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Linear-Quadratic-Gaussian (LQG) Games: Full
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Abstract

This paper introduces the backward mean-field (MF) linear-quadratic-Gaussian (LQG) games (for

short, BMFLQG) of weakly coupled stochastic large-population system. In contrast to the well-studied

forward mean-field LQG games, the individual state in our large-population system follows the backward

stochastic differential equation (BSDE) whose terminal instead initial condition should be prescribed.

Two classes of BMFLQG games are discussed here and their decentralized strategies are derived through

the consistency condition. In the first class, the individual agents of large-population system are weakly

coupled in their state dynamics and the full information can be accessible to all agents. In the second

class, the coupling structure lies in the cost functional with only partial information structure. In both

classes, the asymptotic near-optimality property (namely, ε-Nash equilibrium) of decentralized strategies

are verified. To this end, some estimates to BSDE, are presented in the large-population setting.

Index Terms

BSDE, decentralized control, ε-Nash equilibrium, full information, large-population system, mean-
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I. INTRODUCTION

In recent years, the dynamic optimization or control of stochastic large-population (also called

multi-agent) system has attracted consistent and intense attentions by research communities. The

agents (or players) in large population system are individually negligible but their collective

behaviors will impose some significant impact on all agents. This feature can be captured by

the weakly-coupling structure in the individual dynamics and cost functionals through the state-

average. In this way, the individual behaviors of all agents in micro-scale, can be connected to

their mass effects in the macro-scale. The large population systems arise naturally in various

different fields (e.g., engineering, social science, economics and finance, operational research and

management, etc.). The interested readers may refer [15], [16], [18] and the reference therein for

more details of their solid backgrounds and real applications. In the controlled large population

system, it is intractable for a given agent to collect the “central” or “global” information of all

agents due to the highly complex interactions among its peers. Consequently, the centralized

controls, which are built upon the full information of all agents’ states, are not implementable

and not efficient in large population framework. Alternatively, it is more reasonable and effective

to study the decentralized strategies which depend on the local information only. By “local

information”, we mean the optimal control regulator for a given agent, is designed on its own

individual state and some quantity which can be computed in off-line manner. In this regard,

one powerful technique is the so-called mean-field games (see, e.g., [21]). Its main idea is to

approximate the initial large population control problem by its limiting problem through some

mean-field term (i.e., the asymptotic limit of state-average). Some recent literature can be found

in [3], [5], [13], [16], [19], [20], [22] for the study of mean-field games; [17] for cooperative

social optimization; [15], [28] and [29] and references therein for models with a major player;

[1], [7] and [34] for optimal control with a mean term in the dynamics and cost, etc.

The main novelty of this paper is to study the backward mean-field LQG games of large

population systems for which the individual states follow some backward stochastic differential

equations (BSDEs). This feature makes our setting very different to existing works of mean-

field LQG games wherein the individual states evolve by some forward stochastic differential

equations (SDEs). Different to SDE, the terminal instead initial condition of BSDE should be

specified as the priori. As a consequence, the BSDE will admit one adapted solution pair (yt, zt)
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where the second solution component zt (it is also called the diffusion component) is naturally

presented here due to the martingale representation and the adaptiveness requirement. The linear

BSDEs are introduced in [6] and the general nonlinear BSDEs are first introduced in [30]. Based

on them, the study of BSDE has experienced intense discussions and it has been found many

applications in different areas. For instance, the BSDE has been found to be very important to

characterize the nonlinear expectation in decision making, or the stochastic differential recursive

utility (say, [10]). Later, [11] presents many applications of BSDE in mathematical finance and

optimal control theory.

As the BSDE are well-defined stochastic systems with broad-range applications, it is very

natural to study its dynamic optimization in large-population setup. Indeed, the dynamic opti-

mization of backward large population system is inspired by a variety of scenarios. For example,

the dynamic economic models for which the participants are of some recursive utilities or

nonlinear expectations, or some production planning problems with some tracking terminal

objectives but affected by the market price via production average. Another example arises

from the risk management when considering the relative or comparable criteria based on the

average performance of all other peers through the whole sector. This is the case for a given

pension fund to evaluate its own performance by setting the average performance (say, average

hedging cost or initial deposit, surplus) as its benchmark. In addition, the controlled forward

large population systems, which are subjected to some terminal constraints, can be reformulated

by some backward large population systems, as motivated by [24]. Inspired by above mentioned

motivations, this paper studies the backward mean-field linear-quadratic-Gaussian (BMFLQG)

games. In particular, two classes of backward large population systems are formulated: in the

first class, the agents are coupled in their state dynamics and the full information structure is

assumed; in the second class, the agents are coupled via their cost functionals to be minimized

and only partial information is accessible. Moreover, the state-average limit in partial information

setup turns out to be some stochastic process.

The rest of this paper is organized as follows. In Section II, we introduce two classes of

mean-field backward differential games. As to the first class, the individual state dynamics are

coupled through the state-average and the full information (FI) structure is assumed thus the

individual agent can access the central information of all other agents. In the second class of

backward mean-field games, the individual agents are coupled through their cost functionals and
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the partial information (PI) structure is formulated there. Section III aims to study the explicit

form of the limiting process and ε-Nash equilibrium of the decentralized control strategy in the

full information (FI) case. Section IV will give the explicit form of limiting process and ε-Nash

equilibrium of the decentralized control strategy in the partial information (PI) case. Section V

is the conclusion of our work.

II. FORMULATION OF BACKWARD MEAN-FIELD LQG GAMES

Throughout this paper, Rm denotes the m-dimensional Euclidean space, ‖ · ‖ its norm. Let

C(0, T ;Rm) be the space of all continuous functions defined on [0, T ] with values in Rm;

L2(0, T ;Rm) the space of all deterministic functions on [0, T ] with values in Rm satisfying∫ T
0
|x(t)|2dt <∞; L2

F(0, T ;Rm) (L2
F(0, T ;Rm×n)) the space of all Ft-progressively measurable

processes with values in Rm (Rm×n) satisfying E
∫ T
0
|x(t)|2dt < ∞. Here Ft is some filtration

depending on the (full or partial) information structure we set.

The information structure of our large population system can be described as follows. First,

introduce (Ω,F , P ) the complete probability space on which a standard (d+m×N)-dimensional

Brownian motion {W (t),Wi(t), 1 ≤ i ≤ N}0≤t≤T is defined. Here, N stands for the population

size of our large population system. Depending on which problems to be addressed, we have

different setup to the information structure. In case of full information (see Section II.A),

we denote by Ft =
∨N
i=1F

wi
t the full information of large population system where Fwi

t =

σ{Wi(s); 0 ≤ s ≤ t} is the natural filtration generated by ith Brownian motion Wi but augmented

by all P -null sets. In case of partial information (see Section II.B), we let Gt = Ft
∨
Fwt

denote the complete information of large population system. In particular, Ft =
∨N
i=1F

wi
t the

information accessible to all agents but Fwt = σ{W (s); 0 ≤ s ≤ t} the information of some

underlying process which can’t be directly observed by our agents (say, some latent marco-

economic process, or hidden action process). Now we are ready to formulate our backward

mean-field LQG games.
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A. Full information with coupling in state dynamics

Now, we first introduce the backward mean-field LQG games in which the large population

system is weakly-coupled in the states of individual agents. For short, the problem is given by

(FI)


state :


−dyi(t) =

[
Ayi(t) +Bui(t) + Cy(N)(t)

]
dt− zi(t)dWi(t)

−
N∑

j=1,j 6=i
zij(t)dWj(t),

yi(T ) = ξi,

cost functional : Ji
(
ui(·), u−i(·)

)
= E

[∫ T
0
Ru2i (t)dt+Hy2i (0)

]
.

