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Relative Observability and Coobservability of
Timed Discrete-Event Systems

Kai Cai, Renyuan Zhang, and W.M. Wonham

Abstract—We study supervisory control of timed discrete-
event systems (TDES) under partial observation, and propose
new observability concepts effective for supervisor synthesis.
First, we consider monolithic/centralized supervisory control,
and introduce timed relative observability and timed relative weak
observability. The former concept extends our previous work
to the timed case, while the latter exploits choices of forcible
events to preempt the clock event tick. We prove that timed
relative (resp. weak) observability is stronger than timed (resp.
weak) observability, weaker than normality, and closed under set
union; hence there exists the supremal relatively (resp. weakly)
observable sublanguage of a given language.

We move on to study decentralized supervisory control of
TDES, and propose timed relative coobservability and timed rela-
tive weak coobservability as extensions of their centralized counter-
parts. It is shown that timed relative (resp. weak) coobservability
is stronger than timed (resp. weak) coobservability, weaker than
conormality, and closed under set union; therefore the supremal
relatively (resp. weakly) coobservable sublanguage of a given
language exists. Finally, algorithms are designed to compute
the supremal relatively (weakly) (co)observable and controllable
sublanguages, which are demonstrated with a Guideway example.

Index Terms—Supervisory control, timed discrete-event sys-
tems, partial observation, timed relative (weak) observability,
decentralized supervisory control, timed relative (weak) coob-
servability, automata.

I. INTRODUCTION

We study supervisory control of timed discrete-event sys-
tems (TDES) under partial observation, and propose new
observability concepts effective for supervisor synthesis. Many
time-critical applications can be modeled as TDES, such as
communication channels, sensor networks, logistic manage-
ment and scheduling [1]. The correctness and optimality of
TDES depend not only on the system’s logical behavior, but
also on the times at which various events occur. In practice
it may well be the case that the occurrence of some events
cannot be observed because of a lack of sensors (possibly
due to cost). Therefore it is important to develop supervisory
control of timed DES based only on partial event observation.

Partially-observed supervisory control of untimed DES in
the Ramadge-Wonham (RW) framework [2]–[4] has been
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actively studied (e.g. [5]–[9]); observability and normality
are two familiar concepts [5], [6]. Observability is necessary
for the existence of a partially-observed supervisor, but it is
not preserved under set union, and consequently the supre-
mal observable sublanguage of a given language need not
exist in general. Normality is closed under union, but may
result in overly conservative controlled behavior inasmuch
as unobservable events are not allowed to be disabled. In
[10] observability was extended to supervisory control of
TDES in the Brandin-Wonham (BW) framework [11], [4,
Chapter 9]. Like its untimed counterpart, timed observability
is not preserved under set union. In [12] a concept called
weak observability was proposed for a distinct class of timed
supervisors. In particular, the observability requirement for
the special clock event tick is relaxed by exploiting choices
of forcible events (formal definitions are given below). Weak
observability, however, is again not closed under set union.

We introduced relative observability in [13] for untimed
DES, which is proved to be stronger than observability, weaker
than normality, and preserved under set union; hence there
exists the supremal relatively observable sublanguage of a
given language. In this paper and its conference precursor
[14], we extend relative observability to supervisory control of
TDES in the BW framework. Specifically, we propose timed
relative observability and timed relative weak observability,
extending respectively [10] and [12]. First, we introduce timed
relative observability, and prove that it is stronger than timed
observability [10], weaker than normality, and closed under set
union. Second, we introduce timed relative weak observability,
and show that it is stronger than weak observability [12],
weaker than normality, and closed under set union. We design
an algorithm for computing the supremal relatively weakly
observable sublanguage. The concepts proposed and relations
proved, together with those of [10] and [12], are summarized
on the left of Fig. 1.

Timed relative (weak) observability is formulated in a cen-
tralized setup where a monolithic supervisor partially observes
and controls the TDES plant as a whole. We move on to
study a decentralized setup, where multiple decentralized
supervisors operate jointly, each of which observes and con-
trols only part of the TDES plant. Decentralized supervisory
control is an effective means of managing computational
complexity for large-scale systems, and has been extensively
investigated for untimed DES in the RW framework (e.g.
[6], [15]–[17]). The fundamental concepts are coobservability
[6], [15] (and its variations [16], [17]) and conormality [15].
Coobservability specifies the (AND/OR) rule of integrating
local control decisions, and is necessary for the existence of
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normality

relative observability relative weak observability

observability weak observability

(Lin and Wonham, 1995) (Takai and Ushio, 2006)

conormality

relative coobservability relative weak coobservability

coobservability weak coobservability

cf. (Rudie and Wonham, 1992) (Nomura and Takai, 2011)

centralized/monolithic supervisory control of TDES decentralized supervisory control of TDES

Fig. 1. Observability concepts and their relations in centralized/monolithic and decentralized supervisory control of TDES under partial observation.

decentralized supervisors. Just like observability and normality
in the centralized setup, coobservability is not closed under
set union while conormality may result in overly conservative
controlled behavior. By a method similar to that of [10],
coobservability may be extended to decentralized control of
TDES in the BW framework. Moreover in [18] the authors
studied weak coobservability conditions, but these are again
not closed under set union.

Recently we introduced relative coobservability [19] in
decentralized supervisory control of untimed DES. Relative
coobservability is shown to be stronger than (any variations of)
coobservability, weaker than conormality, and preserved under
set union; hence there exists the supremal relatively coobserv-
able sublanguage of a given language. In the second part of
this paper, we extend relative coobservability to decentralized
control of TDES in the BW framework. First, we introduce
timed relative coobservability, and prove that it is stronger than
timed coobservability (cf. [15]), weaker than conormality, and
closed under set union. Second, we propose timed relative
weak coobservability, and show that it is stronger than weak
coobservability [18], weaker than conormality, and closed
under set union. The concepts proposed and relations proved,
together with those of [18], are summarized on the right of
Fig. 1.

Finally we design algorithms for computing the supremal
relatively (weakly) (co)observable (and controllable, Lm(G)-
closed) sublanguage of a given language. The algorithms and
the proposed concepts are demonstrated with a Guideway
example of partially-observed centralized/decentralized super-
visory control.

We note that, for a given supervisor synthesis problem, even
if the supremal relatively (weakly) (co)observable sublanguage
of a given language is empty, there may still exist a nonempty
(weakly) (co)observable sublanguage. The latter is however
difficult to compute for non-prefix-closed languages. See [9]
for recent work on this problem in the untimed centralized set-
ting. In the decentralized setting, the existence of a nonempty
solution is generally undecidable [20].

We also note that many timed DES models and approaches
have been studied in the literature, including Brave and
Heymann’s “clock automata” [21], Ostroff’s “timed transition

models” [22], Brandin and Wonham’s TDES [11], and Cofer
and Garg’s model based on “timed Petri nets” [23]. We
adopt Brandin and Wonham’s TDES as the framework of
developing new observability concepts mainly for technical
convenience in extending our own previous work as well as
for easy comparison with relevant results in the literature.
As demonstrated in [11], [4, Chapter 9], the BW framework
captures a variety of timing issues useful in real-time discrete-
event control problems including communication delays and
operational hard deadlines.

The rest of the paper is organized as follows. In Section II
we review the basics of the BW framework of timed supervi-
sory control. Section III introduces timed relative observability
and investigates its properties. Section IV proposes timed
relative weak observability and studies its properties; an algo-
rithm is designed to compute the supremal relatively weakly
observable sublanguage. Section V introduces timed relative
coobservability and timed relative weak coobservability; their
properties are studied. An algorithm is developed to compute
the supremal relatively (weakly) (co)observable, controllable,
and Lm(G)-closed sublanguage. Section VI presents a Guide-
way example for demonstration of the proposed concepts and
algorithms. Finally in Section VII we state our conclusions.

For easy reference, we list the main symbols used in the
paper.

