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Local pinning of networks of multi-agent systems
with transmission and pinning delays

Wenlian LuSenior Member, IEEE Fatihcan M. Atay

Abstract—We study the stability of networks of multi-agent
systems with local pinning strategies and two types of time
delays, namely the transmission delay in the network and
the pinning delay of the controllers. Sufficient conditions for
stability are derived under specific scenarios by computing
or estimating the dominant eigenvalue of the characteristic
equation. In addition, controlling the network by pinning a single
node is studied. Moreover, perturbation methods are employed
to derive conditions in the limit of small and large pinning
strengths. Numerical algorithms are proposed to verify stability,
and simulation examples are presented to confirm the efficiency
of analytic results.

I. I NTRODUCTION

Control problems in multi-agent systems have been attract-
ing attention in diverse contexts [1]–[7]. In the consensusprob-
lem, for example, the objective is to make all agents converge
to some common state by designing proper algorithms [2]-[5],
such as the linear consensus protocol

ẋi = −
n
∑

j=1

Lijxj(t), i = 1, . . . , n. (1)

Here,xi ∈ R is the state of agenti andLij are the components
of the Laplacian matrixL, satisfyingLij ≤ 0 for all i 6= j
andLii = −∑

j 6=i Lij . The Laplacian is associated with the
underlying graphG, whose links can be directed and weighted.
It can be shown that, if the underlying graph has a spanning
tree, then all agents converge to a common number, which
depends on the initial values [1], [4], [5]. On the other hand,
if it is desired to steer the system to a prescribed consensus
value, auxiliary control strategies are necessary. Among these,
pinning control is particularly attractive because it is easily
realizable by controlling only a few agents, driving them to
the desired values through feedback action:

ẋi = −
n
∑

j=1

Lijxj(t)− δD(i)c(xi − s), i = 1, . . . , n, (2)

where D denotes the subset of agents where feedback is
applied, with cardinality|D| = m, δD(i) is the indicator
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function (1 if i ∈ D and 0 otherwise), andc > 0 is the
pinning strength. Eq. (2) provides the local strategy that pins a
few nodes to stabilize the whole network at a common desired
value. The following hypothesis is natural in pinning problems
and assumed in this paper.

(H) Each strongly connected component ofG without
incoming links from the outside has at least one node inD.

The following result is proved in [8], [9].

Proposition 1: If (H) holds, then system (2) is asymptoti-
cally stable atxi = s ∀i.

In many networked systems, however, time delays inevitably
occur due to limited information transmission speed; so Propo-
sition 1 does not apply. In this paper we consider systems with
both transmission and pinning delays,

ẋi = −
n
∑

j=1,j 6=i

Lij(xj(t−τr)−xi(t))−cδD(i)(xi(t−τp)−s),

(3)
for i = 1, . . . , n, where τr denotes thetransmission delay
in the network andτp is thepinning delay of the controllers.
Several recent papers have addressed the stability of consensus
systems with various delays. It has been shown that consensus
can be achieved under transmission delays if the graph has
a spanning tree [13]-[15]. However, if a sufficiently large
delay is present also in the self-feedback of the node’s own
state, then consensus may be destroyed [16]; similar conclu-
sions also hold in cases of time-varying topologies [17]–[19]
and heterogeneous delays [20]-[22]. The stability of pinning
networks with nonlinear node dynamics have been studied
in [6]–[12], [23]–[26]. However, the role of pinning delay
was considered in only a few papers [23]–[26], where it was
argued that stability can be guaranteed if the pinning delays are
sufficiently small. Precise conditions on the pinning delayfor
stability, the relation to the network topology, and the selection
of pinned nodes have not yet been addressed.

In this paper, we study the stability of the model (3)
under both transmission and pinning delays. First, we derive
an estimate of the largest admissible pinning delay. Next,
we consider several specific scenarios and present numerical
algorithms to verify stability by calculating the dominant
eigenvalue of the system. Included among the scenarios are
the cases when only a single node is pinned in the absence
of transmission delay, or when the transmission and pinning
delays are identical. Finally, we use a perturbation approach
to estimate the dominant eigenvalue for very small and very
large pinning strengths.
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II. N OTATION AND PRELIMINARIES

A directed graphG = {V , E} consists of a node setV =
{v1, . . . , vn} and a link setE ⊆ V × V . A (directed)path
of length l from nodevj to vi, denoted(vr1 , . . . , vrl+1

), is a
sequence ofl+1 distinct vertices withvr1 = vi andvrl+1

= vj
such that(vrk , vrk+1

) ∈ E for k = 1, . . . , l. The graph is called
strongly connected if there is a directed path from any node
to any other node, and it is said to have a spanning tree if
there is a nodevp ∈ V such that for any other nodej there is
a path fromvp to vj .

