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Consensus-based control for a network of

diffusion PDEs with boundary local interaction

Alessandro Pilloni, Alessandro Pisano, Yury Orlov and ElioUsai

Abstract

In this paper the problem of driving the state of a network of identical agents, modeled by boundary-

controlled heat equations, towards a common steady-state profile is addressed. Decentralized consensus

protocols are proposed to address two distinct problems. The first problem is that of steering the states

of all agents towards the same constant steady-state profilewhich corresponds to the spatial average

of the agents initial condition. A linear local interactionrule addressing this requirement is given.

The second problem deals with the case where the controlled boundaries of the agents dynamics

are corrupted by additive persistent disturbances. To achieve synchronization between agents, while

completely rejecting the effect of the boundary disturbances, a nonlinear sliding-mode based consensus

protocol is proposed. Performance of the proposed local interaction rules are analyzed by applying a

Lyapunov-based approach. Simulation results are presented to support the effectiveness of the proposed

algorithms.

Index Terms

Average consensus, Synchronization, Heat equation, Boundary control, Sliding-mode control.

I. INTRODUCTION

The problem of understanding when individual actions of interacting dynamical agents give

rise to a coordinated collective behavior has received considerable attention in many research

A. Pilloni, A. Pisano and E. Usai are with the Department of Electrical and Electronic Engineering (DIEE), University of

Cagliari, Cagliari, 09123, Italy.

Y. Orlov is with CICESE Research Center, Electronics and Telecommunication Department, Ensenada, Mexico.

E-mail addresses:{alessandro.pilloni,pisano,eusai} @diee.unica.it, yorlov@cicese.mx.

October 8, 2018 DRAFT

http://arxiv.org/abs/1509.06755v1


2

fields. Examples can be found, e.g., in system biology [1], sensors networks [2], robotics [3],

etc.

In the systems and control literature, the usual mathematical setup underlying this class of

problems refers to a group of agents, each one described by a dynamical system with one or more

inputs, along with a communication network. Agents connected by a communication link are said

to beneighbors, and can exchange information in either bidirectional or unidirectional manner.

This raises the problem of designingdecentralizedlocal interaction policies (where each agent

can only access neighbors information) in order to orchestrate the global coordinated behavior

of the network. Within this framework, the consensus problem seeks to enforce agreement

amongst the states of networked dynamical systems by penalizing their local disagreement with

the neighboring nodes in a dynamic manner. The reader shouldrefer, e.g., to [4], [5] for tutorial

overviews of consensus-based control in the finite-dimensional setup.

There are deep connections between the consensus problem and certain Partial Differential

Equations (PDEs), the diffusion equation in particular [6]. For instance, discretizing in the spatial

domain the one dimensional diffusion equation yields a high-dimensional system of networked

first-order continuous-time integrators interacting through a linear Laplacian-based consensus

protocol. More generally, the application of finite-difference approximations of PDEs results

in the spatial variables being mapped into the agent indexes, and the spatial derivatives being

transformed into links between neighbors. Owing on the deepconnections between the consensus

problem and certain Partial Differential Equations (PDEs)(see e.g. [6]), some authors (see

e.g. [7], [8]) have exploited (discretized forms of) several distributed parameter systems, such

as advection and diffusion-advection equations, to derivemore effective consensus protocols

with improved convergence features. In spite of this intimate relationship between consensus

algorithms and certain discretized PDEs, the consensus problem for a network of agents modeled

as distributed parameter systems has not received yet the same level of attention than its finite-

dimensional counterpart.

The following papers [9], [10], [11], [12], [13], [14], [15], [16], which have investigated

different aspects of consensus and synchronization in the distributed parameter systems setting,

are worth to mention. In [9], [10], application of consensusto controlling mobile actuators in

diffusion processes is discussed. The problem of designingconsensus filters for state estimation

in order to effectively integrate local information comingfrom a distributed spatial domain has
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been widely addressed [11], [13], [14], both in the non-adaptive and adaptive setting. In [17],

exact synchronization was achieved for a set of coupled waveprocesses, each one equipped with

a boundary control input.

In [18], [19], the authors present consensus algorithms in the framework of Multi-Agent

Systems (MASs) modeled by continuous-time Partial difference Equations (PdEs) on graphs.

Conceptually, this class of PdEs mimics PDEs in spatial domains having a graph structure, and

many mathematical tools of functional analysis for studying PdEs are completely analogous to

the ones developed for PDEs. In [20], [21], PdE-based model reference adaptive control laws

are designed for a network of mobile agents to track desired deployment trajectories .

Within a related framework, the recent work [15] studies the3D agents deployment problem

by PDE techniques, treating the agents as a continuum and modeling their interaction through a

complex-valued diffusion-reaction PDE in a 2D spatial domain. An explicit backstepping-based

local boundary control is designed to stabilize a variety ofopen-loop unstable deployment mani-

folds. [22] presents a feedforward controller for multi-agent deployment by using a flatness-based

motion planning method for PDEs. Reaction-advection-diffusion PDEs are used in [23] along

with a backstepping design for leader-enabled agents deployment onto planar curves. Similarly,

hyperbolic PDE models are used to design decentralized control laws for large vehicular platoons

[24] and to analyze networks of oscillators [25].

In [16], synchronization and consensus problems have been studied for a network of agents

modeled by a class of parabolic PDEs and communicating through undirected communication

topologies. In [16], which appears to be more closely related to the present investigation among

the existing references, some noticeable results are attained. First, the case of all-to-all communi-

cation between a set of identical agents is investigated andthen the more realistic communication

topology where each agents can only communicate with a limited set of neighboring agents

is studied. In addition, a general abstract formulation of the underlying agents dynamics is

introduced, and linear consensus controllers are presented to ensure agents agreement with a

guaranteed convergence rate. It should be noted however that the common steady-state profile of

the agents is not established, and furthermore no perturbations are allowed to affect the agents

dynamics.

