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Local pinning of networks of multi-agent systems

with transmission

and pinning delays

Wenlian Lu Senior Member, |IEEE Fatihcan M. Atay

Abstract—We study the stability of networks of multi-agent
systems with local pinning strategies and two types of time
delays, namely the transmission delay in the network and
the pinning delay of the controllers. Sufficient conditions for
stability are derived under specific scenarios by computing
or estimating the dominant eigenvalue of the characterist
equation. In addition, controlling the network by pinning a single
node is studied. Moreover, perturbation methods are emplogd
to derive conditions in the limit of small and large pinning
strengths. Numerical algorithms are proposed to verify staility,
and simulation examples are presented to confirm the efficiay
of analytic results.

I. INTRODUCTION

function (1 if + € D and O otherwise), and > 0 is the
pinning strength. Eq[{2) provides the local strategy thias p

few nodes to stabilize the whole network at a common desired
value. The following hypothesis is natural in pinning prerils
and assumed in this paper.

(H) Each strongly connected component Gf without
incoming links from the outside has at least one nod®in

The following result is proved i [8]/]9].
Proposition 1: If (H) holds, then systenl{2) is asymptoti-
cally stable atr; = s Vi.

In many networked systems, however, time delays inevitably
occur due to limited information transmission speed; s@B+0

Control problems in multi-agent systems have been attragition[]l does not apply. In this paper we consider systents wit

ing attention in diverse contexfs [1[+[7]. In the consensab-

both transmission and pinning delays,

lem, for example, the objective is to make all agents coreverg
to some common state by designing proper algorithirng[2]-[5] n

such as the linear consensus protocol
n
Iz:—Zng%(ﬂ, Z:L,TL (1)
j=1

Here,z; € R is the state of agertandL;;
of the Laplacian matrixL, satisfyingL;; < 0 for all i # j

& =— Lij(zj(t—7r)—xi(t)) —cdp (i) (zi(t—7p) — ),
J=1.j7#i

)

for i = 1,...,n, wherer, denotes thdransmission delay

in the network and-, is the pinning delay of the controllers.

are the Components geyera| recent papers have addressed the stability of nemse

systems with various delays. It has been shown that consensu

and Li; = —_;,; Li;- The Laplacian is associated with thea, e achieved under transmission delays if the graph has
underlying graplg, thse links can pe directed and Welghte_c(ijl spanning tree[ TL3[-[15]. However, if a sufficiently large
It can be shown that, if the underlying graph has & spannigg|ay s present also in the self-feedback of the node’s own

tree, then all agents converge to a common number, whi

te, then consensus may be destroied [16]; similar conclu

depends on the initial values [LLI[41.][5]. On the other handjong also hold in cases of time-varying topologles [173H1
if it is desired to steer the system to a prescribed consensjis heterogeneous delays|[20[[22]. The stability of pigni

value, auxiliary control strategies are necessary. Ambegd,

networks with nonlinear node dynamics have been studied

pinning control is particularly attractive because it is easily, [Bl-[12], [23]-[2€]. However, the role of pinning delay
realizable by controlling only a few agents, driving them tQ,,< considered in only a few papers|[28]2[26], where it was

the desired value through feedback action:

n, (2)

goeeey

argued that stability can be guaranteed if the pinning deday
sufficiently small. Precise conditions on the pinning déiay
stability, the relation to the network topology, and theeséibn
of pinned nodes have not yet been addressed.

where D denotes the subset of agents where feedback iSin this paper, we study the stability of the modél (3)

applied, with cardinality|D| = m, dp(i) is the indicator
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under both transmission and pinning delays. First, we deriv
an estimate of the largest admissible pinning delay. Next,
we consider several specific scenarios and present nurerica
algorithms to verify stability by calculating the dominant
eigenvalue of the system. Included among the scenarios are
the cases when only a single node is pinned in the absence
of transmission delay, or when the transmission and pinning
delays are identical. Finally, we use a perturbation apgroa

to estimate the dominant eigenvalue for very small and very
large pinning strengths.
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Il. NOTATION AND PRELIMINARIES characteristic roof* of (@) such thaiRe(\*) > 0. Applying