(1)

Here, we assume the full information (hence (FI) for short) structure. That is, each agent can

access the states of all other agents; the dynamics of agent Ai is denoted by yi which satisfies

the above controlled linear backward stochastic differential equation (LBSDE). It is remarkable

that (zi, zij, 1 ≤ j ≤ N, j 6= i) is also part of our solution of (1) which are introduced here to

enable yi to satisfy the adaptation requirement; A,B,C are scalar constants, R > 0, H ≥ 0;

y(N)(t) = 1
N

N∑
i=1

yi(t) is the state average across the whole population. It stands for the global

population effects in macro-scale. ξi ∈ FT , i = 1, 2, · · · , N, are the terminal conditions for

individual agents which stand for the future objective or tracking target. Let Ui, i = 1, 2, · · · , N

be subsets of R. The admissible control ui ∈ Ui where the admissible control set Ui is defined

as

Ui :=
{
ui
∣∣ui(t) ∈ Ui, 0 ≤ t ≤ T ; ui(·) ∈ L2

Ft
(0, T ;R)

}
, 1 ≤ i ≤ N.

Let u = (u1, · · · , ui, · · · , uN) denote the set of control strategies of all N agents; u−i =

(u1, · · · , ui−1, ui+1, · · ·uN) the control strategies except the ith agent Ai. Here, we write the

cost functional as Ji(ui, u−i) to emphasize that it depends on both ui and u−i due to the weakly

coupling structure in dynamics.

In full information structure, we make the following assumption:

(H1) The terminal conditions {ξi}Ni=1 are independent identically distributed (i.i.d) with

E|ξi|2 < +∞.

It follows that under (H1), the state equation in (1) admits a unique solution for all ui ∈ Ui. In
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fact, if we denote by

Y =


y1
...

yN

 , U =


u1
...

uN

 , Z =


z1 z12 · · · z1,N−1 z1N

z21 z2 · · · z2,N−1 z2N
...

...
...

...

zN1 zN2 · · · zN,N−1 zN

 , W̃ =


W1

...

WN

 ,

Ξ =


ξ1
...

ξN

 , JN =


1 · · · 1
...

...

1 · · · 1

 .

Then the state equation in (1) can be rewritten as

−dY (t) =
[
AY (t) +BU(t) +

C

N
JNY (t)

]
dt− Z(t)dW̃ (t), Y (T ) = Ξ

which is a LBSDE of vector value and admits a unique solution (Y, Z) ∈ L2
F(0, T ;RN) ×

L2
F(0, T ;RN×N) for U ∈ L2

F(0, T ;RN), (see [30]). Thus, for any 1 ≤ i ≤ N , the state equation

in (1) admits a unique solution
(
yi, zi, zij(j 6= i)

)
∈ L2

F(0, T ;R)× · · · × L2
F(0, T ;R).

Remark 2.1: (i) We now give some remarks to the real meaning of system (1). In reality,

the LBSDE in (1) stands for the dynamics of some investment behaviors such as in stocks and

bonds in a self-financed market, that is, there is no infusion or withdrawal of funds over [0, T ].

In recursive or hedging problems (finance, optimal control, etc.), the BSDE dynamics have been

deeply studied in the existing literature, such as [11], [33] and so on. The cost used to be applied

in some terminal hedging problems with possible nonlinear expectation, taking mean variance

model as an example. Besides, the constrained forward LQ control problem with state average

coupling in state dynamics can also be transferred to the backward LQ control with state given

by the linear BSDE, as given in (1).

(ii) For simplicity of analysis, the state average in system (1) is coupled in dynamics only.

Actually, our analysis can be extended to the problem with coupling in cost functional. Applying

similar procedures, we can obtain the optimal control by virtue of the corresponding fixed point

principle, and then analyze the properties of ε-Nash equilibrium.

(iii) In this system, there are N individual agents coupled together to be investigated for

the hedging strategies. Actually, problems to get optimal strategies in forward setup with small

players have been well studied by the existing literature, including [12], [16], [17], [18], etc.
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In this setting, we analyze the limit when the number of players N goes to infinity where the

situation considerably simplifies in the spirit of mean-field games, see [21].

B. Partial information with coupling in cost functional

In some case, it is very natural to consider the backward LQG games with coupling in their

cost functionals. To this end, we formulate the following backward mean-field LQG games in

which the large population system is weakly-coupled in the cost functional :

(PI)


state :

 −dyi(t) =
[
Ayi(t) +Bui(t)

]
dt− zi(t)dWi(t)− z̃i(t)dW (t),

yi(T ) = ηi,

cost functional : Ji
(
ui(·), u−i(·)

)
= E

[∫ T
0
Ru2i (t)dt+ 2yi(0)

(
α− βy(N)(0)

)]
.

(2)

Here, we assume the partial information structure in which each agent can not access the underly-

ing state process driven by {W (t), 0 ≤ t ≤ T}; A,B are scalar constants, R > 0, α ≥ 0, β ≥ 0;

ηi ∈ GT , i = 1, 2, · · · , N, are the terminal conditions for individual agents; y(N)(t) = 1
N

N∑
i=1

yi(t)

is the state average, y(N)(0) is its initial value. Let Vi, i = 1, 2, · · · , N be subsets of R. The

admissible control ui ∈ Vi is defined as

Vi :=
{
ui
∣∣ui(t) ∈ Vi, 0 ≤ t ≤ T ; ui(·) ∈ L2

Ft
(0, T ;R)

}
, 1 ≤ i ≤ N.

Let u = (u1, · · · , ui, · · · , uN) denote the set of control strategies of all N agents; u−i =

(u1, · · · , ui−1, ui+1, · · ·uN) the control strategies except the ithagent Ai.

In partial information structure, we make the following assumption:

(H2) {ηi}Ni=1 are conditional independent and identically conditional distributed w.r.t. FwT
with E|ηi|2 < +∞. Moreover, the distribution of each ηi is not depending on i and N .

