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Consensus-based control for a network of

diffusion PDEs with boundary local interaction

Alessandro Pilloni, Alessandro Pisano, Yury Orlov and Bligai

Abstract

In this paper the problem of driving the state of a networldeitical agents, modeled by boundary-
controlled heat equations, towards a common steady-statiefs addressed. Decentralized consensus
protocols are proposed to address two distinct problems.fifét problem is that of steering the states
of all agents towards the same constant steady-state pwdiitth corresponds to the spatial average
of the agents initial condition. A linear local interactionle addressing this requirement is given.
The second problem deals with the case where the controleshdaries of the agents dynamics
are corrupted by additive persistent disturbances. Toeaehsynchronization between agents, while
completely rejecting the effect of the boundary disturlean@ nonlinear sliding-mode based consensus
protocol is proposed. Performance of the proposed loceltaction rules are analyzed by applying a
Lyapunov-based approach. Simulation results are predémteupport the effectiveness of the proposed

algorithms.

Index Terms

Average consensus, Synchronization, Heat equation, Boyrabntrol, Sliding-mode control.

I. INTRODUCTION

The problem of understanding when individual actions oériatting dynamical agents give

rise to a coordinated collective behavior has received iderasble attention in many research
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fields. Examples can be found, e.g., in system biology [1jsees networks [2], robotics [3],
etc.

In the systems and control literature, the usual mathealasietup underlying this class of
problems refers to a group of agents, each one described yayaanical system with one or more
inputs, along with a communication network. Agents conegdtty a communication link are said
to beneighbors and can exchange information in either bidirectional oidmactional manner.
This raises the problem of designingcentralizedocal interaction policies (where each agent
can only access neighbors information) in order to orchéstthe global coordinated behavior
of the network. Within this framework, the consensus probleeeks to enforce agreement
amongst the states of networked dynamical systems by pgérgatheir local disagreement with
the neighboring nodes in a dynamic manner. The reader sheidd e.g., to [4], [5] for tutorial
overviews of consensus-based control in the finite-dinoeradisetup.

There are deep connections between the consensus probtemedain Partial Differential
Equations (PDESs), the diffusion equation in particular fgr instance, discretizing in the spatial
domain the one dimensional diffusion equation yields a {dghensional system of networked
first-order continuous-time integrators interacting tlgb a linear Laplacian-based consensus
protocol. More generally, the application of finite-dieice approximations of PDEs results
in the spatial variables being mapped into the agent indexas the spatial derivatives being
transformed into links between neighbors. Owing on the adeemections between the consensus
problem and certain Partial Differential Equations (PDEse e.g. [6]), some authors (see
e.g. [7], [8]) have exploited (discretized forms of) seVeditributed parameter systems, such
as advection and diffusion-advection equations, to demee effective consensus protocols
with improved convergence features. In spite of this intemeelationship between consensus
algorithms and certain discretized PDEs, the consensisgondfor a network of agents modeled
as distributed parameter systems has not received yet the lexel of attention than its finite-
dimensional counterpart.

The following papers [9], [10], [11], [12], [13], [14], [15][16], which have investigated
different aspects of consensus and synchronization in iteldited parameter systems setting,
are worth to mention. In [9], [10], application of consensascontrolling mobile actuators in
diffusion processes is discussed. The problem of desigrongensus filters for state estimation

in order to effectively integrate local information comifrgm a distributed spatial domain has
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been widely addressed [11], [13], [14], both in the non-&dapand adaptive setting. In [17],
exact synchronization was achieved for a set of coupled waveesses, each one equipped with
a boundary control input.

In [18], [19], the authors present consensus algorithmshen framework of Multi-Agent
Systems (MASs) modeled by continuous-time Partial difieee Equations (PdEs) on graphs.
Conceptually, this class of PdAEs mimics PDEs in spatial desnaaving a graph structure, and
many mathematical tools of functional analysis for studyRdEs are completely analogous to
the ones developed for PDEs. In [20], [21], PdE-based maefefrence adaptive control laws
are designed for a network of mobile agents to track desisgdogment trajectories .

Within a related framework, the recent work [15] studies 3 agents deployment problem
by PDE techniques, treating the agents as a continuum aneélmgdheir interaction through a
complex-valued diffusion-reaction PDE in a 2D spatial doman explicit backstepping-based
local boundary control is designed to stabilize a varietpén-loop unstable deployment mani-
folds. [22] presents a feedforward controller for multeagdeployment by using a flatness-based
motion planning method for PDEs. Reaction-advectionugifin PDEs are used in [23] along
with a backstepping design for leader-enabled agents yiegiot onto planar curves. Similarly,
hyperbolic PDE models are used to design decentralizedaidaivs for large vehicular platoons
[24] and to analyze networks of oscillators [25].