The present work aims to address consensus and synchronization problems for a network of

dynamical agents, communicating through an undirected andconnected static topology, provided
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that agents dynamics are governed by a class of diffusion PDEs with Neumann-type boundary

actuation. The contribution of the paper is twofold. Firstly, a linear local interaction strategy

whose implementation requires collocated boundary sensing only is proposed. With this strategy,

it is shown that the agents states eventually converge “pointwise-in-space” towards a common

constant distribution whose value is given by the spatial average of the agents’ initial conditions.

Thus, the well-known average consensus algorithm is generalized from a network of integrators

to the infinite-dimensional setting of networked heat processes.

Secondly, the more complex scenario where the agents dynamics are perturbed by a class of

boundary disturbances, is considered. Based on the second-order sliding-mode control approach

[26], a nonlinear protocol is developed to extend the results of [27] from a network of double

integrators to the infinite-dimensional framework of networked PDEs. A dynamic input extension,

similar to that presented in [28] for stabilizing a unique perturbed diffusion PDE, results in

continuous boundary control actions thereby alleviating chattering and yielding another step

beyond [27]. It is demonstrated that the proposed nonlinearlocal interaction protocol, which only

employs sensors located at the controlled boundaries, enforces the asymptotic synchronization

between the agents states while rejecting the persistent matching boundary perturbations.

The motivation to the present investigation comes, e.g., from networked systems of perturbed

heat equations that can occur in modeling and controlling industrial furnaces. Heating of certain

industrial furnaces (see, e.g., [29, Sect. 1.A]) is made through electrically heated bars aiming

to enforce a uniform temperature distribution inside the furnace. Considering these bars as a

network of heaters and applying collaborative consensus-based synthesis might be useful in

improving the overall performance of the furnaces. Exploiting the present results in specific

application domains certainly requires additional work which is beyond the scope of the present

paper.

The paper is organized as follows. In Section II some mathematical preliminaries and useful

properties and definitions are recalled. The linear averageconsensus algorithm is presented in

Section III whereas the nonlinear algorithm, providing robust synchronization in the presence of

boundary perturbations, is described in Section IV. Simulation results, supporting the proposed

designs, are given in Section V, and conclusions and perspectives for next investigations are

collected in the final Section VI.
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II. M ATHEMATICAL PRELIMINARIES AND NOTATIONS

A. Useful definitions and properties

The lp-norm and thel∞-norm of the real-valued N-dimensional vectorx= [x1, . . . ,xN]
T ∈ R

N

are defined as‖x‖p =
(

∑N
i=1 |xi |p

)1/p
, 1≤ p< ∞ and‖x‖∞ = max1≤i≤N {|x1|, |x2|, . . . , |xN|}. For

the l1- and l2- norms, the following inequality holds [30]:

‖x‖2 ≤ ‖x‖1 ≤
√

N ‖x‖2. (1)

Let p,q≥ 1 be given, such that 1/p+1/q= 1. Then the next chain of inequalities is in force

[30]
∣
∣xTy

∣
∣≤ ‖x‖p‖y‖q ≤

‖x‖p
p

p
+

‖y‖q
q

q
. (2)

Operator sign(v), v∈ R, stands for the multi-valued function

sign(v) ∈







1 if v> 0

[−1,1] if v= 0

−1 if v< 0

, (3)

whereas Sign(x) stands for the vector Sign(x) = [sign(x1) ,sign(x2) , . . . ,sign(xN)]
T .

The identity matrix of dimensionN is denoted asIN×N ∈R
N×N, whereas 1N = [1,1, . . . ,1]T ∈

R
N and 0N = [0,0, . . . ,0]T ∈ R

N stand for the all-ones and all-zeros vectors.

Hr(0,1), with r = 0,1,2, . . . , denotes the Sobolev space of absolutely continuous scalarfunc-

tions z(ς) on the domain(0,1), with square integrable derivativesz(k)(ς) up to orderℓ and the

Hr -norm ‖z(·)‖Hr(0,1) =

√
∫ 1

0 ∑r
k=0

[
z(k)(ξ )

]2
dξ .

Then, the notations

Hr,N(0,1) =
Hr(0,1)×Hr(0,1)× . . .×Hr(0,1)
︸ ︷︷ ︸

N times

(4)

and

‖w(·)‖Hr,N(0,1) =

√
N

∑
i=1

‖wi(·)‖2
Hr(0,1) (5)

for the corresponding norm of the vectorw(ς) = [w1(ς), . . . ,wN(ς)]T ∈ Hr,N(0,1) are utilized.

The simplified notation‖z(·)‖Hr = ‖z(·)‖Hr(0,1), ‖w(·)‖Hr,N = ‖w(·)‖Hr,N(0,1) will be adopted

throughout.

October 8, 2018 DRAFT
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For later use, an instrumental lemma is further presented:

Lemma 1: Let b(ς) ∈ H1,N(0,1). Then, the following inequality holds:

‖b(·)‖2
H0,N ≤ 2

(
‖b(i)‖2

2+‖bς (·)‖2
H0,N

)
, i = 0,1

Proof of Lemma 1: It was proven [28, Lemma 1] that, with reference to a generic scalar function

z(ς) ∈ H1(0,1), the next estimate holds:

‖z(·)‖2
H0 ≤ 2(z(i)2+‖zς (·)‖2

H0), i = 0,1. (6)

Now let b(ς) = [b1(ς),b2(ς), . . . ,bN(ς)]T and bς (ς) = [bς1(ς),bς2(ς), . . . ,bςN(ς)]T where

bk(ς) ∈ H1(0,1) ∀k = 1,2, . . . ,N. By applying definition (5), the following chain of relations

is derived by virtue of (6) specified withz(·) = bk(·):

‖b(·)‖2
H0,N =

N

∑
j=1

‖b j(·)‖2
H0 ≤ 2

N

∑
j=1

(
b j(i)

2+‖bς j(·)‖2
H0

)
= 2

(
‖b(i)‖2

2+‖bς (·)‖2
H0,N

)
, i = 0,1.