It follows that under (H2), the state equation in (2) admits a unique solution (yi, zi, z̃i) ∈

L2
G(0, T ;R) × L2

G(0, T ;R) × L2
G(0, T ;R) for all ui ∈ Vi. In fact, the uniqueness is obtained by

[30] directly in partial information framework. Noting the identically conditional distributions

of {ηi}Ni=1 in (H2), it is easy to obtain that E
(
η1|FwT

)
= · · · = E

(
ηN |FwT

)
, which is denoted by

η ∈ FwT . Then applying the results of [27], we get that conditionally on FwT , 1
N

N∑
i=1

ηi → η, a.s.,

as N → +∞. It is worth pointing out that if ηi has the following linear or nonlinear structure,

{ηi}Ni=1 satisfy (H2) easily: ηi = αi + β or ηi = φ(αi, β), where αi ∈ Fwi
T , i = 1, · · · , N ,

β ∈ FwT , and φ(·) is a deterministic function. And 1
N

N∑
i=1

ηi → Eα1 + β or E
(
φ(α1, β)|FwT

)
a.s.,

as N → +∞.
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Remark 2.2: (i) We now present some remarks to the real meaning of system (2). In reality,

the LQ BSDE system stands for the benchmark tracking problem with portfolio selection in

financial market. If a given portfolio strategy emphasizes one aspect or one product, it will be

adjusted by considering the whole behaviors throughout the market.

(ii) In this system, the state average is not coupled in dynamics. There are two reasons.

The first reason is from practical point: the coupling in cost functional arise naturally when

we consider the relative (investment) performance (see e.g., [12]). The second reason is more

technical: in partial information structure, the optimal control involves filtering equations and

this always leads to considerable interrelated and complicated filter estimations. It is difficult to

get similar estimated results as in the full information problem. Thus, we consider the coupled

cost functional in (2) due to its financial meanings.

III. PROBLEM (FI): FULL INFORMATION AND COUPLING IN STATES

Now, we study the problem (FI): the backward mean-field LQG games with full information

(FI). A key component in our analysis is to study the associated mean-field LQG games via

limiting state average, as the number of agents tends to infinity. To obtain the desired results

and the explicit feedback control, we assume Ui = R for i = 1, 2, · · · , N .

A. The optimal control of (LFI)

We assume y(N) is approximated by a deterministic continuous function y0 given by−dy
0(t) = [Ã(t)y0(t) +m(t)]dt,

y0(T ) = ξ0

(3)

where ξ0 is some deterministic constant, Ã(t) and m(t) are some continuous functions to be

determined. Actually, by (H1) and law of large numbers (LLN), lim
N→+∞

ξ(N) exists and ξ0 is

determined by

ξ0 = lim
N→+∞

ξ(N) = Eξi, i = 1, 2, · · · , N (4)

where ξ(N) = 1
N

N∑
i=1

ξi. Now, we introduce the limiting full-information system
−dyi(t) =

[
Ayi(t) +Bui(t) + Cy0(t)

]
dt− zi(t)dWi(t)−

N∑
j=1,j 6=i

zij(t)dWj(t),

yi(T ) =ξi

(5)
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with the cost functional

Ji
(
ui(·)

)
= E

[∫ T

0

Ru2i (t)dt+Hy2i (0)

]
(6)

where y0(·) is given by (3).

Now we formulate the limiting full information (LFI) problem of our large population system

as follows.

Problem (LFI). For the ith agent, i = 1, 2, · · · , N, find ūi ∈ Ui satisfying

Ji(ūi) = inf
ui∈Ui

Ji(ui).

Then ūi is called the optimal control for problem (LFI).

In the following, we apply the variational method to get the optimal control ūi. First, introduce

the variational equation
−dζi(t) =

[
Aζi(t) +Bδui(t)

]
dt− θi(t)dWi(t)−

N∑
j=1,j 6=i

θij(t)dWj(t),

ζi(T ) = 0, i = 1, 2, · · · , N

(7)

where ζi(t) ∈ L2
Ft

(0, T ;R), δui(·) denotes the variation of ūi(·). Then the following proposition

holds true.

Proposition 3.1: Let (H1) hold. Then the optimal control of (LFI) is

ūi(t) = −R−1Bpi(t)

where pi(t) ∈ L2(0, T ;R) satisfies the following ordinary differential equation (ODE): dpi(t) = Api(t)dt,

pi(0) = Hȳi(0), i = 1, 2, · · · , N.
(8)

Proof: Suppose (ȳi, z̄i, z̄ij(j 6= i), ūi) is an optimal solution. Then for any variation δui of ūi,

the associated first order variation of cost functional Ji(ūi) satisfies

0 =
1

2
δJi(ūi) = E

[∫ T

0

Rδui(t)ūi(t)dt+Hζi(0)ȳi(0)

]
. (9)
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Applying Itô’s formula, we have

d
(
ζi(t)pi(t)

)
=

{
−
[
Aζi(t) +Bδui(t)

]
dt+ θi(t)dWi(t) +

N∑
j=1,j 6=i

θij(t)dWj(t)

}
pi(t) + ζi(t)Api(t)dt

=−Bδui(t)pi(t)dt+ pi(t)

[
θi(t)dWi(t) +

N∑
j=1,j 6=i

θij(t)dWj(t)

]
.

Combining this identity with ζi(T ) = 0 and pi(0) = Hȳi(0) yields

E
[
ζi(0)Hȳi(0)

]
= E

∫ T

0

Bδui(t)pi(t)dt. (10)

It follows from (9)-(10) that for any δui(·) ∈ L2
Fwi (0, T ;R),

E
∫ T

0

(
Rδui(t)ūi(t) +Bδui(t)pi(t)

)
dt = 0.

This implies that ūi(t) = −R−1Bpi(t). On the other hand, the sufficiency of optimal control can

be proved similarly. �

B. The fixed point principle with full information

Now, we aim to study the properties of the given function y0(·). For ∀ 1 ≤ i ≤ N , solving

ODE (8) directly, we have

pi(t) = Hȳi(0)eAt.

Thus, the optimal control ūi(t) is given by

ūi(t) = −R−1BHȳi(0)eAt. (11)

Applying the decentralized control law (11) for the ith agent Ai, the closed-loop state in system

(1) becomes

−dyi(t) =
[
Ayi(t)−B2R−1Hyi(0)eAt + Cy(N)(t)

]
dt− zi(t)dWi(t)

−
N∑

j=1,j 6=i

zij(t)dWj(t),

yi(T ) =ξi

(12)
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where y(N)(t) = 1
N

N∑
i=1

yi(t). Summing the above N equations of (12) and dividing by N , we

get 

−dy(N)(t) =
[
Ay(N)(t)−B2R−1HeAty(N)(0) + Cy(N)(t)

]
dt

− 1

N

N∑
i=1

[
zi(t)dWi(t) +

N∑
j=1,j 6=i

zij(t)dWj(t)

]
,

y(N)(T ) =ξ(N).

(13)

Letting N → +∞, replacing y(N) by y0 and noting (4), we obtain the following limiting system
−dy0(t) =

[(
A+ C

)
y0(t)−B2R−1HeAty0(0)

]
dt,

y0(T ) = ξ0.
(14)

Comparing the coefficients with (3), we have Ã(t) ≡ A+ C,

m(t) = −B2R−1HeAty0(0).
(15)

Solving the ODE (3), we get

y0(t) = ξ0e
∫ T
t Ã(s)ds +

∫ T

t

m(s)e
∫ s
t Ã(u)duds.