We denote the imaginary unit byj and then × n identity
matrix by In. For a matrixL, Lij denotes its(i, j)th element
andL⊤ its transpose. The Laplacian matrixL is associated
with the graphG in the sense that there is a link fromvj to vi
in G if and only if Lij 6= 0. We denote the eigenvalues ofL by
{θ1, . . . , θn}. Recall that zero is always an eigenvalue, with the
corresponding eigenvector[1, . . . , 1]⊤, andRe(θi) > 0 for all
nonzero eigenvaluesθi. Furthermore, if the graphG is strongly
connected (or equivalently, ifL is irreducible), then zero is
a simple eigenvalue ofL. The diagonal elementLii is the
weighted in-degree of nodei. Let K = diag{L11, . . . , Lnn}
be the diagonal matrix of in-degrees andA = K − L. Let
yi = xi − s, y = [y1, . . . , yn]

⊤, andD = diag{d1, · · · , dn}
with di = δD(i). System (3) can be rewritten as

ẏ = −Ky +Ay(t− τr)− cDy(t− τp). (4)

Considering solutions in the formy(t) = exp(λt)ξ with λ ∈ C

andξ ∈ Cn, the characteristic equation of (4) is obtained as

χ(λ) := det [λIn +K −A exp(−λτr) + cD exp(−λτp)] = 0.
(5)

The asymptotic stability of (4) is equivalent to all characteristic
rootsλ of (5) having negative real parts. The root having the
largest real part will be termed as the dominant root or the
dominant eigenvalue. For the undelayed case, Proposition 1
can be equivalently stated as follows.

Corollary 1: If (H) holds, then all eigenvalues ofL + cD
have negative real parts.

We also state an easy observation for later use:
Lemma 1: For any two column vectorsu, v ∈ Rn, det(In+

uv⊤) = 1 + v⊤u.

III. E STIMATION OF THE LARGEST ADMISSIBLE PINNING

DELAY

We first show that the system (4) is stable for all values of
the pinning delayτp smaller than a certain valueτ∗p .

Proposition 2: Assume condition (H). Let

F (w, c, l, τ) = c2 + ω2 + 2c [l cos(ωτ) − ω sin(ωτ)] (6)

and define

τ∗p = sup
τ>0

{

τ : min
ω∈R

min
i∈D

F (w, c, Lii, τ) > 0

}

. (7)

If τp < τ∗p , then system (4) is stable for allτr ≥ 0.
Proof: First, we takeτp = 0 and prove stability for

all τr ≥ 0. Assume for contradiction that there exists some

characteristic rootλ∗ of (5) such thatRe(λ∗) ≥ 0. Applying
the Gershgorin disc theorem to (5), we have

|λ∗ + Lii + cdi| ≤
∑

j 6=i

|Lij || exp(−λ∗τr)| ≤
∑

j 6=i

|Lij | = Lii

(8)
for somei, which implies

[Re(λ∗) + Lii + cdi]
2 + [Im(λ∗)]2 ≤ L2

ii.

Since Lii, c, di ≥ 0, it must be the case thatRe(λ∗) =
Im(λ∗) = 0; i.e., λ∗ = 0. Then exp(−τrλ∗) = 1, and
since τp = 0, (5) gives det(λ∗In + L + cD) = 0. This,
however, contradicts Corollary 1. Therefore, whenτp = 0,
all characteristic roots of (5) have negative real parts.

We now let τp ≥ 0. Suppose (5) has a purely imaginary
root λ = jω, ω ∈ R. By (8), we have, for some indexq,

|jω + Lqq + cdq exp(−jωτp)| ≤
∑

j 6=q

|Lqj || exp(−jωτr)

=
∑

j 6=q

|Lqj | = Lqq

implying
√

[Lqq + cdq cos(ωτp)]2 + [ω − cdq sin(ωτp)]2 ≤ Lqq.