(7)

Lemma 1 is proved. �

B. Algebraic Graph Theory definitions and properties

We consider a set ofN dynamical agents along with an undirected static communication topol-

ogy represented by the graphG(V,E), whereV = {1, . . . ,N} is the set of vertices representing

agents andE ⊆ {V×V} is the set of edges representing the information flow among the agents.

Ni = { j ∈V : (i, j) ∈ E} denotes the set of neighbors of agenti. The topological structure ofG

is encoded in the so-calledLaplacian MatrixL= [ℓi j ] ∈ R
N×N where

ℓi j :=







|Ni | if i = j

−1 if (i, j) ∈ E

0 otherwise

(8)

For undirected connected graphs, the matrixL is symmetric and positive semi-definite [5], the

properties

L1N =LT1N = 0N (9)

hold by construction, and the corresponding eigenvaluesλi , i ∈V, are such that 0= λ1 < λ2 ≤
. . . ≤ λN. The smallest nonzero eigenvalueλ2 is known asalgebraic connectivityof G. Next

lemma presents useful properties of vector norms involvingthe Laplacian matrix of the graph.
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Lemma 2: For an undirected connected graph with Laplacian matrixL, and with reference

to any vector x∈ R
N such that1T

Nx= 0, the next relations are in force

λN||x||22 ≥ xTLx≥ λ2||x||22 (10)

λ 2
N||x||22 ≥ ‖Lx‖2

2 ≥ λ 2
2 ||x||22 (11)

‖Lx‖1 ≥ λ2‖x‖2 (12)

Proof of Lemma 2: The left inequality in (10) comes from well-known properties of quadratic

norms. The right inequality in (10) was proven in [5, Th. 3]. To derive (11), observe that‖Lx‖2=√
xTL2x. The eigenvalues

{
0,λ 2

2 ,λ
2
3 , . . . ,λ

2
N

}
of L2 are straightforwardly derived by squaring

those ofL. Thus, the left inequality of (11) follows from well-known properties of quadratic

norms. Additionally,L2 is symmetric and such thatL21N = 0N, thus 1N is the eigenvector

associated to the zero eigenvalue ofL2. Therefore, the right inequality of (11) follows from the

Courant-Fisher Theorem that can be found, e.g., in [31]. To reproduce (12), it suffices to conclude

from (1) that ‖Lx‖1 ≥ ‖Lx‖2 and then, by applying (11), to derive that‖Lx‖2 ≥ λ2||x||2.
Lemma 2 is proved. �

III. AVERAGE CONSENSUS FOR NETWORKED HEAT PROCESSES

A network of N dynamical agents whose communication topology is described by an undi-

rected connected static graphG(V,E) is under study. Thei-th agent has stateQi(ς , t), i ∈V, with

the spatial variableς ∈ (0,1) and time variablet ≥0. LetQ(ς , t)=
[

Q1(ς , t),Q2(ς , t), . . .,QN(ς , t)
]T

be the vector collecting the states of all agents, and let thedynamics ofQ(ς , t) be governed by

the vector heat equation

Qt(ς , t) = θ ·Qςς(ς , t), (13)

The scalar parameterθ ∈ R
+ is a positive unknown coefficient, called “diffusivity parameter”,

which is supposed to be identical for all agents. Throughout, Neumann-type Boundary Conditions

(BCs) of the form

Qς (0, t) = 0, Qς (1, t) =U(t), (14)

are considered, whereU(t)=
[

u1(t),u2(t), . . .,uN(t)
]T

∈R
N is a modifiable source term (bound-

ary vector control input).

October 8, 2018 DRAFT
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The Initial Conditions (ICs) are

Q(ς ,0) = Q0(ς) (15)

To deal with classical solutions of class H2,N(0,1), the admissible initial functions are specified

by the next assumption.

Assumption 1: The initial function Q0(ς) in the ICs(15) is assumed to be of classH2,N(0,1)

and compatible to the BCs Q0ς (0) = 0 and Q0ς (1) =U(0).

The objective of the present section is to introduce a linearlocal interaction strategy providing

closed-loop stability and the point-wise consensus condition

lim
t→∞

Q(ς , t) = Q∗ ·1N, ∀ς ∈ (0,1), (16)

where the constant

Q∗ =
1
N

∫ 1

0
1T

NQ0(ς)dς (17)

corresponds to the spatial averaging of the agents initial conditions.

To achieve the control goal, the local interaction protocol

U (t) =−LQ(1, t) (18)

is proposed. Under the assumptions, imposed on the ICs and BCs, the well-posedness of the

system in question is straightforwardly verified by applying [32, Theorem 2.1.10] to the classical

solutions of the homogeneous linear Boundary-Value Problem (BVP) (13)-(15), (18).

We are now in a position to state the first main result of this paper.

Theorem 1: Consider the multi-agent system (13)-(15), with Assumption 1, communicating

through an undirected connected static graph with Laplacian matrixL. Let it be subject to the

boundary local interaction control strategy (18). Then, the closed-loop system is stable in the

spaceH2(0,1) and the average consensus condition (16)-(17) is achieved. �

Proof of Theorem 1: The stability of the closed-loop BVP is established by involving the

Lyapunov function

V1(t) =
1
2

∫ 1

0
QT(ξ , t)Q(ξ , t)dξ (19)

October 8, 2018 DRAFT
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whose time derivative, estimated along the solutions of theBVP (13)-(15), (18), is non-positive

definite:

V̇1(t) = θ
∫ 1

0
QT(ξ , t)Qξξ (ξ , t)dξ =−θ‖Qς (·, t)‖2

H0,N −θQ(1, t)TLQ(1, t)≤−θ‖Qς (·, t)‖2
H0,N.