Taking t = 0 and noting (15), we have

y0(0) = ξ0e
(A+C)T +

∫ T

0

m(s)e(A+C)sds.

Thus, m(t) in (15) has the following expression:

m(t) = −B2R−1HeAtξ0e
(A+C)T −B2R−1HeAt

∫ T

0

m(s)e(A+C)sds. (16)

We have the following explicit representation of m(t). As a sequel, y0(·) in (3) can be determined.

Proposition 3.2: m(·) can be explicitly solved as

m(t) =

 −
B2H(2A+C)ξ0eAt+(A+C)T

R(2A+C)+B2H
(
e(2A+C)T−1

) , if 2A+ C 6= 0;

−B2H[R+B2H(T−1)]ξ0e−A(T−t)

R(R+B2HT )
, if 2A+ C = 0.

(17)

Proof: Denote K :=
∫ T
0
m(s)e(A+C)sds, which is a constant depending on T . Then (16) can

be rewritten as

m(t) = −B2R−1HeAtξ0e
(A+C)T −B2R−1HeAtK.
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Multiplying with e(A+C)t on both sides and taking integral from 0 to T w.r.t t, we have

K =

∫ T

0

m(t)e(A+C)tdt

= −B2R−1Hξ0e
(A+C)T

∫ T

0

e(2A+C)tdt−B2R−1HK

∫ T

0

e(2A+C)tdt.

Then we get

K =

 −
B2Hξ0e(A+C)T

(
e(2A+C)T−1

)
R(2A+C)+B2H

(
e(2A+C)T−1

) , if 2A+ C 6= 0;

−B2Hξ0e−AT

R+B2HT
, if 2A+ C = 0.

Thus, (17) is obtained. Noting (15), y0(·) is also determined. �

Remark 3.1: (i) By Proposition 3.2, it follows that there exists a unique deterministic function

y0 in C(0, T ;R) to approximate the state average y(N). Applying the limiting function y0, we

get the optimal control for (LFI), which plays an important role in obtaining the decentralized

control and analyzing the properties of ε-Nash equilibrium.

(ii) Actually, in (17) if 2A + C > 0(< 0), e(2A+C)T − 1 > 0(< 0). Noting R > 0, H ≥ 0,

we get R(2A+ C) + B2H
(
e(2A+C)T − 1

)
> 0(< 0). Meanwhile, we have R(R + B2HT ) > 0.

Thus, the representation (17) is meaningful.

C. ε-Nash equilibrium for (FI)

In previous sections, we obtained the optimal control ūi(·), 1 ≤ i ≤ N of (LFI). In this section,

we analyze the asymptotic property of the decentralized control strategies and verify the ε-Nash

equilibrium property for (FI). To start, we first address the definition of ε-Nash equilibrium.

Definition 3.1: For ε ≥ 0, a set of controls uk ∈ Uk, 1 ≤ k ≤ N, for N agents is called an

ε-Nash equilibrium with respect to the costs Jk, 1 ≤ k ≤ N, if for any fixed 1 ≤ i ≤ N ,

Ji(ui, u−i) ≤ Ji(u′i, u−i) + ε (18)

when any alternative control u′i ∈ Ui is applied by Ai.

Now, we state one main result of this paper and its proof will be given later.

Theorem 3.1: Let (H1) hold. Then (ū1, ū2, · · · , ūN) satisfies the ε-Nash equilibrium of (FI),

with ε is of order 1/
√
N . Here, for 1 ≤ i ≤ N, ūi is given by

ūi(t) = −R−1BHy0(0)eAt. (19)
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Before proving the theorem, some analysis is needed. Applying the optimal control (11) to (5),

we have
−dȳi(t) =

[
Aȳi(t)−B2R−1Hȳi(0)eAt + Cy0(t)

]
dt− z̄i(t)dWi(t)−

N∑
j=1,j 6=i

z̄ij(t)dWj(t),

ȳi(T ) =ξi.

Taking expectation and solving the corresponding backward ODE, we get

Eȳi(t) = ξ0e
A(T−t) −

∫ T

t

[
BR−1BHȳi(0)eAs − Cy0(s)

]
eA(s−t)ds.

Taking t = 0 and noting ȳi(0) = Eȳi(0), we obtain

ȳi(0) =
[
1 +

B2H

2AR

(
e2AT − 1

)]−1[
ξ0e

AT + C

∫ T

0

y0(s)eAsds
]
.

Thus, ȳi(0) is a constant which can be determined by y0(·) and ξ0. Further, we have ȳi(0) =

y0(0), i = 1, 2, · · · , N. For simplicity, we use the notation y0(0) in ūi(·) instead of ȳi(0)

hereafter. Now, we formulate the dynamic systems as follows

−dyi(t) =
[
Ayi(t)−B2R−1Hy0(0)eAt + Cy(N)(t)

]
dt− zi(t)dWi(t)

−
N∑

j=1,j 6=i

zij(t)dWj(t),

yi(T ) =ξi

(20)

and 

−dȳi(t) =
[
Aȳi(t)−B2R−1Hy0(0)eAt + Cy0(t)

]
dt− z̄i(t)dWi(t)

−
N∑

j=1,j 6=i

z̄ij(t)dWj(t),

ȳi(T ) =ξi.

(21)

Then we have

Lemma 3.1:

sup
0≤t≤T

E
∣∣∣y(N)(t)− y0(t)

∣∣∣2 = O
( 1

N

)
, (22)

sup
1≤i≤N

[
sup

0≤t≤T
E
∣∣∣yi(t)− ȳi(t)∣∣∣2] = O

( 1

N

)
. (23)
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Proof: By (20) and (14), we have

−d
(
y(N)(t)− y0(t)

)
=
[
(A+ C)(y(N)(t)− y0(t))

]
dt

− 1

N

N∑
i=1

[
zi(t)dWi(t) +

N∑
j=1,j 6=i

zij(t)dWj(t)

]
,

y(N)(T )− y0(T ) =ξ(N) − ξ0.

(24)

Introduce a 1-dimensional dual process X(s, t) for (24), which satisfies dX(s, t) =(A+ C)X(s, t)ds,

X(t, t) =1, t ≤ s ≤ T.

X(s, t) is deterministic and belongs to L2(0, T ;R). Applying Itô’s formula to

〈y(N)(s)− y0(s), X(s, t)〉, we get

y(N)(t)− y0(t) =X(T, t)E
(
ξ(N) − ξ0

∣∣Ft).
By (H1), we have

E
∣∣∣ξ(N) − ξ0

∣∣∣2 = E
∣∣∣ 1

N

N∑
i=1

ξi − ξ0
∣∣∣2 = O

( 1

N

)
.

Then (22) follows. Noting (20) and (21), applying the similar method, we can get (23). �

Lemma 3.2: For ∀ 1 ≤ i ≤ N ,∣∣∣Ji(ūi, ū−i)− Ji(ūi)∣∣∣ = O
( 1√

N

)
.

