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Abstract—In this paper, we investigate a distributed Nash
equilibrium computation problem for a time-varying multi-
agent network consisting of two subnetworks, where the two
subnetworks share the same objective function. We first propose
a subgradient-based distributed algorithm with heterogeneous
stepsizes to compute a Nash equilibrium of a zero-sum game.
We then prove that the proposed algorithm can achieve a Nash
equilibrium under uniformly jointly strongly connected (U JSC)
weight-balanced digraphs with homogenous stepsizes. Moreover,
we demonstrate that for weighted-unbalanced graphs a Nash
equilibrium may not be achieved with homogenous stepsizes
unless certain conditions on the objective function hold. We show
that there always exist heterogeneous stepsizes for the proposed
algorithm to guarantee that a Nash equilibrium can be achieved
for UJSC digraphs. Finally, in two standard weight-unbalanced
cases, we verify the convergence to a Nash equilibrium by
adaptively updating the stepsizes along with the arc weights in
the proposed algorithm.

Index Terms—Multi-agent systems, Nash equilibrium, weight-
unbalanced graphs, heterogeneous stepsizes, joint connection

I. I NTRODUCTION

In recent years, distributed control and optimization of
multi-agent systems have drawn much research attention due
to their broad applications in various fields of science, engi-
neering, computer science, and social science. Various tasks
including consensus, localization, and convex optimization can
be accomplished cooperatively for a group of autonomous
agents via distributed algorithm design and local information
exchange [8], [9], [37], [14], [15], [20], [21], [22].

Distributed optimization has been widely investigated for
agents to achieve a global optimization objective by coop-
erating with each other [14], [15], [20], [21], [22]. Further-
more, distributed optimization algorithms in the presenceof
adversaries have gained rapidly growing interest [3], [2],[23],
[30], [31]. For instance, a non-model based approach was
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proposed for seeking a Nash equilibrium of noncooperative
games in [30], while distributed methods to compute Nash
equilibria based on extreme-seeking technique were developed
in [31]. A distributed continuous-time set-valued dynamical
system solution to seek a Nash equilibrium of zero-sum games
was first designed for undirected graphs and then for weight-
balanced directed graphs in [23]. It is worthwhile to mention
that, in the special case of additively separable objective
functions, the considered distributed Nash equilibrium com-
putation problem is equivalent to the well-known distributed
optimization problem: multiple agents cooperatively minimize
a sum of their own convex objective functions [11], [12], [14],
[15], [17], [16], [18], [19], [24], [29].

One main approach to distributed optimization is based on
subgradient algorithms with each node computing a subgra-
dient of its own objective function. Distributed subgradient-
based algorithms with constant and time-varying stepsizes,
respectively, were proposed in [14], [15] with detailed con-
vergence analysis. A distributed iterative algorithm thatavoids
choosing a diminishing stepsize was proposed in [29]. Both de-
terministic and randomized versions of distributed projection-
based protocols were studied in [20], [21], [22].

In existing works on distributed optimization, most of the
results were obtained for switching weight-balanced graphs
because there usually exists a common Lyapunov function to
facilitate the convergence analysis in this case [14], [15], [18],
[23], [24]. Sometimes, the weight-balance condition is hard to
preserve in the case when the graph is time-varying and with
communication delays [38], and it may be quite restrictive
and difficult to verify in a distributed setting. However, in
the case of weight-unbalanced graphs, there may not exist a
common (quadratic) Lyapunov function or it may be very hard
to construct one even for simple consensus problems [10],
and hence, the convergence analysis of distributed problems
become extremely difficult. Recently, many efforts have been
made to handle the weight unbalance problem, though very
few results have been obtained on distributed optimization. For
instance, the effect of the Perron vector of the adjacency matrix
on the optimal convergence of distributed subgradient and dual
averaging algorithms were investigated for a fixed weight-
unbalanced graph in [39], [40]. Some methods were devel-
oped for the unbalanced graph case such as the reweighting
technique [39] (for a fixed graph with a known Perron vector)
and the subgradient-push methods [41], [42] (where each node
has to know its out-degree all the time). To our knowledge,
there are no theoretical results on distributed Nash equilibrium
computation for switching weight-unbalanced graphs.

http://arxiv.org/abs/1312.7050v2
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In this paper, we consider the distributed zero-sum game
Nash equilibrium computation problem proposed in [23],
where a multi-agent network consisting of two subnetworks,
with one minimizing the objective function and the other
maximizing it. The agents play a zero-sum game. The agents in
two different subnetworks play antagonistic roles againsteach
other, while the agents in the same subnetwork cooperate. The
objective of the network is to achieve a Nash equilibrium via
distributed computation based on local communications under
time-varying connectivity. The considered Nash equilibrium
computation problem is motivated by power allocation prob-
lems [23] and saddle point searching problems arising from
Lagrangian dual optimization problems [13], [18], [25], [26],
[27], [28]. The contribution of this paper can be summarized
as follows:

• We propose a subgradient-based distributed algorithm to
compute a saddle-point Nash equilibrium under time-
varying graphs, and show that our algorithm with homo-
geneous stepsizes can achieve a Nash equilibrium under
uniformly jointly strongly connected (UJSC) weight-
balanced digraphs.

• We further consider the weight-unbalanced case, though
most existing results on distributed optimization were
obtained for weight-balanced graphs, and show that dis-
tributed homogeneous-stepsize algorithms may fail in the
unbalanced case, even for the special case of identical
subnetworks.

• We propose a heterogeneous stepsize rule and study
how to cooperatively find a Nash equilibrium in general
weight-unbalanced cases. We find that, for UJSC time-
varying digraphs, there always exist (heterogeneous) step-
sizes to make the network achieve a Nash equilibrium.
Then we construct an adaptive algorithm to update the
stepsizes to achieve a Nash equilibrium in two standard
cases: one with a common left eigenvector associated
with eigenvalue one of adjacency matrices and the other
with periodically switching graphs.

The paper is organized as follows. Section II gives some
preliminary knowledge, while Section III formulates the dis-
tributed Nash equilibrium computation problem and proposes a
novel algorithm. Section IV provides the main results followed
by Section V that contains all the proofs of the results. Then
Section VI provides numerical simulations for illustration.
Finally, Section VII gives some concluding remarks.

Notations: | · | denotes the Euclidean norm,〈·, ·〉 the Eu-
clidean inner product and⊗ the Kronecker product.B(z, ε)
is a ball with z the center andε > 0 the radius,S+

n =
{µ|µi > 0,

∑n
i=1 µi = 1} is the set of alln-dimensional

positive stochastic vectors.z′ denotes the transpose of vector
z, Aij the i-th row andj-th column entry of matrixA and
diag{c1, . . . , cn} the diagonal matrix with diagonal elements
c1, ..., cn. 1 = (1, ..., 1)′ is the vector of all ones with
appropriate dimension.

II. PRELIMINARIES

In this section, we give preliminaries on graph theory [4],
convex analysis [5], and Nash equilibrium.

A. Graph Theory

A digraph (directed graph)̄G = (V̄ , Ē) consists of a node
set V̄ = {1, ..., n̄} and an arc set̄E ⊆ V̄ × V̄ . Associ-
ated with graphḠ, there is a (weighted) adjacency matrix
Ā = (āij) ∈ R

n̄×n̄ with nonnegative adjacency elements
āij , which are positive if and only if(j, i) ∈ Ē . Node j is
a neighbor of nodei if (j, i) ∈ Ē . Assume(i, i) ∈ Ē for
i = 1, ..., n̄. A path in Ḡ from i1 to ip is an alternating
sequencei1e1i2e2 · · · ip−1ep−1ip of nodesir, 1 ≤ r ≤ p and
arcs er = (ir, ir+1) ∈ Ē , 1 ≤ r ≤ p − 1. Ḡ is said to be
bipartite if V̄ can be partitioned into two disjoint parts̄V1 and
V̄2 such thatĒ ⊆

⋃2
ℓ=1(V̄ℓ × V̄3−ℓ).

Consider a multi-agent networkΞ consisting of two sub-
networksΞ1 and Ξ2 with respectiven1 and n2 agents.Ξ
is described by a digraph, denoted asG = (V , E), which
contains self-loops, i.e.,(i, i) ∈ E for each i. Here G can
be partitioned into three digraphs:Gℓ = (Vℓ, Eℓ) with Vℓ =
{ωℓ

1, ..., ω
ℓ
nℓ
}, ℓ = 1, 2, and a bipartite graphG⊲⊳ = (V , E⊲⊳),

whereV = V1

⋃

V2 andE = E1
⋃

E2
⋃

E⊲⊳. In other words,
Ξ1 and Ξ2 are described by the two digraphs,G1 and G2,
respectively, and the interconnection betweenΞ1 and Ξ2 is
described byG⊲⊳. HereG⊲⊳ is called bipartite without isolated
nodes if, for anyi ∈ Vℓ, there is at least one nodej ∈ V3−ℓ

such that(j, i) ∈ E for ℓ = 1, 2. Let Aℓ denote the adjacency
matrix of Gℓ, ℓ = 1, 2. Digraph Gℓ is strongly connected if
there is a path inGℓ from i to j for any pair nodei, j ∈ Vℓ. A
node is called a root node if there is at least a path from this
node to any other node. In the sequel, we still writei ∈ Vℓ

instead ofωℓ
i ∈ Vℓ, ℓ = 1, 2 for simplicity if there is no

confusion.
LetAℓ = (aij ,i,j∈Vℓ

) ∈ R
nℓ×nℓ be the adjacency matrix of

Gℓ. GraphGℓ is weight-balanced if
∑

j∈Vℓ
aij =

∑

j∈Vℓ
aji

for i ∈ Vℓ; and weight-unbalanced otherwise.
A vector is said to be stochastic if all its components are

nonnegative and the sum of its components is one. A matrix is
a stochastic matrix if each of its row vectors is stochastic.A
stochastic vector is positive if all its components are positive.

Let B = (bij) ∈ R
n×n be a stochastic matrix. Define

GB = ({1, ..., n}, EB) as the graph associated withB, where
(j, i) ∈ EB if and only if bij > 0 (its adjacency matrix
is B). According to Perron-Frobenius theorem [1], there is
a unique positive stochastic left eigenvector ofB associated
with eigenvalue one ifGB is strongly connected. We call this
eigenvector the Perron vector ofB.

B. Convex Analysis

A setK ⊆ R
m is convex ifλz1 + (1 − λ)z2 ∈ K for any

z1, z2 ∈ K and0 < λ < 1. A point z is an interior point of
K if B(z, ε) ⊆ K for someε > 0. For a closed convex setK
in R

m, we can associate with anyz ∈ R
m a unique element

PK(z) ∈ K satisfying |z − PK(z)| = infy∈K |z − y|, where
PK is the projection operator ontoK. The following property
for the convex projection operatorPK holds by Lemma 1 (b)
in [15],

|PK(y)− z| ≤ |y − z| for anyy ∈ R
m and anyz ∈ K. (1)
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A function ϕ(·) : Rm → R is (strictly) convex ifϕ(λz1 +
(1 − λ)z2)(<) ≤ λϕ(z1) + (1 − λ)ϕ(z2) for any z1 6= z2 ∈
R

m and 0 < λ < 1. A function ϕ is (strictly) concave if
−ϕ is (strictly) convex. A convex functionϕ : Rm → R is
continuous.

For a convex functionϕ, v(ẑ) ∈ R
m is a subgradient of

ϕ at point ẑ if ϕ(z) ≥ ϕ(ẑ) + 〈z − ẑ, v(ẑ)〉, ∀z ∈ R
m. For

a concave functionϕ, v(ẑ) ∈ R
m is a subgradient ofϕ at

ẑ if ϕ(z) ≤ ϕ(ẑ) + 〈z − ẑ, v(ẑ)〉, ∀z ∈ R
m. The set of all

subgradients of (convex or concave) functionϕ at ẑ is denoted
by ∂ϕ(ẑ), which is called the subdifferential ofϕ at ẑ.

C. Saddle Point and Nash Equilibrium

A function φ(·, ·) : Rm1 × R
m2 → R is (strictly) convex-

concave if it is (strictly) convex in first argument and (strictly)
concave in second one. Given a point(x̂, ŷ), we denote by
∂xφ(x̂, ŷ) the subdifferential of convex functionφ(·, ŷ) at x̂
and∂yφ(x̂, ŷ) the subdifferential of concave functionφ(x̂, ·)
at ŷ.

