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Stabilization of nonlinear systems using event-triggeredoutput feedback controllers

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz and Dragan Nešić

Abstract—The objective is to design output feedback event-triggered
controllers to stabilize a class of nonlinear systems. One of the main
difficulties of the problem is to ensure the existence of a minimum
amount of time between two consecutive transmissions, which is essential
in practice. We solve this issue by combining techniques from event-
triggered and time-triggered control. The idea is to turn on the event-
triggering mechanism only after a fixed amount of time has elapsed since
the last transmission. This time is computed based on results on the
stabilization of time-driven sampled-data systems. The overall strategy
ensures an asymptotic stability property for the closed-loop system. The
results are proved to be applicable to linear time-invariant (LTI) systems
as a particular case.

I. I NTRODUCTION

Networked control systems (NCS) are systems in which the com-
munication between the plant and the controller occurs through a
shared digital channel. Since the network has a limited bandwidth
and is typically used by other tasks, it is essential to develop
communication-aware control strategies. Event-triggered control is
a relevant paradigm in this context as it adapts transmissions to the
current state of the plant, seee.g. [1]–[5] and the references therein.
In that way, transmissions only occur when it is needed according to
the control objectives.

A fundamental issue in the implementation of event-triggered
controllers is to ensure the existence of a minimum amount of
time between two consecutive transmissions to respect hardware
limitations. This task becomes particularly challenging when we have
to design the controller using only an output of the system and not
the full state vector (see [6]), in particular when we aim to guarantee
asymptotic stability properties. To the best of our knowledge, this
problem has been first addressed in [7] and then in [6], [8]–[13] for
LTI systems and in [14] for nonlinear systems.

In this paper, we design output feedback event-triggered controllers
for nonlinear systems which guarantee a (global) asymptotic stability
property and the existence of a uniform strictly positive lower bound
on the inter-transmission times. The proposed strategy combines the
event-triggering condition of [3] adapted to output measurements and
the results on time-driven sampled-data systems in [15]. Indeed, the
event-triggering condition is only (continuously) evaluated afterT
units of times have elapsed since the last transmission, where T
corresponds to themaximum allowable sampling period(MASP)
given by [15]. This two-step procedure is justified by the fact that the
adaption of the event-triggering condition of [3] to outputfeedback
on its own can lead to Zeno phenomenon (see [6]). Although the
rationale is intuitive, the analysis is not trivial as we show in the paper.
This type of triggering rule has been used in [16] to stabilize nonlinear
singularly perturbed systems under a different set of assumptions.
Similar approaches have been followed in [11], [17], [18] toenforce
a lower bound on the inter-transmission times in different contexts,
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mainly for linear systems. Note that the idea of enforcing a given
time between two jumps is linked to time regularization techniques,
see [19].

Our results rely on similar assumptions as in [15] which allow
us to derive both local and global results. These conditionsare
shown to be always verified by LTI systems that are stabilizable and
detectable, in which case these are reformulated as a linearmatrix
inequality (LMI). Contrary to [11], the approach is applicable to
nonlinear systems and the output feedback law is not necessarily
based on an observer. Compared to [14], we rely on a differentset
of assumptions and we conclude a different stability property. In
addition, we show that our results are applicable to any LTI systems
that are stabilizable and detectable, which is a priori not the case of
[14]. Furthermore, we apply our results to Lorenz model, which is
nonlinear and which does not satisfy the conditions of [14].Unlike
[10], where LTI systems have been studied, we do not necessarily
consider observer-based output feedbacks and the triggering condition
does not a priori rely on estimates of the unmeasured states.The
latter has the advantage to lighten the implementation since the
triggering mechanism only needs to have access to the outputof
the plant, and not the controller variable. Finally, in the particular
case of LTI systems, we conclude a global asymptotic stability
property as opposed to ultimate boundedness in [6]. It has tobe
noted that the event-triggering mechanism that we propose is different
from the periodic event-triggered control (PETC) paradigm, seee.g.
[20], [21], where the triggering condition is verified only at some
periodic sampling instants. In our case, the triggering mechanism is
continuouslyevaluated, onceT units of time have elapsed since the
last transmission. The first results of this work have been presented in
[22]. In comparison to our previous work: we provide all the proofs
of the results; we show how the proposed technique can be fruitfully
employed in the context of state feedback control as a special case,
to directly tune the lower bound on the inter-transmission times;
we apply the results on a different physical nonlinear example to
better motivate our results and we compare our proposed triggering
mechanism with the existing results on a linear output feedback
example.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞) andZ≥0 := {0, 1, 2, ..}. A
continuous functionγ : R≥0 → R≥0 is of classK if it is zero at zero,
strictly increasing, and it is of classK∞ if in addition γ(s) → ∞
as s → ∞. A continuous functionγ : R≥0 × R≥0 → R≥0 is of
classKL if for each t ∈ R≥0, γ(., t) is of classK, and, for each
s ∈ R≥0, γ(s, .) is decreasing to zero. We denote the minimum and
maximum eigenvalues of the symmetric matrixA as λmin(A) and
λmax(A), respectively. We writeAT to denote the transpose ofA.
We useIn to denote the identity matrix of dimensionn. We write
(x, y) to represent the vector[xT , yT ]T for x ∈ R

n and y ∈ R
m.