Proof: For ∀ 1 ≤ i ≤ N, by (21), we get sup
0≤t≤T

E
∣∣ȳi(t)∣∣2 < +∞. Applying Cauchy-Schwarz

inequality and noting (23), we have

sup
0≤t≤T

E
∣∣∣|yi(t)|2 − |ȳi(t)|2∣∣∣

≤ sup
0≤t≤T

E
∣∣∣yi(t)− ȳi(t)∣∣∣2 + 2

(
sup

0≤t≤T
E|ȳi(t)|2

) 1
2
(

sup
0≤t≤T

E|yi(t)− ȳi(t)|2
) 1

2
,

=O
( 1√

N

)
.

Further,

E
∣∣∣|yi(0)|2 − |ȳi(0)|2

∣∣∣ = O
( 1√

N

)
.

Then ∣∣∣Ji(ūi, ū−i)− Ji(ūi)∣∣∣ ≤ HE
∣∣∣y2i (0)− ȳ2i (0)

∣∣∣ = O
( 1√

N

)
,
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which completes the proof. �

Now, we have addressed some estimates of states and costs corresponding to control ūi,1 ≤

i ≤ N . Our remaining analysis is to prove the control strategies set (ū1, ū2, · · · , ūN) is an ε-

Nash equilibrium for (FI). For any fixed i, 1 ≤ i ≤ N , consider an admissible alternative control

ui ∈ Ui for Ai and introduce the dynamics
−dxi(t) =

[
Axi(t) +Bui(t) + Cx(N)(t)

]
dt− qi(t)dWi(t)−

N∑
k=1,k 6=i

qik(t)dWk(t),

xi(T ) = ξi

(25)

whereas other agents keep the control ūj, 1 ≤ j ≤ N, j 6= i, i.e.,

−dxj(t) =
[
Axj(t)−B2R−1Hy0(0)eAt + Cx(N)(t)

]
dt− qj(t)dWj(t)

−
N∑

k=1,k 6=j

qjk(t)dWk(t),

xj(T ) =ξj

(26)

where x(N)(t) = 1
N

N∑
j=1

xj(t).

If ūi, 1 ≤ i ≤ N is an ε-Nash equilibrium with respect to the cost Ji, we have

Ji(ūi, ū−i) ≥ inf
ui∈Ui

Ji(ui, ū−i) ≥ Ji(ūi, ū−i)− ε.

Then, when making the perturbation, we just need to consider ui ∈ Ui such that Ji(ui, ū−i) ≤

Ji(ūi, ū−i), which implies

E
∫ T

0

Ru2i (t)dt ≤ Ji(ui, ū−i) ≤ Ji(ūi, ū−i) = Ji(ūi) +O
( 1√

N

)
,

i.e.,

E
∫ T

0

u2i (t)dt ≤ C0, (27)

where C0 is a positive constant which is independent of N .

Proposition 3.3: sup
1≤i≤N

[
sup

0≤t≤T
E|xi(t)|2

]
is bounded.

Proof: By (25) and (26), it holds that

E

{
|xi(t)|2 +

∫ T

t

|qi(s)|2ds+

∫ T

t

N∑
k=1,k 6=i

|qik(s)|2ds

}

≤C1E

{
|ξi|2 +

∫ T

t

[
|xi(s)|2 + |ui(s)|2 +

1

N

N∑
k=1

|xk(s)|2
]
ds

}
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and for j 6= i,

E

{
|xj(t)|2 +

∫ T

t

|qj(s)|2ds+

∫ T

t

N∑
k=1,k 6=j

|qjk(s)|2ds

}

≤C1E

{
|ξj|2 +

∫ T

t

[
|xj(s)|2 + |ūj(s)|2 +

1

N

N∑
k=1

|xk(s)|2
]
ds

}
where C1 is a positive constant. Thus,

E

[
N∑
k=1

|xk(t)|2
]
≤C1

{
E

[
N∑
k=1

|ξk|2
]

+ E
∫ T

t

[
2

N∑
k=1

|xk(s)|2 + |ui(s)|2 +
N∑

k=1,k 6=i

|ūk(s)|2
]
ds

}
.

By (27), we can see ui(t) is L2-bounded. Besides, the optimal controls ūk(t), k 6= i are L2-

bounded. Then by Gronwall’s inequality, we get

sup
0≤t≤T

E

[
N∑
k=1

|xk(t)|2
]

= O(N),

and for any 1 ≤ i ≤ N, sup
0≤t≤T

E|xi(t)|2 is bounded. �

For the ith agent Ai, consider the perturbation in (LFI) and introduce a new system
−dx0i (t) =

[
Ax0i (t) +Bui(t) + Cy0(t)

]
dt− q0i (t)dWi(t)−

N∑
k=1,k 6=i

q0ik(t)dWk(t),

x0i (T ) = ξi

(28)

and for the jth agent Aj, j 6= i,

−dx̄j(t) =
[
Ax̄j(t)−B2R−1Hy0(0)eAt + Cy0(t)

]
dt− q̄j(t)dWj(t)

−
N∑

k=1,k 6=j

q̄jk(t)dWk(t),

x̄j(T ) =ξj.

(29)

In order to obtain necessary estimates for (FI) and (LFI), we need introduce some intermediate

states as follows

−dx̌i(t) =

[
Ax̌i(t) +Bui(t) +

N − 1

N
Cx̌(N−1)(t)

]
dt− q̌i(t)dWi(t)

−
N∑

k=1,k 6=i

q̌ik(t)dWk(t),

x̌i(T ) =ξi

(30)
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and for j 6= i,

−dx̌j(t) =

[
Ax̌j(t)−B2R−1Hy0(0)eAt +

N − 1

N
Cx̌(N−1)(t)

]
dt− q̌j(t)dWj(t)

−
N∑

k=1,k 6=j

q̌jk(t)dWk(t),

x̌j(T ) =ξj

(31)

where x̌(N−1)(t) = 1
N−1

N∑
j=1,j 6=i

x̌j(t).

Denote x(N−1)(t) = 1
N−1

N∑
j=1,j 6=i

xj(t), by (26) and (31), we get

−dx(N−1)(t) =

[(
A+

N − 1

N
C
)
x(N−1)(t)−B2R−1Hy0(0)eAt +

C

N
xi(t)

]
dt

− 1

N − 1

N∑
j=1,j 6=i

[
qj(t)dWj(t) +

N∑
k=1,k 6=j

qjk(t)dWk(t)

]
,

x(N−1)(T ) =ξ(N−1)

(32)

and 

−dx̌(N−1)(t) =

[(
A+

N − 1

N
C
)
x̌(N−1)(t)−B2R−1Hy0(0)eAt

]
dt

− 1

N − 1

N∑
j=1,j 6=i

[
q̌j(t)dWj(t) +

N∑
k=1,k 6=j

q̌jk(t)dWk(t)

]
,

x̌(N−1)(T ) =ξ(N−1)

(33)

where ξ(N−1) = 1
N−1

N∑
j=1,j 6=i

ξj .

We have the following estimates.