Thus,

(cdq)
2 + ω2 + 2cdq (Lqq cos(ωτp)− ω sin(ωτp)) ≤ 0. (9)

We claim thatq must be a pinned node. For ifdq = 0, then
ω must be zero, which implies that zero is a characteristic
root of (5), contradicting Corollary 1. Thereforedq = 1. In
the notation of (6), the inequality (9) can then be written
as F (w, c, Lqq, τp) ≤ 0. By (7), however, we have that
F (w, c, Lqq, τp) > 0 for all p ∈ D, ω ∈ R and τp < τ∗p .
We conclude that (5) does not have purely imaginary roots
for τp < τ∗p . Thus, by [27, Theorem 2.1], all characteristic
roots of (5) have strictly negative real parts forτp < τ∗p .

Remark 1: Proposition 2 provides an estimate for the
largest admissible pinning delay for which system (4) is stable.
This estimate needs only the knowledge of the set of pinned
nodes and their weighted in-degrees.

IV. PINNING A SINGLE NODE

We now consider the possibility of controlling the network
using a single node, say, theqth one. ThenD = uqu

⊤
q , where

uq denotes theqth standard basis vector, whoseqth component
is one and other components zero. IfλIn+K−A exp(−λτr)
is nonsingular, the characteristic equation (5) becomes

χ(λ) =det
[

λIn +K −A exp(−λτr) + cuqu
⊤
q exp(−λτp)

]

=det(λIn +K −A exp(−λτr))
det

[

In + cuqu
⊤
q (λIn +K −A exp(−λτr))−1 exp(−λτp)

]

=det(λIn +K −A exp(−λτr))
(1 + cu⊤q (λIn +K −A exp(−λτr))−1uq exp(−λτp))

(10)

using Lemma 1. Then we have the following result.
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Proposition 3: Assume (H). If all solutionsλ of the equa-
tion

1+cu⊤q (λIn+K−A exp(−λτr))−1uq exp(−λτp) = 0 (11)

satisfyRe(λ) < 0, then system (4) is stable.
Proof: As in the first part of the proof of Proposition 2,

the equationdet[λIn+K−A exp(−λτr)] = 0 has no solutions
with Re(λ) ≥ 0. Hence, if all solutionsλ of (11) have negative
real parts, then all roots of (5) have negative real parts.

We consider two specific cases to obtain more information
about the solutions of (11). First, we consider the absence
of transmission delays, i.e.,τr = 0. Suppose for simplic-
ity that L is diagonalizable and has only real eigenvalues:
L = Q−1JQ for some nonsingularQ and a real diagonal
matrixJ = diag{θ1, . . . , θn} of eigenvalues ofL. The column
vectors ofQ−1 (resp, the row vectors ofQ) are the right (resp.,
left) eigenvectors ofL. Then, (11) can be written as

1 + cζ⊤(λIn + J)−1ξ exp(−λτp) = 0, (12)

whereζ⊤ = u⊤q Q is theqth left eigenvector andξ = Q−1uq
is theqth right eigenvector ofL. We expand (12) as

1 + c

n
∑

i=1

ξiζi exp(−λτp)
λ+ θi

= 0 (13)

in terms of the componentsξi, ζi of ξ and ζ, respectively.
Consider the smallest value ofτp for which there exists
a purely imaginary solution,λ = jω. Then, the real and
imaginary parts of (13) give

{

1 + a(ω) cos(ωτp)− b(ω) sin(ωτp) = 0

b(ω) cos(ωτp) + a(ω) sin(ωτp) = 0

where

a(ω) = c

n
∑

i=1

ξiζiθi
ω2 + θ2i

, b(ω) = c
∑

i

ξiζiω

ω2 + θ2i
. (14)

Rearranging givescos(ωτp) = −a(ω)/(a2(ω) + b2(ω)) and
sin(ωτp) = b(ω)/(a2(ω) + b2(ω)). This implies a(ω)2 +
b2(ω) = 1 and

cos(ωτp) = −a(ω), sin(ωτp) = b(ω). (15)

We then have the following result.
Proposition 4: Supposeτr = 0, L is diagonalizable, irre-

ducible, and all its eigenvalues are real. Let the eigenvalues
{θi} of L be sorted so thatθq = 0, and letζ = [ζ1, . . . , ζn],
∑n

k=1 ζk = 1, be the left eigenvector ofL corresponding to
the zero eigenvalue. LetZ denote the set of positive solutions
of the equation

a2(ω) + b2(ω) = 1 (16)

with respect to the variableω2, wherea(ω) andb(ω) are given
by (14). Define

τMp =
arccos(−a(

√
maxZ))√

maxZ
. (17)