A pair (x∗, y∗) ∈ X × Y is a saddle point ofφ onX × Y
if

φ(x∗, y) ≤ φ(x∗, y∗) ≤ φ(x, y∗), ∀x ∈ X, y ∈ Y.

The next lemma presents a necessary and sufficient condition
to characterize the saddle points (see Proposition 2.6.1 in[33]).

Lemma 2.1:LetX ⊆ R
m1 , Y ⊆ R

m2 be two closed convex
sets. Then a pair(x∗, y∗) is a saddle point ofφ onX × Y if
and only if

sup
y∈Y

inf
x∈X

φ(x, y) = inf
x∈X

sup
y∈Y

φ(x, y) = φ(x∗, y∗),

andx∗ is an optimal solution of optimization problem

minimize sup
y∈Y

φ(x, y) subject to x ∈ X, (2)

while y∗ is an optimal solution of optimization problem

maximize inf
x∈X

φ(x, y) subject to y ∈ Y. (3)

From Lemma 2.1, we find that all saddle points ofφ on
X×Y yield the same value. The next lemma can be obtained
from Lemma 2.1.

Lemma 2.2:If (x∗1, y
∗
1) and (x∗2, y

∗
2) are two saddle points

of φ on X × Y , then (x∗1, y
∗
2) and (x∗2, y

∗
1) are also saddle

points ofφ onX × Y .
Remark 2.1:Denote byZ̄ the set of all saddle points of

function φ on X × Y , X̄ and Ȳ the optimal solution sets
of optimization problems (2) and (3), respectively. Then from
Lemma 2.1 it is not hard to find that if̄Z is nonempty, then
X̄, Ȳ are nonempty, convex, and̄Z = X̄ × Ȳ . Moreover, if
X andY are convex, compact andφ is convex-concave, then
Z̄ is nonempty (see Proposition 2.6.9 in [33]).

The saddle point computation can be related to a zero-
sum game. In fact, a (strategic) game is described as a
triple (I,W ,U), where I is the set of all players;W =
W1 × · · · ×Wn, n is the number of players,Wi is the set of
actions available to playeri; U = (u1, . . . , un), ui : W → R

is the payoff function of playeri. The game is said to be zero-
sum if

∑n
i=1 ui(wi, w−i) = 0, wherew−i denotes the actions

of all players other thani. A profile actionw∗ = (w∗
1 , . . . , w

∗
n)

is said to be a Nash equilibrium ifui(w∗
i , w

∗
−i) ≥ ui(wi, w

∗
−i)

for eachi ∈ V andwi ∈ Wi. The Nash equilibria set of a
two-person zero-sum game (n = 2, u1 + u2 = 0) is exactly
the saddle point set of payoff functionu2.

III. D ISTRIBUTED NASH EQUILIBRIUM COMPUTATION

In this section, we introduce a distributed Nash equilibrium
computation problem and then propose a subgradient-based
algorithm as a solution.

Consider a networkΞ consisting of two subnetworksΞ1

and Ξ2. Agent i in Ξ1 is associated with a convex-concave
objective functionfi(x, y) : Rm1 × R

m2 → R, and agenti
in Ξ2 is associated with a convex-concave objective function
gi(x, y) : R

m1 × R
m2 → R. Each agent only knows its own

objective function. The two subnetworks have a common sum
objective function with closed convex constraint setsX ⊆
R

m1 , Y ⊆ R
m2 :

U(x, y) =

n1
∑

i=1

fi(x, y) =

n2
∑

i=1

gi(x, y), x ∈ X, y ∈ Y.

Then the network is engaged in a (generalized) zero-sum game
(

{Ξ1,Ξ2}, X × Y, u
)

, whereΞ1 and Ξ2 are viewed as two
players, their respective payoff functions areuΞ1 = −

∑n1

i=1 fi
anduΞ2 =

∑n2

i=1 gi. The objective ofΞ1 andΞ2 is to achieve
a Nash equilibrium of the zero-sum game.

Remark 3.1:Despite that the contribution of this paper
is mainly theoretical, the considered model appears also in
applications. Here we illustrate that by discussing two practical
examples in the literature. In the first example, from [23]
note that for multiple Gaussian communication channels with
budget constrained signal power and noise levels, the capacity
of each channel is concave in signal power and convex in
noise level. Suppose there are two subnetworks, one of which
is more critical than the other. The critical subnetwork aims to
maximize its capacity by raising its transmission power while
the other aims to reduce the interference to other channels
by minimizing its transmission power (and thus the capacity).
The objective of the two subnetworks is then to find the Nash
equilibrium of the sum of all channels’ capacities, see Remark
3.1 in [23] for more details. For the second example, recall that
many practical problems (for example, distributed estimation,
resource allocation, optimal flow control) can be formulated
as distributed convex constrained optimization problems,in
which the associated Lagrangian function can be expressed as
a sum of individual Lagrangian functions, which are convex
in the optimization variable and linear (hence concave) in the
Lagrangian multiplier. Under Salter’s condition, the optimal
solutions can be found by computing the saddle-points of the
convex-concave Lagrangian function, or equivalently, theNash
equilibrium of the corresponding zero-sum game, see [18] for
further discussions.

We next provide a basic assumption.
A1 (Existence of Saddle Points)For each stochastic vectorµ,
∑n1

i=1 µifi has at least one saddle point overX × Y .
Clearly,A1 holds ifX andY are bounded (see Proposition

2.6.9 in [33] for other conditions guaranteeing the existence
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of saddle points). However, in this paper we do not requireX
andY to be bounded. Let

Z∗ = X∗ × Y ∗ ⊆ X × Y

denote the set of all saddle points ofU onX×Y . Notice that
X∗ × Y ∗ is also the set of Nash equilibria of the generalized
zero-sum game.

Denote the state of nodei ∈ V1 as xi(k) ∈ R
m1 and the

state of nodei ∈ V2 asyi(k) ∈ R
m2 at timek = 0, 1, . . . .

Definition 3.1: The networkΞ is said to achieve a Nash
equilibrium if, for any initial conditionxi(0) ∈ R

m1 , i ∈ V1

and yi(0) ∈ R
m2 , i ∈ V2, there arex∗ ∈ X∗ and y∗ ∈ Y ∗

such that

lim
k→∞

xi(k) = x∗, i ∈ V1, lim
k→∞

yi(k) = y∗, i ∈ V2.

The interconnection in the networkΞ is time-varying and
modeled as three digraph sequences:

G1 =
{

G1(k)
}

,G2 =
{

G2(k)
}

,G⊲⊳ =
{

G⊲⊳(k)
}

,

whereG1(k) = (V1, E1(k)) andG2(k) = (V2, E2(k)) are the
graphs to describe subnetworksΞ1 andΞ2, respectively, and
G⊲⊳(k) = (V , E⊲⊳(k)) is the bipartite graph to describe the
interconnection betweenΞ1 andΞ2 at timek ≥ 0. For k2 >
k1 ≥ 0, denote byG⊲⊳

(

[k1, k2)
)

the union graph with node set
V and arc set

⋃k2−1
s=k1

E⊲⊳(s), andGℓ

(

[k1, k2)
)

the union graph

with node setVℓ and arc set
⋃k2−1

s=k1
Eℓ(s) for ℓ = 1, 2. The

following assumption on connectivity is made.
A2 (Connectivity)(i) The graph sequenceG⊲⊳ is uniformly
jointly bipartite; namely, there is an integerT⊲⊳ > 0 such that
G⊲⊳

(

[k, k+T⊲⊳)
)

is bipartite without isolated nodes fork ≥ 0.
(ii) For ℓ = 1, 2, the graph sequenceGℓ is uniformly jointly

strongly connected (UJSC); namely, there is an integerTℓ > 0
such thatGℓ

(

[k, k + Tℓ)
)

is strongly connected fork ≥ 0.
Remark 3.2:The agents inΞℓ connect directly with those

in Ξ3−ℓ for all the time in [23], while the agents in two
subnetworks are connected at least once in each interval of
lengthT⊲⊳ according toA2 (i). In fact, it may be practically
hard for the agents of different subnetworks to maintain
communications all the time. Moreover, even if each agent
in Ξℓ can receive the information fromΞ3−ℓ, agents may just
send or receive once during a period of lengthT⊲⊳ to save
energy or communication cost.

To handle the distributed Nash equilibrium computation
problem, we propose a subgradient-based algorithm, called
Distributed Nash Equilibrium Computation Algorithm:



















xi(k + 1) = PX

(

x̂i(k)− αi,kq1i(k)
)

,

q1i(k) ∈ ∂xfi
(

x̂i(k), x̆i(k)
)

, i ∈ V1,

yi(k + 1) = PY

(

ŷi(k) + βi,kq2i(k)
)

,

q2i(k) ∈ ∂ygi
(

y̆i(k), ŷi(k)
)

, i ∈ V2

(4)

with

x̂i(k) =
∑

j∈N 1
i
(k)

aij(k)xj(k), x̆i(k) =
∑

j∈N 2
i
(k̆i)

aij(k̆i)yj(k̆i),

ŷi(k) =
∑

j∈N 2
i
(k)

aij(k)yj(k), y̆i(k) =
∑

j∈N 1
i
(k̆i)

aij(k̆i)xj(k̆i),

whereαi,k > 0, βi,k > 0 are the stepsizes at timek, aij(k)
is the time-varying weight of arc(j, i), N ℓ

i (k) is the set of
neighbors inVℓ of nodei at timek, and

k̆i = max
{

s|s ≤ k,N 3−ℓ
i (s) 6= ∅

}

≤ k, (5)

which is the last time beforek when nodei ∈ Vℓ has at least
one neighbor inV3−ℓ.

Figure 1: The zero-sum game communication graph

Remark 3.3:When all objective functionsfi, gi are addi-
tively separable, i.e.,fi(x, y) = f1

i (x) + f2
i (y), gi(x, y) =

g1i (x) + g2i (y), the considered distributed Nash equilibrium
computation problem is equivalent to two separated distributed
optimization problems with respective objective functions
∑n1

i=1 f
1
i (x),

∑n2

i=1 g
2
i (y) and constraint setsX , Y . In this

case, the set of Nash equilibria is given by

X∗ × Y ∗ = argmin
X

n1
∑

i=1

f1
i × argmax

Y

n2
∑

i=1

g2i .

Since ∂xfi(x, y) = ∂xf
1
i (x) and ∂ygi(x, y) = ∂yg

2
i (y),

algorithm (4) becomes in this case the well-known distributed
subgradient algorithms [14], [15].

Remark 3.4:To deal withweight-unbalancedgraphs, some
methods, the rescaling technique [34] and the push-sum proto-
cols [35], [36], [38] have been proposed for average consensus
problems; reweighting the objectives [39] and the subgradient-
push protocols [41], [42] for distributed optimization prob-
lems. Different from these methods, in this paper we propose
a distributed algorithm to handle weight-unbalanced graphs
when the stepsizes taken by agents are not necessarily the
same.

Remark 3.5:Different from the extreme-seeking techniques
used in [30], [31], our method uses the subgradient to compute
the Nash equilibrium.

The next assumption was also used in [14], [15], [18], [21].
A3 (Weight Rule)(i) There is0 < η < 1 such thataij(k) ≥ η
for all i, k andj ∈ N 1

i (k)
⋃

N 2
i (k);

(ii)
∑

j∈N ℓ
i
(k) aij(k) = 1 for all k and i ∈ Vℓ, ℓ = 1, 2;

(iii)
∑

j∈N 3−ℓ

i
(k̆i)

aij(k̆i) = 1 for i ∈ Vℓ, ℓ = 1, 2.
Conditions (ii) and (iii) inA3 state that the information from

an agent’s neighbors is used through a weighted average. The
next assumption is about subgradients of objective functions.
A4 (Boundedness of Subgradients)There isL > 0 such that,
for eachi, j,

|q| ≤ L, ∀q ∈ ∂xfi(x, y)
⋃

∂ygj(x, y), ∀x ∈ X, y ∈ Y.