Proposition 3.4:

sup
0≤t≤T

E
∣∣∣x(N−1)(t)− x̌(N−1)(t)∣∣∣2 = O

( 1

N2

)
, (34)

sup
0≤t≤T

E
∣∣∣x(N)(t)− x(N−1)(t)

∣∣∣2 = O
( 1

N

)
, (35)

sup
0≤t≤T

E
∣∣∣x̌(N−1)(t)− y0(t)∣∣∣2 = O

( 1

N

)
. (36)
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Proof: By (32) and (33), we have

−d
(
x(N−1)(t)− x̌(N−1)(t)

)
=

[(
A+

N − 1

N
C
)(
x(N−1)(t)− x̌(N−1)(t)

)
+
C

N
xi(t)

]
dt

− 1

N − 1

N∑
j=1,j 6=i

[(
qj(t)− q̌j(t)

)
dWj(t) +

N∑
k=1,k 6=j

(
qjk(t)− q̌jk(t)

)
dWk(t)

]
,

x(N−1)(T )− x̌(N−1)(T ) = 0.

By the estimates of BSDE, Proposition 3.3, and Gronwall’s inequality, the assertion (34) holds.

(35) follows from assumption (H1) and the L2-boundness of controls ui(·) and ũj(·), j 6= i. By

(14) and (33), making similar analysis, we get (36). �

In addition, based on Proposition 3.4, we obtain more direct estimates to prove Theorem 3.1.

Lemma 3.3:

sup
0≤t≤T

E
∣∣∣|xi(t)|2 − |x0i (t)|2∣∣∣ = O

( 1√
N

)
, (37)∣∣∣Ji(ui, ū−i)− Ji(ui)∣∣∣ = O

( 1√
N

)
. (38)

Proof: By Proposition 3.4, we get

sup
0≤t≤T

E
∣∣∣x(N)(t)− y0(t)

∣∣∣2 = O
( 1

N

)
.

Besides, by (25) and (28), we obtain

sup
0≤t≤T

E
∣∣∣xi(t)− x0i (t)∣∣∣2 = O

( 1

N

)
.

Noting sup
0≤t≤T

E|x0i (t)|2 < +∞, applying Cauchy-Schwarz inequality, we have

sup
0≤t≤T

E
∣∣∣|xi(t)|2 − |x0i (t)|2∣∣∣

≤ sup
0≤t≤T

E|xi(t)− x0i (t)|2 + 2 sup
0≤t≤T

E|x0i (t)(xi(t)− x0i (t))|

≤ sup
0≤t≤T

E|xi(t)− x0i (t)|2 + 2
(

sup
0≤t≤T

E|x0i (t)|2
) 1

2
(

sup
0≤t≤T

E|xi(t)− x0i (t)|2
) 1

2

=O
( 1√

N

)
which is (37). Further, we get

E
∣∣∣|xi(0)|2 − |x0i (0)|2

∣∣∣ = O
( 1√

N

)
.
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Thus, (38) is obtained. �

Proof of Theorem 3.1: Now, we consider the ε-Nash equilibrium of Ai for (FI). Combining

Lemma 3.2 and 3.3, we have

Ji(ūi, ū−i) =Ji(ūi) +O
( 1√

N

)
≤Ji(ui) +O

( 1√
N

)
=Ji(ui, ū−i) +O

( 1√
N

)
.

Thus, Theorem 3.1 follows by taking ε = O
(

1√
N

)
.

IV. PROBLEM (PI): PARTIAL INFORMATION AND COUPLING IN COST

Now, we turn to study the backward mean-field LQG games with partial information (PI).

Similar to full information structure, we need also introduce and study the associated mean-field

LQG games via limiting state average. We also assume Vi = R for i = 1, 2, · · · , N .

A. The limiting control of (LPI)

Considering the large population system with partial information structure, suppose the feed-

back control for Ai takes the following feedback form on the state filters

ui(t) =− a(t)E
(
yi(t)|Fwi

t

)
+

N∑
j=1,j 6=i

ã(t)E
(
yj(t)|Fwi

t

)
+ b(t) (39)

where the regulator coefficients a(·), ã(·), b(·) ∈ L2(0, T ;R) and ã(·) = O( 1
N

). Inserting (39)

into the state equation in (2), we have

−dyi(t) =
[
Ayi(t)−Ba(t)E

(
yi(t)|Fwi

t

)
+Bã(t)

N∑
j=1,j 6=i

E
(
yj(t)|Fwi

t

)
+Bb(t)

]
dt

− zi(t)dWi(t)− z̃i(t)dW (t), 1 ≤ i ≤ N.

(40)

Then consider the state average, we get

−d

(
1

N

N∑
i=1

yi(t)

)
=

[
A

1

N

N∑
i=1

yi(t)−Ba(t)
1

N

N∑
i=1

E(yi(t)|Fwi
t )

+Bã(t)
1

N

N∑
i=1

N∑
j=1,j 6=i

E(yj(t)|Fwi
t ) +Bb(t)

]
dt

− 1

N

N∑
i=1

zi(t)dWi(t)−
1

N

N∑
i=1

z̃i(t)dW (t).
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Thus, we assume there exists a limiting process (y∗(t), z∗(t)), which satisfies the following

backward stochastic differential equation−dy
∗(t) =

[
Ay∗(t) + B̃(t)Ey∗(t) + r(t)

]
dt− z∗(t)dW (t),

y∗(T ) = η
(41)

where η ∈ FwT is obtained by (H2), B̃(·) and r(·) ∈ L2(0, T ;R) are to be determined.

Now, we introduce the limiting partial-information system−dyi(t) =[Ayi(t) +Bui(t)]dt− zi(t)dWi(t)− z̃i(t)dW (t),

yi(T ) =ηi

(42)

with the cost functional

Ji(ui) = E
[∫ T

0

Ru2i (t)dt+ 2yi(0)
(
α− βy∗(0)

)]
(43)

where y∗(·) is given by (41).

Now, we formulate the limiting partial information LQG games.

Problem (LPI). For the ith agent, i = 1, 2, · · · , N, find ûi ∈ Vi satisfying

Ji(ûi) = inf
ui∈Vi

Ji(ui).

Then ûi is called an optimal control of problem (LPI). Further we have

Proposition 4.1: Let (H2) hold. Then the optimal control of (LPI) is

ûi(t) = −R−1Bhi(t)

where hi(t) ∈ L2(0, T ;R) satisfies the following ODE: dhi(t) = Ahi(t)dt,

hi(0) = α− βy∗(0), i = 1, 2, · · · , N.
(44)

Proof: Similar to the proof of Proposition 3.1, applying the standard variational method, the

result is obtained. We omit it. �
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B. The fixed point principle with partial information

For ∀ 1 ≤ i ≤ N , solving ODE (44) directly, we have

hi(t) =
(
α− βy∗(0)

)
eAt.