Symbols Meanings
EK(s) Set of events eligible following string s

in language K
supO(K, C) Supremal relatively observable sublanguage

of K with ambient language C
supWO(K, C) Supremal relatively weakly observable

sublanguage of K with ambient language C
Supremal relatively observable, controllable

KO
sup and Lm(G)-closed sublanguage of K

with ambient language K
Supremal relatively weakly observable,

KWO
sup controllable and Lm(G)-closed sublanguage

of K with ambient language K
Supremal relatively coobservable, controllable

KCO
sup and Lm(G)-closed sublanguage of K

with ambient language K
Supremal relatively weakly coobservable,

KWCO
sup controllable and Lm(G)-closed sublanguage

of K with ambient language K
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II. PRELIMINARIES ON BRANDIN-WONHAM TDES
FRAMEWORK

This section reviews the TDES model proposed by Brandin
and Wonham [11], [4, Chapter 9]. First consider the untimed
DES model

Gact = (A, Σact, δact, a0, Am). (1)

Here A is the finite set of activities, Σact the finite set of
events, δact : A × Σact → A the (partial) activity transition
function, a0 ∈ A the initial activity, and Am ⊆ A the
set of marker activities. Let N denote the natural numbers
{0, 1, 2, ...}. We introduce time into Gact by assigning to
each event σ ∈ Σact a lower time bound lσ ∈ N and an
upper time bound uσ ∈ N ∪ {∞}, such that lσ ≤ uσ;
typically, lσ represents a delay in communication or in control
enforcement, while uσ is often a hard deadline imposed by
legal specification or physical necessity. With these assigned
time bounds, the event set Σact is partitioned into two subsets:
Σact = Σspe∪̇Σrem (∪̇ denotes disjoint union) with Σspe :=
{σ ∈ Σact|uσ ∈ N} and Σrem := {σ ∈ Σact|uσ = ∞}; here
“spe” denotes “prospective”, i.e. σ will occur within some
prospective time (with a finite upper bound), while “rem”
denotes “remote”, i.e. σ will occur at some indefinite time
(with no upper bound), or possibly will never occur at all.

A distinguished event, written tick, is introduced which
represents “tick of the global clock”. Then a TDES model

G := (Q, Σ, δ, q0, Qm) (2)

is constructed from Gact [11], [4, Chapter 9] with Q the finite
set of states, Σ := Σact∪̇{tick} the finite set of events, δ :
Q × Σ → Q is the (partial) state transition function, q0 the
initial state, and Qm the set of marker states.

Let Σ∗ be the set of all finite strings of elements in
Σ = Σact∪̇{tick}, including the empty string ǫ. We introduce
the languages generated by TDES G in (2). The transition
function δ is extended to δ : Q × Σ∗ → Q in the usual way.
The closed behavior of G is the language L(G) := {s ∈
Σ∗|δ(q0, s)!}, and the marked behavior is Lm(G) := {s ∈
L(G)|δ(q0, s) ∈ Qm}. Let K ⊆ Σ∗ be a language; its prefix
closure is K := {s ∈ Σ∗|(∃t ∈ Σ∗)st ∈ K}. We say that K
is Lm(G)-closed if

K ∩ Lm(G) = K. (3)

TDES G is nonblocking if Lm(G) = L(G).
To use TDES G in (2) for supervisory control, it is neces-

sary to specify certain transitions that can be controlled by an
external supervisor. First, as in the untimed theory [4], we need
a subset of events that may be disabled. Since disabling an
event usually requires preventing that event indefinitely from
occurring, only remote events belong to this category. Thus
let a new subset Σhib ⊆ Σrem denote the prohibitible events;
the supervisor is allowed to disable any prohibitible event.
Next, and specific to TDES, we bring in another category
of events which can preempt event tick. Note that tick may
not be disabled, inasmuch as no control technology can stop
the global clock indefinitely. On this basis let a new subset
Σfor ⊆ Σact denote the forcible events; a forcible event is

one that preempts event tick: if, at a state q of G, tick is
defined and so are one or more forcible events, then tick can
be effectively erased from the current list of defined events
(contrast with indefinite erasure). There is no particular rela-
tion postulated a priori between Σfor and any of Σhib, Σrem

or Σspe; in particular, a remote event may be both forcible and
prohibitible. It is now convenient to define the controllable
event set Σc := Σhib ∪̇ {tick}. Here designating both Σhib

and tick controllable is to simplify terminology. We emphasize
that events in Σhib can be disabled indefinitely, while tick may
be preempted only by events in Σfor. The uncontrollable event
set Σu is Σu := Σ \ Σc = Σspe∪̇(Σrem \ Σhib).

We introduce the notion of controllability in TDES as
follows. Let K ⊆ L(G) and s ∈ K; define the eligible event
subset

EK(s) := {σ ∈ Σ | sσ ∈ K}. (4)

We say that K is controllable with respect to G in (2) if, for
all s ∈ K ,

EK(s) ⊇















EL(G)(s) ∩ (Σu∪̇{tick})
if EK(s) ∩ Σfor = ∅,

EL(G)(s) ∩ Σu

if EK(s) ∩ Σfor 6= ∅.

(5)

Thus K controllable means that an event σ is eligible to occur
in K if (i) σ is currently eligible in L(G), and (ii) either σ
is uncontrollable or σ = tick when there is no forcible event
currently eligible in K. Controllability plays the central role
in the TDES supervisory control framework for the case of
full-event observation.

III. PARTIALLY-OBSERVED SUPERVISORY CONTROL OF

TDES BY RELATIVE OBSERVABILITY

Supervisory control of TDES under partial-event obser-
vation was studied in [10], where the concepts of timed
observability and normality were introduced. This work is
first reviewed. Then we introduce timed relative observabil-
ity, which is stronger than timed observability, weaker than
normality, and closed under set union.

A. Observability of TDES

Let Σo ⊆ Σ be a subset of observable events. Define the
natural projection P : Σ∗ → Σ∗

o according to

P (ǫ) = ǫ, ǫ is the empty string;

P (σ) =

{

ǫ, if σ /∈ Σo,
σ, if σ ∈ Σo;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(6)

As usual, P is extended to P : Pwr(Σ∗) → Pwr(Σ∗
o),

where Pwr(·) denotes powerset. Write P−1 : Pwr(Σ∗
o) →

Pwr(Σ∗) for the inverse-image function of P .
A supervisor V under partial observation is any map

V : P (L(G)) → Pwr(Σ). Denote by V/G the closed-loop
system where G is under the supervision of V ; then the closed
language L(V/G) ⊆ L(G) is defined inductively according
to
(i) ǫ ∈ L(V/G);
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(ii) s ∈ L(V/G), σ ∈ V (Ps), sσ ∈ L(G) ⇒ sσ ∈ L(V/G);
(iii) No other strings belong to L(V/G).

The marked language Lm(V/G) of V/G is defined by

Lm(V/G) := L(V/G) ∩ Lm(G).

A supervisor V is nonblocking if Lm(V/G) = L(V/G), and
admissible if for each s ∈ L(V/G),
(i) Σu ⊆ V (Ps);
(ii)

(

EL(G)(s) ∩ V (Ps) ∩ Σfor = ∅ & tick ∈ EL(G)(s)
)

⇒
tick ∈ V (Ps).

Let K ⊆ Lm(G), and recall Σc = Σhib∪̇{tick}. We say
that K is observable (with respect to G and P ) [10] if for
every pair of strings s, s′ ∈ Σ∗ with Ps = Ps′ there holds

(∀σ ∈ Σc) sσ ∈ K, s′ ∈ K, s′σ ∈ L(G) ⇒ s′σ ∈ K. (7)

In the definition, the event tick is allowed to be unob-
servable, i.e. P (tick) = ǫ. Note, however, that owing to the
role of tick in the TDES G, tick being unobservable may
render the observability condition difficult to be satisfied for
K ⊆ Lm(G). The following is the main result of [10].

Theorem 1. Let K ⊆ Lm(G) be a nonempty language.
There exists a nonblocking, admissible supervisor V such that
Lm(V/G) = K if and only if
(i) K is observable (as in (7));
(ii) K is controllable (as in (5));
(iii) K is Lm(G)-closed (as in (3)).

While controllability and Lm(G)-closedness are properties
closed under set union, observability is not; consequently the
supremal sublanguage that satisfies the above three conditions
(or the optimal supervisor) need not exist in general. This
problem motivates us to propose the concept of relative
observability below, which in fact is closed under set union.

B. Relative Observability of TDES

Fix a sublanguage C ⊆ Lm(G). We introduce relative
observability which sets C to be the ambient language in
which observability is tested.

Definition 1. Let K ⊆ C ⊆ Lm(G). We say that K is
relatively observable with respect to C, G, and P , or simply
C-observable, if for every pair of strings s, s′ ∈ Σ∗ with
Ps = Ps′ there holds

(∀σ ∈ Σc) sσ ∈ K, s′ ∈ C, s′σ ∈ L(G) ⇒ s′σ ∈ K (8)

where Σc = Σhib∪̇{tick}.