In [16], synchronization and consensus problems have beeeled for a network of agents
modeled by a class of parabolic PDEs and communicating gfraundirected communication
topologies. In [16], which appears to be more closely relatethe present investigation among
the existing references, some noticeable results aremattakirst, the case of all-to-all communi-
cation between a set of identical agents is investigatedtathe more realistic communication
topology where each agents can only communicate with adinget of neighboring agents
is studied. In addition, a general abstract formulation led tinderlying agents dynamics is
introduced, and linear consensus controllers are presdotensure agents agreement with a
guaranteed convergence rate. It should be noted howewahthaommon steady-state profile of
the agents is not established, and furthermore no pertansaare allowed to affect the agents
dynamics.

The present work aims to address consensus and synchionipabblems for a network of

dynamical agents, communicating through an undirecteccandected static topology, provided
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that agents dynamics are governed by a class of diffusionsREith Neumann-type boundary
actuation. The contribution of the paper is twofold. First linear local interaction strategy
whose implementation requires collocated boundary sgraity is proposed. With this strategy,
it is shown that the agents states eventually converge tw@a-in-space” towards a common
constant distribution whose value is given by the spatiatayge of the agents’ initial conditions.
Thus, the well-known average consensus algorithm is gknedarom a network of integrators
to the infinite-dimensional setting of networked heat psses.

Secondly, the more complex scenario where the agents dgeaare perturbed by a class of
boundary disturbances, is considered. Based on the serdedsliding-mode control approach
[26], a nonlinear protocol is developed to extend the resoit[27] from a network of double
integrators to the infinite-dimensional framework of netiwed PDES. A dynamic input extension,
similar to that presented in [28] for stabilizing a uniquertpebed diffusion PDE, results in
continuous boundary control actions thereby alleviatihgttering and yielding another step
beyond [27]. It is demonstrated that the proposed nonliloeal interaction protocol, which only
employs sensors located at the controlled boundariesyaagdhe asymptotic synchronization
between the agents states while rejecting the persistetthmg boundary perturbations.

The motivation to the present investigation comes, e.gmfnetworked systems of perturbed
heat equations that can occur in modeling and controllidgstrial furnaces. Heating of certain
industrial furnaces (see, e.g., [29, Sect. 1.A]) is madeudhn electrically heated bars aiming
to enforce a uniform temperature distribution inside then&we. Considering these bars as a
network of heaters and applying collaborative consensised synthesis might be useful in
improving the overall performance of the furnaces. Explgitthe present results in specific
application domains certainly requires additional workickhis beyond the scope of the present
paper.

The paper is organized as follows. In Section [I some mathieaigreliminaries and useful
properties and definitions are recalled. The linear averagsensus algorithm is presented in
Section Il whereas the nonlinear algorithm, providingusfsynchronization in the presence of
boundary perturbations, is described in Section IV. Sitntaresults, supporting the proposed
designs, are given in Section V, and conclusions and pergpsdor next investigations are

collected in the final Section VI.
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II. MATHEMATICAL PRELIMINARIES AND NOTATIONS
A. Useful definitions and properties

The [p-norm and thd,-norm of the real-valued N-dimensional vectoe [xq,...,xy]T € RN
, 1
are defined agx||[p = (T4 [%[?) /P 1<p<wand 1X]|0 = Maxg<i<n {|Xa|, [X2l, - - ., |Xn]|}. For

the l1- andl2- norms, the following inequality holds [30]:
IXl2 < X1 < VN IX]2. (1)

Let p,q> 1 be given, such that/p+1/q= 1. Then the next chain of inequalities is in force
[30]

T XI5 IIyllg
Xy < [[X —+— 2
X y] < [IXllplIyllg < 0 a )
Operator sigfv), v € R, stands for the multi-valued function
1 if v>0
sign(v) e § [-1,1] if v=0, (3)
-1 if v<O

whereas Sigfx) stands for the vector Sigr) = [sign(x1),sign(xz), ..., sign(xn)] .

The identity matrix of dimensiofl is denoted a€nxn € RNN, whereas § = 1,1,..., 1]T €

RN and §y = [0,0,...,0]" € RN stand for the all-ones and all-zeros vectors.

H'(0,1), withr =0,1,2, ..., denotes the Sobolev space of absolutely continuous stales
tions z(¢) on the domain0,1), with square integrable derivative&) (¢) up to order/ and the

Hrnorm [12() e 0.y = /3 Theo [209(8))7 dé.