Then system (4) is stable forτp < τMp .
Proof: Eq. (10) implies that any purely imaginary solution

jω of (5) should also be a solution of (13). Thenω must be

a real solution of (16). By the definition ofZ, the solution
set of (16) with respect toω is {±√

z : z ∈ Z}. By
the assumption of irreducibility,θi > 0 for all i 6= q and
ζi, ξi > 0 ∀i. If ω =

√
z, then the smallest positive solution

of (15) with respect toτp is arccos(−a(√z))/√z. If, on
the other hand,ω = −√

z, noting that a(ω) > 0 and
b(ω) ≤ 0, the smallest positive solution of (15) is again
arccos(−a(√z))/√z. Therefore, givenω2 ∈ Z, the smallest
nonnegative solution of (15) with respect toτp should be in
the set{arccos(−a(√z))/√z : z ∈ Z}. Since the mapping
z 7→ arccos(−a(√z))/√z is a decreasing function ofz > 0,
the quantityτMp defined in (17) is the smallest nonnegative
solution of (15) with respect toτp, givenω2 ∈ Z. Hence, for
τp < τMp (13) does not have any purely imaginary solutions.
Since forτp = 0 all characteristic roots of (5) have negative
real parts, we conclude that all roots have negative real parts
for τp < τMp .

Remark 2: By derivation, Eq. (13) is independent of the
ordering of the eigenvalues or the eigenvectors inJ . Therefore,
the boundτMp for allowable pinning delays given in Proposi-
tion 4 does not depend on the choice of the pinned node.

Proposition 4 suggests an algorithm to calculateτMp :
1) Find the largest positive solutionω2 of the equation

n
∑

k=1

(ξkζk)
2

ω2 + θ2k
+ 2

∑

i>j

ξiξjζiζj(θiθj + ω2)

(ω2 + θ2i )(ω
2 + θ2j )

=
1

c2
. (18)

2) Calculate (17).
We illustrate this approach in an Erdős-Renyi (E-R) random

network of n = 100 nodes with linking probability0.03,
where the first node is pinned. The left and right eigenvec-
tors of L associated with the zero eigenvalue are given by
ζ = [1, . . . , 1]/

√
n. Figure 1 shows the parameter region

{(c, τp) : τp < τMp }, illustrating the inverse dependence
of τMp on c. Note that τp > τMp does not necessarily
imply instability, since Proposition 4 gives only a sufficient
condition. Nevertheless, the curve shown in Fig. 1(a) turns
out to be a good approximation of the boundary of the exact
stability region. To illustrate, we take two parameter points
very close (±10% of the τMp ) to the curve but on different
sides of it, as indicated by blue and red stars in Fig. 1(a). We
simulate (3) at the corresponding parameter values, with the
same Laplacian as above andτr = 0. As seen in Fig. 1(b)–(c),
the two points indeed yield different stability properties.

The other situation we consider is the homogeneous case
whenL is diagonalisable and normalised, i.e.,Lii = l ∀i for
somel > 0, andτr = τp. Then (11) becomes

1+cu⊤q ((λ+l)In−A exp(−λτr))−1uq exp(−λτp) = 0. (19)

Let L = QJQ−1; thusA = Q(lIn − J)Q−1. Then, by the
same algebra as above, (19) becomes

1 + c

n
∑

k=1

ζkξk exp(−λτp)
(λ+ l) + (θk − l) exp(−λτp)

= 0. (20)

We have the following result.
Proposition 5: Suppose thatτr = τp, L is diagonalizable,

irreducible, normalised (Lii = l ∀i), and all its eigenvalues
{θi} are real. Denoteθq = 0 and letζ = [ζ1, . . . , ζn] be the



4

4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

c

τ p

Stable

(a) The stability region{(c, τp) : τp < τMp }.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Time

y i, i
=1

,..
.,1

00

(b) c = 4.48 andτp = 0.7724

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Time

y i,i=
1,

...
,1

00

(c) c = 4.48 andτp = 0.9441

Fig. 1. (a) The stability region{(c, τp) : τp < τMp } in the parameter
plane (c, τp), where the dashed line depictsτMp as a function ofc. Direct
simulation verifies that the system is indeed stable for the parameter values
c = 4.48 andτp = 0.7724 (b), and unstable for the slightly different values
c = 4.48 and τp = 0.9441 (c), corresponding to the blue and red stars,
respectively, in subfigure (a).

