapes D).' we selectiV (e) = |e|. Hence, condition[{8) is satisfied with = 0
@) with respect to input and/or output measurement ernorthe H(z) = a|z1| + |2|). By takingp: > 1 andps > 2a, condition
absence of sampling. Note that, sinté is positive definite and @ holds with a(|z|) o min{a(py — 1), (p2 — 2a) ’2 Y2
continuous (since it is Iocqlly Lipschitz), ther_e existse Ko such 5(y) = a(ps — 1)y? an?j e pzzzlp—la +7C)127? For th79 Ip?aramet’er
that.W(e) <x(le]) (accordmg to Lem.mf'i 4.3 i [25]) and henEé (G)ValueSa ~ 10,6 = %,c — 8/3 ad in [26], we sep: — 2
() imply that the systent: = f(w, ¢) is input-to-state stable (ISS).p2 = 3a and we obtairl” = 0.01. We note that the results in_[114]

We also assume an exponential growth condition ofetsgstem on . . i, -
: R ; . are not applicable to this system because condition (3) @bdxition
flows in (8) which is similarly used i [15]. We provide an exalm bp 4 (3) @

and for all |z| < A, and almost allle] < A,

of nonlinear system which verifies Assumptigh 1 at the enchisf t 1 in [14] does not hold. =
section.
Under Assumptiori]1, the adaptation of the idealdf [3] leads to V. LINEAR SYSTEMS

a triggering condition of the form?W?(e) < d(y). The problem  \we now focus on the particular case of linear systems. Censid
is that Zeno phenomenon may occur with this type of triggerinne (LTI plant model

conditions. Indeed, whep = 0, an infinite number of jumps occurs
for any value ofr such tha, (x,) = 0. In [6], this issue is overcome ip = Apzp + Bpu, y = Cpyp, (13)
by adding a constant to the triggering condition, which wbldad
to v2W?2(e) < 8(y) + ¢ here fore > 0, from which we can derive
a practical stability property. The event-triggered medtma that we
propose allows us to guarantee an asymptotic stabilitygutgor the
closed-loop while ensuring that the inter-transmissiores are lower ie = Acxe + Bey, u = Coze+ Doy, (14)
bounded by a strictly positive constant. The idea is to ataluhe

event-triggering condition only afteF units have elapsed since thewherez. € R"¢ and A., B., C., D. are matrices of appropriate
last transmission, wher& corresponds to the MASP given dy [15].dimensions. Afterwards, we take into account the commutioica
In that way, we allow the user to directly tune the minimumeint constraints. Then, the hybrid modEl (5) is

jump interval, up to a certain extent as explained in theofaihg.

wherez, € R"?, uw € R"™, y € R"™ andA,, B,, Cp, are matrices of
appropriate dimensions. We design the following dynamiatraiier
to stabilize [IB) in the absence of sampling

. . . .. T Aix + Bie
We thus redesign the triggering condition as follows ¢ _ Ao + Boe (¢,e,7) € C
2 2 -
W?(e) < 8(y) or 7 € [0,T), 9 T 1
Y W(e) <4(y) or 7 €[0,7T] ©) ! (15)
where we recall that € R, is the clock variable introduced il(5). x+ _ g ( yeD
Consequently, the flow and jump sets of systéin (5) are ; o 0 eT ’
C’:{(x,e,r) W3 (e) < 6(y) orT € [O,T]} Ap+ByDoCy  BpCe ByD. By
where A; := , B1 = )
D={(@,e,7): (1*W3(e) = (y) and7 > T) or  (10) BeCp A Be 0
9 9 A L 7CP(AP+BPDCcP) 7CPBPCC and
(+*W(e) > 8(y) andr =T }. 2=\ s, e
Hence, the inter-jump times are uniformly lower boundedIbyT his B, — —CpBpDe  —CpBp
constant is selected such that< 7 (v, L), where 2= —C¢Be. 0 '
1
Ty, L) Ir arctan(r) v > é 1) We obtain the following result.
VL) =g T 7=
% arctanh(r) v <L Proposition 1. Consider system[(15). Suppose that there exist

€1,e2, 1 > 0 and a positive definite symmetric real mati#x such

with r := /|(¥)? — 1| and L, come from Assumptiofil1 as in that

[15]. We are ready to state the main result.