Obviously, A4 holds if X and Y are bounded. A similar
bounded assumption has been widely used in distributed
optimization [12], [13], [14], [15].
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Note that the stepsize in our algorithm (4) isheterogenous,
i.e., the stepsizes may be different for different agents, in
order to deal with general unbalanced cases. One challenging
problem is how to select the stepsizes{αi,k} and{βi,k}. The
homogenousstepsize case is to setαi,k = βj,k = γk for
i ∈ V1, j ∈ V2 and allk, where{γk} is given as follows.
A5 {γk} is non-increasing,

∑∞
k=0 γk = ∞ and

∑∞
k=0 γ

2
k <

∞.
Conditions

∑∞
k=0 γk = ∞ and

∑∞
k=0 γ

2
k < ∞ in A5 are

well-known in homogeneous stepsize selection for distributed
subgradient algorithms for distributed optimization problems
with weight-balanced graphs, e.g., [15], [16], [18].

Remark 3.6:While weight-balanced graphs are considered
in [14], [15], [18], [23], [24], we consider general (weight-
unbalanced) digraphs, and provide a heterogeneous stepsize
design method for the desired Nash equilibrium convergence.

IV. M AIN RESULTS

In this section, we start with homogeneous stepsizes to
achieve a Nash equilibrium for weight-balanced graphs (in
Section IV.A). Then we focus on a special weight-unbalanced
case to show how a homogeneous-stepsize algorithm may
fail to achieve our aim (in Section IV.B). Finally, we show
that the heterogeneity of stepsizes can help us achieve a
Nash equilibrium in some weight-unbalanced graph cases (in
Section IV.C).

A. Weight-balanced Graphs

Here we consider algorithm (4) with homogeneous stepsizes
αi,k = βi,k = γk for weight-balanced digraphs. The following
result, in fact, provides two sufficient conditions to achieve a
Nash equilibrium under switching weight-balanced digraphs.

Theorem 4.1:SupposeA1–A5 hold and digraphGℓ(k) is
weight-balanced fork ≥ 0 andℓ = 1, 2. Then the multi-agent
networkΞ achieves a Nash equilibrium by algorithm (4) with
the homogeneous stepsizes{γk} if either of the following two
conditions holds:

(i) U is strictly convex-concave;
(ii) X∗ × Y ∗ contains an interior point.
The proof can be found in Section V.B.
Remark 4.1:The authors in [23] developed a continuous-

time dynamical system to solve the Nash equilibrium compu-
tation problem for fixed weight-balanced digraphs, and showed
that the network converges to a Nash equilibrium for a strictly
convex-concave differentiable sum objective function. Differ-
ent from [23], here we allow time-varying communication
structures and a non-smooth objective functionU . The same
result may also hold for the continuous-time solution in [23]
under our problem setup, but the analysis would probably be
much more involved.

B. Homogenous Stepsizes vs. Unbalanced Graphs

In the preceding subsection, we showed that a Nash equi-
librium can be achieved with homogeneous stepsizes when
the graphs of two subnetworks are weight-balanced. Here we
demonstrate that the homogenous stepsize algorithm may fail

to guarantee the Nash equilibrium convergence for general
weight-unbalanced digraphs unless certain conditions about
the objective function hold.

Consider a special case, called the completely identical
subnetwork case, i.e.,Ξ1 andΞ2 are completely identical:

n1 = n2, fi = gi, i = 1, ..., n1; A1(k) = A2(k),

G⊲⊳(k) =
{

(ωℓ
i , ω

3−ℓ
i ), ℓ = 1, 2, i = 1, ..., n1

}

, k ≥ 0.

In this case, agentsωℓ
i , ω

3−ℓ
i have the same objective function,

neighbor set and can communicate with each other at all times.
Each pair of agentsωℓ

i , ω
3−ℓ
i can be viewed as one agent

labeled as “i”. Then algorithm (4) with homogeneous stepsizes
{γk} reduces to the following form:
{

xi(k + 1) = PX

(
∑

j∈N 1
i
(k) aij(k)xj(k)− γkq1i(k)

)

,

yi(k + 1) = PY

(
∑

j∈N 1
i
(k) aij(k)yj(k) + γkq2i(k)

)

,

(6)

for i = 1, ..., n1, whereq1i(k) ∈ ∂xfi(x̂i(k), yi(k)), q2i(k) ∈
∂yfi(xi(k), ŷi(k)).

Remark 4.2:Similar distributed saddle point computation
algorithms have been proposed in the literature, for example,
the distributed saddle point computation for the Lagrange
function of constrained optimization problems in [18]. In fact,
algorithm (6) can be used to solve the following distributed
saddle-point computation problem: consider a networkΞ1

consisting ofn1 agents with node setV1 = {1, ..., n1}, its
objective is to seek a saddle point of the sum objective function
∑n1

i=1 fi(x, y) in a distributed way, wherefi can only be
known by agenti. In (6), (xi, yi) is the state of node “i”.
Moreover, algorithm (6) can be viewed as a distributed version
of the following centralized algorithm:
{

x(k + 1) = PX

(

x(k)− γq1(k)
)

, q1(k) ∈ ∂xU(x(k), y(k)),

y(k + 1) = PY

(

y(k) + γq2(k)
)

, q2(k) ∈ ∂yU(x(k), y(k)),

which was proposed in [13] to solve the approximate saddle
point problem with a constant stepsize.

We first show that, algorithm (4) with homogeneous step-
sizes (or equivalently (6)) cannot seek the desired Nash
equilibrium though it is convergent, even forfixed weight-
unbalanced graphs.

Theorem 4.2:SupposeA1, A3–A5 hold, and fi, i =
1, ..., n1 are strictly convex-concave and the graph is fixed
with G1(0) strongly connected. Then, with (6), all the agents
converge to the unique saddle point, denoted as(~x, ~y), of
an objective function

∑n1

i=1 µifi on X × Y , where µ =
(µ1, . . . , µn1)

′ is the Perron vector of the adjacency matrix
A1(0) of graphG1(0).

The proof is almost the same as that of Theorem 4.1,
by replacing

∑n1

i=1 |xi(k) − x∗|2,
∑n2

i=1 |yi(k) − y∗|2 and
U(x, y) with

∑n1

i=1 µi|xi(k) − ~x|2,
∑n1

i=1 µi|yi(k) − ~y|2 and
∑n1

i=1 µifi(x, y), respectively. Therefore, the proof is omitted.
Although it is hard to achieve the desired Nash equilibrium

with the homogeneous-stepsize algorithm in general, we can
still achieve it in some cases. Here we can give a necessary
and sufficient condition to achieve a Nash equilibrium for any
UJSC switching digraph sequence.
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Theorem 4.3:SupposeA1, A3–A5 hold andfi, i = 1, ..., n1

are strictly convex-concave. Then the multi-agent networkΞ
achieves a Nash equilibrium by algorithm (6) for any UJSC
switching digraph sequenceG1 if and only if fi, i = 1, ..., n1

have the same saddle point onX × Y .
The proof can be found in Section V.C.
Remark 4.3:The strict convexity-concavity offi implies

that the saddle point offi is unique. From the proof we
can find that the necessity of Theorem 4.3 does not require
that each objective functionfi is strictly convex-concave, but
the strict convexity-concavity of the sum objective function
∑n1

i=1 fi suffices.

C. Weight-unbalanced Graphs

The results in the preceding subsections showed that the
homogenous-stepsize algorithm may not make a weight-
unbalanced network achieve its Nash equilibrium. Here we
first show the existence of a heterogeneous-stepsize design
to make the (possibly weight-unbalanced) network achieve a
Nash equilibrium.

Theorem 4.4:SupposeA1, A3, A4 hold andU is strictly
convex-concave. Then for any time-varying communication
graphsGℓ, ℓ = 1, 2 andG⊲⊳ that satisfyA2, there always exist
stepsize sequences{αi,k} and{βi,k} such that the multi-agent
networkΞ achieves a Nash equilibrium by algorithm (4).

The proof is in Section V.D. In fact, it suffices to design
stepsizesαi,k andβi,k as follows:

αi,k =
1

αi
k

γk, βi,k =
1

βi
k

γk, (7)

where(α1
k, . . . , α

n1

k )′ = φ1(k + 1), (β1
k, . . . , β

n2

k )′ = φ2(k +
1), φℓ(k+1) is the vector for whichlimr→∞ Φℓ(r, k+1) :=
1(φℓ(k + 1))′, Φℓ(r, k + 1) := Aℓ(r)Aℓ(r − 1) · · ·Aℓ(k + 1),
ℓ = 1, 2, {γk} satisfies the following conditions:

lim
k→∞

γk

k−1
∑

s=0

γs = 0, {γk} is non-increasing,

∞
∑

k=0

γk = ∞,

∞
∑

k=0

γ2k <∞.

(8)

Remark 4.4:The stepsize design in Theorem 4.4 is moti-
vated by the following two ideas. On one hand, agents need
to eliminate the imbalance caused by the weight-unbalanced
graphs, which is done by{1/αi

k}, {1/β
i
k}, while on the other

hand, agents also need to achieve a consensus within each
subnetwork and cooperative optimization, which is done by
{γk}, as in the balanced graph case.

Remark 4.5:Condition (8) can be satisfied by lettingγk =
c

(k+b)
1
2
+ǫ

for k ≥ 0, c > 0, b > 0, 0 < ǫ ≤ 1
2 . Moreover,

from the proof of Theorem 4.4 we find that, if the setsX and
Y are bounded, the system states are naturally bounded, and
then (8) can be relaxed asA5.

Clearly, the above choice of stepsizes at timek de-
pend on the adjacency matrix sequences{A1(s)}s≥k+1 and
{A2(s)}s≥k+1, which is not so practical. Therefore, we will
consider how to design adaptive algorithms to update the

stepsize sequences{αi,k} and{βi,k} such that the Nash equi-
librium can be achieved, where the (heterogeneous) stepsizes
at timek just depend on the local information that agents can
obtain before timek.

Take

αi,k =
1

α̂i
k

γk, βi,k =
1

β̂i
k

γk, (9)

where{γk} satisfies (8). The only difference between stepsize
selection rule (9) and (7) is thatαi

k andβi
k are replaced with

α̂i
k andβ̂i

k, respectively. We consider how to design distributed
adaptive algorithms for̂αi and β̂i such that

α̂i
k = α̂i

(

aij(s), j ∈ N 1
i (s), s ≤ k

)

,

β̂i
k = β̂i

(

aij(s), j ∈ N 2
i (s), s ≤ k

)

,
(10)

and

lim
k→∞

(

α̂i
k − αi

k

)

= 0, lim
k→∞

(

β̂i
k − βi

k

)

= 0. (11)

Note that (α1
k, . . . , α

n1

k )′ and (β1
k, . . . , β

n2

k )′ are the Per-
ron vectors of the two limitslimr→∞ Φ1(r, k + 1) and
limr→∞ Φ2(r, k + 1), respectively.

The next theorem shows that, in two standard cases, we can
design distributed adaptive algorithms satisfying (10) and (11)
to ensure thatΞ achieves a Nash equilibrium. How to design
them is given in the proof.

Theorem 4.5:Consider algorithm (4) with stepsize selection
rule (9). SupposeA1–A4 hold, U is strictly convex-concave.
For the following two cases, with the adaptive distributed
algorithms satisfying (10) and (11), networkΞ achieves a Nash
equilibrium.

(i) For ℓ = 1, 2, the adjacency matricesAℓ(k), k ≥ 0 have
a common left eigenvector with eigenvalue one;

(ii) For ℓ = 1, 2, the adjacency matricesAℓ(k), k ≥ 0 are
switching periodically, i.e., there exist positive integers pℓ and
two finite sets of stochastic matricesA0

ℓ , ..., A
pℓ−1
ℓ such that

Aℓ(rp
ℓ + s) = As

ℓ for r ≥ 0 ands = 0, ..., pℓ − 1.
The proof is given in Section V.E.
Remark 4.6: Regarding case (i), note that for afixed

graph, the adjacency matrices obviously have a common left
eigenvector. Moreover, periodic switching can be interpreted
as a simple scheduling strategy. At each time agents may
choose some neighbors to communicate with in a periodic
order.