(20)

To get (20) integration by parts, and BCs (14),(18), and the semi-definite positiveness of the

Laplacian matrixL were utilized. Relation (20) ensures that the system is stable in the space

H0(0,1). Since the BVP is linear, and the ICs (15) are of classH2(0,1), the stability remains

in force in the spaceH2(0,1).

Next, let us note that the eigenspace of the closed-loop BVP (13)-(15), (18), associated with

the zero eigenvalue, is one dimensional and it is spanned by the uniform distributionQ(ς) = 1N.

In turn, all the remaining eigenvalues are strictly negative because the BVP (13)-(15), (18) has

been shown to be stable.

Furthermore, one observes that the projection

1
N

∫ 1

0
1T

NQ(ξ , t)dξ1N (21)

of the solution of the closed-loop system to the eigenspace,associated to the zero eigenvalue,

remains constant, whereas all the remaining modes tend to zero because the other eigenvalues are

strictly negative. It follows that the stateQ(ς , t) eventually converges point-wise to the constant

spatial distribution

1
N

∫ 1

0
1T

NQ0(ξ )dξ1N = Q∗ ·1N (22)

thereby establishing relations (16)-(17). This completesthe proof of Theorem 1. �.

IV. ROBUST SYNCHRONIZATION FOR NETWORKED HEAT PROCESSES WITH PERTURBATIONS

A perturbed version of the BVP (13)-(15), with the only difference in the BCs (14) which

now take the perturbed form

Qς (0, t) = 0, Qς (1, t) =U(t)+Ψ(t), (23)

is under investigation, whereΨ(t) =
[

ψ1(t),ψ2(t), . . . ,ψN(t)
]T

∈ R
N represents an uncertain,

sufficiently smooth, persistent disturbance.

The class of admissible ICs and disturbances is specified by the next assumption.

October 8, 2018 DRAFT
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Assumption 2: The initial function Q0(ς) is assumed to be of classH4,N(0,1) and compatible

to the perturbed BCs Q0ς (0) = 0, Q0ς (1) = Ψ(0), whereas the disturbanceΨ(t) is supposed to

be twice continuously differentiable, and there exists ana-priori known constantΠ > 0 such that

∥
∥Ψ̇(t)

∥
∥

∞ ≤ Π. (24)

Note that for technical reasons (see Remark 1 below) higher degree of smoothness of the ICs

is required in the present perturbed scenario. The objective of the present section is to develop

a local interaction strategy providing the attainment of the synchronization condition

lim
t→∞

∣
∣Qi(ς , t)−Q j(ς , t)

∣
∣= 0, ∀ i, j ∈V,∀ς ∈ (0,1), (25)

despite the presence of the uncertain boundary disturbanceΨ(t) of arbitrary shape and possibly

unbounded in magnitude.

To achieve the control goal, the following dynamic local interaction protocol

U̇ (t) = U̇1(t)+U̇2(t) (26)

is proposed, with

U̇1(t) =−aSign(LQ(1, t))−bSign(LQt(1, t)) (27)

U̇2(t) =−W1 ·LQ(1, t)−W2 ·LQt(1, t)−W3 ·Qt(1, t) (28)

U1(0) =U2(0) = 0N. (29)

The initial valuesU1(0),U2(0) are all set to zero to verify the compatibility1 Q0ς (1) =U(0)+

Ψ(0) to the BCs (23) atς = 1. In (27)-(28),a, b, W1, W2 andW3 are nonnegative tuning constants

subject to certain design inequalities that will be constructively derived in the sequel.

It is worth to note that the discontinuities affect the time derivative of the boundary control

vector, whereas the boundary control signal is smoothed by passing these discontinuities through

an integrator, thereby alleviating chattering.

Remark 1: Although the state derivative is normally not permitted to be employed in the

synthesis (as it generally induces algebraic loops), its use becomes acceptable when dynamic

input extension is performed, what is indeed the case of the present dynamic synthesis where

the input signal passes through an integrator. By virtue of this, the system state is augmented by

1See, e.g., [33] for the need of certain compatibility conditions in the dynamic boundary control synthesis.
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Qt being viewed as a component of the augmented state vector(Q,Qt) ∈ H4,N(0,1)×H2,N(0,1)

which is particularly why the initial functionQ0(ς) was assumed to be of class H4,N(0,1). �

The well-posedness of the underlying closed-loop system, under the assumptions, imposed

on the ICs and BCs, is actually verifiable in accordance with [32, Theorem 3.3.3] by taking

into account that the dynamic local interaction rule (26)-(28) is twice piece-wise continuously

differentiable along the state trajectories. Thus, in the remainder, it is assumed the following:

Assumption 3: The closed loop networked system(13)-(15), (23), (26)-(29) possesses a

unique Filippov solution Q(·, t)∈ H4,N(0,1) and its time derivative Z(·, t) = Qt(·, t)∈ H2,N(0,1)

verifies the auxiliary boundary-value problem

Zt(ς , t) = θZςς (ς , t) (30)

Zς (0, t) = 0, Zς (1, t) = U̇(t)+ Ψ̇(t), (31)

Z(ς ,0) = θQ0ςς (ς) ∈ H2,N(0,1). (32)

Extension of the Filippov solution concept towards the infinite dimensional setting can be

found, e.g., in [34]. Notice that (30)-(31) are formally obtained by differentiating (13)-(15),

(23), in the time variablet, whereas the IC (32) is straightforwardly derived from (13)and (15).