Then, the notations

HIN(0,1) — (O 1) x H (O,})x...xHr(O,ll @
N times

and

W) [eno,1) = \/Z||W| (&0 (5)

for the corresponding norm of the vectar¢) = [wy(¢),...,wn(¢)]"T € H™N(0,1) are utilized.
The simplified notation||z(-)|lnr = [12(-)[lkr 0,2y, W) [Irn = [[W(:)[[rngo,) Will be adopted
throughout.
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For later use, an instrumental lemma is further presented:
Lemma 1. Let b(¢) € HEN(0,1). Then, the following inequality holds:
16C)IIFen < 2(IB@) 15+ [1be(-)[Fon) » 1=10,1
Proof of Lemma 1: It was proven [28, Lemma 1] that, with reference to a genexaas function
z(¢) € H1(0,1), the next estimate holds:
12()1[B0 < 2(2(1)% + [12¢()[[ o), T=0,1. (6)

Now let b(¢) = [b1(¢).ba(c).-..,bn()]T and be(¢) = [bea(6).bea(q), .. ben()]T where
b(¢) € H(0,1) Vk = 1,2,...,N. By applying definition (5), the following chain of relatisn
is derived by virtue of (6) specified with(-) = by(-):

N N
Ib()[[Fon = _Zlej(-)Hﬁo < 2_21 (bj (i)?+[1bgj () I30) = 2(II6() 15+ [Ibe () |Fon) » 1=0,1.
j= j=

(7)

Lemma 1 is proved. O

B. Algebraic Graph Theory definitions and properties

We consider a set dff dynamical agents along with an undirected static commtinic@opol-
ogy represented by the gragh(V, £), whereV = {1,...,N} is the set of vertices representing
agents an& C {V x V} is the set of edges representing the information flow amoe@gents.
Ni={jeV:(i,j) € £} denotes the set of neighbors of agenthe topological structure af

is encoded in the so-callddaplacian Matrix £ = [¢j;] € RN*N where

V| if =
Gj:=¢ -1 if (i,j)ec& (8)
0 otherwise

For undirected connected graphs, the matixs symmetric and positive semi-definite [5], the
properties
L1y=L"1y=0y (9)

hold by construction, and the corresponding eigenvalyese V, are such that 8- A1 < Ap <
... < An. The smallest nonzero eigenvalde is known asalgebraic connectivityof G. Next

lemma presents useful properties of vector norms involdmggLaplacian matrix of the graph.
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Lemma 2: For an undirected connected graph with Laplacian matfixand with reference

to any vector xc RN such thatl{x = 0, the next relations are in force

ANIIXI[Z = XTLx > Aaf[X][2 (10)
AGIIXI[Z = [.£XI15 = AZ]IXI[5 (11)
1£X][1 = Az2]IX][2 (12)

Proof of Lemma 2: The left inequality in (10) comes from well-known propestief quadratic
norms. The right inequality in (10) was proven in [5, Th. 3).derive (11), observe thdiCx|, =

X" £2x. The eigenvalue§0,A2,AZ2,....A%} of £? are straightforwardly derived by squaring
those of £. Thus, the left inequality of (11) follows from well-knowrrgperties of quadratic
norms. Additionally,£2 is symmetric and such thaf?1y = Oy, thus X is the eigenvector
associated to the zero eigenvalued?. Therefore, the right inequality of (11) follows from the
Courant-Fisher Theorem that can be found, e.g., in [31]epoaduce (12), it suffices to conclude
from (1) that||Lx||1 > |[Lx||2 and then, by applying (11), to derive thaLx||> > Az||x||2.
Lemma 2 is proved. O

I1l. AVERAGE CONSENSUS FOR NETWORKED HEAT PROCESSES

A network of N dynamical agents whose communication topology is destrijean undi-
rected connected static gragiiV, £) is under study. Theth agent has sta@;(¢,t), i € V, with
the spatial variablg € (0,1) and time variablé > 0. LetQ(¢,t) = [Ql(q,t), Q2(¢,1),...,Qn(G,1) !
be the vector collecting the states of all agents, and letlsfmamics ofQ(¢,t) be governed by

the vector heat equation

Qi (6,t) = 8- Qcc(G,t), (13)

The scalar parametdt ¢ R is a positive unknown coefficient, called “diffusivity panater”,
which is supposed to be identical for all agents. Throughdatimann-type Boundary Conditions
(BCs) of the form

QC(O7t> = 07 QC(:L?t) =U (t>7 (14)

T
are considered, whete(t) = [u(t), up(t),...,uy (t)] € RN is a modifiable source term (bound-

ary vector control input).

October 8, 2018 DRAFT



The Initial Conditions (ICs) are

Q(¢,0) = Qo(¢) (15)

To deal with classical solutions of clas$¥(0,1), the admissible initial functions are specified
by the next assumption.

Assumption 1: The initial function Q(¢) in the ICs(15)is assumed to be of clag#N(0,1)
and compatible to the BCs¢g(0) =0 and Q¢ (1) =U(0).

The objective of the present section is to introduce a lit@zal interaction strategy providing

closed-loop stability and the point-wise consensus cardit

where the constant

1
Q= [ He(e)ds an

corresponds to the spatial averaging of the agents initiatlitions.

To achieve the control goal, the local interaction protocol
U(t)=-LQ(11) (18)

is proposed. Under the assumptions, imposed on the ICs al tBE well-posedness of the
system in question is straightforwardly verified by apply[82, Theorem 2.1.10] to the classical
solutions of the homogeneous linear Boundary-Value Prol{BVP) (13)-(15), (18).