Remark 4.7:In the case of a fixed unbalanced graph, the
optimization can also be solved by either reweighting the
objectives [39], or by the subgradient-push protocols [41],
[42], where the Perron vector of the adjacency matrix is
required to be known in advance or each agent is required
to know its out-degree. These requirements may be quite
restrictive in a distributed setting. Theorem 4.5 shows that,
in the fixed graph case, agents can adaptively learn the Perron
vector by the adaptive learning scheme and then achieve the
desired convergence without knowing the Perron vector and
their individual out-degrees.

When the adjacency matricesAℓ(k) have a common left
eigenvector, the designed distributed adaptive learning strategy
(43) can guarantee that the differences betweenα̂i

k = αi
i(k),
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β̂i
k = βi

i(k) and the “true stepsizes”φ1i (k + 1), φ2i (k + 1)
asymptotically tend to zero. The converse is also true for
some cases. In fact, if the time-varying adjacency matricesare
switching within finite matrices andlimk→∞(αi

i(k)−φ1i (k+
1)) = 0, limk→∞(βi

i(k)− φ2i (k+1)) = 0, then we can show
that the finite adjacency matrices certainly have a common left
eigenvector.

Moreover, when the adjacency matrices have no common
left eigenvector, the adaptive learning strategy (43) generally
cannot makêαi

k, β̂i
k asymptotically learn the true stepsizes and

then cannot achieve a Nash equilibrium. For instance, consider
the special distributed saddle-point computation algorithm
(6) with strictly convex-concave objective functionsfi. Let
ᾱ = (ᾱ1, ..., ᾱn1)

′, α̂ = (α̂1, ..., α̂n1)
′ be two different positive

stochastic vectors. SupposeA1(0) = 1ᾱ′ andA1(k) = 1α̂′

for k ≥ 1. In this case,αi
i(k) = ᾱi, φ1i (k + 1) = α̂i for all

k ≥ 0 and then (11) is not true. According to Theorem 4.2,
the learning strategy (43) can make(xi(k), yi(k)) converge
to the (unique) saddle point of the function

∑n1

i=1
α̂i

ᾱi
fi(x, y)

on X × Y , which is not necessarily the saddle point of
∑n1

i=1 fi(x, y) onX × Y .

V. PROOFS

In this section, we first introduce some useful lemmas and
then present the proofs of the theorems in last section.

A. Supporting Lemmas

First of all, we introduce two lemmas. The first lemma is the
deterministic version of Lemma 11 on page 50 in [6], while
the second one is Lemma 7 in [15].

Lemma 5.1:Let {ak}, {bk} and {ck} be non-negative
sequences with

∑∞
k=0 bk <∞. If ak+1 ≤ ak + bk − ck holds

for any k, then limk→∞ ak is a finite number.
Lemma 5.2:Let 0 < λ < 1 and {ak} be a positive se-

quence. Iflimk→∞ ak = 0, then limk→∞

∑k
r=0 λ

k−rar = 0.
Moreover, if

∑∞
k=0 ak <∞, then

∑∞
k=0

∑k
r=0 λ

k−rar <∞.
Next, we show some useful lemmas.
Lemma 5.3:For anyµ ∈ S+

n , there is a stochastic matrix
B = (bij) ∈ R

n×n such thatGB is strongly connected and
µ′B = µ′.
Proof: Take µ = (µ1, . . . , µn)

′ ∈ S+
n . Without loss of

generality, we assumeµ1 = min1≤i≤n µi (otherwise we can
rearrange the index of agents). LetB be a stochastic matrix
such that the graphGB associated withB is a directed cycle:
1enn · · · 2e11 with er = (r + 1, r), 1 ≤ r ≤ n − 1 and
en = (1, n). Clearly, GB is strongly connected. Then all
nonzero entries ofB are

{

bii, bi(i+1), 1 ≤ i ≤ n−1, bnn, bn1
}

andµ′B = µ′ can be rewritten asb11µ1 + (1− bnn)µn = µ1,
(1 − brr)µr + b(r+1)(r+1)µr+1 = µr+1, 1 ≤ r ≤ n − 1.
Equivalently,



















(1− b22)µ2 = (1 − b11)µ1

(1− b33)µ3 = (1 − b11)µ1

...
(1− bnn)µn = (1− b11)µ1

(12)

Let b11 = b∗11 with 0 < b∗11 < 1. Clearly, there is a solution to
(12): b11 = b∗11, 0 < brr = 1−(1−b∗11)µ1/µr < 1, 2 ≤ r ≤ n.
Then the conclusion follows. �

The following lemma is about stochastic matrices, which
can be found from Lemma 3 in [7].

Lemma 5.4:Let B = (bij) ∈ R
n×n be a stochastic matrix

and ~(µ) = max1≤i,j≤n |µi − µj |, µ = (µ1, . . . , µn)
′ ∈

R
n. Then ~(Bµ) ≤ µ(B)~(µ), where µ(B) = 1 −

minj1,j2
∑n

i=1 min{bj1i, bj2i}, is called “the ergodicity coef-
ficient” of B.

We next give a lemma about the transition matrix sequence
Φℓ(k, s) = Aℓ(k)Aℓ(k − 1) · · ·Aℓ(s), k ≥ s, ℓ = 1, 2, where
(i), (ii) and (iv) are taken from Lemma 4 in [14], while (iii)
can be obtained from Lemma 2 in [14].

Lemma 5.5:SupposeA2 (ii) and A3 (i), (ii) hold. Then for
ℓ = 1, 2, we have

(i) The limit limk→∞ Φℓ(k, s) exists for eachs;
(ii) There is a positive stochastic vectorφℓ(s) =

(φℓ1(s), ..., φ
ℓ
nℓ
(s))′ such thatlimk→∞ Φℓ(k, s) = 1(φℓ(s))′;

(iii) For every i = 1, ..., nℓ ands, φℓi(s) ≥ η(nℓ−1)Tℓ ;
(iv) For everyi, the entriesΦℓ(k, s)ij , j = 1, ..., nℓ converge

to the same limitφℓj(s) at a geometric rate, i.e., for every
i = 1, ..., nℓ and alls ≥ 0,

∣

∣Φℓ(k, s)ij − φℓj(s)
∣

∣ ≤ Cℓρ
k−s
ℓ

for all k ≥ s and j = 1, ..., nℓ, whereCℓ = 2 1+η−Mℓ

1−ηMℓ
, ρℓ =

(1− ηMℓ)
1

Mℓ , andMℓ = (nℓ − 1)Tℓ.
The following lemma shows a relation between the left

eigenvectors of stochastic matrices and the Perron vector of
the limit of their product matrix.

Lemma 5.6:Let {B(k)} be a sequence of stochastic ma-
trices. SupposeB(k), k ≥ 0 have a common left eigenvector
µ corresponding to eigenvalue one and the associated graph
sequence{GB(k)} is UJSC. Then, for eachs,

lim
k→∞

B(k) · · ·B(s) = 1µ′/(µ′1).

Proof: Sinceµ is the common left eigenvector ofB(r), r ≥
s associated with eigenvalue one,µ′ limk→∞B(k) · · ·B(s) =
limk→∞ µ′B(k) · · ·B(s) = µ′. In addition, by Lemma 5.5,
for eachs, the limit limk→∞B(k) · · ·B(s) := 1φ′(s) exists.
Therefore,µ′ = µ′(1φ′(s)) = (µ′1)φ′(s), which implies
(µ′1)φ(s) = µ. The conclusion follows. �

Basically, the two dynamics of algorithm (4) are in the same
form. Let us check the first one,

xi(k + 1) = PX

(

x̂i(k)− αi,kq1i(k)
)

,

q1i(k) ∈ ∂xfi
(

x̂i(k), x̆i(k)
)

, i ∈ V1. (13)

By treating the term containingyj (j ∈ V2) as “disturbance”,
we can transform (13) to a simplified model in the following
form with disturbanceǫi:

xi(k + 1) =
∑

j∈N 1
i
(k)

aij(k)xj(k) + ǫi(k), i ∈ V1, (14)

whereǫi(k) = PX

(

x̂i(k) + wi(k)
)

− x̂i(k). It follows from
xj(k) ∈ X , the convexity ofX and A3 (ii) that x̂i(k) =
∑

j∈N 1
i
(k) aij(k)xj(k) ∈ X . Then from (1),|ǫi(k)| ≤ |wi(k)|.
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The next lemma is about a limit for the two subnetworks.
Denote

ᾱk = max
1≤i≤n1

αi,k, β̄k = max
1≤i≤n2

βi,k.

Lemma 5.7: Consider algorithm (4) withA3 (ii) and
A4. If limk→∞ ᾱk

∑k−1
s=0 ᾱs = limk→∞ β̄k

∑k−1
s=0 β̄s = 0,

then for any x, y, limk→∞ ᾱk max1≤i≤n1 |xi(k) − x| =
limk→∞ β̄k max1≤i≤n2 |yi(k)− y| = 0.

Proof: We will only showlimk→∞ ᾱk max1≤i≤n1 |xi(k)−
x| = 0 since the other one about̄βk can be proved similarly.
At first, it follows from limk→∞ ᾱk

∑k−1
s=0 ᾱs = 0 that

limk→∞ ᾱk = 0. From A4 we have|ǫi(k)| ≤ ᾱkL. Then
from (14) andA3 (ii) we obtain

max
1≤i≤n1

|xi(k + 1)− x| ≤ max
1≤i≤n1

|xi(k)− x|+ ᾱkL, ∀k.

Therefore,max1≤i≤n1 |xi(k)−x| ≤ max1≤i≤n1 |xi(0)−x|+
L
∑k−1

s=0 ᾱs and then, for eachk,

ᾱk max
1≤i≤n1

|xi(k)− x| ≤ ᾱk max
1≤i≤n1

|xi(0)− x|+ ᾱk

k−1
∑

s=0

ᾱsL.

Taking the limit over both sides of the preceding inequality
yields the conclusion. �

We assume without loss of generality thatm1 = 1 in
the sequel of this subsection for notational simplicity. Denote
x(k) = (x1(k), . . . , xn1(k))

′, ǫ(k) = (ǫ1(k), . . . , ǫn1(k))
′.

Then system (14) can be written in a compact form:

x(k + 1) = A1(k)x(k) + ǫ(k), k ≥ 0.

Recall transition matrix

Φℓ(k, s) = Aℓ(k)Aℓ(k − 1) · · ·Aℓ(s), k ≥ s, ℓ = 1, 2.

Therefore, for eachk,

x(k+1) = Φ1(k, s)x(s)+

k−1
∑

r=s

Φ1(k, r+1)ǫ(r)+ ǫ(k). (15)

At the end of this section, we present three lemmas for
(4) (or (14) and the other one fory). The first lemma gives
an estimation forh1(k) = max1≤i,j≤n1 |xi(k) − xj(k)| and
h2(k) = max1≤i,j≤n2 |yi(k)−yj(k)| over a bounded interval.

Lemma 5.8:SupposeA2 (ii), A3 and A4 hold. Then for
ℓ = 1, 2 and anyt ≥ 1, 0 ≤ q ≤ T ℓ − 1,

hℓ(tT
ℓ + q) ≤ (1− ηT

ℓ

)hℓ((t− 1)T ℓ + q)

+ 2L

tT ℓ+q−1
∑

r=(t−1)T ℓ+q

λℓr, (16)

whereλ1r = ᾱr, λ2r = β̄r, T ℓ = (nℓ(nℓ − 2) + 1)Tℓ for a
constantTℓ given in A2 and L as the upper bound on the
subgradients of objective functions inA4.
Proof: Here we only show the case ofℓ = 1 since the other one
can be proven in the same way. Considern1(n1− 2)+1 time
intervals[0, T1− 1], [T1, 2T1− 1], ..., [n1(n1− 2)T1, (n1(n1 −
2)+1)T1−1]. By the definition of UJSC graph,G1

(

[tT1, (t+
1)T1−1]

)

contains a root node for0 ≤ t ≤ n1(n1−2). Clearly,
the set of then1(n1 − 2) + 1 root nodes contains at least one

node, sayi0, at leastn1 − 1 times. Assume without loss of
generality thati0 is a root node ofG1

(

[tT1, (t+1)T1−1]
)

, t =
t0, ..., tn1−2.

Takej0 6= i0 from V1. It is not hard to show that there exist
a node set{j1, ..., jq} and time set{k0, ..., kq}, q ≤ n1 − 2
such that(jr+1, jr) ∈ E1(kq−r), 0 ≤ r ≤ q − 1 and (i0, jq) ∈
E1(k0), wherek0 < · · · < kq−1 < kq and all kr belong to
different intervals[trT1, (tr + 1)T1 − 1], 0 ≤ r ≤ n1 − 2.