It is customary [5] to formalize the achievement of consensus through the annihilation of

appropriate (N-dimensional) “disagreement” vectors. Generalizing [16], the following distributed

disagreement vectors

δ1(·, t) = [δ11(·, t), . . .,δ1N(·, t)]T =LC Q(·, t), (33)

δ2(·, t) = [δ21(·, t), . . .,δ2N(·, t)]T = δ1t(·, t) =LC Qt(·, t), (34)

LC =

(

IN×N − 1N ·1T
N

N

)

, (35)

will be considered in the present investigation for analysis purposes. The next properties hold

due to (9) and (33)-(35)

1T
Nδ1(ς , t) = 1T

Nδ2(ς , t) = 0, ∀ς ∈ [0,1], (36)

LLC =LCL=L (37)

October 8, 2018 DRAFT
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thereby implying that

Lδ1(ς , t) =LLCQ(ς , t) =LQ(ς , t), (38)

Lδ2(ς , t) =LLCQt(ς , t) =LQt(ς , t) (39)

The BVP governing the dynamics of the disagreement vectors now reads as

δ1t(ς , t) = δ2(ς , t),

δ2t(ς , t) = θδ2ςς (ς , t),
(40)

δ2ς (0, t) = 0

δ2ς (1, t) =LC

[
U̇(t)+ Ψ̇(t)

] (41)

δ1(ς ,0) =LCQ0(ς) ∈ H4,N(0,1)

δ2(ς ,0) = θLCQ0ςς (ς) ∈ H2,N(0,1)
(42)

Presenting the second main result of this paper is preceded by the following instrumental

lemma.

Lemma 3: The functional

V(δ1,δ2) = θa‖Lδ1(1, t)‖1+
1
2

θW1‖Lδ1(1, t)‖2
2+

1
2

∫ 1

0
δ2(ξ , t)TLδ2(ξ , t)dξ (43)

being computed on the solutions (δ1(·, t),δ2(·, t)) of the BVP (40)-(42), is equivalent to the

H2,N(0,1)×H0,N(0,1) norm of these solutions in the sense that

η1
(
‖δ1(·, t)‖2

H2,N +‖δ2(·, t)‖2
H0,N

)
≤V(δ1,δ2)≤ η2

(

‖δ1(·, t)‖2
H2,N +‖δ2(·, t)‖2

H0,N +
N

∑
i=1

‖δ1,i(·, t)‖H2

)

(44)

for an arbitrary solution (δ1(·, t),δ2(·, t)) of (40)-(42), for allt ≥0, and for some positive constants

η1 andη2.

Proof of Lemma 3: It is preliminarily demonstrated that the condition

α1 ·Ṽ(δ1,δ2)≤V(δ1,δ2)≤ α2 ·Ṽ(δ1,δ2) (45)

holds, whereα1 andα2 are positive constants and

Ṽ(δ1,δ2) = θa‖δ1(1, t)‖1+
1
2

θW1‖δ1(1, t)‖2
2+

1
2
‖δ2(·, t)‖2

H0,N.
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By considering (12) and the second inequality of (1), both specialized withx= δ1(1, t), one

derives
λ2√
N
· ‖δ1(1, t)‖1 ≤ ‖Lδ1(1, t)‖1 ≤ ‖L‖1‖δ1(1, t)‖1 (46)

Specializing (11) withx= δ1(1, t), and (10) withx= δ2(ς , t), one obtains

λ 2
2‖δ1(1, t)‖2

2 ≤ ‖Lδ1(1, t)‖2
2 ≤ λ 2

N‖δ1(1, t)‖2
2 (47)

λ2‖δ2(ς , t)‖2
2 ≤ δ2(ς , t)TLδ2(ς , t)≤ λN‖δ2(ς , t)‖2

2 (48)

Noticing that, by construction,
∫ 1

0 ‖δ2(ξ , t)‖2
2dξ = ‖δ2(·, t)‖2

H0,N, the next estimate is derived

after spatial integration of all terms in (48)

λ2‖δ2(·, t)‖2
H0,N ≤

∫ 1

0
δ2(ξ , t)TLδ2(ξ , t)dξ ≤ λN‖δ2(·, t)‖2

H0,N. (49)

By (46)-(47) and (49), relation (45) is derived with the positive constantsα1=min{λ2/
√

N,λ 2
2}

andα2 = max{‖L‖1,λ 2
N,λN}. Furthermore, by (1) and (5), functionalṼ(δ1,δ2) can be rewritten

as follows:

Ṽ(δ1,δ2) =
N

∑
i=1

Ṽi(δ1i ,δ2i) (50)

where

Ṽi = θa|δ1i(1, t)|+
1
2

θW1δ1i(1, t)
2+

1
2
‖δ2i(·, t)‖2

H0.

From that, by applying [28, Lemma 2], the next estimate

β1
(
‖δ1i(·, t)‖2

H2 +‖δ2i(·, t)‖2
H0

)
≤ Ṽi ≤ β2

(
‖δ1i(·, t)‖2

H2+‖δ2i(·, t)‖2
H0 +‖δ1i(·, t)‖H2

)
(51)

holds for some positive constantsβ1 andβ2. Then, by combining (50) and (51), and by applying

definition (5), it results

β1
(
‖δ1(·, t)‖2

H2,N +‖δ2(·, t)‖2
H0,N

)
≤ Ṽ(δ1,δ2)≤ β2

(

‖δ1(·, t)‖2
H2,N +‖δ2(·, t)‖2

H0,N +
N

∑
i=1

‖δ1i(·, t)‖H2

)

(52)

Finally, relation (44), being specified with the constantsη1 = α1β1 andη2 = α2β2, is straight-

forwardly derived by combining (45), (50) and (52). Lemma 3 is proved. �

Next theorem presents the second main result of this work.
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Theorem 2: Consider the perturbed multi-agent system (13), (15), (23), with Assumptions

2 and 3, communicating through an undirected connected static graph with Laplacian matrix

L. Let the boundary local interaction strategy (26)-(28) be applied, with the tuning parameters

selected according to

a> b+Π, b> Π, W1 > 0, W2 > 0, W3 > 0 (53)

Then, condition (25) is achieved. �

Proof of Theorem 2: See Appendix for the proof.