A directed graphg = {V, £} consists of a node sét = the Gershgorin disc theorem {d (5), we have

{vi,....vn} and a link set& C V x V. A (directed)path  |\* ¢ L, + cd;| < Z|Lij||exp(_/\*7'r)| < Z Lij| = Li;

of length/ from n_oo_levj to Ui, den_oted(vrl, CUp ), iS @ gy g
sequence of+-1 distinct vertices withv,., = v; andv,,,, = v; (8)
such that(v,,, v, ,,) € Efork =1,...,1. The graph is called for somei, which implies

strongly connected if there is a directed path from any node . 9 12 9

to any other node, and it is said to have a spanning tree if [Re(A") + Lii + edi]” + [Im(X"))" < Lj;.

there is a node;, € V such that for any other nodethere is  gince L,;,¢,d; > 0, it must be the case thate(\*) =

a path fromw, to v;. Im(\*) = 0; i.e.,, \* = 0. Thenexp(—7.A\*) = 1, and
We denote the imaginary unit biyand then x n identity gjpce 7, = 0, @) givesdet(\*I, + L + ¢D) = 0. This,

matrix by I,,. For a matrixL, L;; denotes itgi, /)" element however, contradicts Corollaf 1. Therefore, when= 0,

and LT its transpose. The Laplacian matrix is associated g| characteristic roots of15) have negative real parts.

in G if and only if L;; # 0. We denote the eigenvaluesbby oot )\ = jw, w € R. By (@), we have, for some index

{64, ...,0,}. Recall that zero is always an eigenvalue, with the

corresponding eigenvectfr, ..., 1], andRe(6;) > 0 for all ljw + Lgg + cdg exp(—jwTy)| < Z |Lgjl| exp(—jwry)
nonzero eigenvalugs. Furthermore, if the grap@ is strongly J#aq

connected (or equivalently, if. is irreducible), then zero is — Z |Lgi| = Lyg

a simple eigenvalue of.. The diagonal elemenkt,; is the e

weighted in-degree of node:. Let K = diag{Li1,..., Lnn} . )
be the diagonal matrix of in-degrees add— K — L. Let MPlying

Yi=12; — 8 Y= [y1,...,ys) ", and D = diag{dy,--- ,d,} 5 _ ) 5
with d; = dp(i). System[(B) can be rewritten as \/[qu + cdg cos(wTp)]? + [w — edg sin(wp)]? < Lyq-
Thus,

y=—-Ky+ Ay(t — ) — cDy(t — 7). 4)
L o . dy)? + w? + 2cd, (Lgq cos(wTy) — wsi <0. (9
Considering solutions in the forg(t) = exp(At)¢ with A € C (edq)” + w” + 2edy (Lgq coslwy) —wsinwry)) < 0. (9)
and¢ e C", the characteristic equation dfl (4) is obtained asVe claim thatg must be a pinned node. For df, = 0, then

w must be zero, which implies that zero is a characteristic
X(A) := det [M + K — Aexp(=A7y) + cDexp(=A7)] = 0. o0t of [§), contradicting Corollarfil1. Thereforg = 1. In

) - ) _ \9) the notation of [(B), the inequality](9) can then be written
The asymptotic st_ablllty OE{4) is equivalent to all cham«gnc as F(w,c, Ly, 7,) < 0. By (7), however, we have that
roots \ of () having negative real parts. The root having th (

i w, ¢, Lyg,7p) > 0 foralpeD weRandr < 7.