Relative observability was first proposed in [13] for untimed
DES. Here, for TDES, we extend the concept by accounting
for the event tick which may be preempted only by a forcible
event, in contrast with direct disablement of prohibitible
events.

Let C1 ⊆ C2 ⊆ Lm(G) be two ambient languages.
By Definition 1 it is easily verified that C2-observability
implies C1-observability. In other words, relative observability
is weaker for smaller ambient language. In the special case
where the ambient C = K , Definition 1 becomes (standard)
timed observability [10] for the given K . This immediately
implies the following.

Proposition 1. If K ⊆ C is C-observable, then K is also
observable.

The reverse statement need not be true (refer to [13] for a
counterexample). Timed observability is not closed under set
union: even if two sublanguages K1, K2 ⊆ Lm(G) are ob-
servable, their union K1∪K2 need not be. This is because for
timed observability of each Ki, i = 1, 2, one checks lookalike
string pairs only in Ki, ignoring all candidates permitted by
the other language. By contrast, timed relative observability
exploits a fixed ambient C ⊆ Lm(G): for K1, K2 ⊆ C, no
matter which Ki one checks for timed relative observability,
all lookalike string pairs in C must be considered. It is indeed
this more stringent requirement that renders timed relative
observability algebraically well-behaved: an arbitrary union of
relatively observable languages is again relatively observable.

Proposition 2. Let Ki ⊆ C, i ∈ I (some index set), be C-
observable. Then K =

⋃

{Ki | i ∈ I} is also C-observable.

A proof is in [13] (identical to the untimed case). Whether
or not K ⊆ C is C-observable, write

O(K, C) := {K ′ ⊆ K | K ′ is C-observable} (9)

for the family of C-observable sublanguages of K . Note that
the empty language ∅ is trivially C-observable, thus a member
of O(K, C). By Proposition 2, moreover, O(K, C) has a
unique supremal element supO(K, C) given by

supO(K, C) :=
⋃

{K ′ | K ′ ∈ O(K, C)}. (10)

This is the supremal C-observable sublanguage of K . An
algorithm that computes supO(K, C) was presented in [13].
Note that

supO(K, C) ⊆ supO(K, K) for K ⊆ C ⊆ Lm(G). (11)

Now we show that relative observability is weaker than
normality of TDES ( [10]), a property that is also preserved
by set union. A sublanguage K ⊆ C is (L(G), P )-normal if

K = P−1PK ∩ L(G). (12)

This implies that no string in K may exit K via an unob-
servable transition. Thus normality excludes, when control is
present, the disablement of unobservable, prohibitible events,
or the preemption of tick in case tick is unobservable. By
contrast, timed relative observability does not impose this
restriction, i.e. one may exercise disablement/preemption over
unobservable events.

Proposition 3. If K ⊆ C is (L(G), P )-normal, then K is
C-observable.

A proof is in [13].
Finally we turn to control. Let K ⊆ Lm(G) be a nonempty

specification language, and let the ambient language C = K
(because of (11)). Since K-observability, controllability, and
Lm(G)-closedness are all closed under set union, there exists
a unique supremal sublanguage of K that satisfies these
three properties. Denote this supremal sublanguage by KO

sup;
according to Proposition 1, KO

sup is observable, controllable,
and Lm(G)-closed. Therefore, by Theorem 1, there exists a
nonblocking, admissible supervisor V such that Lm(V/G) =
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KO
sup. In Section V-C we present an algorithm to compute

KO
sup.

IV. PARTIALLY-OBSERVED SUPERVISORY CONTROL OF

TDES UNDER RELATIVE WEAK OBSERVABILITY

A distinct type of supervisory control for TDES was pro-
posed in [12], and a weak observability condition derived for
the case of partial observation. This work is first reviewed.
Then we introduce timed relative weak observability, which is
stronger than weak observability but closed under set union.
Computation of the supremal relatively weakly observable
sublanguage of a given language will be discussed.

A. Weak Observability of TDES

Again let Σo ⊆ Σ be a subset of observable events, and
P : Σ∗ → Σ∗

o be the natural projection. A supervisor V
under partial observation is any map V : P (L(G)) →
Pwr(Σact) × Pwr(Σfor) such that for each t ∈ P (L(G)),
V (t) = (V1(t), V2(t)) satisfies the following two conditions:
(i) Σu ⊆ V1(t);
(ii) V2(t) ⊆ V1(t) ∩ Σfor.

Here V1(t) is the set of events in Σact to be enabled, which
must always include the uncontrollable subset Σu; V2(t) is
the set of events in Σfor which are candidates for forcing, and
which must be enabled by V1. The closed language L(V/G) of
the closed-loop system V/G is defined inductively according
to
(i) ǫ ∈ L(V/G);
(ii) s ∈ L(V/G), σ ∈ Σact ∩ V1(Ps), sσ ∈ L(G) ⇒ sσ ∈
L(V/G);
(iii) s ∈ L(V/G), EL(G)(s) ∩ V2(Ps) = ∅, s.tick ∈ L(G) ⇒
s.tick ∈ L(V/G);
(iv) No other strings belong to L(V/G).
The marked language Lm(V/G) of V/G is given by

Lm(V/G) := L(V/G) ∩ Lm(G).

Let K ⊆ Lm(G). We say that K is weakly observable (with
respect to G and P ) [12] if the following two conditions hold:

(1) K is observable with respect to Σhib, i.e. for every pair
of strings s, s′ ∈ Σ∗ with Ps = Ps′ there holds

(∀σ ∈ Σhib) sσ ∈ K, s′ ∈ K, s′σ ∈ L(G) ⇒ s′σ ∈ K.

(2) For each t ∈ P (K), there exists a subset

F (t) ⊆





⋃

s∈K∩P−1(t)

EK(s)



 ∩ Σfor

such that for each s ∈ K ∩ P−1(t) with tick ∈ EL(G)(s)
there holds

tick ∈ EK(s) ⇔ EL(G)(s) ∩ F (t) = ∅. (13)

Weak observability is identical to observability with respect
to Σhib, but exploits choices of forcible events to address
preemption of the event tick. It was shown [12] that if K
is observable and controllable, then it is weakly observable.
The following is the main result of [12].

Theorem 2. Let K ⊆ Lm(G) be a nonempty language. There
exists a nonblocking supervisor V such that Lm(V/G) = K
if and only if
(i) K is weakly observable (as in (13));
(ii) K is controllable (as in (5));
(iii) K is Lm(G)-closed (as in (3)).

Like timed observability, weak observability is not closed
under set union; consequently the supremal sublanguage that
satisfies the above three conditions (or the optimal supervisor)
need not exist in general. This motivates us to propose relative
weak observability below, which in fact is closed under set
union.

Remark 1. The implementation of the supervisor V =
(V1, V2) in Theorem 2 is as follows. After a string s ∈ L(G)
such that s.tick ∈ L(G), V observes the string t = Ps ∈
P (L(G)). Then V enables all events in V1(t), and forces all
events in V2(t) = F (t). If one or more events in F (t) is
eligible after s, then tick is preempted; if no event in F (t)
is eligible after s, then tick is enabled. In comparison, the
implementation of the supervisor V in Theorem 1 is simpler
inasmuch as no explicit F (t) is needed for tick preemption;
indeed, V directly decides to enable or disable tick, and
controllability ensures the availability of forcible events for
the disabling/preempting action.

B. Relative Weak Observability of TDES

Fixing a sublanguage C ⊆ Lm(G), we introduce timed
relative weak observability which sets C to be the ambient
language (as is done in Definition 1 for relative observability).
The key idea here is to distinguish different ‘control patterns’
for tick preemption in each set of lookalike strings; we
do so by imposing on each such set a special equivalence
relation. The equivalence classes of this equivalence relation
have mutually disjoint subsets of forcible events, so that in
each equivalence class tick preemption may be carried out
independently.

Let P : Σ∗ → Σ∗
o and s ∈ L(G). Write [s] := {s′ ∈

L(G)|Ps′ = Ps} for the set of lookalike strings to s in L(G).
Define a binary relation ≡ on [s] as follows: for all s, s′ ∈ [s],
s ≡ s′ if either (i) EL(G)(s) ∩ EL(G)(s

′) ∩ Σfor 6= ∅ or (ii)
there exist s1, ..., sk ∈ [s], k ≥ 1, such that

EL(G)(s) ∩ EL(G)(s1) ∩ Σfor 6= ∅

... (14)

EL(G)(sk) ∩ EL(G)(s
′) ∩ Σfor 6= ∅.