Remark 2: In contrast to the average consensus result, outlined in Section II, in this case the

steady-state common profile reached by the agents cannot be predicteda-priori and it turns out

to depend not only on the agents initial conditions but also on the actual controller parameters

and disturbance vector. For this reason, the term “robust synchronization” has been adopted in

the present scenario to describe the underlying result, as opposed to the word ”consensus” that

mostly refers, in the literature, to situations where the steady state behaviour of the agents is

determined a priori and the problem is that of enforcing it ina decentralized manner. �

V. SIMULATION RESULTS

In the present section, simulation results are presented toillustrate the performance of the

proposed protocols. The connected network ofN= 10 agents displayed in Figure 1 is considered,

with the diffusivity parameterθ = 1.

11

2

3 4

5

6

7

89

10

Fig. 1. The considered network topology.
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Fig. 2. TEST 1: Spatiotemporal profilesQ6(ς , t) (left) andQ10(ς , t) (right).

For solving the resulting closed-loop system of coupled PDEs, the spatial domainς ∈ [0,1]

has been discretized by the standard finite-difference approximation method consideringn= 30

uniformly spaced solution nodes. The resulting finite dimensional system of coupled ODEs is

then solved by means of the Euler fixed-step solver with sampling-stepTs= 10−4.

A. Average consensus

System (13)-(14), coupled with the local interaction protocol (18), is under investigation. In the

first simulation run (TEST 1), spatially varying ICs have been selected as follows:Q1(ς ,0) =

10+ω1cos(3πς), Q2(ς ,0) = 10+ω2cos(3πς), Q3(ς ,0) = 8+ω3cos(3πς), Q4(ς ,0) = 10+

ω4cos(3πς), Q5(ς ,0)=6+ω5cos(3πς), Q6(ς ,0)=10+ω6cos(3πς), Q7(ς ,0)=10+ω7cos(3πς),

Q8(ς ,0) = −5+ ω8cos(3πς), Q9(ς ,0) = 10+ ω9cos(3πς), Q10(ς ,0) = 10+ω10cos(2.5πς),

with ωi = 1+4(i −1)/9, i = 1,2. . . ,10. The corresponding spatial averageQ∗, evaluated ac-

cording to (17), isQ∗ = 7.9637. Figure 2 shows the spatiotemporal evolutions of the states

Q6(ς , t) andQ10(ς , t). The steady-state profile of both agents is constant and takes the expected

pre-computed valueQ∗. Figure 3 displays the time evolution of the disagreement vector norm

‖δ1(·, t)‖H2,10, which tends to zero thereby confirming that all agents reacha common steady-state

profile.

B. Robust Synchronization

The performance of the robust synchronization protocol (26)-(28), presented in Section IV,

is now verified with reference to the perturbed PDEs (13), (15), (23). The entriesψi(t) of the
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 ||
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Fig. 3. TEST 1: Time evolution of the disagreement vector norm ‖δ1(·, t)‖H2,N .

disturbance vectorΨ(t) are selected asψi(t) = 4ki · t + sin(kiπt) (i = 1,2, ...,10), where the

coefficientski are randomly chosen in the interval [0,2]. The considered disturbance, which is

unbounded in magnitude as time grows, meets the restriction(24) with a constant upper-bound

constantΠ = 2π +8. The chosen ICs are

Qi(ς ,0) = 10+(i −4.5)cos(4πς) i = 1,2, ...,10.

The tuning parametersa= 40,b= 20,W1=W2=W3= 5, were chosen according to Theorem 2.

This simulation run is referred to as TEST 2. Figure 4 shows the spatiotemporal evolution of

the stateQ6(ς , t) and of the state mismatchQ10(ς , t)− Q6(ς , t). It is clear that both states

converge towards the same steady-state profile. The time evolution of the disagreement vector

norm‖δ1(·, t)‖H2,10, shown in Figure 5-left, tends to zero as shown in the Theorem2. To verify

the conservativeness of the approach, another simulation run, called TEST 3, was made where the

termsαit2, i = 1,2, . . . ,10 (αi being randomly chosen constants in the interval[0,20]) has been

added to the disturbance entriesψi(t) used in TEST 2. Due to the insertion of these additional

terms, not only the magnitudes of the disturbances are increasing with time but also those of

their derivatives are. Thus, the tuning conditions (53) aredeliberately violated. Figure5-right

depicts the resulting divergence trend of the disagreementvector norm‖δ1(·, t)‖H2,10, thereby

supporting the theoretical results.

VI. CONCLUSION

In this work, an infinite-dimensional counterpart of the well-known finite-dimensional average

consensus algorithm has been derived with reference to an unperturbed network of diffusion
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Fig. 4. TEST 2: Spatiotemporal profilesQ6(ς , t) (left) andQ6(ς , t)−Q10(ς , t) (right).
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40

Fig. 5. Time evolution of the norm‖δ1(·, t)‖H2,N in TEST 2 (left) and TEST 3 (right).

processes under a linear decentralized local interaction policy. Along with this, the problem

of guaranteeing the asymptotic agreement among the agents’states while rejecting a class of

persistent and possibly unbounded disturbances has been tackled by devising a nonlinear local

interaction policy based on the second-order sliding-modecontrol approach.