Thus, the optimal control ûi(t) is given by

ûi(t) = −R−1B
(
α− βy∗(0)

)
eAt. (45)

Applying the control law (45) for ith agent Ai, the closed-loop system (2) becomes
−dyi(t) =

[
Ayi(t)−B2R−1

(
α− βy∗(0)

)
eAt
]
dt− zi(t)dWi(t)− z̃i(t)dW (t),

yi(T ) =ηi.
(46)

Summing the above N equations of (46) and dividing by N , we get

−dy(N)(t) =
[
Ay(N)(t)−B2R−1

(
α− βy∗(0)

)
eAt
]
dt− 1

N

N∑
i=1

zi(t)dWi(t)

− 1

N

N∑
i=1

z̃i(t)dW (t),

y(N)(T ) =η(N)

(47)

where η(N) = 1
N

N∑
i=1

ηi. Taking N → +∞ and noting (41), we have B̃(t) ≡ 0 and

r(t) = −B2R−1
(
α− βy∗(0)

)
eAt. (48)

Then we rewrite (41) as−dy
∗(t) =

[
Ay∗(t) + r(t)

]
dt− z∗(t)dW (t),

y∗(T ) = η.
(49)

Taking expectation and solving the corresponding backward ODE, we get

Ey∗(t) = η0e
A(T−t) +

∫ T

t

r(s)eA(s−t)ds

where η0 := Eη. Thus,

y∗(0) = Ey∗(0) = η0e
AT +

∫ T

0

r(s)eAsds.

Further we have

r(t) = −B2R−1eAt

{
α− β

[
η0e

AT +

∫ T

0

r(s)eAsds
]}

.
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Then we have the following proposition.

Proposition 4.2: r(·) can be explicitly solved as

r(t) =

 −
2AB2eAt

(
α−βη0eAT

)
2AR−B2β

(
e2AT−1

) , if A 6= 0, 2AR−B2β
(
e2AT − 1

)
6= 0;

−B2(α−βη0)
R−B2βT

, if A = 0, R−B2βT 6= 0.
(50)

Moreover, y∗(·) in (49) can be determined based on r(·).

Proof: The proof is similar to that of Proposition 3.2 and omitted. �

Remark 4.1: By Proposition 4.2 it follows that there exists a unique bounded continuous

function r(·). Then (49) admits a unique solution
(
y∗(·), z∗(·)

)
, in which y∗(·) is approximated

by the state average y(N). Applying y∗(·), we get the optimal control for (LPI), which is important

to analyze the properties of ε-Nash equilibrium.

C. ε-Nash equilibrium for (PI)

In this section, we analyze the asymptotic property of the decentralized control strategies and

verify the ε-Nash equilibrium property for (PI). To begin with, we state the main result.

Theorem 4.1: Let (H2) hold. Then the strategy set (û1, û2, · · · , ûN) satisfies the ε-Nash equi-

librium of (PI), with ε is of order 1/
√
N .

Let yi denote the state process corresponding to ûi for (PI), ŷi denote the state process corre-

sponding to ûi for (LPI). Note that in partial information structure, state average is coupled in

cost only therefore applying ûi, yi is same to ŷi, i = 1, 2, · · · , N.

Lemma 4.1:

sup
0≤t≤T

E
∣∣∣y(N)(t)− y∗(t)

∣∣∣2 = O
( 1

N

)
, (51)∣∣∣Ji(ûi, û−i)− Ji(ûi)∣∣∣ = O

( 1√
N

)
, ∀ 1 ≤ i ≤ N. (52)

Proof: By (47) and (49), we have

−d
(
y(N)(t)− y∗(t)

)
=A
[
y(N)(t)− y∗(t)

]
dt− 1

N

N∑
i=1

zi(t)dWi(t)

+

[
z∗(t)− 1

N

N∑
i=1

z̃i(t)

]
dW (t),

y(N)(T )− y∗(T ) =η(N) − η.

(53)
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Similar to the proof in Lemma 3.1, introducing a 1-dimensional dual process X(s, t), which

satisfies  dX(s, t) =AX(s, t)ds,

X(t, t) =1, t ≤ s ≤ T,

and applying Itô’s formula, we get

y(N)(t)− y∗(t) = X(T, t)E
(
η(N) − η

∣∣Gt).
It is easy to obtain that

E
∣∣∣η(N) − η

∣∣∣2 =
1

N2

N∑
i=1

E
∣∣∣ηi − η∣∣∣2 +

2

N2

∑
i<j

E
(
ηi − η

)(
ηj − η

)
.

Since E
∣∣∣ηi − η∣∣∣2 < +∞, we have 1

N2

N∑
i=1

E
∣∣∣ηi − η∣∣∣2 = O

(
1
N

)
. Besides, it follows that

E
(
ηi − η

)(
ηj − η

)
= E

[
E
[(
ηi − η

)(
ηj − η

)∣∣FwT ]] = E
[
E
[
ηiηj

∣∣FwT ]− η2].
Under (H2), applying the results of [25] or [36], we can derive that

E
[
ηiηj

∣∣FwT ] = E
[
ηi
∣∣FwT ]E[ηj∣∣FwT ] = η2.

Thus, E
∣∣∣η(N) − η

∣∣∣2 = O
(

1
N

)
and (51) follows. In addition, note that the state equation of (PI)

coincides with its limiting equation (42), since the state equation in (2) does not contain the

state-average term y(N). Therefore, after applying the optimal control ûi in (45), we get that

yi = ŷi P -a.s.. Thus, we have∣∣∣Ji(ûi, û−i)− Ji(ûi)∣∣∣ ≤2βE
[∣∣ŷi(0)

∣∣∣∣y(N)(0)− y∗(0)
∣∣]

=O
( 1√

N

)
where the last equality follows by Hölder’s inequality and (51). �

For any fixed i, 1 ≤ i ≤ N , consider an admissible alternative control ui ∈ Vi for the ith

agent Ai and denote the corresponding state as−dki(t) =
[
Aki(t) +Bui(t)

]
dt− ni(t)dWi(t)− ñi(t)dW (t),

ki(T ) = ηi

(54)

while all other agents keep the control ûj, 1 ≤ j ≤ N, j 6= i, i.e.,
−dkj(t) =

[
Akj(t)−B2R−1

(
α− βy∗(0)

)
eAt
]
dt− nj(t)dWi(t)− ñj(t)dW (t),

kj(T ) =ηj

(55)
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with the cost functional

Ji
(
ui(·), û−i(·)

)
= E

[∫ T

0

Ru2i (t)dt+ 2ki(0)
(
α− βk(N)(0)

)]
(56)

where k(N)(t) = 1
N

N∑
j=1

kj(t), k(N)(0) = 1
N

N∑
j=1

kj(0) is its initial value.

If ûi, 1 ≤ i ≤ N is an ε-Nash equilibrium with respect to the cost Ji, we have

Ji(ûi, û−i) ≥ inf
ui∈Vi

Ji(ui, û−i) ≥ Ji(ûi, û−i)− ε.