We are now in a position to state the first main result of thisepa

Theorem 1. Consider the multi-agent system (13)-(15), with Assumptlo communicating
through an undirected connected static graph with Laptamatrix £. Let it be subject to the
boundary local interaction control strategy (18). Therg thosed-loop system is stable in the

spaceH?(0,1) and the average consensus condition (16)-(17) is achieved. O

Proof of Theorem 1. The stability of the closed-loop BVP is established by inuaj the

Lyapunov function

Vi) =3 [ QT(E.0Q(E e 19)

October 8, 2018 DRAFT



whose time derivative, estimated along the solutions ofBW® (13)-(15), (18), is hon-positive

definite:

Vi(t) =6 /0 QT (.0)Qez (£.0)dE = —011Qc(- 120w — BQULYTLQ(LY < ~0Qc (-1l Zon:
(20)

To get (20) integration by parts, and BCs (14),(18), and #maislefinite positiveness of the
Laplacian matrixC were utilized. Relation (20) ensures that the system islestiabthe space
HO9(0,1). Since the BVP is linear, and the ICs (15) are of clBgg0,1), the stability remains
in force in the spacéi?(0,1).

Next, let us note that the eigenspace of the closed-loop B\Bp-((L5), (18), associated with
the zero eigenvalue, is one dimensional and it is spannebtéwriform distributiorQ(¢) = 1.

In turn, all the remaining eigenvalues are strictly negatrecause the BVP (13)-(15), (18) has
been shown to be stable.

Furthermore, one observes that the projection

1
5 | e ndey @1)

of the solution of the closed-loop system to the eigenspassociated to the zero eigenvalue,
remains constant, whereas all the remaining modes tendddeeause the other eigenvalues are
strictly negative. It follows that the stat@(¢,t) eventually converges point-wise to the constant

spatial distribution

1
% || Ho(@)detn = -1y (22)

thereby establishing relations (16)-(17). This complebesproof of Theorem 1. .

V. ROBUST SYNCHRONIZATION FOR NETWORKED HEAT PROCESSES WITH REURBATIONS
A perturbed version of the BVP (13)-(15), with the only diface in the BCs (14) which
now take the perturbed form

QC(Ovt) :O7 QC(:L?t) :U(t)-i_w(t)v (23)

T
is under investigation, wher®#(t) = L[jl(t),L[jg(t),...,L[JN(t)] c RN represents an uncertain,
sufficiently smooth, persistent disturbance.

The class of admissible ICs and disturbances is specifiethdyéxt assumption.
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10

Assumption 2: The initial function Q(¢) is assumed to be of clasi"N(0, 1) and compatible
to the perturbed BCs §(0) =0, Qoc(1) = W(0), whereas the disturbancé(t) is supposed to

be twice continuously differentiable, and there existagriori known constanil > 0 such that
v, < n. (24)

Note that for technical reasons (see Remark 1 below) higbgre@ of smoothness of the ICs
is required in the present perturbed scenario. The obgctivthe present section is to develop

a local interaction strategy providing the attainment @& fiynchronization condition

lim [Qi(¢,t) - Qj(¢,1)[ =0, Vi, jeV,¥ce(0,1), (25)

despite the presence of the uncertain boundary disturb#(ieof arbitrary shape and possibly
unbounded in magnitude.

To achieve the control goal, the following dynamic localeraction protocol

U (t) = Ug(t) +Ua(t) (26)
is proposed, with
Us(t) = —aSign(£Q(1,t)) — bSign(L£Q(1,t)) (27)
Ua(t) = —Wi- £Q(L,t) —Wo- LQ(L,t) —Ws- Qu(L,t) (28)
U1(0) =Us(0) = O. (29)

The initial valuesU;(0),U,(0) are all set to zero to verify the compatibifityoc (1) = U (0) +
W(0) to the BCs (23) at = 1. In (27)-(28),a, b, Wi, W» andWs are nonnegative tuning constants
subject to certain design inequalities that will be congtmwely derived in the sequel.

It is worth to note that the discontinuities affect the timeridative of the boundary control
vector, whereas the boundary control signal is smoothedasgipg these discontinuities through
an integrator, thereby alleviating chattering.

Remark 1. Although the state derivative is normally not permitted ® dmployed in the
synthesis (as it generally induces algebraic loops), its hecomes acceptable when dynamic
input extension is performed, what is indeed the case of theemt dynamic synthesis where

the input signal passes through an integrator. By virtudisf the system state is augmented by

1See, e.g., [33] for the need of certain compatibility coidis in the dynamic boundary control synthesis.
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Q being viewed as a component of the augmented state vE@tex) € H*N(0,1) x H>N(0,1)

which is particularly why the initial functiolQo(¢) was assumed to be of clas$¥0,1). O