Future activities will be targeted to relaxing the topological restrictions on the network structure

by covering, e.g., directed and possibly switching communication graphs. Further investigation

is called for the extension of these results to more general classes of (possibly non identical) dis-

tributed parameters agents’ dynamics and additionally to more general consensus-based problems

in the infinite dimensional setting such as e.g. leader following.
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APPENDIX

Proof of Theorem 2

Consider the Lyapunov function (43). Its time derivative is

V̇(t) =θaδ2(1, t)
TLSign(Lδ1(1, t))+θW1δ2(1, t)

TL2δ1(1, t)+
∫ 1

0
δ2(ξ , t)TLδ2t(ξ , t)dξ (54)

Substituting (40) into the last term of (54), and performingintegration by parts in light of
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(41), yield
∫ 1

0
δ2(ξ , t)TLδ2t(ξ , t)dξ = θ

∫ 1

0
δ2(ξ , t)TLδ2ξξ (ξ , t)dξ

= θδ2(1, t)
TLδ2ς (1, t)−θ

∫ 1

0
δ2ξ (ξ , t)TLδ2ξ (ξ , t)dξ (55)

Owing on the spatial differentiation of equation (36), relation (10) specified withx= δ2ς holds

true. Thus, the last integral term of (55) can be estimated asfollows

−θ
∫ 1

0
δ2ξ (ξ , t)TLδ2ξ (ξ , t)dξ ≤−θλ2‖δ2ς (·, t)‖2

H0,N (56)

Substituting the BCs (41) and the controller equations (26)-(28) into the right-hand side of

(55) one derives

θδ2(1, t)
TLδ2ς (1, t) =−θa ·δ2(1, t)

TLSign(Lδ1(1, t))−θb‖Lδ2(1, t)‖1−θW1δ2(1, t)
TL2δ1(1, t)

−θW2‖Lδ2(1, t)‖2
2−θW3δ2(1, t)

TLQt(1, t)+θδ2(1, t)
TLΨ̇(t) (57)

Employing (39), evaluated atς = 1, and considering (10) specified withx= δ2(1, t), one gets

−θW3δ2(1, t)
TLQt(1, t)≤−θW3λ2 · ‖δ2(1, t)‖2

2 (58)

By applying (2), specified withx= Ψ̇(t), y=Lδ2(1, t), p= ∞, q= 1, and taking into account

(24), the magnitude of the last term in the right hand side of (57) is estimated as follows

|θδ2(1, t)
TLΨ̇(t)|= θ |Ψ̇T(t)Lδ2(1, t)| ≤ θΠ‖Lδ2(1, t)‖1 (59)

Substituting (55)-(59) into (54), and considering relation λ 2
2‖δ1(1, t)‖2

2 ≤ ‖Lδ1(1, t)‖2
2, which

is verified by applying (11) specialized withx= δ2(1, t), the next inequality

V̇(t)≤−θ · (b−Π) · ‖Lδ2(1, t)‖1−θλ2 · ‖δ2ς (·, t)‖2
H0,N

−θW2λ 2
2 · ‖δ2(1, t)‖2

2−θW3λ2 · ‖δ2(1, t)‖2
2 (60)

is concluded after some straightforward manipulations. Due to (60) and (53), the time derivative

of the Lyapunov functionalV(t), being computed along the solutions of the closed-loop system,

is negative semi-definite, andV(t) is thus a non-increasing function of time. Thereby, the set

D
V
R =

{
(δ1,δ2) ∈ H2,N ×H0,N : V (δ1,δ2)≤ R

}
(61)
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specified for an arbitraryR≥V(0), is invariant. By exploiting the invariance of the domainD
V
R ,

the next estimates are derived by straightforward manipulations of the inequalityV(·) ≤ R in

light of (43), (47) and (49):

‖Lδ1(1, t)‖1 ≤ R/θa (62)

‖δ1(1, t)‖2
2 ≤ 2R/θW1λ 2

2 (63)

‖δ2(·, t)‖2
H0,N ≤ 2R/λ2 (64)

Now consider the “augmented” functional

VR(t) =V(t)+κR·V̄(t) (65)

V̄(t) =
1
2

θW2 · ‖Lδ1(1, t)‖2
2+

∫ 1

0
δ1(1, t)

TLδ2(ξ , t)dξ (66)

whereκR is a sufficiently small positive constant to subsequently bespecified. The next estimation

holds
1
2

θW2 · ‖Lδ1(1, t)‖2
2 ≥

1
2

θW2λ 2
2 · ‖δ1(1, t)‖2

2, (67)

whereas by (1), (2) and (62), the second term in the right-hand side of (66) is manipulated as
∫ 1

0
δ1(1, t)

TLδ2(ξ , t)dξ ≥−1
2

(
R

θa
· ‖Lδ1(1, t)‖1+‖δ2(·, t)‖2

H0,N

)

. (68)

Considering (67) and (68) along with (65), (43), yield

VR(t)≥
[

θa− κRR
2θa

]

‖Lδ1(1, t)‖1+
λ2−κR

2
‖δ2(·, t)‖2

H0,N +
1
2

θλ 2
2 (W1+κRW2)‖δ1(1, t)‖2

2. (69)

Thus, the positive definitiveness ofVR(t) is guaranteed by selecting the positive constantκR

small enough according to

κR≤ min
{

2θ 2a2

R ,λ2

}

. In particular, in the invariant domainDV
R the augmented functionalVR(t) turns out to be lower

estimated in terms ofV(t):

VR(t)≥ min

{

θa

θa− κRR
2θa

,
λ2

λ2−κR
,

W1

W1+κRW2

}

V(t). (70)

Differentiating (65) along the solutions of (40)-(42), andexploiting the identityLLC =L in

(37), it yields

V̇R(t) = V̇(t)+κRθW2δ2(1, t)L
2δ1(1, t)+κR

∫ 1

0
θδ1(1, t)

TLδ2,ξξ (ξ , t)dξ +κR

∫ 1

0
δ2(1, t)

TLδ2(ξ , t)dξ .

(71)
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Employing (26)-(28) and the BCs (41) one gets
∫ 1

0
θδ1(1, t)

TLδ2,ξξ (ξ , t)dξ = θδ1(1, t)
TLδ2,ς (1, t) =−θa · ‖Lδ1(1, t)‖1−θb ·δ1(1, t)LSign(Lδ2(1, t))

−θW1 · ‖Lδ1(1, t)‖2
2−θW2 ·δ1(1, t)

TL2δ2(1, t)−θW3 ·δ1(1, t)
TLδ2(1, t)+θ ·δ1(1, t)

TLΨ̇(t).