left eigenvector ofL corresponding to the eigenvalue0, with
∑

i ζi = 1. Let S denote the set of all the branches of the
solutions of the equation

1 + c

n
∑

k=1

ζkξk
exp(−lτp)s/τp + (θk − l)

= 0 (21)

with respect to the variables. Then system (4) is stable
whenever the real parts of the numbers{W (s)

τp
− l : s ∈ S}

are all negative, whereW is the LambertW function [28].
Proposition 5 can be proved by transforming (20) into (21)

with s = τp(λ+ l) exp(τp(λ + l)) and using Proposition 3.

V. SMALL AND LARGE PINNING STRENGTHS

In this section, we consider the extreme situations when
the pinning strengthc is very small or very large. We will
employ the perturbation approach in [29], [30] to approximate
the eigenvalues and eigenvectors in terms ofc.

The characteristic rootsλ of (5) are eigenvalues of the
matrixΣ(c, λ) = −K+A exp(−λτr)−cD exp(−λτp). Hence,
when c = 0, the characteristic roots of (5) equal to the
eigenvalues{σi} of Σ(0, λ). Under the condition (H), there
is a single eigenvalueσ1 = 0. We denote the right and left
eigenvectors ofΣ(0, σi) by φi and ψi⊤ respectively, with
ψi⊤φi = 1. It can be seen thatψ1 and φ1 (associated with
σ1 = 0) are, respectively, the right and left eigenvectors ofL
associated with the zero Laplacian eigenvalue.

Let λi(c) denote the characteristic roots of (5) andφ̃i(c)
andψ̃i(c) denote the right and left eigenvectors ofΣ(c, λi(c)),
regarded as functions ofc, with λi(0) = σi, φ̃i(0) = φi and
ψ̃i(0) = ψi. Using a perturbation expansion [29], [30],

λi(c) = σi + λ1i c+ o(c), φ̃i(c) = φi + φi,1c+ o(c)

ψ̃i(c) = ψi + ψi,1c+ o(c)

where o(c) denotes terms that satisfylimc→0 |o(c)|/c = 0.
Thus,

[−K +A exp(−λi(c)τr)− cD exp(−λi(c)τp)]φ̃i(c)
= λi(c)φ̃

i(c).

Whenc is sufficiently small, the dominant eigenvalue isλ1(c),
sinceσ1 = 0 is the dominant eigenvalue whenc = 0. Hence,
we consideri = 1. Thenexp(−λ1(c)τ) = 1 − cλ11τ + o(c).
Comparing the first-order terms inc on both sides,(−Aλ11τr−
D)φi − Lφi,1 = λ11φ

i. Multiplying both sides withψ1⊤ and
noting thatψ1⊤φ1 = 1,

λ11 = − ψ1⊤Dφ1

1 + τr(ψ1⊤Aφ1)
. (22)

Hence, we have the following result.
Proposition 6: Suppose that the underlying graph is

strongly connected and at least one node is pinned. Then, for
sufficiently smallc, all characteristic roots of (5) have negative
real parts and the dominant root is given by

λ1(c) = − ψ1⊤Dφ1

1 + τr(ψ1⊤Kφ1)
c+ o(c). (23)

Proof: Since the graph is strongly connected,L has a
simple zero eigenvalue. Whenc = 0, the dominant root of (5)
is σ1 = λ1(0). Since the roots of (5) depend analytically onc,
they are given byλ1(c) for all sufficiently smallc. Substituting
(22) into λ1(c) and noting thatψ1⊤(−K + A)φ1 = 0
completes the proof.