The well-posedness of the underlying closed-loop systameuthe assumptions, imposed
on the ICs and BCs, is actually verifiable in accordance wa®, [Theorem 3.3.3] by taking
into account that the dynamic local interaction rule (283)(is twice piece-wise continuously
differentiable along the state trajectories. Thus, in #gmainder, it is assumed the following:

Assumption 3: The closed loop networked systgiB)(15), (23), (26)(29) possesses a
unique Filippov solution @,t) € H*N(0,1) and its time derivative Z,t) = Q(-,t) € H2N(0,1)

verifies the auxiliary boundary-value problem

Z(G,t) = 8Z¢c(6,1) (30)
Z(,0) = 8Qocc(¢) € H*N(0,1). (32)

Extension of the Filippov solution concept towards the itdirdimensional setting can be
found, e.g., in [34]. Notice that (30)-(31) are formally ailsted by differentiating (13)-(15),
(23), in the time variablé, whereas the IC (32) is straightforwardly derived from (a8j (15).

It is customary [5] to formalize the achievement of consenguough the annihilation of
appropriate (N-dimensional) “disagreement” vectors. &alizing [16], the following distributed

disagreement vectors

51(71:) = [511(7t)7751N(7t)]T:£C Q(?t)7 (33)

62(7t> - [621(71:)7762N(7t>]T:61t(7t):£C Q[(at)7 (34)
1T

Lo = <IN><N - 1NN1N) ; (35)

will be considered in the present investigation for analysirposes. The next properties hold
due to (9) and (33)-(35)

1561(¢,t) = 148(¢,t) =0, V¢ e[0,1], (36)

LLe=LcL=L (37)
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12
thereby implying that
Lo1(6,t) = LLQ(S,1) = LQ(G,1), (38)
L&(¢1) = LLQ(G,T) = LQ(G,1) (39)

The BVP governing the dynamics of the disagreement vectonsneads as

At (¢,1) = &(¢,t),

(40)
52t<C7t) = 962(C<C7t)7
200=00 @1)
Dc(Lt)=Le [U(t) +W(1)]
51((,0) = ﬁCQO(C) € H47N(O7 1) (42)

&(6,0) = 8LcQocc(6) € H*N(0,1)
Presenting the second main result of this paper is preceyeithebfollowing instrumental

lemma.

Lemma 3: The functional

1
V(8,8) = 6a LE(L Y|+ ;W LB DIE+5 [ BENTLEE DA @3)

being computed on the solutiond;(-,t),(:,t)) of the BVP (40)-(42), is equivalent to the

H2N(0,1) x H®N(0,1) norm of these solutions in the sense that

N
M (1181 V) [1Zan + 11820 )| Fon) <V (81, &) < 2 <||61<-,t>||az,N + 1182, 1) [[Fon +.Z\||51,i('at)||H2>

(44)
for an arbitrary solutiond; (-,t), &(-,t)) of (40)-(42), for allt > 0, and for some positive constants

N1 andns.

Proof of Lemma 3: It is preliminarily demonstrated that the condition

a1-V(81,8) <V(81,8) < a2-V (81, 5) (45)

holds, wherea; and a» are positive constants and

~ 1 1
V(61,8) = 04|61 (1,1)[l1+ §9W1H51(1,t)H§+ 5!\5z(~,t)||ﬁo,w~
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By considering (12) and the second inequality of (1), botacgdized withx = d;(1,t), one

derives
A
Jr 1800l < £ L0l < £ 128 (3.0 2 (46)
Specializing (11) withx = &;(1,t), and (10) withx = &(¢,t), one obtains
AL y5< [£a(Lb)]l5 < Adlla(Lb)]3 (47)
221132(6,1)[13 < &2(6,t) T £3(6,t) < Anl|S2(6, )13 (48)

Noticing that, by constructionfol||62(€,t)||§df = ||&(, )HHON, the next estimate is derived
after spatial integration of all terms in (48)

1
Dol &2 DlFen < [ 828,07 £E(E. 08 < M| a(-,1) Bon: (49)

By (46)-(47) and (49), relation (45) is derived with the give constantsr; = min{A2/v/N, A%}
andaz = max{| L||1,A5,An}. Furthermore, by (1) and (5), functiondl &, &) can be rewritten

as follows:
N
V (31, %) =_zl\7i<61i,52i> (50)

where

i = 0a 3 (1.0)| + 50Wadu (L1 + 5 (- )
From that, by applying [28, Lemma 2], the next estimate
B (118 (-, V) lIF2+ 102 (- 1)1 7o) <V < Ba (1181 (-, )12+ 118 (1) [0 + 11 (1) [ 2) (51)

holds for some positive constarfts and3,. Then, by combining (50) and (51), and by applying
definition (5), it results

Br (1810, 1) [Fn + 1820, 1) [Fon) <V (81, 82) < B <||51( O)lFen + 18201 [[Fon + Z\||51| ||H2>

(52)
Finally, relation (44), being specified with the constamis= a1, andn, = a3, is straight-
forwardly derived by combining (45), (50) and (52). Lemmas3roved. O

Next theorem presents the second main result of this work.
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Theorem 2. Consider the perturbed multi-agent system (13), (15),,(2&h Assumptions
2 and 3, communicating through an undirected connectett gedph with Laplacian matrix
L. Let the boundary local interaction strategy (26)-(28) ppled, with the tuning parameters
selected according to

a>b+0MN, b>MN, Wp>0 W>0 W>0 (53)
Then, condition (25) is achieved. O

Proof of Theorem 2: See Appendix for the proof.