Iarge_st reallpart will be termed as the dominant root or thRe conclude that[{5) does not have purely imaginary roots
dominant eigenvalue. For the undelayed case, Propoiﬁlorfo;l. 7, < 7. Thus, by [27, Theorem 2.1], all characteristic

H p
can be equivalently stated as follows. roots of [B) have strictly negative real parts for< 7. m

Corollary 1: If (H) holds, then all eigenvalues df + cD Remark 1: Proposition[2 provides an estimate for the
have negative real parts. _ largest admissible pinning delay for which systén (4) islsta
We also state an easy observation for later use: This estimate needs only the knowledge of the set of pinned

Lemma 1: For any two column vectors, v € R", det(I,+ npodes and their weighted in-degrees.
Ty — T
w')=1+v"u.
IV. PINNING A SINGLE NODE

IIl. ESTIMATION OF THE LARGEST ADMISSIBLE PINNING

DELAY We now consider the possibility of controlling the network

using a single node, say, tlgeh one. ThenD = uqu;, where
We first show that the systerfil (4) is stable for all values af, denotes theth standard basis vector, whaglé component
the pinning delayr,, smaller than a certain valug . is one and other components zeroAff, + K — Aexp(—A7;.)

Proposition 2: Assume condition (H). Let is nonsingular, the characteristic equatibh (5) becomes

F(w,c,l,7) = +w? + 2¢[lcos(wr) — wsin(wr)]  (6) X(A) =det [A, + K — Aexp(—A7,) + Cuqu,;r exp(—A7p)]
=det(Al,, + K — Aexp(—A7y.))

and define
det [I, + cuqun(/\In + K — Aexp(—A1;)) " " exp(—=A1p)]
T = su];(; {T : meiﬂrérlreliélF(w,c, Lii, ) > 0}. @) =det(\,, + K — Aexp(—Ar;.))
T> w H
14 cu! (M, + K — Aexp(—A1.)) " ugy exp(—\
If 7, < 7, then system{4) is stable for af} > 0. ( a XP(=AT))™ g exp( (Ti())))

Proof: First, we taker, = 0 and prove stability for .
all 7. > 0. Assume for contradiction that there exists somésing Lemmd1l. Then we have the following result.



Proposition 3: Assume (H). If all solutions\ of the equa- a real solution of[(16). By the definition of, the solution
tion set of [I6) with respect tav is {+\/z : 2 € Z}. By
_ the assumption of irreducibilityy; > 0 for all i # ¢ and
L eug (M + K = Aexp(=Am)) Mg exp(=A7y) = 0 (11) i, & > 0 Vi. If w = /z, then the smallest positive solution
satisfy Re(\) < 0, then system[{4) is stable. of (I5) with respect tor, is arccos(—a(y/z))//z. If, on
Proof: As in the first part of the proof of Propositigh 2,the other handw = —./z, noting thata(w) > 0 and
the equationlet[\],,+ K — A exp(—A7,.)] = 0 has no solutions b(w) < 0, the smallest positive solution of {15) is again
with Re(\) > 0. Hence, if all solutions\ of (1)) have negative arccos(—a(y/z))/+/z. Therefore, given,? € Z, the smallest
real parts, then all roots of](5) have negative real partsm nonnegative solution of(15) with respect tp should be in
We consider two specific cases to obtain more informatidhe set{arccos(—a(\/2))/v/z : z € Z}. Since the mapping
about the solutions of {11). First, we consider the absenee— arccos(—a(y/z))/+/z is a decreasing function of > 0,
of transmission delays, i.ez, = 0. Suppose for simplic- the quantity=’ defined in [IV) is the smallest nonnegative
ity that L is diagonalizable and has only real eigenvalueselution of [I5) with respect ta,, givenw? € Z. Hence, for
L = Q'JQ for some nonsingulat) and a real diagonal 7, < 7," (3) does not have any purely imaginary solutions.
matrix .J = diag{6,...,0,} of eigenvalues of.. The column Since forr, = 0 all characteristic roots of5) have negative
vectors of@ ! (resp, the row vectors @) are the right (resp., real parts, we conclude that all roots have negative reds par

left) eigenvectors of... Then, [11) can be written as for 7, < 7)1. u
Remark 2: By derivation, Eq. [(IB) is independent of the

T —1
Lo (M + )" Eexp(=ATp) = 0, (12) ordering of the eigenvalues or the eigenvectorg.ifherefore,
where¢T = unQ is the gth left eigenvector and = Q~'u the boundr)’ for allowable pinning delays given in Proposi-

is the gth right eigenvector of.. We expand[{12) as *  tion@ does not depend on the choice of the pinned node.
Propositior[# suggests an algorithm to calculgté:

14+ Ci §iGi exp(— A7) -0 (13) 1) Find the largest positive solutian® of the equation
i=1

A+
n (§k<k)2 515]4147(919-] +w2) B l
kz::l w2+ 67 + 2; (w2 + 02)(w? + 62) =3 (18)

in terms of the component§;, (; of ¢ and ¢, respectively.
Consider the smallest value af, for which there exists
a purely imaginary solution\ = jw. Then, the real and 2) Calculate[(7).

imaginary parts of[(13) give We illustrate this approach in an Erdés-Renyi (E-R) random

) B network of n = 100 nodes with linking probability0.03,
{1 +a(w) cos(wp) — b(w) sin(wrp) =0 where the first node is pinned. The left and right eigenvec-

b(w) cos(wp) + a(w) sin(wTp) =0 tors of L. associated with the zero eigenvalue are given by
where ¢ = [1,...,1]/v/n. Fig_urelj §hows tr_\e parameter region
" e » {(¢,7p) : 7 < 7'}, illustrating the inverse dependence
iGili iGiwW / '
a(w) :Cz g7 b(w) :CZ S (14) _of Téu. on c. Note that 7, >__TZ§” dqes not necessanly
oWt T~ we 0] imply instability, since Propositioh]l 4 gives only a sufficie

B condition. Nevertheless, the curve shown in Hij. 1(a) turns

sin(wr,) = b(w)/(a?(w L_bQ(w)) This implies a(w)? + out to be a _good ap_proximation of the boundary of the exact
b2 (w) i 1 and ' stability region. To illustrate, we take two parameter p®in
very close £10% of the 7.)7) to the curve but on different

cos(wrp) = —a(w), sin(wr,) = b(w). (15) sides of it, as indicated by blue and red stars in Hg. 1(a). We

, simulate [(B) at the corresponding parameter values, wih th
We then.h.ave the following result. o ) ) same Laplacian as above and= 0. As seen in FigJ1(b)—(c),
Proposition 4: Supposer, = 0, L is diagonalizable, irre- o o points indeed yield different stability properties
ducible, and all its eigenvalues are real. Let the eige®&lu Tha other situation we consider is the homogeneous case

{931} of L be sorted so thad, = 0, and let¢ = [¢1,...,¢als  \when is diagonalisable and normalised, i.&,; = [ Vi for
> k-1 Gk = 1, be the left eigenvector of corresponding t0 ¢4me; > 0, andr, = 7,. Then [I1) becomes
the zero eigenvalue. LeZ denote the set of positive solutions b

of the equation I4cu, (A+1) 1, — Aexp(—A7y)) ' ug exp(—A7p) = 0. (19)
2 2 _
a(w) +b0°(w) =1 16) et = QJQ1; thusA = Q(iI, — J)Q~. Then, by the
with respect to the variable?, wherea(w) andb(w) are given same algebra as above.|(19) becomes

Rearranging givesos(w,) = —a(w)/(a?®(w) + b*(w)) and

by (14). Define - ik exp(—ATp) _
TS =0. (20
v arccos(—a(vmax Z)) — (A +1) + (0 — 1) exp(—ATp)
T, = e . a7 k=1
max We have the following result.
Then system[{4) is stable fof, < Tzﬁ”. Proposition 5: Suppose that, = 7,, L is diagonalizable,

Proof: Eq. [10) implies that any purely imaginary solutiorirreducible, normalisedi{;; = [ Vi), and all its eigenvalues
jw of (@) should also be a solution df{13). Thenmust be {6;} are real. Denotd, = 0 and let¢ = [, ..., (,] be the



T Let \;(c) denote the characteristic roots @i (5) ant(c)
T ] andy’(c) denote the right and left eigenvectorsXfc, \;(c)),
ST ] regarded as functions ef with \;(0) = oy, ¢'(0) = ¢" and
o ] ¥(0) = +*. Using a perturbation expansidn [29], [30],
e M(O) = ot Metoe), §'(c) = ¢ + ¢ e+ ofc)
¢ i _ i i1
(a) The stability region{(c, 7p) : 7 < 7 }. ¥ie) = ¢i+ytetold)
where o(c) denotes terms that satistym. o |o(c)|/c = 0.