Theorem 1. Suppose that Assumptibh 1 holds and consider syste BfP —ptlln,

.A{P + PA + .A2T.A2 + 816561, + g2l PB; ) <0
®) with the flow and jump set6{10), where the constéris such (16)



whereC, = [C,  0]. Then Assumptiofl 1 holds with ®) with y = z and the flow and jump sets defined as
V(z) = a"Pz, a(lz]) = Amin(P)l2/?,
a(lzl) = Amax(P)lzf*, W(e) = e,
H(z) = |-A2x|7 L = |BQ|7
v = VB allz) = el ¢ ={a:4*W3(e) < olallel) + H(x) + 6(x)) or 7 € [0,7]}
8(y) = eyl
D= { ('yQWQ(e) = o(a(|z|) + H*(z) + 6(z)) and 7 > T) or

- (72W2(e) > o(ol|z]) + H2(z) + 6(x)) andT:T)},
Proposition[]L provides a sufficient condition, namdly] (1), the a7
verification of Assumptiohll, which thus allows us to applg tesults whereq := (x, e, 7), o0 € (0,1) andT is such thatl’ € (0, 7 (v, L)).
of Section[1V. It has to be noted that the LML{16) can always b&hen, the conclusions of Theor€i 1 hold. ]

satisfied when systenh (I13) is stabilizable and detectabtiedd, in
this case, we can select the controller] (14) such thais Hurwitz.
Noting that [I6) is equivalent to the following inequalgjeby using
the Schur complement of {L6) (see Section A.5.50in [2A4}.P +
PAL + AT Az + 10y Cp + eolln, + 1 L PB1B{ P < 0. We see that
we can select the matri® such thatATP + PA + AT Ay +
51@?@7 + e21,,, is negative definite. It then suffices to chogse
sufficiently large to ensure the last inequality.

Example 3. We illustrate the interest of our proposed triggering
condition. Consider the LTI system, as id [3]= Ax + Bu, where
reR*,ueER,A= ( 0 1) andB = (?) Since the pair4, B)

is stabilizable, we take the control input= Kz with K = [1 —4]

as in [3]. By following similar lines as in Sectidnl V, we degithe
LMI (I8) with A, = A2 = A+ BK, Bi = B, = BK and
€1 = 0. Hence, and by solving the resulted LMI, we obtain the
Example 2. We apply the result in this section to Example 2 imumerical valued. = 4.1231,e2 = 0.68,~ = 17.3495 which lead
[6]. We obtain L = 4 and we obtain the values; = 1.5839, to 7 = 0.079. For comparison, we se€f’ = 0.075 and we ran
g2 = 13.9969, v = 89.9666 by solving the LMI [I6) using simulations for 200 randomly distributed initial condii® such that
the SEDUMI solver with the YALMIP interface. The guaranteed(z(0,0),e(0,0))] < 100 and 7(0,0) = 0. Table[dl provides the
minimum inter-transmission time & = 0.017, by using [I1). Table generated minimum and average inter-transmission timésotiythe

[l provides the minimum and the average inter-transmissiores, proposed triggering strategy and the triggering conditioif3], i.e.
respectively denoted as,in andravg, for 100 randomly distributed with 7" = 0. We note that our proposed mechanism produces larger
initial conditions such thaf(z(0,0),e(0,0))| < 25 and7(0,0) = 0. values of Tmin, Tavg. TO Spotlight the effect of the time-triggered
The provided values ofayg in Table[] indicates that the generatedpart in our proposed triggering mechanism, the enforce@tdwund
amount of transmissions by our proposed triggering mesharig 7 is plotted in Figures 2, 3 versus the generated inter-trésssom
approximately 100 times less than the amount giveri by [6fedeer, times by both our proposed triggering mechanism and thgerigg
the stability property achieved ial[6] is a practical stipiproperty, condition in [3] respectively, for one initial condition. d
while we ensure a global asymptotic stability property. Vidéerthat

the results in[[14] are not applicable to this system becaasdition

(3) of Proposition 1 in[[14] is not satisfied. We believe thhe t

comparison with[[10] is not relevant since the triggeringchranism Our proposed triggering mechanisin Tabuadal[B3]

is different and the dynamic controller in |10] is based orobserver. Tmin 0.075 0.0543