Remark 2: In contrast to the average consensus result, outlined ino®d¢, in this case the
steady-state common profile reached by the agents cannaotbeteda-priori and it turns out
to depend not only on the agents initial conditions but alsdh® actual controller parameters
and disturbance vector. For this reason, the term “robusttsynization” has been adopted in
the present scenario to describe the underlying resultppesed to the word "consensus” that
mostly refers, in the literature, to situations where theady state behaviour of the agents is

determined a priori and the problem is that of enforcing iaiidecentralized manner. O

V. SIMULATION RESULTS

In the present section, simulation results are presentaliusirate the performance of the
proposed protocols. The connected networklef 10 agents displayed in Figure 1 is considered,
with the diffusivity parametef = 1.

Fig. 1. The considered network topology.
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Fig. 2. TEST 1: Spatiotemporal profil€3s(¢,t) (left) and Q10(¢,t) (right).

For solving the resulting closed-loop system of coupled BCike spatial domaig € [0, 1]
has been discretized by the standard finite-differencecappation method considering= 30
uniformly spaced solution nodes. The resulting finite disienal system of coupled ODEs is

then solved by means of the Euler fixed-step solver with saysitepTs = 104,

A. Average consensus

System (13)-(14), coupled with the local interaction poald18), is under investigation. In the
first simulation run (TEST 1), spatially varying ICs have beselected as followsQ1(¢,0) =
10+ wy cog31¢), Q2(¢,0) = 10+ wyco371¢), Qs(¢,0) = 8+ wzcog3mc), Qa(¢,0) = 10+
wy €0 311¢), Q5(¢,0) =6+ wsc0g3711¢), Qp(¢,0) = 10+ ws coq 311¢), Q7(¢,0) = 10+ wycog371¢),
Qs(¢,0) = =54 wgcog3m¢), Q%¢,0) = 10+ wycog3¢), Q10(¢,0) = 104 wyocog2.57¢),
with g =1+4(i—1)/9,i=1,2...,10. The corresponding spatial averaQg, evaluated ac-
cording to (17), isQ* = 7.9637. Figure 2 shows the spatiotemporal evolutions of théest
Qs(¢,t) andQ10(¢,t). The steady-state profile of both agents is constant and talkeexpected
pre-computed valu€*. Figure 3 displays the time evolution of the disagreemetorenorm
|01(+,1) || 210, Which tends to zero thereby confirming that all agents reaotmmon steady-state

profile.

B. Robust Synchronization

The performance of the robust synchronization protoco)-(28), presented in Section IV,
is now verified with reference to the perturbed PDEs (13)),(1%3). The entriegli(t) of the
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Fig. 3. TEST 1: Time evolution of the disagreement vectommng}y (-,t)||zn.

disturbance vectoW(t) are selected asyj(t) = 4k; -t +sin(kimt) (i = 1,2,...,10), where the
coefficientsk; are randomly chosen in the interval [0,2]. The considerastiudbance, which is
unbounded in magnitude as time grows, meets the restri¢@dnwith a constant upper-bound

constantil = 271+ 8. The chosen ICs are
Qi(¢,0) =10+ (i —4.5)cog4rc) i=12..10.

The tuning parametees= 40,b=20,W, =W, =W5 =5, were chosen according to Theorem 2.
This simulation run is referred to as TEST 2. Figure 4 shovesgpatiotemporal evolution of
the stateQg(¢,t) and of the state mismatc®io(¢,t) — Qg(¢,t). It is clear that both states
converge towards the same steady-state profile. The timet®wo of the disagreement vector
norm ||&1(-,t)|| 4210, Shown in Figure 5-left, tends to zero as shown in the Thed®eriio verify
the conservativeness of the approach, another simulatigrcalled TEST 3, was made where the
termsait?, i = 1,2,...,10 (a; being randomly chosen constants in the intef@a20]) has been
added to the disturbance entrig|’t) used in TEST 2. Due to the insertion of these additional
terms, not only the magnitudes of the disturbances are asorg with time but also those of
their derivatives are. Thus, the tuning conditions (53) @eéberately violated. Figure5-right
depicts the resulting divergence trend of the disagreemector norm||d(-,t)||y210, thereby
supporting the theoretical results.