For a vectorx ∈ R
n, we denote by|x| :=

√
xTx its Euclidean norm

and for a matrixA ∈ R
n×m, we denote by|A| :=

√
λmax(ATA).

We will consider locally Lipschitz Lyapunov functions (that are
not necessarily differentiable everywhere), therefore wewill use
the generalized directional derivative of Clarke which is defined as
follows. For a locally Lipschitz functionV : Rn → R≥0 and a vector
υ ∈ R

n, V ◦(x;υ) := lim suph→0+, y→x(V (y + hυ) − V (y))/h.
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For a continuously differentiable functionV , V ◦(x;υ) reduces to
the standard directional derivative〈∇V (x), υ〉, where∇V (x) is the
(classical) gradient. We will invoke the following result,see Lemma
II.1 in [23].

Lemma 1 (Lemma II.1 [23]). Consider two functionsU1 : Rn → R

and U2 : Rn → R that have well-defined Clarke derivatives for all
x ∈ R

n and υ ∈ R
n. Introduce three setsA := {x : U1(x) >

U2(x)}, B := {x : U1(x) < U2(x)}, Γ := {x : U1(x) = U2(x)}.
Then, for anyυ ∈ R

n, the functionU(x) := max{U1(x), U2(x)}
satisfiesU◦(x; υ) = U◦

1 (x; υ) for all x ∈ A, U◦(x;υ) = U◦
2 (x;υ)

for all x ∈ B and U◦(x;υ) ≤ max{U◦
1 (x; υ), U

◦
2 (x; υ)} for all

x ∈ Γ. �

In this paper, we consider hybrid systems of the following form
using the formalism of [24]

ẋ = F (x) x ∈ C, x+ = G(x) x ∈ D, (1)

wherex ∈ R
n is the state,F is the flow map,C is the flow set,

G is the jump map andD is the jump set. The vector fieldsF and
G are assumed to be continuous and the setsC andD are closed.
The solutions to system (1) are defined on so-called hybrid time
domains. A setE ⊂ R≥0 × Z≥0 is called acompact hybrid time
domain if E = ∪

j∈{0,...,J−1}
([tj , tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is ahybrid time domainif
for all (T, J) ∈ E,E ∩ ([0, T ]× {0, 1, ..., J}) is a compact hybrid
time domain. A functionφ : E → R

n is a hybrid arc ifE is a
hybrid time domain and if for eachj ∈ Z≥0, t 7→ φ(t, j) is locally
absolutely continuous onIj := {t : (t, j) ∈ E}. A hybrid arcφ is a
solution to system (1) if: (i)φ(0, 0) ∈ C ∪D; (ii) for any j ∈ Z≥0,
φ(t, j) ∈ C and φ̇(t, j) = F (φ(t, j)) for almost allt ∈ Ij ; (iii) for
every (t, j) ∈ domφ such that(t, j + 1) ∈ domφ, φ(t, j) ∈ D and
φ(t, j + 1) = G(φ(t, j)). A solution φ to system (1) ismaximal if
it cannot be extended,completeif its domain, domφ, is unbounded,
and it isZeno if it is complete andsupt domφ < ∞.

III. PROBLEM STATEMENT

Consider the nonlinear plant model

ẋp = fp(xp, u), y = gp(xp), (2)

wherexp ∈ R
np is the plant state,u ∈ R

nu is the control input,
y ∈ R

ny is the measured output of the plant and we focus on general
dynamic controllers of the form

ẋc = fc(xc, y), u = gc(xc, y), (3)

wherexc ∈ R
nc is the controller state. We emphasize that thexc-

system is not necessarily an observer. Moreover, (3) captures static
feedbacks as a particular case by settingu = gc(y). We follow
an emulation approach in this paper. Hence, we assume that the
controller (3) renders the origin of system (2) globally asymptotically
stable in the absence of network. Afterwards, we take into account
the communication constraints and we synthesize the triggering
condition. In particular, we consider the scenario where controller (3)
communicates with the plant via a digital channel. Hence, the plant
output and the control input are sent only at transmission instants
ti, i ∈ Z≥0. We are interested in an event-triggered implementation
in the sense that the sequence of transmission instants is determined
by a criterion based on the output measurement, see Figure 1.At each
transmission instant, the plant output is sent to the controller which
computes a new control input that is instantaneously transmitted to
the plant. We assume that this process is performed in a synchronous
manner and we ignore the computation times and the possible