In words, two strings s, s′ ∈ [s] satisfy s ≡ s′ if either (i) they
are followed by some common forcible events that are eligible
in L(G), or (ii) there is a finite chain of strings in [s] that
‘connects’ s to s′ through some common forcible events that
are eligible in L(G). This implies that for s, s′ ∈ [s], s ≡ s′ is
false if and only if for every s′′ ∈ [s] with s′′ ≡ s′ there holds
EL(G)(s) ∩EL(G)(s

′′) ∩Σfor = ∅. It is easily verified that ≡
is reflexive, symmetric, and transitive, and thus an equivalence
relation on [s].

Definition 2. Let K ⊆ C ⊆ Lm(G). We say that K is
relatively weakly observable with respect to C, G, and P , or
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simply weakly C-observable, if the following two conditions
hold:

(1) K is C-observable with respect to Σhib, i.e. for every
pair of strings s, s′ ∈ Σ∗ with Ps = Ps′ there holds

(∀σ ∈ Σhib) sσ ∈ K, s′ ∈ C, s′σ ∈ L(G) ⇒ s′σ ∈ K.

(2) For every pair of strings s, s′ ∈ Σ∗ with Ps = Ps′ there
holds

s.tick ∈ K, s′ ∈ C, s′.tick ∈ L(G), s ≡ s′ ⇒ s′.tick ∈ K.

The first condition above is the relative observability of
K with respect to Σhib. The second condition deals with
the event tick: two lookalike strings s, s′ ∈ C which satisfy
s ≡ s′ are required to have identical one-step continuations of
tick, if allowed in L(G), with respect to membership in K.
This is weaker than relative observability with respect to tick,
inasmuch as the requirement is imposed only on lookalike
strings satisfying s ≡ s′. Therefore the following result is
immediate.

Proposition 4. If K ⊆ C is C-observable, then K is also
weakly C-observable.

As a corollary of Propositions 3 and 4, relative weak
observability is weaker than normality. Next, we show that
relative weak observability is stronger than weak observability.

Proposition 5. If K ⊆ C is weakly C-observable and control-
lable, then K is also weakly observable.

Proof. First, since K is weakly C-observable, it is C-
observable with respect to Σhib; and by Proposition 1, K is
observable with respect to Σhib. Thus the first condition of
weak observability is satisfied.

Now let t ∈ P (K), and

F (t) =
⋃

{EK(s) ∩ Σfor|s ∈ C ∩ P−1(t),

(∃s′ ∈ [s])(s′ ≡ s & s′.tick /∈ K)}.

Moveover let s1 ∈ K ∩ P−1(t) with s1.tick ∈ L(G). Then
s1 ∈ C∩P−1(t). Suppose that s1.tick ∈ K; it follows from K
being weakly C-observable that for every s′1 ∈ [s1] with s1 ≡
s′1, s′1 ∈ C, and s′1.tick ∈ L(G), there holds s′1.tick ∈ K.
This implies that EL(G)(s1)∩F (t) = ∅ owing to the definition
of the equivalence relation ≡.

Conversely, suppose that s1.tick /∈ K. By controllability of
K we have EK(s1)∩Σfor 6= ∅. Let σ ∈ EK(s1)∩Σfor; then
σ ∈ EL(G)(s1) and also σ ∈ F (t). Hence EL(G)(s1)∩F (t) 6=
∅. We have thus proved

tick ∈ EK(s1) ⇔ EL(G)(s1) ∩ F (t) = ∅.

Therefore the second condition of weak observability is satis-
fied. �

The reverse statement of Proposition 5 need not be true.
An example is provided in Fig. 2, which displays a weakly
observable language that is not relatively weakly observable
because of violation of the second condition of Definition 2.
(Since the first condition of Definition 2 is identical to that
of relative observability, an example of violating the first
condition may be found in [13].)

α

β1

G

Σo = {α, f1, f2, f3, tick}

Σuo = {β1, β2, β3, β4}

β2

β3

α

α

f1

tick

f1
tick

f2

tick
f2

α tick

f3

β4

Σfor = {f1, f2, f3}

α

β1

C

β2

β3

α

α

f1

tick

f1

f2

tick
f2

α tick

f3

β4

α

β1

K

β2

β3

α

α

f1

f1

f2

tick
f2

α tick

f3

β4
initial state

marker state

Fig. 2. Lm(K) is weakly observable but not relatively weakly observable.
The first condition of both definitions holds. For the second condition of
weak observability, let F (α) = {f1}; then (13) holds, and hence Lm(K) is
weakly observable. On the other hand, let s1 = β1α and s3 = β3α; then
Ps1 = Ps3 and s1 ≡ s3. The equivalence s1 ≡ s3 holds because there
is s2 = β2α ∈ [s1] such that EL(G)(s1) ∩ EL(G)(s2) ∩ Σfor = {f1}
and EL(G)(s2) ∩ EL(G)(s3) ∩ Σfor = {f2}. The second condition of
relative weak observability does not hold, however, for s1.tick /∈ L(K) and
s3.tick ∈ L(K). (Notation: we will use the same initial and marker state
notation in subsequent figures.)

As with relative observability, the fixed ambient language
C, as well as the equivalence relation ≡, renders relative weak
observability algebraically well-behaved: an arbitrary union
of relatively weakly observable languages is again relatively
weakly observable.

Proposition 6. Let Kα ⊆ C, α ∈ A (some index set), be
weakly C-observable. Then K =

⋃

{Kα | α ∈ A} is also
weakly C-observable.

Proof. First, by Proposition 2, K is C-observable with
respect to Σhib. Next, let s, s′ ∈ Σ∗, Ps = Ps′, s ≡ s′,
s.tick ∈ K, s′ ∈ C , and s′.tick ∈ L(G); it will be shown
that s′.tick ∈ K . Since K =

⋃

α∈A Kα =
⋃

α∈A Kα,
there exists α′ ∈ A such that s.tick ∈ Kα′ . But Kα′ is
weakly C-observable, which yields s′.tick ∈ Kα′ . Hence
s′.tick ∈

⋃

α∈A Kα = K. �

Whether or not K ⊆ C is weakly C-observable, write

WO(K, C) := {K ′ ⊆ K | K ′ is weakly C-observable}
(15)

for the family of weakly C-observable sublanguages of
K . Note that the empty language ∅ is trivially weakly
C-observable, thus a member of WO(K, C). By Proposi-
tion 6, moreover, WO(K, C) has a unique supremal element
supWO(K, C) given by

supWO(K, C) :=
⋃

{K ′ | K ′ ∈ WO(K, C)}. (16)
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α

β1

G
′

β2

β3

α

α

f1

tick1

f1
tick1

f2

tick1

f2

α tick2

f3

β4

α

β1

C
′

β2

β3

α

α

f1

tick1

f1

f2

tick1

f2

α tick2

f3

β4

α

β1

K
′

β2

β3

α

α

f1

f1

f2

tick1

f2

α tick2

f3

β4

α

β1

K
W
sup

β2

β3

α

α

f1

f1

f2

f2

α tick

f3

β4

Fig. 3. Lm(KW
sup) is the supremal weakly Lm(C)-observable sub-

language of Lm(K). In Step 1 of Algorithm 2, for α ∈ P (L(G)),
we identify two equivalence classes of ≡ on Q(α): Q1(α) =
{δ(q0, β1α), δ(q0, β2α), δ(q0, β3α)}, Q2(α) = {δ(q0, β4α)}. Thus we
relabel tick by tick1 for Q1(α) and tick2 for Q2(α). Similarly, tick is
relabeled in C and K. Then in Step 2, the algorithm in [13] removes tick1

after β3α in K′. Finally in Step 3, tick2 after β4α is relabeled back to tick,
thereby yielding K

W
sup.

This is the supremal weakly C-observable sublanguage of
K . In the following we present an algorithm to compute
supWO(K, C).