VI. CONCLUSION

In this work, an infinite-dimensional counterpart of the Melown finite-dimensional average

consensus algorithm has been derived with reference to partumbed network of diffusion
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Fig. 5. Time evolution of the nornjd; (-,t)||zn in TEST 2 (left) and TEST 3 (right).

processes under a linear decentralized local interactaicyp Along with this, the problem
of guaranteeing the asymptotic agreement among the agsats’s while rejecting a class of
persistent and possibly unbounded disturbances has beldeday devising a nonlinear local
interaction policy based on the second-order sliding-moatdrol approach.

Future activities will be targeted to relaxing the topokadirestrictions on the network structure
by covering, e.g., directed and possibly switching comroation graphs. Further investigation
is called for the extension of these results to more genéaases of (possibly non identical) dis-
tributed parameters agents’ dynamics and additionallydoergeneral consensus-based problems

in the infinite dimensional setting such as e.g. leader Valg.
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APPENDIX

Proof of Theorem 2

Consider the Lyapunov function (43). Its time derivative is

V(t) =6ad(1,t)" £LSIgn( L3 (L,1)) + OWiG(1,t) " L3281 (L,1) + /O S (ET Lo (E NdE (54)

Substituting (40) into the last term of (54), and performingegration by parts in light of
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(41), yield
1 1
/0 5 (E.1)TLx(E,1)dE =0 /0 5 (&,1)T L5 (£,1)dE

= 05,107 L8(11) 0 [ 8x(6.07 £84(8.108 (55)

Owing on the spatial differentiation of equation (36), tela (10) specified withx = & holds
true. Thus, the last integral term of (55) can be estimatefblésvs

1
0 /0 Bye (£,1)T L3¢ (€,1)dE < —ON3]|sc (1) 2w (56)

Substituting the BCs (41) and the controller equations-(28) into the right-hand side of

(55) one derives
63 (1,1)T L (1,t) = —6a- &(1,t)T LSIgN(L I (1,t)) — Ob]| L&(1,t)[|1 — BWaS(1,t)T L7E1(1,1)
— OV L&(1,1)[[5— BWs2(1,1)T £QH(L, 1) + 05(1,1)T LW(1) (57)
Employing (39), evaluated at= 1, and considering (10) specified with= &,(1,t), one gets
—OWsG(L1)TLQ(L) < — WAz [ &(11)]3 (58)

By applying (2), specified withkx = qJ(t), y=L%»(1,t), p=o, q=1, and taking into account

(24), the magnitude of the last term in the right hand side5@j) (s estimated as follows
|65(L,t)TLW(H)| = 6WT (1) L&(L,t)] < OM| L& (1,1)]2 (59)
Substituting (55)-(59) into (54), and considering relatig| & (1,t) |3 < [|£1(1,t)]|3, which
is verified by applying (11) specialized with= d,(1,t), the next inequality
V(t) <=8 (b—1)- [ L&(Lt)[[1—6A2- [|Fc (-, 1) [ Fon
— OWoAZ - | &(1,0) 15— OWsA2 - (| G2(1,1) |3 (60)

is concluded after some straightforward manipulationse Bu(60) and (53), the time derivative
of the Lyapunov functionaV (t), being computed along the solutions of the closed-loopesyst

is negative semi-definite, and(t) is thus a non-increasing function of time. Thereby, the set

7% ={(81,8) € H*N x HON : v (&1, 8) <R} (61)
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specified for an arbitrarR >V (0), is invariant. By exploiting the invariance of the dom@é{,
the next estimates are derived by straightforward manijous of the inequalityV(-) < R in
light of (43), (47) and (49):

[£d1(L,t)[1 < R/Ba (62)
161(L 1) < 2R/6WAAZ (63)
1620, D)lIFon < 2R/Az (64)
Now consider the “augmented” functional
VR(t) =V (1) +Kr- V(1) (65)
V)= 30w 81013+ [ BLYTES(E Ve (66)

wherekp is a sufficiently small positive constant to subsequentlgpecified. The next estimation
holds

—6\/\/2 1£&1(L,0)]3 > 9Wz)\z 181(L,0)]13, (67)
whereas by (1), (2) and (62), the second term in the rightttsale of (66) is manipulated as
[ oo enE e > -5 (L@l IGO0 Rn) . 69
Considering (67) and (68) along with (65), (43), yield

VR(t) > [ea— KLR} a2

2R3l o+ 5073 (W -+ k) 110 B (69

Thus, the positive definitiveness 9k(t) is guaranteed by selecting the positive constant
small enough according to

- 2,2
KR < mln{ZE’Ra ,)\2}

. In particular, in the invariant domaify the augmented function®k(t) turns out to be lower

estimated in terms o¥ (t):

. fa Az Wi
VR(t) > min , V(t). 70
R(t) 2 {Ba—% "A2— KR W1+KRVV2} ® (70)

Differentiating (65) along the solutions of (40)-(42), aexploiting the identityLLc = L in
(37), it yields
: : 1 1
VR(t) = V(1) + keBWo3p(1,0) £281(1t) + ki | 081(1)T £ 6,008 +kr | (1) LE(E. ).
(71)
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Employing (26)-(28) and the BCs (41) one gets
1
/0 601(1,t)" £ 55 (E,1)dE = 081 (L1) L (1,t) = —6a- || L3 (L,1)[l1— Ob- &1(1,t) LSigN LE(1, 1))
— OW - | L1 (L,1)[[5— OW. - 8 (L,t) T L25p(1,t) — W+ 8 (L,t) T L(1,1) + 6 8 (1,) T LW(1).