PSfrag replacements
Plant

Event-triggering
mechanism

Controller
y(t)y(ti)u(t)u(ti)

Fig. 1. Event-triggered control schematic [6]

transmission delays. In that way, we obtain

ẋp = fp(xp, û) t ∈ [ti, ti+1]
ẋc = fc(xc, ŷ) t ∈ [ti, ti+1]
u = gc(xc, ŷ)
˙̂y = 0 t ∈ [ti, ti+1]
˙̂u = 0 t ∈ [ti, ti+1]

ŷ(t+i ) = y(ti)
û(t+i ) = u(ti),






(4)

where ŷ and û respectively denote the last transmitted values of the
plant output and the control input. We assume that zero-order-hold
devices are used to generate the sampled valuesŷ and û, which
leads to ˙̂y = 0 and ˙̂u = 0. We introduce the network-induced error
e := (ey , eu) ∈ R

ne , whereey := ŷ− y andeu := û− u which are
reset to0 at each transmission instant.

We model the event-triggered control system using the hybrid
formalism of [24] as in [6], [11], [4], for which a jump corresponds
to a transmission. In that way, the system is modeled as




ẋ
ė
τ̇



 =




f(x, e)
g(x, e)

1



 (x, e, τ ) ∈ C,




x+

e+

τ+


 =




x
0
0


 (x, e, τ ) ∈ D,

(5)

where x := (xp, xc) ∈ R
nx and τ ∈ R≥0 is a clock variable

which describes the time elapsed since the last jump,f(x, e) =
(fp(xp, gc(xc, y + ey) + eu), fc(xc, y + ey)) and
g(x, e) = (− ∂

∂xp
gp(xp)fp(xp, gc(xc, y+ey)+eu), − ∂

∂xc
gc(xc, y+

ey)fc(xc, y + ey)). The flow and jump sets of (5) are defined
according to the triggering condition we will define. As longas the
triggering condition is not violated, the system flows onC and a
jump occurs when the state enters inD. When (x, e, τ ) ∈ C ∩ D,
the solution may flow only if flowing keeps(x, e, τ ) in C, otherwise
the system experiences a jump. The functionsf and g are assumed
to be continuous and the setsC andD will be closed (which ensure
that system (5) is well-posed, see Chapter 6 in [24]).

The main objective of this paper is to design the flow and the jump
sets of system (5),i.e. the triggering condition, to ensure a (global)
asymptotic stability property for system (5).

IV. M AIN RESULTS

We first present the conditions that we impose on system (5), then
we present the triggering technique and finally we state the main
result. We make the following assumption on system (5), which is
inspired by [15].

Assumption 1. There exist∆x,∆e > 0, locally Lipschitz positive
definite functionsV : Rnx → R≥0 andW : Rne → R≥0, continuous
function H : R

nx → R≥0, real numbersγ, L ≥ 0, α, α ∈ K∞
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and continuous, positive definite functionsδ : R
ny → R≥0 and

α : R≥0 → R≥0 such that, for allx ∈ R
nx

α(|x|) ≤ V (x) ≤ α(|x|), (6)

for all |e| ≤ ∆e and almost all|x| ≤ ∆x

〈∇V (x), f(x, e)〉 ≤ −α(|x|)−H2(x)− δ(y) + γ2W 2(e) (7)

and for all |x| ≤ ∆x and almost all|e| ≤ ∆e

〈∇W (e), g(x, e)〉 ≤ LW (e) +H(x). (8)

We say that Assumption 1 holds globally if (7) and (8) hold foralmost
all x ∈ R

nx and e ∈ R
ne . �

Conditions (6)-(7) imply that the systeṁx = f(x, e) is L2-
gain stable fromW to (H,

√
δ). This property can be analysed by

investigating the robustness property of the closed-loop system (2)-
(3) with respect to input and/or output measurement errors in the
absence of sampling. Note that, sinceW is positive definite and
continuous (since it is locally Lipschitz), there existsχ ∈ K∞ such
thatW (e) ≤ χ(|e|) (according to Lemma 4.3 in [25]) and hence (6),
(7) imply that the systeṁx = f(x, e) is input-to-state stable (ISS).
We also assume an exponential growth condition of thee-system on
flows in (8) which is similarly used in [15]. We provide an example
of nonlinear system which verifies Assumption 1 at the end of this
section.