Noticing that the diagonal elements of all adjacency matri-
ces are positive, and moreover, for matricesD1, D2 ∈ R

n1×n1

with nonnegative entries,

(D1)r0r1 > 0, (D2)r1r2 > 0 =⇒ (D1D2)r0r2 > 0,

so we haveΦ1(T 1−1, 0)j0i0 > 0. Becausej0 is taken fromV1

freely,Φ1(T 1− 1, 0)ji0 > 0 for j ∈ V1. As a result,Φ1(T 1−
1, 0)ji0 ≥ ηT

1

for j ∈ V1 with A3 (i) and soµ(Φ1(T 1 −
1, 0)) ≤ 1 − ηT

1

by the definition of ergodicity coefficient
given in Lemma 5.4. According to (15), the inequality~(µ+
ν) ≤ ~(µ) + 2maxi νi, Lemma 5.4 andA4,

h1(T
1) ≤ h1(Φ

1(T 1 − 1, 0)x(0)) + 2L

T 1−1
∑

r=0

ᾱr

≤ µ(Φ1(T 1 − 1, 0))h1(0) + 2L

T 1−1
∑

r=0

ᾱr

≤ (1 − ηT
1

)h1(0) + 2L

T 1−1
∑

r=0

ᾱr,

which shows (16) forℓ = 1, t = 1, q = 0. Analogously, we
can show (16) forℓ = 1, 2 and t ≥ 1, 0 ≤ q ≤ T ℓ − 1. �

Lemma 5.9:SupposeA2 (ii), A3 andA4 hold.
(i) If

∑∞
k=0 ᾱ

2
k < ∞ and

∑∞
k=0 β̄

2
k < ∞, then

∑∞
k=0 ᾱkh1(k) <∞,

∑∞
k=0 β̄kh2(k) <∞;

(ii) If for each i, limk→∞ αi,k = 0 and limk→∞ βi,k = 0,
then the subnetworksΞ1 andΞ2 achieve a consensus, respec-
tively, i.e., limk→∞ h1(k) = 0, limk→∞ h2(k) = 0.

Note that (i) is an extension of Lemma 8 (b) in [15]
dealing with weight-balanced graph sequence to general graph
sequence (possibly weight-unbalanced), while (ii) is about the
consensus within the subnetworks, and will be frequently used
in the sequel. This lemma can be shown by Lemma 5.8 and
similar arguments to the proof of Lemma 8 in [15], and hence,
the proof is omitted here.

The following provides the error estimation between agents’
states and their average.

Lemma 5.10:SupposeA2–A4 hold, and{ᾱ(k)}, {β̄(k)}
are non-increasing with

∑∞
k=0 ᾱ

2
k <∞,

∑∞
k=0 β̄

2
k <∞. Then

for eachi ∈ V1 and j ∈ V2,
∑∞

k=0 β̄k|x̆i(k) − ȳ(k)| < ∞,
∑∞

k=0 ᾱk|y̆j(k)−x̄(k)| <∞, wherex̄(k) = 1
n1

∑n1

i=1 xi(k) ∈

X , ȳ(k) = 1
n2

∑n2

i=1 yi(k) ∈ Y .

Proof: We only need to show the first conclusion since the
second one can be obtained in the same way. At first, from
A3 (iii) and |yj(k̆i)− ȳ(k̆i)| ≤ h2(k̆i) we have

∞
∑

k=0

β̄k|x̆i(k)− ȳ(k̆i)| ≤
∞
∑

k=0

β̄kh2(k̆i). (17)
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Let {sir, r ≥ 0} be the set of all moments whenN 2
i (sir) 6= ∅.

Recalling the definition of̆ki in (5), k̆i = sir whensir ≤ k <
si(r+1). Since{β̄k} is non-increasing and

∑∞
k=0 β̄kh2(k) <

∞ (by Lemma 5.9), we have

∞
∑

k=0

β̄kh2(k̆i) ≤
∞
∑

k=0

β̄
k̆i
h2(k̆i)

=

∞
∑

r=0

β̄sir |si(r+1) − sir|h2(sir)

≤ T⊲⊳

∞
∑

r=0

β̄sirh2(sir) ≤ T⊲⊳

∞
∑

k=0

β̄kh2(k) <∞,

where T⊲⊳ is the constant inA2 (i). Thus, the preceding
inequality and (17) imply

∑∞
k=0 β̄k|x̆i(k)− ȳ(k̆i)| <∞.

Sinceyi(k) ∈ Y for all i andY is convex,ȳ(k) ∈ Y . Then,
from the non-expansiveness property of the convex projection
operator,

|ȳ(k + 1)− ȳ(k)|

=

∣

∣

∣

∣

∑n2

i=1

(

PY (ŷi(k) + βi,kq2i(k))− PY (ȳ(k))
)

n2

∣

∣

∣

∣

≤
1

n2

n2
∑

i=1

∣

∣ŷi(k) + βi,kq2i(k)− ȳ(k)
∣

∣

≤ h2(k) + β̄kL. (18)

Based on (18), the non-increasingness of{β̄k} and k̆i ≥ k −
T⊲⊳ + 1, we also have

∞
∑

k=0

β̄k|ȳ(k̆i)− ȳ(k)| ≤
∞
∑

k=0

β̄k

k−1
∑

r=k̆i

∣

∣ȳ(r) − ȳ(r + 1)
∣

∣

≤
∞
∑

k=0

β̄k

k−1
∑

r=k̆i

(h2(r) + β̄rL)

≤
∞
∑

k=0

β̄k

k−1
∑

r=k−T⊲⊳+1

(h2(r) + β̄rL)

≤
∞
∑

k=0

β̄k

k−1
∑

r=k−T⊲⊳+1

h2(r) +
(T⊲⊳ − 1)L

2

∞
∑

k=0

β̄2
k

+
L

2

∞
∑

k=0

k−1
∑

r=k−T⊲⊳+1

β̄2
r

≤ (T⊲⊳ − 1)
∞
∑

k=0

β̄kh2(k) +
(T⊲⊳ − 1)L

2

∞
∑

k=0

β̄2
k

+
(T⊲⊳ − 1)L

2

∞
∑

k=0

β̄2
k <∞,

whereh2(r) = β̄r = 0, r < 0. Since|x̆i(k)−ȳ(k)| ≤ |x̆i(k)−
ȳ(k̆i)|+ |ȳ(k̆i)− ȳ(k)|, the first conclusion follows. �

Remark 5.1:From the proof we find that Lemma 5.10 still
holds when the non-increasing condition of{ᾱk} and{β̄k} is
replaced by that there are an integerT ∗ > 0 andc∗ > 0 such
that ᾱk+T∗ ≤ c∗ᾱk and β̄k+T∗ ≤ c∗β̄k for all k.

B. Proof of Theorem 4.1

We complete the proof by the following two steps.
Step 1:We first show that the states of (4) are bounded.

Take(x, y) ∈ X × Y . By (4) and (1),

|xi(k + 1)− x|2 ≤ |x̂i(k)− γkq1i(k)− x|2 = |x̂i(k)− x|2

+ 2γk
〈

x̂i(k)− x,−q1i(k)
〉

+ γ2k|q1i(k)|
2. (19)

It is easy to see that| · |2 is a convex function from the
convexity of|·| and the convexity of scalar functionh(c) = c2.
From this andA3 (ii), |x̂i(k)−x|2 ≤

∑

j∈N 1
i
(k) aij(k)|xj(k)−

x|2. Moreover, sinceq1i(k) is a subgradient offi(·, x̆i(k)) at
x̂i(k), 〈x − x̂i(k), q1i(k)〉 ≤ fi(x, x̆i(k)) − fi(x̂i(k), x̆i(k)).
Thus, based on (19) andA4,

|xi(k + 1)− x|2 ≤
∑

j∈N 1
i
(k)

aij(k)|xj(k)− x|2 + L2γ2k

+ 2γk
(

fi(x, x̆i(k)) − fi(x̂i(k), x̆i(k))
)

. (20)

Again employingA4, |fi(x, y1) − fi(x, y2)| ≤ L|y1 − y2|,
|fi(x1, y)−fi(x2, y)| ≤ L|x1−x2|, ∀x, x1, x2 ∈ X, y, y1, y2 ∈
Y . This imply

|fi
(

x, x̆i(k)
)

− fi
(

x, ȳ(k)
)

| ≤ L|x̆i(k)− ȳ(k)|, (21)
∣

∣fi
(

x̂i(k), x̆i(k)− fi
(

x̄(k), ȳ(k)
)∣

∣

≤ L
(

|x̂i(k)− x̄(k)|+ |x̆i(k)− ȳ(k)|
)

≤ L
(

h1(k) + |x̆i(k)− ȳ(k)|
)

. (22)

Hence, by (20), (21) and (22),

|xi(k + 1)− x|2 ≤
∑

j∈N 1
i
(k)

aij(k)|xj(k)− x|2

+ 2γk(fi(x, ȳ(k)
)

− fi
(

x̄(k), ȳ(k))) + L2γ2k + 2Lγkei1(k),
(23)

whereei1(k) = h1(k) + 2|x̆i(k)− ȳ(k)|.
It follows from the weight balance ofG1(k) andA3 (ii) that

∑

i∈V1
aij(k) = 1 for all j ∈ V1. Then, from (23), we have

n1
∑

i=1

|xi(k + 1)− x|2 ≤
n1
∑

i=1

|xi(k)− x|2 + 2γk
(

U(x, ȳ(k))

− U(x̄(k), ȳ(k))
)

+ n1L
2γ2k + 2Lγk

n1
∑

i=1

ei1(k). (24)

Analogously,
n2
∑

i=1

|yi(k + 1)− y|2 ≤
n2
∑

i=1

|yi(k)− y|2 + 2γk(U(x̄(k), ȳ(k))

− U(x̄(k), y)) + n2L
2γ2k + 2Lγk

n2
∑

i=1

ei2(k), (25)

where ei2(k) = h2(k) + 2|y̆i(k) − x̄(k)|. Let (x, y) =
(x∗, y∗) ∈ X∗ × Y ∗, which is nonempty byA1. Denote
ξ(k, x∗, y∗) =

∑n1

i=1 |xi(k)−x
∗|2+

∑n2

i=1 |yi(k)−y
∗|2. Then

adding (24) and (25) together leads to

ξ(k + 1, x∗, y∗) ≤ ξ(k, x∗, y∗)− 2γkΥ(k)

+ (n1 + n2)L
2γ2k + 2Lγk

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(k), (26)
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where

Υ(k) = U(x̄(k), y∗)− U(x∗, ȳ(k))

= U(x∗, y∗)− U(x∗, ȳ(k)) + U(x̄(k), y∗)− U(x∗, y∗)

≥ 0 (27)

following from U(x∗, y∗) − U(x∗, ȳ(k)) ≥ 0, U(x̄(k), y∗) −
U(x∗, y∗) ≥ 0 for k ≥ 0 since (x∗, y∗) is a saddle point of
U onX × Y . Moreover, by

∑∞
k=0 γ

2
k <∞ and Lemmas 5.9,

5.10,
∞
∑

k=0

γk

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(k) <∞. (28)

Therefore, by virtue of
∑∞

k=0 γ
2
k < ∞ again, (28), (26) and

Lemma 5.1,limk→∞ ξ(k, x∗, y∗) is a finite number, denoted
asξ(x∗, y∗). Thus, the conclusion follows. �

Step 2:We next show that the limit points of all agents
satisfy certain objective function equations, and then prove
the Nash equilibrium convergence under either of the two
conditions: (i) and (ii).