As noted immediately above Proposition 4, the only dif-
ference between relative weak observability and relative ob-
servability is the treatment of the event tick: in the former,
essentially, tick must be treated independently for lookalike
strings that do not belong to the same equivalence class of ≡.
Thus our idea of computing the supremal relatively weakly
observable sublanguage of a language K is as follows: (1)
identify equivalence classes of ≡, and relabel tick using dis-
tinct event labels tick1, tick2, ... for distinct equivalent classes;
(2) apply the algorithm in [13] to compute the supremal
relatively observable sublanguage of K; and finally (3) relabel
tick1, tick2, ... back to tick.

Let G = (Q, Σ, δ, q0, Qm), C, and K be finite-state (trim)
TDES (as in (2)) with marked languages Lm(G), C, and K ,
respectively.

Algorithm 1: (computing the supremal relatively weakly
observable sublanguage) Input G, C, K, and P : Σ∗ → Σ∗

o.
1. For each t ∈ P (L(G)), use the subset construction
technique (e.g. [4, Section 2.5], [12]) to find the subset

Q(t) := {q ∈ Q|(∃s ∈ P−1(t))δ(q0, s) = q}.

For each q ∈ Q(t), write EL(G)(q) := {σ ∈ Σ|δ(q, σ)!}.
Then for each pair (q, q′) ∈ Q(t) × Q(t), q ≡ q′ if either (i)
EL(G)(q)∩EL(G)(q

′)∩Σfor 6= ∅ or (ii) there exist q1, ..., qk ∈

Q(t), k ≥ 1, such that

EL(G)(q) ∩ EL(G)(q1) ∩ Σfor 6= ∅

...

EL(G)(qk) ∩ EL(G)(q
′) ∩ Σfor 6= ∅.

Thus for each Q(t) we identify the equivalence classes of ≡,
say Q1(t), Q2(t), .... For tick defined at some state in Qi(t),
i = 1, 2, ..., relabel it by ticki. Do the corresponding relabeling
in C and K, and denote the relabeled generators by G′, C

′,
and K′.
2. Apply the algorithm in [13] (reviewed in Appendix) with
inputs G′, C

′, and K′, to compute K
′
sup, where Lm(K′

sup) is
the supremal C-observable sublanguage of K .
3. Relabel the events ticki in K

′
sup by tick, and denote the

result by K
W
sup. Output Lm(KW

sup).
It follows easily from the preceding discussion that

Lm(KW
sup) is the supremal weakly C-observable sublanguage

of K . Also note that Algorithm 1 terminates in finite steps and
has double-exponential complexity in the state size (say n) of
K. Specifically, Step 1 of Algorithm 1 has worst-case com-
plexity O(22|Q|) due to subset construction and identification
of the equivalence relation ≡; Step 2 applies the algorithm in
[13] which has worst-case complexity O(2(2n+1)|Q|). Overall
the complexity of Algorithm 1 is O(2(2n+1)|Q|).

As an illustration of Algorithm 1, consider again the ex-
ample in Fig. 2. We apply Algorithm 1 to compute the
supremal weakly Lm(C)-observable sublanguage of Lm(K),
as displayed in Fig. 3. Note that the resulting Lm(KW

sup) is
weakly Lm(C)-observable but not L(C)-observable, for the
latter requires the further removal of tick after β4α.

Let K ⊆ Lm(G) be a nonempty specification language, and
let the ambient language C = K . Since weak K-observability,
controllability, and Lm(G)-closedness are all closed under set
union, there exists a unique supremal sublanguage of K that
satisfies these three properties. Denote this supremal sublan-
guage by KWO

sup ; according to Proposition 5, KWO
sup is weakly

observable, controllable, and Lm(G)-closed. Therefore, by
Theorem 2, there exists a nonblocking supervisor V such that
Lm(V/G) = KWO

sup . In Section V-C we present an algorithm
to compute KWO

sup .
Remark 2 (tradeoff between timed relative observability

and relative weak observability). We have derived two ob-
servability concepts for timed supervisory control under par-
tial observation. Timed relative observability is conceptually
simpler (since its requirement is imposed only on lookalike
strings), allows easier implementation (see Remark 1), but
the resulting tick-preemption behavior is generally more re-
strictive. On the other hand, timed relative weak observability
requires extra information about the equivalence relation ≡
on lookalike strings. The identification of ≡ is done in Step 1
of Algorithm 1, which has worst-case complexity O(22|Q|);
this computation is the price for achieving generally more
permissive tick preemption behavior. The decision as to which
observability concept to use therefore depends on how much
extra information is needed to achieve the corresponding
behavior improvement; in practice the latter will be case-
dependent. Nevertheless, since we have algorithms for both
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observability concepts, our suggestion is as follows. First
compute the supremal relatively observable sublanguage K1

(of a given specification language K); if the tick preemption
behavior of K1 is ‘satisfactory’, then use K1. Otherwise, com-
pute the supremal relatively weakly observable sublanguage
K2 of K; comparing K2 with K1, if the improvement of tick
preemption behavior is ‘significant’, then use K2.

V. DECENTRALIZED SUPERVISORY CONTROL OF TDES
WITH PARTIAL OBSERVATION

We move on to consider decentralized supervisory control of
TDES, where the plant is controlled by multiple decentralized
supervisors i ∈ I (I is some finite index set). We shall
propose timed relative coobservability and timed relative weak
coobservability, as extensions of their centralized counterparts.
Both properties are preserved under set union, and the respec-
tive supremal sublanguages exist.

A. Relative Coobservability of TDES

Let Σo,i ⊆ Σ be the observable event set of the decen-
tralized supervisor i ∈ I, and Pi : Σ∗ → Σ∗

o,i be the
corresponding natural projection. Also let Σhib,i ⊆ Σrem

and Σfor,i ⊆ Σact; then the decentralized supervisor i ∈ I
disables events only in Σhib,i, and uses forcible events only
in Σfor,i to preempt tick. Let the controllable event set be
Σc,i := Σhib,i∪̇{tick}, i ∈ I; define for a controllable event
σ the index set Ic(σ) := {i ∈ I|σ ∈ Σc,i}, and for a forcible
σ the set If (σ) := {i ∈ I|σ ∈ Σfor,i}. Since tick ∈ Σc,i for
all i ∈ I, there holds Ic(tick) = I.

The fundamental concept in untimed decentralized super-
vision is coobservability [6], [15], which is easily general-
ized to the TDES case as follows. Let K ⊆ Lm(G), and
Σc := ∪i∈IΣc,i. We say that K is coobservable (with respect
to G and Pi, i ∈ I) if for every s ∈ K and every σ ∈ Σc

with sσ ∈ L(G) \ K there holds

(∃i ∈ Ic(σ))(∀s′ ∈ K)Pis = Pis
′, s′σ ∈ L(G)

⇒ s′σ ∈ L(G) \ K. (17)

Coobservability means that the decision to remove σ after
string s must be ratified by at least one decentralized supervi-
sor that owns σ working through its local observation channel.
Other variations of coobservability [16], [17] may be similarly
extended to the TDES case. Like its untimed counterpart,
timed coobservability is not closed under set union, and con-
sequently the supremal coobservable sublanguage of a given
language need not exist. This fact motivates us to propose
relative coobservability; fix a sublanguage C ⊆ Lm(G) and
set C to be the ambient language.

Definition 3. Let K ⊆ C ⊆ Lm(G). We say that K is
relatively coobservable (with respect to C, G, and Pi, i ∈ I),
or simply C-coobservable, if for each i ∈ I, K is C-
observable, i.e. for every pair of strings s, s′ ∈ Σ∗ with
Pis = Pis

′ there holds

(∀σ ∈ Σc,i) sσ ∈ K, s′ ∈ C, s′σ ∈ L(G) ⇒ s′σ ∈ K. (18)

The above timed relative coobservability is an extension of
the untimed counterpart studied in [19], by accounting for the

α
σ

β

G K

Σc,1 = Σc,2 = {σ}

γ

σ

σ

α

β

γ

σ

Σo,2 = {β, σ}Lm(G) = C

K

α

β

γ

Σo,2 = {β}

(a) Σo,1 = {γ, σ}, (b) Σo,1 = {γ},

Fig. 4. Case (a), Lm(K) is decomposable but not C-coobservable. First,
it is easily verified that P−1

1 P1(K)∩ P−1
2 P2(K)∩ L(G) = K and hence

Lm(K) is decomposable. Then let s = β, s′ = α; thus P1(s) = P1(s′) = ǫ,
sσ ∈ L(K), s′ ∈ C, s′σ ∈ L(G), but s′σ /∈ L(K). Therefore Lm(K) is
not C-observable with respect to P1 and consequently not C-coobservable.
Case (b), Lm(K) is C-coobservable but not decomposable. A straightforward
calculation yields that P−1

1 P1(K) ∩ P−1
2 P2(K) ∩ L(G) = L(G) % K

and hence Lm(K) is not decomposable. On the other hand, since the shared
controllable event σ is removed after all strings α, β, and γ, it is easily
checked that Lm(K) is C-observable with respect to both P1 and P2 and
therefore C-coobservable.

special event tick which may be preempted by a decentralized
supervisor i ∈ I. This is in contrast with direct disablement
of the decentralized supervisor’s prohibitible events in Σhib,i.
Indeed, tick is a common event that each decentralized super-
visor must deal with using its local subset of forcible events.