O Tavg 0.0772 0.0659
TABLE Il

MINIMUM AND AVERAGE INTER -EXECUTION TIMES FOR200INITIAL

Sorarad Donkers & Heemels [6]| Our proposed mechanism  conpiTioNs sUCH THAT|(z(0, 0), €(0,0))| < 100 AND (0, 0) = 0 FOR A
uarantee -9 SIMULATION TIME OF 10s.
lower bound 6.5x10 0.017
Tmin 4.8055 x 10~6 0.017
Tavg 2.2905 x 10—4 0.0202
TABLE |

SIMULATION RESULTS FOR100RANDOMLY DISTRIBUTED INITIAL
CONDITIONS SUCH THAT|(z(0, 0), e(0,0))| < 25 AND 7(0,0) = 0 FOR A
SIMULATION TIME OF 20 SECONDS

0,09 T T
*
VI. STATE FEEDBACK CONTROLLERS *
*
*
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o

o

=
T
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The technique proposed in Sectiod IV is also relevant in dmtext
of state feedback control,e. wheny = =z, as the constanf’ in
(@J0) can be used to directly tune the minimum inter-transiois
time (up to7 in (Xd)). It has to be noted that in this case, we ca
replacey? W2 (e) < 6(y) in @) by v*W(e) < (al|z]) + H?(x) +
d(z)) when Assumptiori]l holds. The following result is a direc 005, : T s .+ : T s
consequence of Theordm 1. Transmission instants

Inter—transmission times
o o
o o
(<] ~
T T
. .

10

Corollary 1. Suppose that Assumptibh 1 holds and consider systéifi. 2. Inter-transmission times witl = 0.075.



— R°(q; F(q)) < —a(|e)) =0(y) +7°W2(e) = N*W?(e) < —a(|a|)+

& b Y2W2(e) — A°W?(e). Recall thatA\? = ~% + 5, it holds that
N R°(q; F(q)) < —a(|z|) — nW?(e). By using the same argument

* as in [20), we derive thaR®(q; F(q)) < —p1(V(z)) — nW?3(e) =
. —p(V(2)) = BANTW3(e) = —p1(V(2)) — p2(A W3 (e)),

0,09

o

o

=
T

—

*
M whereps : s — s € Koo. Since¢(r) < 07 for all 7 > 0 in view
M F of (I8), it holds thatR° (¢; F(g)) < —p1(V(x)) — p2 (A (1) W3(e)).
We deduce that there exists a continuous positive definitetiton o3
- such thati® (¢; F(q)) < —ps(V (z) + A((r)W*(e)) = —ps(R(q)).
T 2 3 4 5 6 7 8 9 10 In view of the last inequality,[{20) and Lemnia 1, whefr) =

ransmission nsiants 0, R°(¢; F(q)) < max{—p1(R(q)), —ps(R(q))}. Consequently, it
Fig. 3. Inter-transmission times with][3]. holds that, for allg € C

Inter—transmission times
o
o
<

o

o

(<]
o(

L *

0,05

VII. CONCLUSION R°(q; F(q)) < —p(R(q)) (21)

We have developed output-based event-triggered consdbe the

stabilization of nonlinear systems. The proposed techmiemisures \t/)vherepI:; min{pl’pg}ols Icontllnuous a;d podsﬂvedd(fa.flm.te. I&Zt
an asymptotic stability property and enforces a minimum w@mho e a solution to[(5) [{10). In view of (21) and by definition diet

of time between two consecutive transmission instants.réhaired Clarke’s derivative (see for instance page 99[inl [29]), ildacthat,

conditions are shown to be satisfied by any stabilizable atectable for all 5 and for almost alt € I (wherel” = {¢: (¢,j) € dom¢})
LTI systems. We show in_[28] that these results can be used as a . . o . ) )

starting point to address the challenging co-design prolilewhich R(e(t,)) < R (¢(L,7); F(o(t, 7)) < —p(R(6(t, 7). (22)
the output feedback law is not obtained by emulation but iistlyo

synthesized with the triggering condition. Thus, in view of [I9), [2R) and since inter-jump times are dow