As shows inStep 1, (xi(k), yi(k)), k ≥ 0 are bounded.
Moreover, it also follows from (26) that

2

k
∑

r=0

γrΥ(r) ≤ ξ(0, x∗, y∗) + (n1 + n2)L
2

k
∑

r=0

γ2r

+ 2L

k
∑

r=0

γr

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(r)

and then by
∑∞

k=0 γ
2
k <∞ and (28) we have

0 ≤
∞
∑

k=0

γkΥ(k) <∞. (29)

The stepsize condition
∑∞

k=0 γk = ∞ and (29) im-
ply lim infk→∞ Υ(k) = 0. As a result, there is a subse-
quence{kr} such thatlimr→∞ U(x∗, ȳ(kr)) = U(x∗, y∗)
and limr→∞ U(x̄(kr), y

∗) = U(x∗, y∗). Let (x̃, ỹ) be any
limit pair of {(x̄(kr), ȳ(kr))} (noting that the finite limit
pairs exist by the boundedness of system states). Because
U(x∗, ·), U(·, y∗) are continuous and the Nash equilibrium
point (x∗, y∗) is taken fromX∗ × Y ∗ freely, the limit pair
(x̃, ỹ) must satisfy that for any(x∗, y∗) ∈ X∗ × Y ∗,

U(x∗, ỹ) = U(x̃, y∗) = U(x∗, y∗). (30)

We complete the proof by discussing the proposed two
sufficient conditions: (i) and (ii).

(i). For the strictly convex-concave functionU , we claim
thatX∗ × Y ∗ is a single-point set. If it contains two different
points(x∗1, y

∗
1) and(x∗2, y

∗
2) (without loss of generality, assume

x∗1 6= x∗2), it also contains point(x∗2, y
∗
1) by Lemma 2.2. Thus,

U(x∗1, y
∗
1) ≤ U(x, y∗1) and U(x∗2, y

∗
1) ≤ U(x, y∗1) for any

x ∈ X , which yields a contradiction sinceU(·, y∗1) is strictly
convex and then the minimizer ofU(·, y∗1) is unique. Thus,
X∗×Y ∗ contains only one single-point (denoted as(x∗, y∗)).

Thenx̃ = x∗, ỹ = y∗ by (30). Consequently, each limit pair
of {(x̄(kr), ȳ(kr))} is (x∗, y∗), i.e., limr→∞ x̄(kr) = x∗ and
limr→∞ ȳ(kr) = y∗. By Lemma 5.9,limr→∞ xi(kr) = x∗,
i ∈ V1 and limr→∞ yi(kr) = y∗, i ∈ V2. Moreover,

limk→∞ ξ(k, x∗, y∗) = ξ(x∗, y∗) as given in Step 1, so
ξ(x∗, y∗) = limr→∞ ξ(kr, x

∗, y∗) = 0, which in return
implies limk→∞ xi(k) = x∗, i ∈ V1 and limk→∞ yi(k) = y∗,
i ∈ V2.

(ii). In Step 1, we provedlimk→∞ ξ(k, x∗, y∗) = ξ(x∗, y∗)
for any (x∗, y∗) ∈ X∗ × Y ∗. We check the existence of the
two limits limk→∞ x̄(k) and limk→∞ ȳ(k). Let (x+, y+) be
an interior point ofX∗ × Y ∗ for which B(x+, ε) ⊆ X∗ and
B(y+, ε) ⊆ Y ∗ for someε > 0. Clearly, any two limit pairs
(x̀1, ỳ1), (x̀2, ỳ2) of {(x̄(k), ȳ(k))} must satisfyn1|x̀1−x|

2+
n2|ỳ1−y|2 = n1|x̀2−x|2+n2|ỳ2−y|2, ∀x ∈ B(x+, ε), y ∈
B(y+, ε). Takey = y+. Then for anyx ∈ B(x+, ε),

n1|x̀1 − x|2 = n1|x̀2 − x|2 + n2

(

|ỳ2 − y+|2 − |ỳ1 − y+|2
)

.
(31)

Taking the gradient with respect tox on both sides of (31)
yields2n1(x−x̀1) = 2n1(x−x̀2), namely,̀x1 = x̀2. Similarly,
we can shoẁy1 = ỳ2. Thus, the limits,limk→∞ x̄(k) = x̀ ∈
X andlimk→∞ ȳ(k) = ỳ ∈ Y , exist. Based on Lemma 5.9 (ii),
limk→∞ xi(k) = x̀, i ∈ V1 and limk→∞ yi(k) = ỳ, i ∈ V2.

We claim that(x̀, ỳ) ∈ X∗ × Y ∗. First it follows from
(24) that, for anyx ∈ X ,

∑∞
k=0 γk

∑n1

i=1

(

U(x̄(k), ȳ(k)) −
U(x, ȳ(k))

)

< ∞. Moreover, recalling
∑∞

k=0 γk = ∞, we
obtain

lim inf
k→∞

(

U(x̄(k), ȳ(k))− U(x, ȳ(k))
)

≤ 0. (32)

Then U(x̀, ỳ) − U(x, ỳ) ≤ 0 for all x ∈ X due to
limk→∞ x̄(k) = x̀, limk→∞ ȳ(k) = ỳ, the continuity ofU ,
and (32). Similarly, we can showU(x̀, y) − U(x̀, ỳ) ≤ 0 for
all y ∈ Y . Thus, (x̀, ỳ) is a saddle point ofU on X × Y ,
which implies(x̀, ỳ) ∈ X∗ × Y ∗.

Thus, the proof is completed. �

C. Proof of Theorem 4.3

(Necessity) Let(x∗, y∗) be the unique saddle point of
strictly convex-concave functionU on X × Y . Take µ =
(µ1, . . . , µn1)

′ ∈ S+
n1

. By Lemma 5.3 again, there is a
stochastic matrixA1 such thatµ′A1 = µ′ andGA1 is strongly
connected. LetG1 = {G1(k)} be the graph sequence of
algorithm (4) with G1(k) = GA1 for k ≥ 0 and A1 being
the adjacency matrix ofG1(k). Clearly,G1 is UJSC. On one
hand, by Proposition 4.2, all agents converge to the unique
saddle point of

∑n1

i=1 µifi on X × Y . On the other hand,
the necessity condition states thatlimk→∞ xi(k) = x∗ and
limk→∞ yi(k) = y∗ for i = 1, ..., n1. Therefore,(x∗, y∗) is a
saddle point of

∑n1

i=1 µifi onX × Y .
Becauseµ is taken fromS+

n1
freely, we have that, for any

µ ∈ S+
n1

, x ∈ X , y ∈ Y ,

n1
∑

i=1

µifi(x
∗, y) ≤

n1
∑

i=1

µifi(x
∗, y∗) ≤

n1
∑

i=1

µifi(x, y
∗). (33)

We next show by contradiction that, given anyi = 1, ..., n1,
fi(x

∗, y∗) ≤ fi(x, y
∗) for all x ∈ X . Hence sup-

pose there arei0 and x̂ ∈ X such that fi0(x
∗, y∗) >

fi0(x̂, y
∗). Let µi, i 6= i0 be sufficiently small such that

∣

∣

∑

i6=i0
µifi(x

∗, y∗)
∣

∣ <
µi0

2 (fi0(x
∗, y∗) − fi0(x̂, y

∗)) and
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∣

∣

∑

i6=i0
µifi(x̂, y

∗)
∣

∣ <
µi0

2 (fi0(x
∗, y∗) − fi0(x̂, y

∗)). Conse-
quently,

∑n1

i=1 µifi(x
∗, y∗) >

µi0

2

(

fi0(x
∗, y∗)+fi0 (x̂, y

∗)
)

>
∑n1

i=1 µifi(x̂, y
∗), which contradicts the second inequality of

(33). Thus,fi(x∗, y∗) ≤ fi(x, y
∗) for all x ∈ X . Analogously,

we can show from the first inequality of (33) that for each
i, fi(x∗, y) ≤ fi(x

∗, y∗) for all y ∈ Y . Thus, we obtain
that fi(x∗, y) ≤ fi(x

∗, y∗) ≤ fi(x, y
∗), ∀x ∈ X, y ∈ Y, or

equivalently,(x∗, y∗) is the saddle point offi onX × Y .
(Sufficiency) Let (x∗, y∗) be the unique saddle point of

fi, i = 1, ..., n1 onX × Y . Similar to (23), we have

|yi(k + 1)− y∗|2 ≤
∑

j∈N 1
i
(k)

aij(k)|yj(k)− y∗|2

+ 2γk
(

fi(x̄(k), ȳ(k)) − fi(x̄(k), y
∗)
)

+ L2γ2k + 2Lγku2(k),
(34)

whereu2(k) = 2h1(k) + h2(k). Merging (23) and (34) gives

ζ(k + 1) ≤ ζ(k) + 2γk max
1≤i≤n1

(fi(x
∗, ȳ(k))− fi(x̄(k), y

∗))

+ 2L2γ2k + 2Lγk(u1(k) + u2(k))

= ζ(k) + 2γk max
1≤i≤n1

(fi(x
∗, ȳ(k))− fi(x

∗, y∗)

+ fi(x
∗, y∗)− fi(x̄(k), y

∗)) + 2L2γ2k

+ 6Lγk(h1(k) + h2(k)), (35)

where ζ(k) = max1≤i≤n1(|xi(k) − x∗|2 + |yi(k) − y∗|2),
u1(k) = h1(k) + 2h2(k). Sincefi(x∗, ȳ(k))− fi(x

∗, y∗) ≤ 0
andfi(x∗, y∗)− fi(x̄(k), y

∗) ≤ 0 for all i, k, the second term
in (35) is non-positive. By Lemma 5.1,

lim
k→∞

ζ(k) = ζ∗ ≥ 0 (36)

for a finite numberζ∗, which implies that(xi(k), yi(k)), k ≥ 0
are bounded.

Denote ℘(k) = min1≤i≤n1(fi(x
∗, y∗) − fi(x

∗, ȳ(k)) +
fi(x̄(k), y

∗)− fi(x
∗, y∗)). From (35), we also have

0 ≤ 2

k
∑

l=0

γl℘(l) ≤ ζ(0)− ζ(k + 1) + 2L2
k

∑

l=0

γ2l

+ 6L

k
∑

l=0

γl(h1(l) + h2(l)), k ≥ 0,

and hence0 ≤
∑∞

k=0 γk℘(k) < ∞. The stepsize condition
∑∞

k=0 γk = ∞ implies that there is a subsequence{kr} such
that

lim
r→∞

℘(kr) = 0.

We assume without loss of generality thatlimr→∞ x̄(kr) =
x́, limr→∞ ȳ(kr) = ý for some x́, ý (otherwise we can find
a subsequence of{kr} recalling the boundedness of system
states). Due to the finite number of agents and the continuity
of fis, there existsi0 such thatfi0(x

∗, y∗) = fi0(x
∗, ý) and

fi0(x́, y
∗) = fi0(x

∗, y∗). It follows from the strict convexity-
concavity offi0 that x́ = x∗, ý = y∗.

Since the consensus is achieved within two subnetworks,
limr→∞ xi(kr) = x∗ and limr→∞ yi(kr) = y∗, which leads
to ζ∗ = 0 based on (36). Thus, the conclusion follows. �

D. Proof of Theorem 4.4

We design the stepsizesαi,k andβi,k as that given before
Remark 4.4. First by Lemma 5.5 (i) and (ii), the limit
limr→∞ Φℓ(r, k) = 1(φℓ(k))′ exists for eachk. Let (x∗, y∗)
be the unique Nash equilibrium. From (23) we have

|xi(k + 1)− x∗|2 ≤
∑

j∈N 1
i
(k)

aij(k)|xj(k)− x∗|2

+ 2αi,k(fi(x
∗, ȳ(k))− fi(x̄(k), ȳ(k)))

+ L2α2
i,k + 2Lαi,kei1(k). (37)

Analogously,

|yi(k + 1)− y∗|2 ≤
∑

j∈N 2
i
(k)

aij(k)|yj(k)− y∗|2

+ 2βi,k
(

gi(x̄(k), ȳ(k))− gi(x̄(k), y
∗)
)

+ L2β2
i,k + 2Lβi,kei2(k). (38)

Denote

Λ1
k = diag

{ 1

α1
k

, . . . ,
1

αn1

k

}

,Λ2
k = diag

{ 1

β1
k

, . . . ,
1

βn2

k

}

;

ψℓ(k) = (ψℓ
1(k), . . . , ψ

ℓ
nℓ
(k))′, ℓ = 1, 2,

ψ1
i (k) = |xi(k)− x∗|2, ψ2

i (k) = |yi(k)− y∗|2;

ϑℓ(k) = (ϑℓ1(k), . . . , ϑ
ℓ
nℓ
(k))′,

ϑ1i (k) = fi(x̄(k), ȳ(k))− fi(x
∗, ȳ(k)),

ϑ2i (k) = gi(x̄(k), y
∗)− gi(x̄(k), ȳ(k));

eℓ(k) = (e1ℓ(k), . . . , enℓℓ(k))
′.