. ] Thus,

1 4 ~.

[-K + /}exp(—)\i(C)Tr) —cDexp(—Ai(c)7p)]¢" (c)
— M (D).

Whenc is sufficiently small, the dominant eigenvalue\igc),
sinces; = 0 is the dominant eigenvalue when= 0. Hence,
we consideri = 1. Thenexp(—A1(c)7) = 1 — cAiT + o(c).
Comparing the first-order terms inon both sides(— A7, —
D)¢' — Lot = A\l¢t. Multiplying both sides withy! ' and
noting thaty! ' ¢! = 1,

¥y =L..,100

0 10 20 30 20 50 60 70 80 90 100
Time

(b) c = 4.48 andr, = 0.7724

1T ppl
: | M= Do (22)
S | 1+ 7 (1T Agt)
() ¢ = 4.48 and 7, = 0.9441 Hence, we have the following result.

Proposition 6: Suppose that the underlying graph is
Fig. 1. (a) The stability regio{(c,7p) : 7, < 7'} in the parameter strongly connected and at least one node is pinned. Then, for

plane (¢, 7,,), where the dashed line depictg” as a function ofe. Direct sufficiently smalle, all characteristic roots of{5) have negative
simulation verifies that the system is indeed stable for theupeter values . . .
c=4.48 and 1, = 0.7724 (b), and unstable for the slightly different valuesreal parts and the dominant root is given by

¢ = 4.48 and 1, = 0.9441 (c), corresponding to the blue and red stars,

respectively, in subfigure (a). )\l(c) - 1/)1TDT¢1 - 0(0)' (23)
L+ 7. (p! Kob)

left eigenvector ofZ corresponding to the eigenvaldewith ~ Proof: Since the graph is strongly connected,has a
S,¢ = 1. Let S denote the set of all the branches of théimple zero eigenvalue. When= 0, the dominant root o{{5)
solutions of the equation is o1 = A1(0). Since the roots of {5) depend analytically @n
n they are given by (c) for all sufficiently smalle. Substituting

1+ CZ Cr&k -0 21) @2) into Ai(c) and noting thatwlT(—K + A)pt = 0

i= exp(=lmp)s/mp + (Ok — 1) completes the proof. u

with respect to the variable. Then system[{4) is stable In order to understand the meaning bfl(23), consider the

whenever the real parts of the numbé W) . e Sy speual case of_an tindwected grgph W|th1 binary adjac%eney ma
. . P . trix A. Then, with¢! =[1,...,1]" andy* =[1,...,1]" /n,
are all negative, wher® is the Lamberfi¥’ function [28]. 1T o1 n ,
Propositiorb can be proved by transformifgl (20) ifita 21y havev' Ko’ =35, Lii/n, 1vx4h|chlequal7sl thavgrage
with s = 7,(A + 1) exp(7,(A + 1)) and using Propositiof] 3. degree of the graph. In additiony" D" =3 _;_, o (i)/n,
which is thefraction of pinned agents. Then, [28) yields the

V. SMALL AND LARGE PINNING STRENGTHS approximation

Pinning Fraction

In this section, we consider the extreme situations when (o) ~ — c
the pinning strengthe is very small or very large. We will 1+ 7. x Mean Degree
employ the perturbation approach in [29].[30] to approxenafor small ¢, which uses only the pinning fraction and the
the eigenvalues and eigenvectors in terms.of mean degree of the graph. Since the real part of the dominant