In order to understand the meaning of (23), consider the
special case of an undirected graph with binary adjacency ma-
trix A. Then, withφ1 = [1, . . . , 1]⊤ andψ1 = [1, . . . , 1]⊤/n,
we haveψ1⊤Kφ1 =

∑n

i=1 Lii/n, which equals theaverage
degree of the graph. In addition,ψ1⊤Dφ1 =

∑n

i=1 δD(i)/n,
which is thefraction of pinned agents. Then, (23) yields the
approximation

λ1(c) ≈ − Pinning Fraction
1 + τr × Mean Degree

c (24)

for small c, which uses only the pinning fraction and the
mean degree of the graph. Since the real part of the dominant
characteristic value measures the exponential convergence of
the system, Proposition 6 implies that, for sufficiently small
c, the convergence rate is improved if the number of pinned
nodes is increased, the transmission delay is reduced, or the
mean degree is decreased. If the graph is directed, a similar
statement can be obtained by taking the components ofψ1 as
weights:ψ1Dφ1 =

∑n

j=1 ψ
1
j δD(j).

To illustrate this result, we employ a numerical method to
calculate the real part ofλ1(c), namely, by simulating the
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system (4) and expressing its exponential convergence rate
in terms of its largest Lyapunov exponent. In detail, letting
τm = max{τr, τp}, we partition time into disjoint intervals
of length τm, tk = kτm, and defineηk(θ) = y(tk + θ)
for θ ∈ [0, τm]. Then, the largest Lyapunov exponent, which
equals to the largest real part of solutions of (5), is numerically
calculated via [31]

Re(λ1,sim) = lim
N→∞

1

Nτm
log ‖ηN‖ = lim

N→∞

1

Nτm

N
∑

k=1

log
‖ηk‖

‖ηk−1‖
,

(25)
where ‖ · ‖ stands for the function norm. The latter is
numerically calculated by approximatingηk(·) with a finite-
dimensional vectorϕk obtained by evaluatingηk at a finite
number of equally spaced points and using the vector norm
‖ϕk‖. The estimate (25) can then be compared with the
analytical estimate forRe(λ1) obtained from (23):

Re(λ1,est) = − ψ1⊤Dφ1

1 + τr(ψ1⊤Kφ1)
c. (26)

For simulations, we generate an undirected E-R random
graph ofn = 100 nodes with linking probabilityp = 0.03
and randomly select a given fractionf of them as the pinned
nodes. The pinning delay is taken asτp = 0.1. Figure 2 shows
that the simulated value ofRe(λ1) decreases almost linearly
with respect toc andf , and increases with respect toτr and the
mean degree. The simulation results are in a good agreement
with the theoretical results. The error betweenRe(λ1,est) and
Re(λ1,sim) depends on the values ofλ11 andc. It can be seen
that the error will increase asc or λ11 (or equivalently,f )
increases, or else as the mean degree orτr decreases.
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Fig. 2. Variation ofRe(λ1) with system parameters. The estimate (26) (plot-
ted with +) shows good agreement with the values obtained via simulation
and (25) (plotted with⋄). The parameters that are kept fixed are: (a)f = 0.3,
τr = 0.1, mean degree= 3.4; (b) c = 0.1, τr = 0.1, mean degree= 3.4;
(c) c = 0.1, f = 0.3, τr = 0.1; (d) c = 0.1, f = 0.3, mean degree= 3.4.

Next, we consider the case of largec. Letting ǫ = 1/c and
µ = λ/c, (5) is rewritten as

det [µIn + ǫK − ǫA exp(−µτr/ǫ) +D exp(−µτp/ǫ)] = 0.
(27)

By the foregoing results, one can see that whenǫ is sufficiently
small, equivalently,c is sufficiently large, the largest admis-
sible pinning delay for (4) approaches zero. It is therefore
natural to assume thatτp depends onc in such a way thatτpc

is bounded asc grows large. Thus, we assume thatτpc := τpc
remains bounded asc→ ∞.

When ǫ = 0, (27) becomes approximatelẏx = −Dx(t −
τp∞), whereτp∞ can be any value betweenlimc→∞τpc and
limc→∞τpc. In terms of components,̇xi = −xi(t − τp∞) if
i ∈ D, and0 otherwise. The characteristic equation (27) with
ǫ = 0 can be written as

(µ+ exp(−µτp∞))mµn−m = 0 (28)

wherem = |D|. It is known thatRe(µ) < 0 for all roots of
the functionµ 7→ µ + exp(−µτp∞) if and only if τp∞ < π

2 .
Therefore, we impose the condition:τp c < π

2 .
Thus, the largest real part of the solutions of (28) is zero,

and is obtained for the solutionµ = 0. The corresponding
eigenspace has dimensionn−m and has the form

ES = {u = [u1, . . . , un]
⊤ ∈ R

n : ui = 0, ∀ i ∈ D}.