bounded byT" in view of (I0), we conclude that, by following the
same lines as in the end of the proof of Theorem 1[in [15], there
exists 3 € KL such that for any solutiom to (5), [I0) and any
L¢,7) € dome, R(6(t, 7)) < B(R((0,0)),0.5t4+0.5T7). In view of
Assumptiori Ll and sinci is continuous (since it is locally Lipschitz)
¢ =—2L¢C — )\(CQ +1) ¢(0) = 071, (18) and positive definite, there e_xist?sw € Koo sua_:h thatWW (e) <
aw (|e|) for all e € R™e according to Lemma 4.3 in [25]. As a result,
where & € (0,1), A := /2 +n for somen > 0 and L,7 iy yiew of AssumptiorIL[I8) and the definition of the functi&, it
come from Assumpnor[]l. We denot@(&n,%é) the time it holds that, for ally € CUD,Q(|$|) < R(q) < a(|x|)+§aw(|e|) <
takes for¢ to decrease frond™! to 0. This time 7(0,n,~, L) is an(|(z,e)]), where@n : s — a(s) + 2@w (s) € Koo Hence, we
a continuous function of(¢,n) which is decreasing i and n  gequce that[{12) holds for any solutioh to (3), [10) ad for all
(by invoking the comparison principle). In addition, it Hel that (t,7) € dome, where : (s1,s2) = o~ (B(@r(s1), 52)) € KL.
.7-(9’77.’%]:). - T(.% L) as (.9’77). tends 10(0,0) (where 7y, L)_ We now investigate the completeness of the maximal solsition
is defined in SectlorD\/), like in[[15]. As a consequence, ,emcsystem [(5),[(I0). Lets be a maximal solution td15)(L0). We first
T <T(v,L), there existg0, ) such thatl’ < 7(0, 7,7, L). We fix thatg is nontrivial, i.e. its domain contains at least two points
the couple(6, n). Let g = (z, e, Tg‘ We define for allg € C'U D, (see Definition 2.5 in[[24]). According to Proposition 6.10 [24],
P.“(Q) = V(x) + max{0, )‘C(T)W (e).}.‘ Let 1< D, we obtain, in it suffices for that purpose to prove théf'(¢)} N Tc(q) # O for
view of (8) and the fact thatV is positive definite, anyq = (z,e,7) € C\D, where F(q) := (f(z,¢), g(z,¢),1) and
R(G(q)) = V(x) + max{0, \(0)W?(0)} = V(z) < R(q), (19) Tc(q) is the tangent cofleto C atg. Let g € C\D. If ¢ is in the
interior of C, Tc(q) = R™= "1 and the required condition holds.
whereG(q) := (,0,0). Letg € C'and suppose thal(r) < 0.AS@ |t ¢ is not in the interior ofC, necessarilyr = 0 asq € C\D, in
consequence it holds that> T'. Indeed,((7) is strictly decreasing ,iq caselc(q) = R™ " x R., and we see thak'(q) € Tc(q), in
in 7, in view of (18), and((T) > ¢(7(0,n,7,L)) = 6 > 08S e\ of (). Hence,s is nontrivial according to Proposition 6.10 in
T< 7—(927 7 L). As a consequence(r) < 0 implies thatr > 7. a3 | view of (§), [I0) and{I2). ande. cannot explode in finite
Hence,y*1W*(e) < 4(y) in view of (10) sincey € C'. Consequently, e Recall that the network-induced errords = (e, , de, ) With
in view of page 100 in[[29], Lemma&] 1, Assumptih 1 and th%e — by (b1, 5) — by (b 5), ber = dultss §)—bult, ) fcy>rj ~'0and
definition of the functionR, R°(q; F(q)) = V°(z; f(z,e)) < (t,yj) € domg where we Write don = Ujco.....y ([t ts41], 5)
—a(|z]), where F'(q) = (f(,¢), g(x,¢),1). Hence, by following ity ; < 7 U {00} Hence, in view of[(IZ)J,[IISj;[jjIZ) and singg,
similar arguments as in the proof of Theorem 1[in|[15] sincés ge are continuous, it holds that, for gll> 0 and (¢, j) € dome,
continuous and positive definite afdis positive definite and radially