Under Assumption 1, the adaptation of the idea of [3] leads to
a triggering condition of the formγ2W 2(e) ≤ δ(y). The problem
is that Zeno phenomenon may occur with this type of triggering
conditions. Indeed, wheny = 0, an infinite number of jumps occurs
for any value ofx such thatgp(xp) = 0. In [6], this issue is overcome
by adding a constant to the triggering condition, which would lead
to γ2W 2(e) ≤ δ(y) + ε here forε > 0, from which we can derive
a practical stability property. The event-triggered mechanism that we
propose allows us to guarantee an asymptotic stability property for the
closed-loop while ensuring that the inter-transmission times are lower
bounded by a strictly positive constant. The idea is to evaluate the
event-triggering condition only afterT units have elapsed since the
last transmission, whereT corresponds to the MASP given by [15].
In that way, we allow the user to directly tune the minimum inter-
jump interval, up to a certain extent as explained in the following.
We thus redesign the triggering condition as follows

γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ], (9)

where we recall thatτ ∈ R≥0 is the clock variable introduced in (5).
Consequently, the flow and jump sets of system (5) are

C =
{
(x, e, τ ) : γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ]

}

D =
{
(x, e, τ ) :

(
γ2W 2(e) = δ(y) andτ ≥ T

)
or

(
γ2W 2(e) ≥ δ(y) andτ = T

)}
.

(10)

Hence, the inter-jump times are uniformly lower bounded byT . This
constant is selected such thatT < T (γ, L), where

T (γ, L) :=






1
Lr

arctan(r) γ > L
1
L

γ = L
1
Lr

arctanh(r) γ < L
(11)

with r :=
√∣∣( γ

L
)2 − 1

∣∣ and L, γ come from Assumption 1 as in
[15]. We are ready to state the main result.

Theorem 1. Suppose that Assumption 1 holds and consider system
(5) with the flow and jump sets (10), where the constantT is such

thatT ∈ (0, T (γ, L)). There exist∆ > 0 andβ ∈ KL such that any
solutionφ = (φx, φe, φτ ) with |(φx(0, 0), φe(0, 0))| ≤ ∆ satisfies

|φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|, t+j) ∀(t, j) ∈ domφ, (12)

furthermore, ifφ is maximal, then it is complete. If Assumption 1
holds globally, then (12) holds globally. �

Example 1. Consider the controlled Lorenz equations which model
fluid convection [26],ẋ1 = −ax1+ax2, ẋ2 = bx1−x2−x1x3+u,
ẋ3 = x1x2 − cx3 and y = x1, wherea, b, c > 0. The static output
feedback lawu = −( p1

p2
a + b)x1, wherep1, p2 > 0, globally stabi-

lizes the origin. This can be proved by using the quadratic Lyapunov
function V (x) = p1x

2
1 + p2x

2
2 + p2x

2
3, which verify condition (6)

with α(|x|) = min{p1, p2}|x|2 andα(|x|) = max{p1, p2}|x|2. We
take into account the network-induced errore = ŷ − y (it is not
necessary to consider the error inu as the controller is static) and
we selectW (e) = |e|. Hence, condition (8) is satisfied withL = 0,
H(x) = a(|x1| + |x2|). By taking p1 > 1 and p2 > 2a, condition
(7) holds with α(|x|) = min{a(p1 − 1), (p2 − 2a), 2p2c}|x|2,
δ(y) = a(p1 − 1)y2 and γ2 = p2(

p1
p2
a + c)2. For the parameter

valuesa = 10, b = 28, c = 8/3 used in [26], we setp1 = 2,
p2 = 3a and we obtainT = 0.01. We note that the results in [14]
are not applicable to this system because condition (3) of Proposition
1 in [14] does not hold. �

V. L INEAR SYSTEMS

We now focus on the particular case of linear systems. Consider
the LTI plant model

ẋp = Apxp +Bpu, y = Cpxp, (13)

wherexp ∈ R
np , u ∈ R

nu , y ∈ R
ny andAp, Bp, Cp are matrices of

appropriate dimensions. We design the following dynamic controller
to stabilize (13) in the absence of sampling

ẋc = Acxc +Bcy, u = Ccxc +Dcy, (14)

where xc ∈ R
nc and Ac, Bc, Cc, Dc are matrices of appropriate

dimensions. Afterwards, we take into account the communication
constraints. Then, the hybrid model (5) is




ẋ
ė
τ̇



 =




A1x+ B1e
A2x+ B2e

1



 (x, e, τ ) ∈ C




x+

e+

τ+


 =




x
0
0


 (x, e, τ ) ∈ D,

(15)

whereA1 :=

(
Ap+BpDcCp BpCc

BcCp Ac

)
, B1 :=

(
BpDc Bp

Bc 0

)
,

A2 :=

(
−Cp(Ap+BpDcCp) −CpBpCc

−CcBcCp −CcAc

)
and

B2 :=

(
−CpBpDc −CpBp

−CcBc 0

)
.