According to the definition, timed relative coobservability
is I-fold timed relative observability. It is proved, similar to
the untimed case [19], that timed relative coobservability is
stronger than timed coobservability (and any of its variations),
but enjoys the property that it is closed under set union.
Therefore, there exists the supremal relatively coobservable
sublanguage of a given language. This supremal sublanguage
may be computed by an algorithm presented in [19].

Timed relative coobservability is on the other hand weaker
than conormality (see a proof in [19]). A language K ⊆
Lm(G) is conormal [15] if

⋃

∀i∈I

P−1
i Pi(K) ∩ L(G) = K. (19)

Conormality is an extension of normality to the decentralized
case. Conormality may be overly restrictive because it requires
that for each decentralized supervisor i ∈ I, only observable
(under Pi), prohibitible events may be disabled. Relative
coobservability, by contrast, does not impose this restriction,
i.e. control may be exercised by each decentralized supervisor
over its unobservable prohibitible events.

Another concept related to (and weaker than) conormality
is decomposability [15]: A language K ⊆ Lm(G) is decom-
posable if

⋂

∀i∈I

P−1
i Pi(K) ∩ L(G) = K.

In general, decomposability and relative coobservability do not
imply each other; this is illustrated by the example in Fig. 4.
Decomposability, like conormality, does not allow disabling
any unobservable prohibitible events, which is nevertheless
permitted by relative coobservability. Moreover, decompos-
ability is not closed under union, and consequently there need
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α, β

σ

G K

Σc,1 = Σc,2 = {σ}

σ

Σo,1 = {α}, Σo,2 = {β}
Lm(G) = C

α, β α, β

Fig. 5. Lm(K) is controllable and observable with respect to both P1 and
P2; thus it is controllable and coobservable. On the other hand, Lm(K) is
neither C-observable with respect to P1 nor P2; the supremal controllable
and C-coobservable sublanguage of Lm(K) is the empty language.

not exist the supremal decomposable sublanguage of a given
language.

We also note that a weak conormality concept is studied
in [17]. As pointed out in [19], relative coobservability is
generally weaker than weak conormality.

Now for control, let K ⊆ Lm(G) be a nonempty spec-
ification language and fix the ambient language C = K .
Since timed K-coobservability, controllability, and Lm(G)-
closedness are all closed under set union, there exists a
unique supremal sublanguage of K that satisfies these three
properties. Denote this supremal sublanguage by KCO

sup ; we
present an algorithm in Section V-C to compute KCO

sup .
We note that for a prefix-closed language K , KCO

sup may
be empty even when there is a nonempty controllable and
coobservable sublanguage of K . See Fig. 5 for an example.

B. Relative Weak Coobservability of TDES

To achieve more permissive controlled behavior than is
allowed by timed coobservability, in [18] the authors studied
the following conditions by exploiting choices of local forcible
events of decentralized supervisors to preempt tick event.
Again let Σo,i ⊆ Σ, Σhib,i ⊆ Σrem, and Σfor,i ⊆ Σact

be the observable, prohibitible, and forcible event sets of the
decentralized supervisor i ∈ I. Also let Σhib := ∪i∈IΣhib,i

and Σfor := ∪i∈IΣfor,i. For a language K ⊆ Lm(G), the
two conditions in [18] are the following.

(1) For each s ∈ K and each σ ∈ Σhib with sσ ∈ L(G)\K
there holds

(∃i ∈ Ic(σ))(∀s′ ∈ K)Pis = Pis
′, s′σ ∈ L(G)

⇒ s′σ ∈ L(G) \ K. (20)

(2) For each i ∈ I and each t ∈ Pi(K), there exists a subset
Fi(t) ⊆ Σfor,i such that for each s ∈ K with tick ∈ EL(G)(s)
there holds

tick ∈ EK(s) ⇔

(∀σ ∈ EK(s) ∩ Σfor)(∃j ∈ If (σ))σ /∈ Fj(Pjs). (21)

These two conditions extend those of weak observability
(see Section IV) to the decentralized setup, and for this reason
we call the above weak coobservability of K . Other variations
of weak coobservability are also presented in [18] and [24].

Weak coobservability (or any of its variations) is, however,
not closed under set union and consequently the supremal

weakly coobservable sublanguage of a given language need
not exist. This problem motivates us to propose relative weak
coobservability; fix a sublanguage C ⊆ Lm(G) and set C to
be the ambient language.

Definition 4. Let K ⊆ C ⊆ Lm(G). We say that K is
relatively weakly coobservable (with respect to C, G, and Pi,
i ∈ I), or simply weakly C-coobservable, if for each i ∈ I,
K is weakly C-observable, i.e. the following two conditions
hold:

(1) for every pair of strings s, s′ ∈ Σ∗ with Pis = Pis
′

there holds

(∀σ ∈ Σhib) sσ ∈ K, s′ ∈ C, s′σ ∈ L(G) ⇒ s′σ ∈ K.

(2) For every pair of strings s, s′ ∈ Σ∗ with Pis = Pis
′

there holds

s.tick ∈ K, s′ ∈ C, s′.tick ∈ L(G), s ≡ s′ ⇒ s′.tick ∈ K

where the equivalence relation ≡ is defined in (14).

Timed relative weak coobservability is I-fold relative weak
observability, and therefore weaker than I-fold relative ob-
servability (Proposition 4), i.e. relative coobservability. In turn,
relative weak coobservability is weaker than conormality. On
the other hand, relative weak coobservability is stronger than
weak coobservability [18], as asserted in the following.

Proposition 7. If K ⊆ C is weakly C-coobservable and
controllable, then K is also weakly coobservable.

Proof. First, since K is weakly C-coobservable, it is C-
coobservable with respect to Σhib by condition (1) of Defini-
tion 4; thus in turn K is coobservable with respect to Σhib,
i.e. the first condition (20) of weak coobservability holds.

Now let i ∈ I, t ∈ Pi(K), and

Fi(t) =
⋃

{EK(s) ∩ Σfor,i|s ∈ C ∩ P−1
i (t),

(∃s′ ∈ P−1
i Pis)(s

′ ≡ s & s′.tick /∈ K)}.

Moveover let s1 ∈ K with s1.tick ∈ L(G). Then s1 ∈ C.
Suppose that s1.tick ∈ K . Let σ ∈ EK(s1) ∩ Σfor; then
there exists j ∈ If (σ) such that σ ∈ EK(s1) ∩ Σfor,j . It
follows from K being weakly C-coobservable that for every
s′1 ∈ P−1

j Pjs1 with s1 ≡ s′1, s′1 ∈ C, and s′1.tick ∈ L(G),
there holds s′1.tick ∈ K. This implies that σ /∈ Fj(Pjs1)
owing to the definition of the equivalence relation ≡ in (14).

Conversely, suppose that s1.tick /∈ K. By controllability of
K we have EK(s1) ∩ Σfor 6= ∅. Let σ ∈ EK(s1) ∩ Σfor

and j ∈ If (σ); then σ ∈ EK(s1) ∩ Σfor,i, and again by K
being weakly C-coobservable we derive that σ ∈ Fj(Pjs1).
Therefore the second condition (21) of weak coobservability
holds, as required. �

Timed relative weak coobservability is closed under set
union, i.e. if Kα ⊆ C ⊆ Lm(G), α ∈ A (some index set),
are weakly C-coobservable, then K =

⋃

{Kα | α ∈ A} is
also weakly C-coobservable. Indeed, for each i ∈ I, Kα is
weakly C-observable; by Proposition 6, K is also weakly C-
observable. The latter holds for every i ∈ I, and therefore
K is weakly C-coobservable. Thus there exists the supremal
relatively coobservable sublanguage of a given language.
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Now for control, let K ⊆ Lm(G) be a nonempty specifi-
cation language and fix the ambient language C = K . Since
timed weak K-coobservability, controllability, and Lm(G)-
closedness are all closed under set union, there exists a
unique supremal sublanguage of K that satisfies these three
properties. Denote this supremal sublanguage by KWCO

sup ; we
present in Section V-C an algorithm to compute KWCO

sup .