The characteristic roots. of (§) are eigenvalues of the characteristic value measures the exponential conveegehc
matrixX(c, A) = —K+Aexp(—Ar.)—cDexp(—A7p). Hence, the system, Propositidd 6 implies that, for sufficiently #ma
when ¢ = 0, the characteristic roots ofl(5) equal to the, the convergence rate is improved if the number of pinned
eigenvalues{o;} of (0, ). Under the condition (H), there nodes is increased, the transmission delay is reducedgor th
is a single eigenvalue, = 0. We denote the right and left mean degree is decreased. If the graph is directed, a similar
eigenvectors of(0,0;) by ¢' and ¢* respectively, with statement can be obtained by taking the components' afs
Wi ¢t = 1. It can be seen thap' and ¢! (associated with weights:y! D¢l = S ¥jon(5)-

o1 = 0) are, respectively, the right and left eigenvectord.of  To illustrate this result, we employ a numerical method to
associated with the zero Laplacian eigenvalue. calculate the real part ok;(c), namely, by simulating the

(24)



system [(#) and expressing its exponential convergence ratdounded as grows large. Thus, we assume thgt := 7,¢
in terms of its largest Lyapunov exponent. In detail, lgtinremains bounded as— oc.

Tm = max{7,,7,}, we partition time into disjoint intervals Whene = 0, (24) becomes approximately = —Dz(t —
of length 7,,,, tx = k7, and defineny(0) = y(ty + 60) 7o), Wherer,, can be any value betwedim,_, . 7,. and

for 6 € [0,7,,]. Then, the largest Lyapunov exponent, whictim,_, 7,.. In terms of components;; = —;(t — Tpeo) if
equals to the largest real part of solutiongdf (5), is nuoadlsi i € D, and0 otherwise. The characteristic equatiénl(27) with
calculated via[[31] e = 0 can be written as

N _
1 1 + exp(—pTpoc)) " ™ =0 28
N—oo N7 N=eo N7 =7 k-1l herem = [D|. It is known thatRe(x) < 0 for all roots of
] _the functiony — p + exp(—pu7pe0) if and only if 7,0 < 3.
where || - || stands for the function norm. The latter isrherefore, we impose the condition; ¢ < Z.

numerically calculated by approximating(-) with a finite-  Thys the largest real part of the solutions [ofl (28) is zero,
dimensional vectorp; obtained by evaluating;. at a finite  anq is obtained for the solution = 0. The corresponding

number of equally spaced points and using the vector nogRenspace has dimensian- m and has the form
llokll- The estimate[(25) can then be compared with the

analytical estimate foRe()\;) obtained from[(23): ES ={u=[u1,...,u,] €R™: u; =0, VieD}
,L/JITD(bl Without loss of generality, we assurfie= {1,...,m}. Thus,
Re(A1est) = —mc- (26)  we consider perturbation in terms ohear zero eigenvalugs

and its corresponding right and left vectoﬁ_f's,(iT € ES such
For simulations, we generate an undirected E-R randanat(¢*)T¢' = 1and(¢?) "¢ =0if i # 4,4, = m+1,...,n.

graph ofn = 100 nodes with linking probabilityp = 0.03 Let su;(¢) stand for the perturbed solution o[[27§}'(6)

and randomly select a given fractighof them as the pinned and fi(e) be the corresponding right and left eigenvectors,

nodes. The pinning delay is takengs= 0.1. Figure2 shows respectively. By a perturbation expansion,

that the simulated value dRe()\;) decreases almost linearly N = PR

with respect ta and f, and increases with respecttoand the Ff?(e) = Hiet F’(e)’ §'e) =& + & e+ole)

mean degree. The simulation results are in a good agreement ('(e) = (' + e+ ole) (29)

with the theoretical results. The error betwd@e(\; ;) and

Re(M\1sim) depends on the values af andc. It can be seen ase — 0. Thus, from [2F),

that the error will increase as or A\l (or equivalently, f) [_6K+€A exp (_M(E)T_r) — Dexp(—pi(e)7pe)| €1(e)
increases, or else as the mean degree. atecreases. €