We obtain the following result.

Proposition 1. Consider system (15). Suppose that there exist
ε1, ε2, µ > 0 and a positive definite symmetric real matrixP such
that
(

AT
1 P + PA1 +AT

2 A2 + ε1C
T

p Cp + ε2Inx PB1

BT
1 P −µIne

)
≤ 0,

(16)



4

whereCp = [Cp 0]. Then Assumption 1 holds with

V (x) = xTPx, α(|x|) = λmin(P )|x|2,
α(|x|) = λmax(P )|x|2, W (e) = |e|,
H(x) = |A2x|, L = |B2|,
γ =

√
µ, α(|x|) = ε2|x|2,

δ(y) = ε1|y|2.

�

Proposition 1 provides a sufficient condition, namely (16),for the
verification of Assumption 1, which thus allows us to apply the results
of Section IV. It has to be noted that the LMI (16) can always be
satisfied when system (13) is stabilizable and detectable. Indeed, in
this case, we can select the controller (14) such thatA1 is Hurwitz.
Noting that (16) is equivalent to the following inequalities, by using
the Schur complement of (16) (see Section A.5.5 in [27]),AT

1 P +

PA1 +AT
2 A2 + ε1C

T

p Cp + ε2Inx + 1
µ
PB1BT

1 P ≤ 0. We see that
we can select the matrixP such thatAT

1 P + PA1 + AT
2 A2 +

ε1C
T

p Cp + ε2Inx is negative definite. It then suffices to chooseµ
sufficiently large to ensure the last inequality.

Example 2. We apply the result in this section to Example 2 in
[6]. We obtain L = 4 and we obtain the valuesε1 = 1.5839,
ε2 = 13.9969, γ = 89.9666 by solving the LMI (16) using
the SEDUMI solver with the YALMIP interface. The guaranteed
minimum inter-transmission time isT = 0.017, by using (11). Table
I provides the minimum and the average inter-transmission times,
respectively denoted asτmin and τavg, for 100 randomly distributed
initial conditions such that|(x(0, 0), e(0, 0))| ≤ 25 andτ (0, 0) = 0.
The provided values ofτavg in Table I indicates that the generated
amount of transmissions by our proposed triggering mechanism is
approximately 100 times less than the amount given by [6]. Moreover,
the stability property achieved in [6] is a practical stability property,
while we ensure a global asymptotic stability property. We note that
the results in [14] are not applicable to this system becausecondition
(3) of Proposition 1 in [14] is not satisfied. We believe that the
comparison with [10] is not relevant since the triggering mechanism
is different and the dynamic controller in [10] is based on anobserver.
�

Donkers & Heemels [6] Our proposed mechanism
Guaranteed

6.5×10−9 0.017lower bound
τmin 4.8055 × 10−6 0.017
τavg 2.2905 × 10−4 0.0202

TABLE I
SIMULATION RESULTS FOR100RANDOMLY DISTRIBUTED INITIAL

CONDITIONS SUCH THAT|(x(0, 0), e(0, 0))| ≤ 25 AND τ(0, 0) = 0 FOR A

SIMULATION TIME OF 20 SECONDS.

VI. STATE FEEDBACK CONTROLLERS

The technique proposed in Section IV is also relevant in the context
of state feedback control,i.e. when y = x, as the constantT in
(10) can be used to directly tune the minimum inter-transmission
time (up toT in (11)). It has to be noted that in this case, we can
replaceγ2W 2(e) ≤ δ(y) in (9) by γ2W 2(e) ≤ (α(|x|) +H2(x) +
δ(x)) when Assumption 1 holds. The following result is a direct
consequence of Theorem 1.

Corollary 1. Suppose that Assumption 1 holds and consider system

(5) with y = x and the flow and jump sets defined as

C =
{
q : γ2W 2(e) ≤ σ(α(|x|) +H2(x) + δ(x)) or τ ∈ [0, T ]

}

D=
{
q :
(
γ2W 2(e) = σ(α(|x|) +H2(x) + δ(x)) and τ ≥ T

)
or

(
γ2W 2(e) ≥ σ(α(|x|) +H2(x) + δ(x)) and τ = T

)}
,

(17)
whereq := (x, e, τ ), σ ∈ (0, 1) andT is such thatT ∈ (0, T (γ, L)).
Then, the conclusions of Theorem 1 hold. �

Example 3. We illustrate the interest of our proposed triggering
condition. Consider the LTI system, as in [3],ẋ = Ax+Bu, where
x ∈ R

2, u ∈ R, A =
(

0 1

−2 3

)
andB =

(
0

1

)
. Since the pair (A,B)

is stabilizable, we take the control inputu = Kx with K = [1 − 4]
as in [3]. By following similar lines as in Section V, we derive the
LMI (16) with A1 = A2 = A + BK, B1 = B2 = BK and
ε1 = 0. Hence, and by solving the resulted LMI, we obtain the
numerical valuesL = 4.1231, ε2 = 0.68, γ = 17.3495 which lead
to T = 0.079. For comparison, we setT = 0.075 and we ran
simulations for 200 randomly distributed initial conditions such that
|(x(0, 0), e(0, 0))| ≤ 100 and τ (0, 0) = 0. Table II provides the
generated minimum and average inter-transmission times byboth the
proposed triggering strategy and the triggering conditionin [3], i.e.
with T = 0. We note that our proposed mechanism produces larger
values of τmin, τavg. To spotlight the effect of the time-triggered
part in our proposed triggering mechanism, the enforced lower bound
T is plotted in Figures 2, 3 versus the generated inter-transmission
times by both our proposed triggering mechanism and the triggering
condition in [3] respectively, for one initial condition. �

Our proposed triggering mechanism Tabuada [3]
τmin 0.075 0.0543
τavg 0.0772 0.0659

TABLE II
M INIMUM AND AVERAGE INTER -EXECUTION TIMES FOR200 INITIAL

CONDITIONS SUCH THAT|(x(0, 0), e(0, 0))| ≤ 100 AND τ(0, 0) = 0 FOR A

SIMULATION TIME OF 10 S.
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Fig. 2. Inter-transmission times withT = 0.075.



5

0 1 2 3 4 5 6 7 8 9 10
0,05

0,06

0,07

0,08

0,09

Transmission instants

In
te

r−
tr

a
n

sm
is

si
o

n
 t

im
e

s

PSfrag replacements

T

Fig. 3. Inter-transmission times with [3].

VII. C ONCLUSION

We have developed output-based event-triggered controllers for the
stabilization of nonlinear systems. The proposed technique ensures
an asymptotic stability property and enforces a minimum amount
of time between two consecutive transmission instants. Therequired
conditions are shown to be satisfied by any stabilizable and detectable
LTI systems. We show in [28] that these results can be used as a
starting point to address the challenging co-design problem in which
the output feedback law is not obtained by emulation but is jointly
synthesized with the triggering condition.

APPENDIX

Proof of Theorem 1.First, we prove the result when Assumption 1
holds globally. Letζ : R≥0 → R be the solution to

ζ̇ = −2Lζ − λ(ζ2 + 1) ζ(0) = θ−1, (18)

where θ ∈ (0, 1), λ :=
√

γ2 + η for some η > 0 and L, γ

come from Assumption 1. We denotẽT (θ, η, γ, L) the time it
takes forζ to decrease fromθ−1 to θ. This time T̃ (θ, η, γ, L) is
a continuous function of(θ, η) which is decreasing inθ and η
(by invoking the comparison principle). In addition, it holds that
T̃ (θ, η, γ, L) → T (γ, L) as (θ, η) tends to(0, 0) (whereT (γ, L)
is defined in Section IV), like in [15]. As a consequence, since
T < T (γ, L), there exists(θ, η) such thatT < T̃ (θ, η, γ, L). We fix
the couple(θ, η). Let q := (x, e, τ ). We define for allq ∈ C ∪ D,
R(q) := V (x) + max{0, λζ(τ )W 2(e)}. Let q ∈ D, we obtain, in
view of (5) and the fact thatW is positive definite,

R(G(q)) = V (x) + max{0, λζ(0)W 2(0)} = V (x) ≤ R(q), (19)

whereG(q) := (x, 0, 0). Let q ∈ C and suppose thatζ(τ ) < 0. As a
consequence it holds thatτ > T . Indeed,ζ(τ ) is strictly decreasing
in τ , in view of (18), andζ(T ) > ζ(T̃ (θ, η, γ, L)) = θ > 0 as
T < T̃ (θ, η, γ, L). As a consequenceζ(τ ) < 0 implies thatτ > T .
Hence,γ2W 2(e) ≤ δ(y) in view of (10) sinceq ∈ C. Consequently,
in view of page 100 in [29], Lemma 1, Assumption 1 and the
definition of the functionR, R◦(q;F (q)) = V ◦(x; f(x, e)) ≤
−α(|x|), whereF (q) := (f(x, e), g(x, e), 1). Hence, by following
similar arguments as in the proof of Theorem 1 in [15] sinceα is
continuous and positive definite andV is positive definite and radially
unbounded, there exists a continuous positive definite function ρ1
such that