(72)

Then, utilizing (2) and (63), the sign-indefinite terms in (72) are estimated as follows

| −δ1(1, t)LSign(Lδ2(1, t)) |≤ ‖Lδ1(1, t)‖1 , (73)

|−δ1(1, t)
TLδ2(1, t)| ≤ ‖δ1(1, t)‖2‖Lδ2(1, t)‖2

≤ ‖δ1(1, t)‖2‖Lδ2(1, t)‖1 ≤
√

2R

θW1λ 2
2

· ‖Lδ2(1, t)‖1 , (74)

| δ1(1, t)
TLΨ̇(t) |≤ ‖Ψ(t)‖∞‖Lδ1(1, t)‖1 . (75)

By (64) and the Holder integral inequality, the last integral term in the right hand side of (71)

is estimated as
∣
∣
∣
∣

∫ 1

0
δ2(1, t)

TLδ2(ξ , t)dξ
∣
∣
∣
∣
≤
√

2R
λ2

· ‖Lδ2(1, t)‖1 (76)

By (71)-(76), and considering (11) and (60), one manipulates (71) as follows:

V̇R(t)≤−θ
(

b−Π−κR

√

2R/θ 2λ2

)

‖Lδ2(1, t)‖1+κRW3θ
√

2R/θW1λ 2
2 · ‖Lδ2(1, t)‖1

−κRθ (a−b−Π) · ‖Lδ1(1, t)‖1−θλ2 · ‖δ2,ς(·, t)‖2
H0,N −θ (W2λ 2

2 +W3λ2) · ‖δ2(1, t)‖2
2−κRθW1λ 2

2 · ‖δ1(1, t)‖2
2

(77)

By Lemma 1, specialized forb(·) = δ2(·) and i = 1, the next estimate

−θ(W2λ 2
2 +W3λ2)‖δ2(1, t)‖2

2−θλ2‖δ2ς (·, t)‖2
2 ≤−c4‖δ2(·, t)‖2

H0,N (78)

is obtained with

c4 = θλ2min{1,(W2λ2+W3)}

. By substituting (78) into the right hand side of (77), the inequality

V̇R(t)≤−c1 · ‖Lδ1(1, t)‖1−c2 · ‖Lδ2(1, t)‖1−c3 · ‖δ1(1, t)‖2
2−c4 · ‖δ2(·, t)‖2

H0,N (79)

is finally obtained, with the coefficients

c1 = κRθ (a−b−Π) , c3 = κRθW1λ 2
2 ,
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,

c2 = θ

(

b−Π−κR

(√
2R

θ2λ2
+

W3

λ2

√
2R

θW1

))

.

It is clear that due to the proposed specifications of constants c1,c2,c3, all terms, appearing in

the right-hand side of (79), are nonpositive provided that the tuning conditions (53), imposed

on the controller parameters, hold and the next more restrictive condition

κR ≤ min

{

2θ 2a2

R ,λ2,
b−Π

√

2R
θ2λ2

+
W3
λ2

√
2R

θW1

}

is additionally satisfied. It then follows from (79) that

V̇R(t)≤−γ1(‖Lδ1(1, t)‖1+‖δ1(1, t)‖2
2+‖δ2(·, t)‖2

H0,N) (80)

with γ1 = min{c1,c3,c4} > 0. By (43) combined with the first inequalities of (10) and (11) it

yields

V(t)≤ θa‖Lδ1(1, t)‖1+
1
2

θW1λ 2
N‖δ1(1, t)‖2

2+
1
2
‖δ2(·, t)‖H0,N,

whereas by (10), (62) and (1), along with property (2) specialized with x= Lδ1(1, t) and y=

δ2(ς , t), one derives that

V̄(t)≤ 1
2

θW2λ 2
N‖δ1(1, t)‖2

2+
R

2θa
‖Lδ1(1, t)‖1+

1
2
‖δ2(·, t)‖H0,N

Finally, substituting the last two estimations in (65) one obtains

VR(t)≤ γ2(‖Lδ1(1, t)‖1+‖δ1(1, t)‖2
2+‖δ2(·, t)‖2

[H0(0,1)]n) (81)

where

γ2 = min{θa− κRR
2θa

,
(λN −κR)

2
,
θλ 2

N (W1+κRW2)

2
}> 0.

Thus, one derives from (80) and (81) that

V̇R(t)≤−ρR ·VR(t), ρR= γ1/γ2,

thereby concluding the exponential decay ofVR(t), initialized within the invariant setDV
R in

(61).

To complete the proof, it remains to note that due to the upperestimate (70) the functionalV(t)

decays, too. By applying Lemma 3, the local asymptotic stability of (40)-(42) is then established

in the spaceH2,N(0,1)×H0,N(0,1) for the initial set (61). Since (61) can be specified with
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an arbitrarily largeR> 0, thus capturing an arbitrarily large initial domain, and the tuning

conditions (53) do not depend onR, the global asymptotic stability is then concluded in the

space H2,N(0,1)×H0,N(0,1). It follows from (44) that‖δ1(·, t)‖H2,N asymptotically vanishes

too, which results in the following component-wise relations

lim
t→∞

‖δ1i(·, t)‖H2 = 0, ∀ i ∈V, (82)

It is well known [35] that the Sobolev spaceH2(0,1) is continuously embedded in the Banach

spaceC(0,1) equipped with the supremum norm. In other words, there exists a constantM > 0

such that

supξ∈[0,1]|δ1i(ξ , t)| ≤ M‖δ1i(·, t)‖H2, ∀ i ∈V, (83)

Thus, one concludes the spatially point-wise decay of all entries ofδ1(·, t). This property, cou-

pled to the identityQi(ς , t)−Q j(ς , t)= δ1i(ς , t)−δ1 j(ς , t), yields (25). The proof of Theorem 2

is completed. �
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