Then it follows from (37) and (38) that

ψℓ(k + 1) ≤ Aℓ(k)ψ
ℓ(k)− 2γkΛ

ℓ
kϑ

ℓ(k)

+ δ2∗L
2γ2k1+ 2δ∗Lγkeℓ(k),

whereδ∗ = supi,k{1/α
i
k, 1/β

i
k}. By Lemma 5.5 (iii),αi

k ≥
η(n1−1)T1 , βi

k ≥ η(n2−1)T2 , ∀i, k and then δ∗ is a finite
number. Therefore,

ψℓ(k + 1) ≤ Φℓ(k, r)ψℓ(r) − 2

k−1
∑

s=r

γsΦ
ℓ(k, s+ 1)Λℓ

sϑ
ℓ(s)

+ δ2∗L
2

k
∑

s=r

γ2s1+ 2δ∗L

k−1
∑

s=r

γsΦ
ℓ(k, s+ 1)eℓ(s)

− 2γkΛ
ℓ
kϑ

ℓ(k) + 2δ∗Lγkeℓ(k). (39)

Then (39) can be written as

ψℓ(k + 1)

≤ Φℓ(k, r)ψℓ(r) − 2

k−1
∑

s=r

γs1(φℓ(s+ 1))′Λℓ
sϑ

ℓ(s)

+ δ2∗L
2

k
∑

s=r

γ2s1+ 2δ∗L

k−1
∑

s=r

γs1(φℓ(s+ 1))′eℓ(s)

+ 2

k−1
∑

s=r

γs
(

1(φℓ(s+ 1))′ − Φℓ(k, s+ 1)
)

Λℓ
sϑ

ℓ(s)

− 2γkΛ
ℓ
kϑ

ℓ(k) + 2δ∗Lγkeℓ(k)

+ 2δ∗L
k−1
∑

s=r

γs
(

Φℓ(k, s+ 1)− 1(φℓ(s+ 1))′
)

eℓ(s). (40)
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The subsequent proof is given as follows. First, we show
that the designed stepsizes (7) can eliminate the imbalance
caused by the weight-unbalanced graphs (see the second term
in (40)), and then we prove that all the terms from the third
one to the last one in (40) is summable based on the geometric
rate convergence of transition matrices. Finally, we show the
desired convergence based on inequality (40), as (26) for the
weight-balance case in Theorem 4.1.

Clearly, 1(φℓ(s+ 1))′Λℓ
s = 11′, ℓ = 1, 2. From Lemma 5.5

(iv) we also have that
∣

∣Φℓ(k, s)ij − φℓj(s)
∣

∣ ≤ Cρk−s for ℓ =
1, 2, everyi = 1, ..., nℓ, s ≥ 0, k ≥ s, andj = 1, ..., nℓ, where
C = max{C1, C2}, 0 < ρ = max{ρ1, ρ2} < 1. Moreover, by
A4, |ϑ1i (s)| = |fi(x̄(s), ȳ(s)) − fi(x

∗, ȳ(s))| ≤ L|x̄(s) − x∗|
for i ∈ V1, and |ϑ2i (s)| = |fi(x̄(s), y∗) − fi(x̄(s), ȳ(s))| ≤
L|ȳ(s) − y∗| for i ∈ V2. Based on these observations,
multiplying 1

nℓ
1′ on the both sides of (40) and taking the sum

over ℓ = 1, 2 yield

2
∑

ℓ=1

1

nℓ

1′ψℓ(k + 1) ≤
2

∑

ℓ=1

1

nℓ

1′Φℓ(k, r)ψℓ(r)

− 2

k−1
∑

s=r

γs

2
∑

ℓ=1

nℓ
∑

i=1

ϑℓi(s) + 2δ2∗L
2

k
∑

s=r

γ2s

+ 2δ∗L

k−1
∑

s=r

γs

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(s)

+ 2CLδ∗(n1 + n2)

k−1
∑

s=r

ρk−s−1γsς(s)

+ 2Lδ∗γkς(k) + 2δ∗Lγk

2
∑

ℓ=1

1

nℓ

nℓ
∑

i=1

eiℓ(k)

+ 2CLδ∗

k−1
∑

s=r

γsρ
k−s−1

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(s) (41)

:=

2
∑

ℓ=1

1

nℓ

1′Φℓ(k, r)ψℓ(r)

− 2

k−1
∑

s=r

γs

2
∑

ℓ=1

nℓ
∑

i=1

ϑℓi(s) + ̺(k, r), (42)

whereς(s) = max{|xi(s)−x∗|, i ∈ V1, |yj(s)− y∗|, j ∈ V2},
̺(k, r) is the sum of all terms from the third one to the last
one in (41).

We next showlimr→∞ supk≥r ̺(k, r) = 0. First by Lem-
mas 5.9, 5.10 and Remark 5.1,

∑∞
s=r γs

∑2
ℓ=1

∑nℓ

i=1 eiℓ(s) <

∞ and hencelimk→∞ γk
∑2

ℓ=1

∑nℓ

i=1 eiℓ(k) = 0. It follows
from 0 < ρ < 1 that for eachk,

k−1
∑

s=r

γsρ
k−s−1

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(s) ≤
∞
∑

s=r

γs

2
∑

ℓ=1

nℓ
∑

i=1

eiℓ(s) <∞.

Moreover, by Lemma 5.7,limr→∞ γrς(r) = 0, which im-
plies limr→∞ supk≥r+1

∑k−1
s=r ρ

k−s−1γsς(s) = 0 along with
∑k−1

s=r ρ
k−s−1γsς(s) ≤

1
1−ρ

sups≥r γsς(s). From the preced-
ing zero limit results, we havelimr→∞ supk≥r ̺(k, r) = 0.
Then from (42)

∑∞
s=r γs

∑2
ℓ=1

∑nℓ

i=1 ϑ
ℓ
i(s) < ∞. Clearly,

from (27)
∑2

ℓ=1

∑nℓ

i=1 ϑ
ℓ
i(s) = Υ(s) ≥ 0. By the similar

procedures to the proof of Theorem 4.1, we can show that
there is a subsequence{kl} such thatliml→∞ x̄(kl) = x∗,
liml→∞ ȳ(kl) = y∗.

Now let us showlimk→∞

∑2
ℓ=1

1
nℓ

1′ψℓ(k) = 0. First
it follows from limr→∞ supk≥r ̺(k, r) = 0 that, for any
ε > 0, there is a sufficiently largel0 such that when
l ≥ l0, supk≥kl

̺(k, kl) ≤ ε. Moreover, since the consensus is
achieved within the two subnetworks,l0 can be selected suffi-
ciently large such that|xi(kl0)−x

∗| ≤ ε and|yi(kl0)−y
∗| ≤ ε

for eachi. With (42), we have that, for eachk ≥ kl,

2
∑

ℓ=1

1

nℓ

1′ψℓ(k + 1) ≤
2

∑

ℓ=1

1

nℓ

1′Φℓ(k, kl)ψ
ℓ(kl)

+ sup
k≥kl

̺(k, kl) ≤ 2ε2 + ε,

which implies limk→∞

∑2
ℓ=1

1
nℓ

1′ψℓ(k) = 0. Therefore,
limk→∞ xi(k) = x∗, i ∈ V1 and limk→∞ yi(k) = y∗, i ∈ V2.
Thus, the proof is completed. �

E. Proof of Theorem 4.5

(i). In this case we design a dynamics for auxiliary states
αi = (αi

1, . . . , α
i
n1
)′ ∈ R

n1 for i ∈ V1 and βi =
(βi

1, . . . , β
i
n2
)′ ∈ R

n2 for i ∈ V2 to estimate the respective
desired stepsizes:

{

αi(k + 1) =
∑

j∈N 1
i
(k) aij(k)α

j(k), k ≥ 0,

βi(k + 1) =
∑

j∈N 2
i
(k) aij(k)β

j(k), k ≥ 0
(43)

with the initial valueαi
i(0) = 1, αi

j(0) = 0, ∀j 6= i; βi
i(0) = 1,

βi
j(0) = 0, ∀j 6= i.
Then for eachi andk, let α̂i

k = αi
i(k), β̂

i
k = βi

i(k). Clearly,
(10) holds.

First by A3 (i) and algorithm (43),αi
i(k) ≥ ηk > 0 and

βi
i(k) ≥ ηk > 0 for eachk, which guarantees that the stepsize

selection rule (9) is well-defined. Letφℓ = (φℓ1, . . . , φ
ℓ
nℓ
)′ be

the common left eigenvector ofAℓ(r), r ≥ 0 associated with
eigenvalue one, where

∑nℓ

i=1 φ
ℓ
i = 1. According to Lemma

5.6,limr→∞ Φℓ(r, k) = limr→∞Aℓ(r) · · ·Aℓ(k) = 1(φℓ)′ for
eachk. As a result,αi

k = φ1i , i = 1, ..., n1; βi
k = φ2i , i =

1, ..., n2 for all k.
Let θ(k) = ((α1(k))′, . . . , (αn1(k))′)′. From (43) we have

θ(k + 1) = (A1(k)⊗ In1)θ(k)

and thenlimk→∞ θ(k) = limk→∞(Φ1(k, 0) ⊗ In1)θ(0) =
(1(φ1)′ ⊗ In1)θ(0) = 1⊗ φ1. Therefore,limk→∞ αi

i(k) = φ1i
for i ∈ V1. Similarly, limk→∞ βi

i(k) = φ2i for i ∈ V2. Since
αi
k = φ1i and βi

k = φ2i for all k, (11) holds. Moreover,
the above convergence is achieved with a geometric rate by
Lemma 5.5. Without loss of generality, suppose|αi

i(k)−φ
1
i | ≤

C̄ρ̄k and |βi
i(k) − φ2i | ≤ C̄ρ̄k for someC̄ > 0, 0 < ρ̄ < 1,

and all i, k.
The only difference between the models in Theorem 4.4

and the current one is that the termsαi
k and βi

k (equal to
φ1i andφ2i in case (i), respectively) in stepsize selection rule
(7) are replaced witĥαi

k and β̂i
k (equal toαi

i(k) and βi
i(k),

respectively) in stepsize selection rule (9). We can find that all
lemmas involved in the proof of Theorem 4.4 still hold under
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the new stepsize selection rule (9). Moreover, all the analysis
is almost the same as that in Theorem 4.4 except that the new
stepsize selection rule will yield an error term (denoted as
̟ℓ(k, r)) on the right-hand side of (39). In fact,

̟ℓ(k, r) = 2

k−1
∑

s=r

γsΦ
ℓ(k, s+ 1)̟ℓ

sϑ
ℓ(s) + 2γk̟

ℓ
kϑ

ℓ(k),

where ̟1
s = diag

{

1
φ1
1

− 1
α1

1(s)
, . . . , 1

φ1
n1

− 1
α

n1
n1

(s)

}

,

̟2
s = diag

{

1
φ2
1
− 1

β1
1(s)

, . . . , 1
φ2
n2

− 1
β
n2
n2

(s)

}

. Moreover, since

lims→∞ αi
i(s) = φ1i , αi

i(s) ≥ φ1i /2 ≥ η(n1−1)T1/2,
∣

∣

∣

1

αi
i(s)

−
1

φ1i

∣

∣

∣ =
∣

∣

∣

αi
i(s)− φ1i
αi
i(s)φ

1
i

∣

∣

∣ ≤
2|αi

i(s)− φ1i |

(η(n1−1)T1)2
≤

2C̄ρ̄s

η2(n1−1)T1

for a sufficiently large s. Analogously,
∣

∣

1
βi
i
(s)

− 1
φ2
i

∣

∣ ≤
2C̄ρ̄s

η2(n2−1)T2
. Then for a sufficiently larger and anyk ≥ r + 1,

∣

∣

∣

2
∑

ℓ=1

1

nℓ

1′̟ℓ(k, r)
∣

∣

∣

≤ 4C̄Lε1

k−1
∑

s=r

γsρ̄
s max

i,j
{|xi(s)− x∗|, |yj(s)− y∗|}

≤ 4C̄Lε1ε2

k−1
∑

s=r

ρ̄s ≤ 4C̄Lε1ε2ρ̄
r/(1− ρ̄), (44)

where ε1 = max{1/η2(n1−1)T1 , 1/η2(n2−1)T2}, ε2 =
sups{γs maxi,j{|xi(s) − x∗|, |yj(s) − y∗|}} < ∞ due to
lims→∞ γs maxi,j{|xi(s)− x∗|, |yj(s)− y∗|} = 0 by Lemma
5.7. From the proof of Theorem 4.4, we can find that the
relation (44) makes all the arguments hold and then a Nash
equilibrium is achieved for case (i).