(72)
Then, utilizing (2) and (63), the sign-indefinite terms ir2)are estimated as follows
| —01(L,t)£SigN(L(L,1)) [< [[Lo1 (L 1)1 (73)
| =3 (L)TLER(L)] < [[G1(L,1)]|2 £8(L,1)]|2
2R
< [1a(L,1)[[2l£82(1,1) ]2 < WAz 1£32(L,1)]]1 (74)
| 31(LHTLW(E) [< W)l £E1(L, )1 - (75)

By (64) and the Holder integral inequality, the last intégeam in the right hand side of (71)
is estimated as

1 2
[ 0T esE ot <\ 1Ll (76
By (71)-(76), and considering (11) and (60), one manipsl&#l) as follows:

Va(t) < —6 (b— - KR\/ZR/GZAZ) |£8,(1.1) [+ KWa0 /2R BWIAZ [ £8(L,1)

— kRO (@—b—M)-[[L3(L,1)]1— OA2- [|B2c(-1)[[Fon — B(WLAS +Waho) - [|B2(1,1) 13 — KROWAAZ - [|&1(L,1) 3
(77)

By Lemma 1, specialized fdo(-) = &(-) andi = 1, the next estimate

—O(WoAZ +WaA2) (| B2(1,1) (13— OA2]|Gac (1) 13 < —Call &2, 1) [ 2on (78)

is obtained with
C4 = 0A2min{1, (WoA2 +W5)}

. By substituting (78) into the right hand side of (77), thedoality
VR(t) < —c1-[|L8U(L ) [[1—C2- [ £&(L 1)1 —c3- 8L )3~ Ca- [ G- ) [Fon  (79)
is finally obtained, with the coefficients
c1=krO(a—b—T), c3=krOWAZ,
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2R Wz /2R
02:9<b—r|—KR< 92—)\2+)\—2 e—vvl>>

It is clear that due to the proposed specifications of cotstancy, cs, all terms, appearing in
the right-hand side of (79), are nonpositive provided tihat tuning conditions (53), imposed
on the controller parameters, hold and the next more rés#&icondition

< mi 29;a2 Ao b-N
KR < min \/%ﬂ—f 5
is additionally satisfied. It then follows from (79) that
VR(t) < —W(1£81(1,8) |1+ | 81(L, )13+ [182(-t) | Fon) (80)

with y3 = min{cy,cs3,c4} > 0. By (43) combined with the first inequalities of (10) and )1l
yields
1 1
V() < 6al| L&y (1, 1)1+ 50T B1(L 1)1+ 51102 D) on,

whereas by (10), (62) and (1), along with property (2) spzad with x = L& (1,t) andy =
d(¢,t), one derives that
V(1) < SOMEAZ B (L34 o LE(LY 1+ 515 )]
~ é N 5 2 % 5 1 é 5 HO.N

Finally, substituting the last two estimations in (65) orgains

VR(t) < (]l L8110+ 8L OB+ 18201 B 0.0) (81)

where

KRR (AN — KR) eAﬁ(Wl-l-KRWZ)}
20a’ 2 2

Thus, one derives from (80) and (81) that

Y2 = min{fa— > 0.

VR(t) < —pr-VR(t), PrR=WV1/Vo,

thereby concluding the exponential decay\ft), initialized within the invariant se@}{ in
(61).

To complete the proof, it remains to note that due to the upptémate (70) the function#(t)
decays, too. By applying Lemma 3, the local asymptotic Btaluf (40)-(42) is then established
in the spaceH?N(0,1) x H®N(0,1) for the initial set (61). Since (61) can be specified with
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an arbitrarily largeR > 0, thus capturing an arbitrarily large initial domain, aree ttuning
conditions (53) do not depend dR the global asymptotic stability is then concluded in the
space HN(0,1) x HON(0,1). It follows from (44) that||&(-,t)||42n asymptotically vanishes

too, which results in the following component-wise relago
t|m||51i(-,t)||H2=0, Viey, (82)

It is well known [35] that the Sobolev spa&#(0,1) is continuously embedded in the Banach
spaceC(0,1) equipped with the supremum norm. In other words, there dstonstanM > 0
such that

SURke(0,1/01i (€, 1) < M|[ni (-, 1) |z, Viey, (83)

Thus, one concludes the spatially point-wise decay of alienofd(-,t). This property, cou-
pled to the identityQi(¢,t) — Qj(¢,t) = d1i(g,t) — d1j(¢,1), yields (25). The proof of Theorem 2

is completed. O
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