C. Algorithm

We present an algorithm that computes the supremal rela-
tively (weakly) coobservable (with ambient K), controllable,
and Lm(G)-closed sublanguage. As will be seen, in a special
case this algorithm computes the supremal relatively (weakly)
observable, controllable, and Lm(G)-closed sublanguage. Let
G and K be finite-state (trim) TDES (as in (2)) with marked
languages Lm(G) and K , respectively.

Algorithm 2 (computing the supremal relatively (resp.
weakly) coobservable, controllable, and Lm(G)-closed sub-
language): Input G, K, and Pi : Σ∗ → Σ∗

o,i, i ∈ I :=
{1, ..., N}.
1. Set K0 = K.
2. For j ≥ 0, apply the algorithm in [3] (reviewed in Ap-
pendix) with inputs G and Kj to obtain Hj such that Lm(Hj)
is the supremal controllable and Lm(G)-closed sublanguage
of Lm(Kj).
3. Compute Kj+1 = RCO(G, K, Hj , Pi). If Kj+1 =
Kj , then output KCO

sup := Lm(Kj+1) (resp. KWCO
sup :=

Lm(Kj+1)). Otherwise, advance j to j + 1 and go to Step 2.

RCO(G, K, Hj , Pi)
4. Set M0 := Hj .
5. For p ≥ 0, set Mp,1 := Mp.
6. For i ≥ 1, apply the algorithm in [13] (resp. Algorithm 1)
with inputs G, K, Mp,i, and Pi to obtain Mp,i+1 such that
Lm(Mp,i+1) is the supremal (resp. weakly) L(K)-observable
sublanguage of Lm(Mp,i) with respect to Pi. Proceed until
Mp,N is computed, and set it to be Mp+1. If Mp+1 = Mp,
then return Mp+1. Otherwise, advance p to p + 1 and go to
Step 5.

Proposition 8. The output KCO
sup (resp. KWCO

sup ) of Algorithm 2
is the supremal relatively (resp. weakly) coobservable (with
ambient K), controllable, and Lm(G)-closed sublanguage of
K .

Proof. We prove that KCO
sup is the supremal relatively

coobservable (with ambient K = Lm(K)), controllable, and
Lm(G)-closed sublanguage of K . The conclusion for KWCO

sup
follows similarly.

First, the subroutine RCO (Steps 4-6) generates a sequence
of sublanguages:

Lm(M0) ⊇ Lm(M1) ⊇ Lm(M2) ⊇ · · ·

From Lm(Mp) to Lm(Mp+1) (for each p ≥ 0), the algorithm
in [13] is applied N times, one for each Pi. Since the algorithm
in [13] is finitely convergent, so is the above sequence.
When the sequence converges, i.e. Mp+1 = Mp for some
p, Lm(Mp+1) is the supremal L(K)-observable sublanguage

Stn A Stn B

! ! !

* * *

Fig. 6. Guideway: stations A and B are connected by a single one-way
track from A to B. The track consists of 4 sections, with stoplights (∗) and
detectors (!) installed at various section junctions as displayed.

V1

11 13 10 15 12

V2

21 23 20 25 22

0 1 2 3 4 5

0 1 2 3 4 5

Fig. 7. Vehicle untimed DES models. Notation: a circle with → denotes the
initial state, and a double circle denotes a marked state; this notation will be
used henceforth.

V1

11 13 10 tick 12

V2

0 1 2 3 4 7

15

5

tick

6

tick tick tick tick tick

21 23 20 tick 22

0 1 2 3 4 7

25

5

tick

6

tick tick tick tick tick

Fig. 8. Vehicle TDES models

for each Pi, i ∈ I, and therefore is the supremal L(K)-
coobservable sublanguage.

The main routine (Steps 1-3) generates a sequence of
sublanguages:

Lm(K0) ⊇ Lm(H0) ⊇ Lm(K1) ⊇ Lm(H1) ⊇ · · ·

Since the algorithm in [3] and the subroutine RCO are both
finitely convergent, so is the above sequence. When the main
routine converges, i.e. Kj+1 = Kj for some j, KCO

sup :=
Lm(Kj+1) is the supremal L(K)-coobservable, controllable,
and Lm(G)-closed sublanguage. �

Algorithm 2 terminates in finite steps, and has double-
exponential complexity in the state size of K inasmuch as
the algorithm in [13] (or Algorithm 1) is of this complexity.

Specialize Algorithm 2 to the case I = {1}, and denote
the output by KO

sup (resp. KWO
sup ). The following result is

immediate.

Corollary 1. For I = {1}, the output KO
sup (resp. KWO

sup )
of Algorithm 2 is the supremal relatively (resp. weakly)
observable (with ambient K), controllable, and Lm(G)-closed
sublanguage of K .

VI. GUIDEWAY EXAMPLE

We demonstrate Algorithm 2 in Section V-C and the con-
cepts of (weak) relative (co)observability with a Guideway ex-
ample under partial observation, adapted from [4, Section 6.6].
As displayed in Fig. 6, stations A and B on a Guideway are
connected by a single one-way track from A to B. The track
consists of 4 sections, with stoplights (∗) and detectors (!)
installed at various section junctions. Two vehicles, V1 and
V2, use the Guideway simultaneously. Their untimed DES
models are displayed in Fig. 7; Vi, i = 1, 2, is at state 0
(station A), state j (while travelling in section j = 1, ..., 4),
or state 5 (station B).
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Fig. 9. Supremal timed relatively observable, controllable, and Lm(G)-closed sublanguage
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Fig. 10. Supremal (co)normal, controllable, and Lm(G)-closed sublanguage
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Fig. 11. Supremal timed relatively weakly observable, controllable, and Lm(G)-closed sublanguage

Assign lower and upper time bounds to each event as
follows: (i = 1, 2)

i0 i1 i2 i3 i5

lσ 0 0 1 0 1

uσ ∞ ∞ 1 ∞ ∞

Thus prospective events are i2, and remote events are i0, i1, i3,
i5. As in (2), the TDES models of V1 and V2 are generated;
see Fig. 8. Here state 4 (resp. state 6) of Vi means that the
vehicle has left section 3 (resp. section 4) but not yet reached
section 4 (resp. station B). The plant G to be controlled is
then G = V1||V2, the synchronous product (e.g. [4]) of V1

and V2.1

To prevent collision, control of the stoplights must ensure
that V1 and V2 never travel on the same section of track
simultaneously, i.e. ensure mutual exclusion of the state pairs
(j, j), j = 1, ..., 6. Let K be a generator enforcing this
specification.

First consider a centralized supervisory control problem un-
der partial observation. Let the prohibitible events be i1, i3, i5,

1To compose two TDES, an operation called composition [4, Section 9.6]
is used in general. In the special case where the two TDES have disjoint
event sets except for tick (as V1 and V2 in this example), it is known [4,
Section 9.6] that composition is equivalent to synchronous product in the
untimed case.
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Fig. 12. Supremal timed relatively coobservable, controllable, and Lm(G)-closed sublanguage

forcible events i5, and unobservable events i3, i5, i = 1, 2. The
latter define a natural projection P .

Applying Algorithm 2 with inputs G, K, and P (I := {1})
to compute the supremal relatively observable sublanguage,
we obtain the generator displayed in Fig. 9. The resulting
controlled behavior is verified to be Lm(K)-observable (thus
also observable by Proposition 1), controllable, and Lm(G)-
closed. Moreover, it is strictly larger than the supremal
normal, controllable, and Lm(G)-closed sublanguage rep-
resented by the generator displayed in Fig. 10. The rea-
son is as follows. Referring to Fig. 8, after a string s ∈
(tick)∗.11.(tick)∗.13.(tick)∗.10, V1 is at state 3 (track sec-
tion 3) and V2 at 0 (station A). With relative observability,
either V2 executes 21 (moving to state 1) or a tick occurs
(note that event 15, namely V1 moving to state 4, has lower
bound 1). In the former case, event 23 is disabled after
execution of 21 to ensure mutual exclusion at (3, 3) because
event 20 is uncontrollable. With normality, however, event
23 cannot be disabled because it is unobservable; thus 21 is
disabled after the string s, and the only possibility is that a tick
occurs, following which V1 executes 15 (more tick events
may occur before 15). In fact, 21 is kept disabled until the
observable event 12 occurs, i.e. V1 arrives at station B.