Without loss of generality, we assumeD = {1, . . . ,m}. Thus,
we consider perturbation in terms ofǫ near zero eigenvaluesµi

and its corresponding right and left vectors,ξi, ζi
⊤ ∈ ES such

that(ζi)⊤ξi = 1 and(ζj)⊤ξi = 0 if i 6= j, i, j = m+1, . . . , n.
Let µi(ǫ) stand for the perturbed solution of (27),̃ξi(ǫ)
and ζ̃i(ǫ) be the corresponding right and left eigenvectors,
respectively. By a perturbation expansion,

µi(ǫ) = µ1
i ǫ+ o(ǫ), ξ̃i(ǫ) = ξi + ξi,1ǫ+ o(ǫ)

ζ̃i(ǫ) = ζi + ζi,1ǫ+ o(ǫ) (29)

as ǫ→ 0. Thus, from (27),
[

−ǫK + ǫA exp
(

−µi(ǫ)
τr
ǫ

)

−D exp(−µi(ǫ)τPc)
]

ξ̃i(ǫ)

= µi(ǫ)ξ̃
i(ǫ).

Since exp(−µi(ǫ)τ) = 1 − ǫµ1
i τ + o(ǫ), by comparing the

coefficients of order1, we have

[−K +A exp(−µ1
i τr)]ξ

i −Dξi,1 = µ1
i ξ

i. (30)

We write

K =

[

K1 0
0 K2

]

, A =

[

A11 A12

A21 A22

]

, D =

[

Im 0
0 0

]

,

and ξi = [ξi1
⊤

, ξi2
⊤
]⊤, ξi,1 = [ξi,11

⊤
, ξi,12

⊤
]⊤, with K1, A11,

ξi1 = 0 and ξi,11 corresponding to the pinned subsetD of
dimensionm. Then (30) becomes

{

[−K2 +A22 exp(−µ1
i τr)]ξ

i
2 = µ1

i ξ
i
2

exp(−µ1
i τr)A12ξ

i
2 − ξi,11 = 0.

(31)

We have the following result.
Proposition 7: Suppose that the underlying graph is

strongly connected and at least one node is pinned. Fixτr ≥ 0,
and supposeτpc < π

2 as c → ∞. Then the dominant root of
(27) has the form

λ(c) = µ1
∗ + o(1) asc→ ∞, (32)

whereµ1
∗ is the dominant eigenvalue of the delay-differential

equation
ẏ = −K2y(t) +A22y(t− τr). (33)
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Fig. 3. Variation ofRe(λ1) with large values ofc, calculated forf = 0.3,
τr = τp = 0.1, and mean degree= 3.4. The estimationRe(λ1,est) is plotted
by the blue solid line and the real values by the dash line withred ⋄.

Furthermore,Re(λ(c)) < 0 for all sufficiently largec.
Proof: The condition τpc < π/2 implies that, when

ǫ = 0, the dominant root of the characteristic equation
(27) is zero and corresponds to the eigenspaceES. So, for
sufficiently smallǫ, the dominant root of equation (27) and
the corresponding eigenvector have the form (29), whereµ1

i

satisfies the first equation in (31), i.e., is an eigenvalue of(33).
Sinceλ(ǫ) = µ/ǫ, (32) follows. Moreover, since−K2+A22 is
diagonally dominant, one can see thatRe(µ1

i ) < 0 under con-
dition (H). Therefore, for sufficiently largec, all characteristic
values of system (3) have negative real parts.

We note thatµ1
∗ depends only on the coupling structure

of the uncoupled nodes. To illustrate this result, we
consider examples with a similar setup as in Sec. V.
We take an E-R graph withn = 100 nodes and linking
probability p = 0.03, and pin m = 30 nodes. We set
τr = 0.1 and τp = 1

c
. The real part of the dominant

characteristic root of (5) is numerically calculated via
the largest Lyapunov exponent, using formula (25). Its
theoretical estimation comes from Theorem 7:Re(λ1,est) =
max

{

Re(µ1) : det
(

µ1Im +K2 −A22 exp(−µ1τr)
)

= 0
}

,
where the largest real part ofµ1 is similarly calculated from
the largest Lyapunov exponent of (33). Fig. 3 shows that asc
grows large, the real part of the dominant root of (5) obtained
from simulations approach the theoretical resultRe(λ1,est),
thus verifying Proposition 7.