R◦(q;F (q)) ≤ −ρ1(V (x)) = −ρ1(R(q)). (20)

Whenq ∈ C andζ(τ ) > 0, we haveR(q) = V (x) + λζ(τ )W 2(e).
As above, in view of Lemma 1, Assumption 1 and (18) and
by following the same lines as in the proof of Theorem 1 in
[15], we obtain R◦(q;F (q)) ≤ −α(|x|) − H2(x) − δ(y) +
γ2W 2(e) + 2λζ(τ )W (e)H(x) − λ2ζ2(τ )W 2(e) − λ2W 2(e). Us-
ing the fact that2λζ(τ )W (e)H(x) ≤ λ2ζ2(τ )W 2(e) + H2(x),

R◦(q;F (q)) ≤ −α(|x|)−δ(y)+γ2W 2(e)−λ2W 2(e) ≤ −α(|x|)+
γ2W 2(e) − λ2W 2(e). Recall thatλ2 = γ2 + η, it holds that
R◦(q;F (q)) ≤ −α(|x|) − ηW 2(e). By using the same argument
as in (20), we derive thatR◦(q;F (q)) ≤ −ρ1(V (x))− ηW 2(e) =
−ρ1(V (x)) − ηθ

λ
λθ−1W 2(e) = −ρ1(V (x)) − ρ2(λθ

−1W 2(e)),
whereρ2 : s 7→ ηθ

λ
s ∈ K∞. Sinceζ(τ ) ≤ θ−1 for all τ ≥ 0 in view

of (18), it holds thatR◦(q;F (q)) ≤ −ρ1(V (x))−ρ2(λζ(τ )W
2(e)).

We deduce that there exists a continuous positive definite functionρ3
such thatR◦(q;F (q)) ≤ −ρ3(V (x)+λζ(τ )W 2(e)) = −ρ3(R(q)).
In view of the last inequality, (20) and Lemma 1, whenζ(τ ) =
0, R◦(q;F (q)) ≤ max{−ρ1(R(q)),−ρ3(R(q))}. Consequently, it
holds that, for allq ∈ C

R◦(q;F (q)) ≤ −ρ(R(q)) (21)

whereρ := min{ρ1, ρ3} is continuous and positive definite. Letφ
be a solution to (5), (10). In view of (21) and by definition of the
Clarke’s derivative (see for instance page 99 in [29]), it holds that,
for all j and for almost allt ∈ Ij (whereIj = {t : (t, j) ∈ domφ})

Ṙ(φ(t, j)) ≤ R◦(φ(t, j);F (φ(t, j))) ≤ −ρ(R(φ(t, j))). (22)

Thus, in view of (19), (22) and since inter-jump times are lower
bounded byT in view of (10), we conclude that, by following the
same lines as in the end of the proof of Theorem 1 in [15], there
exists β̃ ∈ KL such that for any solutionφ to (5), (10) and any
(t, j) ∈ domφ, R(φ(t, j)) ≤ β̃(R(φ(0, 0)), 0.5t+0.5Tj). In view of
Assumption 1 and sinceW is continuous (since it is locally Lipschitz)
and positive definite, there existsαW ∈ K∞ such thatW (e) ≤
αW (|e|) for all e ∈ R

ne according to Lemma 4.3 in [25]. As a result,
in view of Assumption 1, (18) and the definition of the function R, it
holds that, for allq ∈ C∪D, α(|x|) ≤ R(q) ≤ α(|x|)+ λ

θ
αW (|e|) ≤

αR(|(x, e)|), whereαR : s 7→ α(s) + λ
θ
αW (s) ∈ K∞. Hence, we

deduce that (12) holds for any solutionφ to (5), (10) ad for all
(t, j) ∈ domφ, whereβ : (s1, s2) 7→ α−1(β̃(αR(s1), s2)) ∈ KL.