APPENDIX

Proof of Theorem[d. First, we prove the result when Assumptldn
holds globally. Let{ : R>, — R be the solution to

unbounded, there exists a continuous positive definite tilmmag- lbe, ()] = |gp(bay (7)) — Gp(es (£, 9))]
such that v ce e
o < 19p(@ay (855 9))| + 99 (D2, (2, 9))]
R°(q; F(9)) < —p1(V(2)) = —p1(R()). (20) - | ()|” (23)
< max |gp(2)|.
Wheng € C and((r) > 0, we haveR(q) = V (x) + X((1)W*(e). |21 <B(1 (62 (0,0),60 (0,0)1,0)

As above, in view of Lemmd]1, Assumptidd 1 anid](18) and

by following the same lines as in the proof of Theorem 1 in IThe tangent cone to a 56t C R” at a pointz € R", denotedT’s (z)
: o/ .. 2 x y S x),

[125],2we obtain R°(q; F'(q)) < 2_20‘(|m|) . H (ac2) S 3(Y) + s the set of all vectorss € R™ for which there existr; € S,7 > 0

Y W=(e) + 2X(T)W (e) H (z) — A3 (7)W= (e) — A*W=(e). Us-  yiith zi = x,7 — 0 asi — oo such thatw = lim; oo (z; — z)/7 (See

ing the fact that2\((T)W (e)H (z) < A*C*(1)W?(e) + H?*(x), Definition 5.12 in [24]).



Similarly, we obtain, for allj > 0 and (¢, j) € dom¢

|Pe (D] < |ge(bae (t55 7)) Gp(Pay (E5, 7))
+|gc(¢1c(t7])7gp(d)zp(t]?]))' (24)
< 2 max|gc(z1, 22)|.
[21] < B(I(¢2(0,0),6¢(0,0))],0)
|z2| < max |gp (21)]
When j = 0, we have that|¢.,(t,0)] < [¢e,(0,0)] +

|95 (0, (0,0)) = gp(2, (¢,0))] and [, (2,0)] < [e, (0,0)] +
|9¢(¢z.(0,0), $y(0,0)) = ge(¢a. (,0), $,(0,0))| and we can derive
similar bounds on the intervé, ¢1]. As a result, and sincg. is reset

to 0 at each jumpp. cannot blow up in finite time. As a consequence,

¢ cannot explode in finite time. Le&&(z, e, 7) := (z,0,0) denotes
the jump map in[(Z0). The solutions g (5.110) cannot ledesdet
C'U D after a jump since&7(D) C C in view of (8), (10). Thus, we
conclude that maximal solutions gl (5), [10) are completepating
to Proposition 6.10 in[[24]. Finally, we note that if Assuriopt[T
holds locally, then there existd& > 0 such that[{I9) and_(22) hold
on the invariant seff(z, e)| < A and consequently (12) holds locally.
O

Proof of Proposition[d. Let W (e) = |e|. Then, in view of [Ib), we
have that, for allz € R"* and almost alk € R"¢

(VW(e), Azz + Bze) < |Azx| + [Bz|le]. (25)

Hence, condition[{8) holds witl, = |B2| and H(z) = |.A2z|. Let
V(z) = «¥ Pz, where P is real positive definite and symmetric.
Therefore, condition[{6) is satisfied with(|z|) = Amin(P)|z|> and
@(|z]) = Amax(P)|z|?. Consequently, for alt ¢ R™ and almost
all z € R™

(VV(x), A1z + Bie)

xT(A?P + PA)x + 2T PBe
+eT BT Pz

(26)
By post- and pre-multiplying LMI[(16) respectively by theats
vector (z, e) and its transpose, we obtain

A{P-{-P.Al +Ag.,42 +€16§61) +62Hnm PB1

T
x x
<0.
<6> ( B{ P —Mﬂne><e> B
@7
Expanding the last inequality yields
2T (AT P+ PAz + 2" PBie+ e Bl Pz < —eax’x (28)
—aT AT Aoz — 61xT656px + peTe
which implies that
2T (AT P+ PAx + 2T PBie+ eT BT Pz < —&a|z)? 29)

| Asal? — 1[Cpal® + ulef.

As a result, in view of [(26),[(29), conditior]1(7) is verified thvi
a(|z)) = ea2lz|?, §(y) = eily|* andy = /a. Thus, Assumption
[ holds. O
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