= pi(€)€"(€).
o A L Since exp(—pi(€)7) = 1 — eulr + o(e), by comparing the
g.m; \4 g coefficients of ordeil, we have
-02
025 - _ ) -04] 1 ) _71 L
E T ’ T ointing Fracton * [ K + Aexp(—p;7p)|¢" — DE = p; & (30)
@ (b) We write
Ki O A A 1 0
o g ot K — 1 A= 11 12 . D= m :
1 01M S ool 0 Ky Asy Asg 0 0
X & o
- ; T T - i1 T T .
e L and¢' = (¢, & |7 ¢ =[G L& |1 with Ky, Ay,
& = 0 and & corresponding to the pinned subsBt of
(© @ dimensionm. Th
m. Then [30) becomes
Fig. 2. Variation ofRe(\1) with system parameters. The estimétg (26) (plot- 1 i 1o
ted with 4+) shows good agreement with the values obtained via siroulati [~ K> + A exp(—H; )& = i s 31
and [25) (plotted withy). The parameters that are kept fixed are:flay 0.3, ex (_ 1 )A 51 _ fi’l -0 ( )
7 = 0.1, mean degree= 3.4; (b) ¢ = 0.1, - = 0.1, mean degree= 3.4; PU=/iTr) 21262 = &1 :

(€©)c=0.1, f=0.3, 7 =0.1; (d) ¢ = 0.1, f = 0.3, mean degree= 3.4. We have the foIIowing result.

Proposition 7: Suppose that the underlying graph is
strongly connected and at least one node is pinnedr,Fix 0,
and suppose;,c < 5 asc — oo. Then the dominant root of

det [ul, + €K — eAexp(—ur./€) + D exp(—uty/e)] = 0. (22) has the form
(27)
By the foregoing results, one can see that whensufficiently
small, equivalently, is sufficiently large, the largest admis-where ! is the dominant eigenvalue of the delay-differential
sible pinning delay for[{4) approaches zero. It is therefoeguation
natural to assume thajf, depends om in such a way that,c g =—Koy(t) + Ayt — 7). (33)

Next, we consider the case of largeLettinge = 1/c and
w=X/c, (B is rewritten as

M) = pul +o(1) asc — oo, (32)



| 7 6]
7
)
]

......

Fig. 3. Variation ofRe(A1) with large values of, calculated forf = 0.3, (10]

7 = 7p = 0.1, and mean degree 3.4. The estimatiorRe(\1,est ) is plotted

by the blue solid line and the real values by the dash line vétho. (11

FurthermoreRe(\(c)) < 0 for all sufficiently largec. (12]

Proof: The conditiont,. < =/2 implies that, when
e = 0, the dominant root of the characteristic equations]
(272) is zero and corresponds to the eigenspBée So, for
sufficiently smalle, the dominant root of equatioh (27) and,
the corresponding eigenvector have the fokm (29), where
satisfies the first equation ih(31), i.e., is an eigenvalu@ay.
Since)(e) = pu/e, B2) follows. Moreover, since Ko+ Ags is
diagonally dominant, one can see tiifat(x}) < 0 under con- [16]
dition (H). Therefore, for sufficiently large, all characteristic
values of systeni{3) have negative real parts. LY

We note thatu! depends only on the coupling structure
of the uncoupled nodes. To illustrate this result, wgs8l
consider examples with a similar setup as in Sgd. V.
We take an E-R graph witm = 100 nodes and linking [19]
probability p 0.03, and pinm 30 nodes. We set
Tr 0.1 and 7, = % The real part of the dominant
characteristic root of [{5) is numerically calculated vigeo]
the largest Lyapunov exponent, using formula](25). Its
theoretical estimation comes from TheorEMR&(A\1 est) = 21]
max {Re(,ul) . det (ullm + Ky — Agg exp(—ulTr)) = O},
where the largest real part @ft is similarly calculated from
the largest Lyapunov exponent 6 (33). Hig. 3 shows that agyy)
grows large, the real part of the dominant root[df (5) obtdine
from simulations approach the theoretical resRH#(A; est),
thus verifying Propositioal7.

We have shown in this paper that the stability of the multi-
agent systems with a local pinning strategy and transnmissi@4!
delay may be destroyed by sufficiently large pinning delays.
Using theoretical and numerical methods, we have obtaingd]
an upper-bound for the delay value such that the system is
stable for any pinning delay less than this bound. In thi:epaézq
the exponential convergence rate of the multi-agent, which
equals the smallest nonzero real part of the eigenvalugseof £7]
characteristic equation, measures the control performanc

[15]

[23]

[28]
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