Next, apply Algorithm 2 with inputs G, K, and P (I :=
{1}) to compute the supremal relatively weakly observable
sublanguage; we obtain the generator displayed in Fig. 11. The
resulting controlled behavior is verified to be weakly Lm(K)-
observable, controllable, and Lm(G)-closed. Moreover, it is
strictly larger than the supremal relatively observable, con-
trollable, and Lm(G)-closed sublanguage represented by the
generator in Fig. 9. The reason is as follows. After a string s ∈
(tick)∗.11.(tick)∗.13.(tick)∗.10.21.(tick)∗.23.(tick)∗.20, the
tick event is preempted by forcible event 15 to ensure mu-
tual exclusion specification. But since 15 is unobservable,
tick after s.15 must also be removed to satisfy relative
observability. This removal of tick is avoided in the case
of relative weak observability because there is no common
forcible event defined after the lookalike strings s and s.15,

and thus the respective tick events are relabeled to be distinct
ones. Referring to Fig. 8 for the TDES models of the two
vehicles, the more permissive controlled behavior in Fig. 11
allows one vehicle to arrive at track section 3 when the other
has just vacated it and has not yet reached section 4.

Now let us consider a decentralized supervisory control
problem described as follows. Suppose that the Guideway is to
be controlled by two decentralized supervisors, with unobserv-
able event sets Σuo,1 = {13, 15, 23}, Σuo,2 = {13, 23, 25};
these define the corresponding natural projections P1, P2.
Since Σuo,1 ∩ Σuo,2 = {13, 23}, no supervisor can observe
events 13, 23. In addition let the prohibitible and forcible
event sets be Σhib,1 = Σfor,1 = {11, 13, 23, 15}, Σhib,2 =
Σfor,2 = {21, 13, 23, 25}; thus the shared prohibitible/forcible
events are the unobservable 13, 23.

Applying Algorithm 2 with inputs G, K, and Pi (i ∈
I := {1, 2}) to compute the supremal relatively coobservable
sublanguage, we obtain the generator displayed in Fig. 12.
The resulting controlled behavior is confirmed to be Lm(K)-
coobservable, controllable, and Lm(G)-closed. Moreover, it
is strictly larger than the supremal conormal, controllable,
and Lm(G)-closed sublanguage, which is the same as the
supremal normal counterpart and thus represented again by
the generator displayed in Fig. 10. This is because, with
conormality, the first (resp. second) decentralized supervisor
cannot disable its unobservable prohibitible events 13,15,23
(resp. 13,23,25); by contrast, relative coobservability does not
impose this constraint.

Finally we apply Algorithm 2 with inputs G, K, and
Pi (i ∈ I := {1, 2}) to compute the supremal relatively
weakly coobservable sublanguage; the resulting generator is
the same as the one displayed in Fig. 11. We see that the
controlled behavior is strictly larger than the supremal Lm(K)-
coobservable, controllable, and Lm(G)-closed sublanguage
represented by the generator in Fig. 12. This is owing to the
flexibility of suitably treating tick as distinct events, so that the
first (resp. second) decentralized supervisor may use its unob-
servable forcible events 13,15,23 (resp. 13,23,25) to preempt
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different ticks while satisfying relative weak coobservability.

VII. CONCLUSIONS

We have studied new observability concepts in monolithic
and decentralized supervisory control of TDES under partial
observation. In monolithic supervisory control, timed rela-
tive observability and timed relative weak observability have
been introduced, and proved to be closed under set union.
In decentralized control, we have proposed timed relative
coobservability and timed relative weak coobservability. These
properties again have been shown to be closed under set union.
Algorithms have been designed to compute the supremal sub-
languages, which have been applied to synthesizing partially-
observed monolithic and decentralized supervisory control for
a Guideway example; the derived controlled behaviors have
been compared and tradeoffs discussed.

Finally we note from [13] that although the designed
algorithms have double-exponential complexity in general,
if the involved natural projections satisfy the natural ob-
server property, then the complexity of these algorithms is
in fact polynomial. Alternatively, in future work we aim to
develop efficient algorithms for online synthesis of timed
monolithic/decentralized supervisors under partial observation.
In addition, we are interested in combining the proposed
observability concepts with supervisor localization [25] for
partially-observed distributed control of TDES.
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APPENDIX

First, we review the algorithm in [13] that computes the supremal
relatively observable sublanguage (with ambient language C ⊆
Lm(G)) of a given language K ⊆ Lm(G).

Algorithm in [13]: Input G = (Q, Σ, δ, q0, Qm), C =
(Y C , Σ, ηC , yC

0 , Y C
m ), K = (Y, Σ, η, y0, Ym) (representing Lm(G),

C, K respectively), and P : Σ∗ → Σ∗
o.

1. Set K0 := (Y0, Σ, η0, y0, Ym,0) = K.
2. For i ≥ 0 let K̃i := (Ỹi, Σ, η̃i, y0, Ym,i), with Ỹi = Yi ∪ {yd},
the dump state yd /∈ Yi, and η̃i(y0, s) = ηi(y0, s) if s ∈ L(Ki) and
η̃i(y0, s) = yd otherwise. Then calculate

Ti(s) := {(q, y) ∈ Q × Ỹi|(∃s′)Ps′ = Ps & q = δ(q0, s
′)

& y = η̃i(y0, s
′) & ηC(y0, s

′)!}

and let Ti := {Ti(s)|s ∈ Σ∗, |Ti(s)| ≥ 2}.
3. For each T ∈ Ti, check if the following two conditions are satisfied
for all (q, y), (q′, y′) ∈ T :

(i) (∀σ ∈ Σ) η̃i(y, σ) 6= yd & δ(q′, σ)! ⇒ η̃i(y
′, σ) 6= yd

(ii) q′ ∈ Qm & y ∈ Ym,i ⇒ y′ ∈ Ym,i.

If so, then output Ki. Otherwise, let Ri :=
⋃

T∈Ti
RT and Mi :=

⋃

T∈Ti
MT , where

RT :=
⋃

σ∈Σ

{(y, σ, ηi(y, σ)) | ηi(y, σ)! & (∃s)T = T (s)

& (q, y) ∈ T & (∃(q′, y′) ∈ T )(δ(q′, σ)! & η̃i(y
′, σ) = yd)}

MT := {y ∈ Ym,i | (∃s)T = T (s) & (q, y) ∈ T

& (∃(q′, y′) ∈ T )(q′ ∈ Qm & y′ /∈ Ym,i)}.

Then set η′
i := ηi − Ri and Y ′

m,i := Ym,i − Mi; let
Ki+1 := (Yi+1, Σ, ηi+1, y0, Ym,i+1) = trim((Yi, Σ, η′

i, y0, Y
′

m,i)),
where trim(·) removes all non-reachable and non-coreachable states
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and corresponding transitions of the argument generator. Advance i
to i + 1, and go to Step 2.

Next, we review the algorithm in [3] which computes the supremal
controllable and Lm(G)-closed sublanguage of a given language K.

Algorithm in [3]: Input G = (Q, Σ, δ, q0, Qm) and K =
(Y, Σ, η, y0, Ym) representing Lm(G) and K, respectively.
1. Set K0 := (Y0, Σ, η0, y0, Ym,0) = K.
2. For i ≥ 0, calculate K

′
i = (Y ′

i , Σ, η′
i, y0, Y

′
m,i) where

Y ′
i = {y ∈ Yi | (∀q ∈ Q)(∃s ∈ L(Ki)) y = η(y0, s) &

q = η(q0, s) & Σ(q) ∩ Σu ⊆ Σ(y)},

where Σ(·) is the set of events defined at the argument state

Y ′
m,i = Ym,i ∩ Y ′

i

η′
i = ηi|Y ′

i
, the restriction of ηi to Y ′

i .

3. Set Ki+1 = trim(K′
i) = (Yi+1, Σ, ηi+1, y0, Ym,i+1). If Ki+1 =

Ki, then output Ki+1. Otherwise, advance i to i+1 and go to Step 2.
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