We have shown in this paper that the stability of the multi-
agent systems with a local pinning strategy and transmission
delay may be destroyed by sufficiently large pinning delays.
Using theoretical and numerical methods, we have obtained
an upper-bound for the delay value such that the system is
stable for any pinning delay less than this bound. In this case,
the exponential convergence rate of the multi-agent, which
equals the smallest nonzero real part of the eigenvalues of the
characteristic equation, measures the control performance.

REFERENCES

[1] M. H. DeGroot, Reaching a consensus, J. Amer. Statist. Assoc., 69
(1974), 118–121.

[2] C. Reynolds, Flocks, herds, and schools: A distributed behavioral model,
Comput. Graph., 21:4 (1987), 25–34.

[3] T. Vicsek, A. Czirök, E. Ben-Jacob, I. Cohen and O. Shochet, Novel
type of phase transition in a system of self-driven particles, Phys. Rev.
Lett., 75 (1995), 1226–1229.

[4] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile
autonomous agents using nearest neighbor rules, IEEE TransAutomat.
Control, 48 (2003), 988–1001.

[5] J. A. Fax and R. M. Murray, Information flow and cooperative control of
vehicle formations, IEEE Trans. Autom. Control, 49 (2004),1465–1476.

[6] X. F. Wang, G. Chen, Pinning control of scale-free dynamical network,
Physica A, 310(2002), 521–531.

[7] X. Li, X. F. Wang, G. Chen, Pinning a complex dynamical network to
its equilibrium, IEEE Trans. Circuits Syst. I, 51:10 (2004), 2074–2087.

[8] T. P. Chen, X. W. Liu, W. L. Lu. Pinning complex networks bya single
controller. IEEE Trans. Circuits Syst. I, 54:6 (2007), 1317–1326.

[9] W. L. Lu, X. Li, Z. H. Rong. Global stabilization of complex networks
with digraph topologies via a local pinning algorithm. Automatica, 46
(2010), 116–121.

[10] Q. Song, F. Liu, J. Cao, W. Yu, M-Matrix Strategies for Pinning-
Controlled Leader-Following Consensus in Multiagent Systems With
Nonlinear Dynamics, IEEE Trans. Cybern., 43:6 (2013), 1688–1697.

[11] Q. Song, F. Liu, J. Cao, W. Yu, Pinning-ControllabilityAnalysis of
Complex Networks: An M-Matrix Approach, IEEE Trans. Circuits Syst.-
I, 59:11(2012) 2692–270.

[12] Q. Song, J. Cao, On Pinning Synchronization Of DirectedAnd Undi-
rected Complex Dynamical Networks, IEEE Trans. Circuits Syst.-I,
57:3(2010), 672–680.

[13] R. Olfati-Saber and R. M. Murray, Consensus problems innetworks of
agents with switching topology and time-delays, IEEE Trans. Autom.
Control, 49 (2004), 1520–1533.

[14] F. M. Atay, Consensus in networks under transmission delays and the
normalized Laplacian. Phil. Trans. Roy. Soc. A, 371 (2013),20120460.

[15] F. M. Atay, On the duality between consensus problems and Markov
processes, with application to delay systems. Markov Processes and
Related Fields (in press).

[16] P.-A. Bliman and G. Ferrari-Trecate, Average consensus problems in net-
works of agents with delayed communications, Automatica, 44 (2008),
1985–1995.

[17] L. Moreau, Stability of multiagent systems with time-dependent com-
munication links, IEEE Trans. Autom. Control, 50 (2005), 169–182.

[18] F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-
agent systems with switching topology and time-varying delays, IEEE
Trans. Autom. Control, 53 (2008), 1804–1816.

[19] W. L. Lu, F. M. Atay, J. Jost, Consensus and synchronization in discrete-
time networks of multi-agents with stochastically switching topologies
and time delays, Networks and Heterogeneous Media, 6:2(2011), 329–
349.

[20] L. Xiang, Z. Chen, Z. Liu et al. Pinning control of complex dynamical
networks with heterogeneous delays, Computers & Mathematics with
Applications, 56:5 (2008), 1423–1433.

[21] M. Ulrich, A. Papachristodoulou, F. Allgöwer, Generalized Nyquist
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