(ii). Here we design a dynamics for the auxiliary states
α(ν)i = (α

(ν)i
1 , . . . , α

(ν)i
n1 )′, ν = 0, ..., p1 − 1 for i ∈ V1 and

β(ν)i = (β
(ν)i
1 , . . . , β

(ν)i
n2 )′, ν = 0, ..., p2 − 1 for i ∈ V2 to

estimate the respective desired stepsizes:
{

α(ν)i(s+ 1) =
∑

j∈N 1
i
(s) aij(s)α

(ν)j(s),

β(ν)i(s+ 1) =
∑

j∈N 2
i
(s) aij(s)β

(ν)j(s),
s ≥ ν + 1

(45)
with the initial valueα(ν)i

i (ν+1) = 1, α(ν)i
j (ν+1) = 0, j 6= i;

β
(ν)i
i (ν + 1) = 1, β(ν)i

j (ν + 1) = 0, j 6= i.

Then, for eachr ≥ 0, let α̂i
rp1+ν

= α
(ν)i
i (rp1 + ν) for

i ∈ V1, ν = 0, ..., p1 − 1; let β̂i
rp2+ν = β

(ν)i
i (rp2 + ν) for

i ∈ V2, ν = 0, ..., p2 − 1.
Note thatA2 implies that the union graphs

⋃pℓ−1
s=0 GAs

ℓ
, ℓ =

1, 2 are strongly connected. Letφℓ(0) be the Perron vector
of limr→∞ Φℓ(rpℓ − 1, 0), i.e., limr→∞ Φℓ(rpℓ − 1, 0) =

limr→∞(Apℓ−1
ℓ · · ·A0

ℓ)
r = 1(φℓ(0))′. Then forν = 1, ..., pℓ−

1,

lim
r→∞

Φℓ(rpℓ + ν − 1, ν)

= lim
r→∞

(Aν−1
ℓ · · ·A0

ℓA
pℓ−1
ℓ · · ·Aν+1

ℓ Aν
ℓ )

r

= lim
r→∞

(Apℓ−1
ℓ · · ·A0

ℓ)
rApℓ−1

ℓ · · ·Aν+1
ℓ Aν

ℓ

= 1(φℓ(0))′Apℓ−1
ℓ · · ·Aν+1

ℓ Aν
ℓ := 1(φℓ(ν))′. (46)

Consequently, for eachr ≥ 0, αi
rp1+ν

= φ
1(ν+1)
i , ν =

0, 1, ..., p1 − 2, αi
rp1+p1−1 = φ

1(0)
i . Moreover, from (45) and

(46) we obtain that forν = 0, 1, ..., p1 − 1,

lim
r→∞

θν(r)

=
(

lim
r→∞

Φ1(r, ν + 1)⊗ In1

)

θν(ν + 1)

=
(

lim
r→∞

Φ1(r, 0)Ap1−1
ℓ · · ·Aν+1

ℓ ⊗ In1

)

θν(ν + 1)

=
(

1(φ1(ν+1))′ ⊗ In1

)

θν(ν + 1),

whereθν = ((α(ν)1)′, . . . , (α(ν)n1)′)′, φ1(p
1) = φ1(0). Then

limr→∞ α
(ν)i
i (r) = φ

1(ν+1)
i for i ∈ V1. Hence,

lim
r→∞

(

α̂i
rp1+ν − αi

rp1+ν

)

= 0, ν = 0, ..., p1 − 1.

Analogously, we havelimr→∞(β̂i
rp2+ν − βi

rp2+ν) = 0, ν =

0, ..., p2 − 1. Moreover, the above convergence is achieved
with a geometric rate. Similar to the proof of case (i), we can
prove case (ii). Thus, the conclusion follows. �

VI. N UMERICAL EXAMPLES

In this section, we provide examples to illustrate the ob-
tained results in both the balanced and unbalanced graph cases.

Consider a network of five agents, wheren1 = 3, n2 =
2,m1 = m2 = 1, X = Y = [−5, 5], f1(x, y) = x2 − (20 −
x2)(y−1)2, f2(x, y) = |x−1|−|y|, f3(x, y) = (x−1)4−2y2

and g1(x, y) = (x − 1)4 − |y| − 5
4y

2 − 1
2 (20 − x2)(y − 1)2,

g2(x, y) = x2 + |x − 1| − 3
4y

2 − 1
2 (20− x2)(y − 1)2. Notice

that
∑3

i=1 fi =
∑2

i=1 gi and all objective functions are strictly
convex-concave on[−5, 5]× [−5, 5]. The unique saddle point
of the sum objective functiong1 + g2 on [−5, 5]× [−5, 5] is
(0.6102, 0.8844).

Take initial conditionsx1(0) = 2, x2(0) = −0.5, x3(0) =
−1.5 andy1(0) = 1, y2(0) = 0.5. When x̂2(k) = 1, we take
q12(k) = 1 ∈ ∂xf2(1, x̆2(k)) = [−1, 1]; when ŷ1(k) = 0,
we takeq21(k) = −1 + (20 − y̆21(k)) ∈ ∂yg1(y̆1(k), 0) =
{

r+(20− y̆21(k))|−1 ≤ r ≤ 1
}

. Let γk = 1/(k+50), k ≥ 0,
which satisfiesA5.

We discuss three examples. The first example is given for
verifying the convergence of the proposed algorithm with
homogeneous stepsizes in the case of weight-balanced graphs,
while the second one is for the convergence with the stepsizes
provided in the existence theorem in the case of weight-
unbalanced graphs. The third example demonstrates the effi-
ciency of the proposed adaptive learning strategy for periodical
switching unbalanced graphs.

Example 6.1:The communication graph is switching peri-
odically over the two graphsGe,G0 given in Fig. 2, where
G(2k) = Ge, G(2k + 1) = Go, k ≥ 0. Denote byGe

1 and
Ge
2 the two subgraphs ofGe describing the communications

within the two subnetworks. Similarly, the subgraphs ofGo

are denoted asGo
1 andGo

2 . Here the adjacency matrices ofGe
1 ,

Ge
2 andGo

1 are as follows:

A1(2k) =





0.6 0.4 0
0.4 0.6 0
0 0 1



 , A2(2k) =

(

0.9 0.1
0.1 0.9

)

,
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Figure 2: Two possible communication graphs in Example 6.1

A1(2k + 1) =





1 0 0
0 0.7 0.3
0 0.3 0.7



 .

Clearly, with the above adjacency matrices, the three di-
graphsGe

1 , Ge
2 and Go

1 are weight-balanced. Let the stepsize
be αi,k = βj,k = γk for all i, j and k ≥ 0. Fig. 3
shows that the agents converge to the unique Nash equilibrium
(x∗, y∗) = (0.6102, 0.8844).

0 20 40 60 80 100 120

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

xi
(k

),
yi

(k
)

0.6102

0.8844

Figure 3: The Nash equilibrium is achieved (i.e.,xi → x∗ and
yi → y∗) for the time-varying weight-balanced digraphs with
homogeneous stepsizes.

Example 6.2:Consider the same switching graphs given
in Example 6.1 except that a new arc(2, 3) is added inGe

1 .
The new graph is still denoted asGe

1 for simplicity. Here the
adjacency matrices of the three digraphsGe

1 , Ge
2 and Go

1 are
given by

A1(2k) =





0.8 0.2 0
0.7 0.3 0
0 0.6 0.4



 , A2(2k) =

(

0.9 0.1
0.8 0.2

)

,

A1(2k + 1) =





1 0 0
0 0.3 0.7
0 0.4 0.6



 .

In this case, Ge
1 , Ge

2 and Go
1 are weight-unbalanced

with (α1
2k, α

2
2k, α

3
2k) = (0.5336, 0.1525, 0.3139),

(α1
2k+1, α

2
2k+1, α

3
2k+1) = (0.5336, 0.3408, 0.1256) and

(β1
k, β

2
k) = (0.8889, 0.1111), ∀k ≥ 0. We design the

heterogeneous stepsizes as follows:αi,2k = 1
αi

1
γ2k, αi,2k+1 =

1
αi

0
γ2k+1, i = 1, 2, 3; βi,k = 1

βi
0
γk, i = 1, 2. Fig. 4 shows

that the agents converge to the unique Nash equilibrium with
those heterogeneous stepsizes.

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

k

xi
(k

),
yi

(k
)

0.6102

0.8844

Figure 4: The Nash equilibrium is achieved for weight-
unbalanced digraphs with heterogenous stepsizes.

Example 6.3:Here we verify the result obtained in Theorem
4.5 (ii). Consider Example 6.2, wherep1 = p2 = 2. Design
adaptive stepsize algorithms: forν = 0, 1,

θν(r) = (A1(r) · · ·A1(ν + 1)⊗ I3)θ
ν(ν + 1), r ≥ ν + 1,

whereθν(r) = ((α(ν)1(r))′, (α(ν)2(r))′, (α(ν)3(r))′)′, θν(ν+
1) = (1, 0, 0, 0, 1, 0, 0, 0, 1)′; for ν = 0, 1,

ϑν(r) = (A2(r) · · ·A2(ν + 1)⊗ I2)ϑ
ν(ν + 1), r ≥ ν + 1,

where ϑν(r) = ((β(ν)1(r))′, (β(ν)2(r))′)′, θν(ν + 1) =
(1, 0, 0, 1)′.

Let α̂i
2k = α

(0)i
i (2k), α̂i

2k+1 = α
(1)i
i (2k + 1), β̂i

2k =

β
(0)i
i (2k), β̂i

2k+1 = β
(1)i
i (2k + 1) and

αi,2k =
1

α̂i
2k

γ2k, αi,2k+1 =
1

α̂i
2k+1

γ2k+1, i = 1, 2, 3,

βi,2k =
1

β̂i
2k

γ2k, βi,2k+1 =
1

β̂i
2k+1

γ2k+1, i = 1, 2.

Fig. 5 shows that the agents converge to the unique Nash
equilibrium under the above designed adaptive stepsizes.
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Figure 5: The Nash equilibrium is achieved for weight-
unbalanced digraphs by adaptive stepsizes.
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VII. C ONCLUSIONS

A subgradient-based distributed algorithm was proposed to
solve a Nash equilibrium computation problem as a zero-
sum game with switching communication graphs. Sufficient
conditions were provided to achieve a Nash equilibrium for
switching weight-balanced digraphs by an algorithm with ho-
mogenous stepsizes. In the case of weight-unbalanced graphs,
it was demonstrated that the algorithm with homogeneous
stepsizes might fail to reach a Nash equilibrium. Then the
existence of heterogeneous stepsizes to achieve a Nash equilib-
rium was established. Furthermore, adaptive algorithms were
designed to update the hoterogeneous stepsizes for the Nash
equilibrium computation in two special cases.
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[42] A. Nedić and A. Olshevsky, “Stochastic gradient-pushfor strongly
convex functions on time-varying directed graphs,” Available at
http://arxiv.org/abs/1406.2075, 2014.

http://arxiv.org/abs/1207.5839
http://arxiv.org/abs/1406.2075

	I Introduction
	II Preliminaries
	II-A Graph Theory
	II-B Convex Analysis
	II-C Saddle Point and Nash Equilibrium

	III Distributed Nash Equilibrium Computation
	IV Main Results
	IV-A Weight-balanced Graphs
	IV-B Homogenous Stepsizes vs. Unbalanced Graphs
	IV-C Weight-unbalanced Graphs

	V Proofs
	V-A Supporting Lemmas
	V-B Proof of Theorem 4.1
	V-C Proof of Theorem 4.3
	V-D Proof of Theorem 4.4
	V-E Proof of Theorem 4.5

	VI Numerical Examples
	VII Conclusions
	References