We now investigate the completeness of the maximal solutions to
system (5), (10). Letφ be a maximal solution to (5), (10). We first
show thatφ is nontrivial, i.e. its domain contains at least two points
(see Definition 2.5 in [24]). According to Proposition 6.10 in [24],
it suffices for that purpose to prove that{F (q)} ∩ TC(q) 6= ∅ for
any q := (x, e, τ ) ∈ C\D, whereF (q) := (f(x, e), g(x, e), 1) and
TC(q) is the tangent cone1 to C at q. Let q ∈ C\D. If q is in the
interior of C, TC(q) = R

nx+ne+1 and the required condition holds.
If q is not in the interior ofC, necessarilyτ = 0 as q ∈ C\D, in
this caseTC(q) = R

nx+ne ×R≥0 and we see thatF (q) ∈ TC(q), in
view of (5). Hence,φ is nontrivial according to Proposition 6.10 in
[24]. In view of (5), (10) and (12),φx andφτ cannot explode in finite
time. Recall that the network-induced error isφe = (φey , φeu) with
φey = φy(tj , j)−φy(t, j), φeu = φu(tj , j)−φu(t, j) for j > 0 and
(t, j) ∈ domφ where we write domφ = ∪j∈{0,...,J}([tj , tj+1], j)
with J ∈ Z≥0 ∪ {∞}. Hence, in view of (2), (3), (12) and sincegp,
gc are continuous, it holds that, for allj > 0 and (t, j) ∈ domφ,

|φey (t, j)| = |gp(φxp(tj , j))− gp(φxp(t, j))|
≤ |gp(φxp(tj , j))|+ |gp(φxp(t, j))|
≤ 2 max |gp(z)|.

|z|≤β(|(φx(0,0),φe(0,0))|,0)

(23)

1The tangent cone to a setS ⊂ R
n at a pointx ∈ R

n, denotedTS(x),
is the set of all vectorsω ∈ R

n for which there existxi ∈ S, τi > 0
with xi → x, τ → 0 as i → ∞ such thatω = limi→∞(xi − x)/τi (see
Definition 5.12 in [24]).
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Similarly, we obtain, for allj > 0 and (t, j) ∈ domφ

|φeu(t, j)| ≤ |gc(φxc(tj , j), gp(φxp(tj , j))|
+|gc(φxc(t, j), gp(φxp(tj , j))|

≤ 2 max |gc(z1, z2)|.
|z1| ≤ β(|(φx(0,0),φe(0,0))|,0)

|z2| ≤max |gp(z1)|

(24)

When j = 0, we have that |φey (t, 0)| ≤ |φey (0, 0)| +
|gp(φxp(0, 0)) − gp(φxp(t, 0))| and |φeu(t, 0)| ≤ |φeu(0, 0)| +
|gc(φxc(0, 0), φy(0, 0))− gc(φxc(t, 0), φy(0, 0))| and we can derive
similar bounds on the interval[0, t1]. As a result, and sinceφe is reset
to 0 at each jump,φe cannot blow up in finite time. As a consequence,
φ cannot explode in finite time. LetG(x, e, τ ) := (x, 0, 0) denotes
the jump map in (10). The solutions to (5), (10) cannot leave the set
C ∪D after a jump sinceG(D) ⊂ C in view of (5), (10). Thus, we
conclude that maximal solutions to (5), (10) are complete according
to Proposition 6.10 in [24]. Finally, we note that if Assumption 1
holds locally, then there exists∆ > 0 such that (19) and (22) hold
on the invariant set|(x, e)| ≤ ∆ and consequently (12) holds locally.
�

Proof of Proposition 1. Let W (e) = |e|. Then, in view of (15), we
have that, for allx ∈ R

nx and almost alle ∈ R
ne

〈∇W (e),A2x+ B2e〉 ≤ |A2x|+ |B2||e|. (25)

Hence, condition (8) holds withL = |B2| andH(x) = |A2x|. Let
V (x) = xTPx, whereP is real positive definite and symmetric.
Therefore, condition (6) is satisfied withα(|x|) = λmin(P )|x|2 and
α(|x|) = λmax(P )|x|2. Consequently, for alle ∈ R

ne and almost
all x ∈ R

nx

〈∇V (x),A1x+ B1e〉 = xT (AT
1 P + PA1)x+ xTPB1e

+eTBT
1 Px.

(26)
By post- and pre-multiplying LMI (16) respectively by the state
vector (x, e) and its transpose, we obtain
(
x

e

)T(
AT

1 P+PA1+AT
2 A2+ε1C

T
p Cp+ε2Inx PB1

BT
1 P −µIne

)(
x

e

)
≤ 0.

(27)
Expanding the last inequality yields

xT (AT
1 P + PA1)x+ xTPB1e+ eTBT

1 Px ≤ −ε2x
Tx

−xTAT
2 A2x− ε1x

TC
T

p Cpx+ µeT e
(28)

which implies that

xT (AT
1 P + PA1)x+ xTPB1e+ eTBT

1 Px ≤ −ε2|x|2
−|A2x|2 − ε1|Cpx|2 + µ|e|2. (29)

As a result, in view of (26), (29), condition (7) is verified with
α(|x|) = ε2|x|2, δ(y) = ε1|y|2 and γ =

√
µ. Thus, Assumption

1 holds. �
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