Then, when making the perturbation, we just need to consider ui ∈ Vi such that Ji(ui, û−i) ≤

Ji(ûi, û−i). Besides, by (54) (55) and applying the estimates of BSDE, we obtain the L2

boundness of kj, j 6= i and the following inequality

sup
0≤t≤T

E|ki(t)|2 ≤ C4

[
1 + E

∫ T

0

|ui(s)|2ds
]

where C4 = C4(A,B) is a positive constant which is independent of N but depends on A,B.

Then we have

Ji
(
ui, û−i

)
≥E

∫ T

0

Ru2i (t)dt− 2E
[∣∣ki(0)

∣∣∣∣α− βk(N)(0)
∣∣]

≥
(
R− C5

)
E
∫ T

0

|ui(s)|2ds− C6

where C5 = C5(A,B, α, β), C6 = C6(A,B, α, β) are positive constants which are independent

of N . For simplicity, we introduce the following assumption:

(H3) R > C5.

Then (H3) implies(
R− C5

)
E
∫ T

0

u2i (t)dt ≤ Ji(ui, û−i) + C6 ≤ Ji(ûi, û−i) + C6 = Ji(ûi) +O
( 1√

N

)
+ C6,

i.e.,

E
∫ T

0

u2i (t)dt ≤ C7 (57)

where C7 is a positive constant which is independent of N . Further, we can get the boundness

of sup
0≤t≤T

E|ki(t)|2.

Remark 4.2: Note that C5 = C5(A,B, α, β) is independent of N . Actually, C5 contains the

item 1
N2 which is brought in by k(N). However, obviously it vanishes as N is large enough.
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For the ith agent Ai, consider the perturbation in (LPI) and introduce some auxiliary system−dk
0
i (t) =

[
Ak0i (t) +Bui(t)

]
dt− n0

i (t)dWi(t)− ñ0
i (t)dW (t),

k0i (T ) = ηi

(58)

and for j 6= i,
−dk̂j(t) =

[
Ak̂j(t)−B2R−1

(
α− βy∗(0)

)
eAt
]
dt− n̂j(t)dWi(t)− ˆ̃nj(t)dW (t),

k̂j(T ) =ηj

(59)

with the cost functional

Ji
(
ui(·)

)
= E

[∫ T

0

Ru2i (t)dt+ 2k0i (0)
(
α− βy∗(0)

)]
. (60)

Noting (54) and (58), we can see that (ki, ni, ñi) is same to (k0i , n
0
i , ñ

0
i ). Besides, by (54) and

(55), we have

−dk(N)(t) =

[
Ak(N)(t) +

B

N

(
ui(t) +

N∑
j=1,j 6=i

ûj(t)
)]
dt− 1

N

N∑
j=1

nj(t)dWj(t)

− 1

N

N∑
j=1

ñj(t)dW (t),

k(N)(T ) =η(N)

(61)

where ûj(t) = −BR−1
(
α− βy∗(0)

)
eAt, j 6= i. Then we have the following lemma.

Lemma 4.2:

sup
0≤t≤T

E
∣∣∣k(N)(t)− y∗(t)

∣∣∣2 = O
( 1

N

)
, (62)∣∣∣Ji(ui, û−i)− Ji(ui)∣∣∣ = O

( 1√
N

)
. (63)

Proof: By (49) and (61), we have

−d
(
k(N)(t)− y∗(t)

)
=

[
A
(
k(N)(t)− y∗(t)

)
+

1

N

(
Bui(t)− r(t)

)]
− 1

N

N∑
j=1

nj(t)dWj(t)

+

[
z∗(t)− 1

N

N∑
j=1

ñj(t)

]
dW (t),

k(N)(T )− y∗(T ) =η(N) − η.
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Noting (57) (48) and applying the estimates of BSDE, we obtain (62). Thus, we have∣∣∣Ji(ui, û−i)− Ji(ui)∣∣∣ ≤2βE
[∣∣ki(0)

∣∣∣∣k(N)(0)− y∗(0)
∣∣]

=O
( 1√

N

)
which completes the proof. �

Proof of Theorem 4.1: Consider the ε-Nash equilibrium of Ai for (PI). Combining Lemma

4.1 and 4.2, we have
Ji(ûi, û−i) =Ji(ûi) +O

( 1√
N

)
≤Ji(ui) +O

( 1√
N

)
=Ji(ui, û−i) +O

( 1√
N

)
.

Thus, Theorem 4.1 follows by taking ε = O
(

1√
N

)
.

D. Extensions

Now, we present some possible extensions based on our previous analysis. The first extension

is to consider the following cost functional

J 1
i

(
ui, u−i

)
= E

[∫ T

0

Ru2i (t)dt+ 2yi(0)
(
α +

β

y(N)(0)

)]
(64)

where α, β are nonnegative constants. Such cost functional characterizes the so-called bench-

mark performance criteria in investment. To be more precise, suppose there has a large population

system which consists of considerable small investors who aim to achieve (or, hedge) some

terminal targets ηi by portfolio selection. The term y(N)(0) denotes the average hedging cost for

all investors while yi(0)

y(N)(0)
denotes the relative hedging costs for ith investor, and β denotes its

weight. In case β = 0, it is reduced to the classical individual own performance. In case β > 0,

the investor should get some balance between its own individual performance and the average

population performance. In other words, the investor aims to minimize its initial hedging cost

by taking account of the average cost of the whole market participants. In this case, we aim to

minimize the weighted cost functional J 1
i .

Another extension is to consider the so-called convex portfolio selection. In this case, the given

individual investor will take into account their relative performance by comparison to their peers

in convex combination. In accordance with [12], in which the security writers aim to maximize
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the utility function of terminal wealth. Here, we aim to minimize the following initial hedging

cost

J 2
i

(
ui, u−i

)
= E

[
1

2

∫ T

0

Ru2i (t)dt+ (1− λ)yi(0) + λ
(
yi(0)− y(N)(0)

)]
(65)

where λ ∈ [0, 1] is the parameter of relative interest.

For above two extensions, following the similar arguments to our previous analysis, we can

get the corresponding optimal decentralized controls as
ū1i (t) =−R−1B

(
α +

β

y1(0)

)
eAt,

ū2i (t) =−R−1BeAt
(66)

where y1(0) is the initial value of the limiting process of state average. Besides, the fixed points

principle and the ε-Nash equilibrium properties for J 1
i ,J 2

i are obtained respectively. Since there

are some other financial models in the form of large population with partial information structure,

our theoretical results may have potential applications in finance and economics.

V. CONCLUSION

In this paper, we introduce the backward mean-field LQG games. Different to the well-studied

forward mean-field LQG games, the terminal conditions of individual players are specified here

as a priori and as a result, the decentralized control and consistency condition are determined

in backward manner. Both the full and partial information cases are addressed and the ε-Nash

equilibrium are verified using the estimates of backward stochastic differential equation and its

limiting equation. Our work suggests some future research directions. One is to include the

first solution component yi(t) and its average y(N)(t) into the running cost to be minimized.

This brings additional technical difficulty as the decoupling method via Riccati equation is not

workable for backward setup. Another one is to introduce the second component zi(t) into the

state or cost functional. We plan to discuss them in our future work.
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