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On Convergence Rate of Leader-Following Consensus of
Linear Multi-Agent Systems with Communication Noises

Long Cheng, Yunpeng Wang, Wei Ren, Zeng-Guang Hou, Min Tan

Abstract—This note further studies the previously proposed consensus
protocol for linear multi-agent systems with communication noises in [15],
[16]. Each agent is allowed to have its own time-varying gainto attenuate
the effect of communication noises. Therefore, the common assumption
in most references that all agents have the same noise-attenuation gain is
not necessary. It has been proved that if all noise-attenuation gains are
infinitesimal of the same order, then the mean square leader-following
consensus can be reached. Furthermore, the convergence rate of the
multi-agent system has been investigated. If the noise-attenuation gains
belong to a class of functions which are bounded above and below
by t−β (β ∈ (0, 1)) asymptotically, then the states of all follower
agents are convergent in mean square to the leader’s state with the
rate characterized by a function bounded above byt−β asymptotically.

Index Terms—Multi-agent systems, leader-following consensus, noises;
time-varying gain; convergence rate.

I. I NTRODUCTION

Communication noise is an unavoidable factor in the distributed
consensus of networked multi-agent systems. It has been found in
[1] that the traditional protocol cannot solve the consensus problem
with the existence of the communication noise. Therefore, how to
effectively attenuate the noise effect becomes an interesting research
topic. One popular idea is to employ a time-descending gain (some-
times called the stochastic-approximation type gain) in the consensus
protocol. In the early study phase, many scholars investigated the
stochastic consensus of first-order integral multi-agent systems with
communication noises. For example, under the fixed topologycase:
the stochastic-approximation type gain was first employed to solve
the mean square and almost sure consensus problems [2]; Li and
Zhang proved that the mean square consensus can be achieved in
the continuous-time domain if and only if the noise-attenuation gain
satisfies the stochastic-approximation type condition [1]; some nec-
essary and sufficient conditions for ensuring the stochastic consensus
with both communication noises and time delays in the discrete-
time domain were presented in [3]. Under the switching topology
case, the stochastic-approximation type protocols were also proved
to be effective in both the discrete-time domain [3]–[5] andthe
continuous-time domain [6]. It is also noted that for the continuous-
time mean square leader-following consensus problem, the necessary
and sufficient conditions of noise-attenuation gains can beslightly
relaxed compared to the leaderless case [7], [8]. The aforementioned
papers study the additive noise while the multiplicative noise has
also been considered in [9]–[11]. It is usually assumed thatthe noise
intensity is proportional to the state differences betweenagents. In
particular, if the state difference becomes zero, then the noise effect
disappears. Therefore, the protocol for solving multiplicative noises
may not require the time-descending gain. A few recent results also
provided the protocols for higher-order integral multi-agent systems
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with communication noises. For instance, it has been provedin [12]
that the stochastic-approximation type gain is still the necessary and
sufficient condition for ensuring the mean square average consensus
of second-order integral multi-agent systems under the fixed topology.
Further results regarding the switching topologies were presented
in [13], [14]. For the general linear multi-agent system, there are
also some attempts on solving the mean square consensus and
the almost sure consensus under the fixed topology [15] and the
switching topology [16]. However, there are still some limitations
in the current study of higher-order integral multi-agent systems
with communication noises. For example, all agents are required to
have the same noise-attenuation gain in most existing publications,
which implies that certain global information should be known by all
agents; and the convergence rate of the multi-agent system is rarely
considered.

Motivated by the above observation, this note first modifies the
consensus protocol for general continuous-time linear multi-agent
systems proposed in [15]. In the modified protocol, each agent is
equipped with its own noise-attenuation gain. Hence there is no
need to assume that all agents have the same gain. It is provedthat
the mean square leader-following consensus can be reached by the
modified protocol if all noise-attenuation gains are infinitesimal of
the same order. It is interesting to find that for the leader-following
consensus of general linear multi-agent systems, the stochastic-
approximation type requirement on the noise-attenuation gains can
be relaxed (the square integrable condition is not necessary). Next,
the convergence rate of the multi-agent system under the modified
protocol is presented. Although the state-transition matrix has been
explicitly obtained in [15] (under the assumption that all agents
have the same noise-attenuation gain), the entire dynamical behavior
of the multi-agent system can be determined by calculating the
solution to the governing stochastic differential equation. It is still
difficult to clearly tell the convergence rate of the multi-agent
system since the solution to the governing stochastic differential
equation is a very complicated function of noise-attenuation gains
and the graph Laplacian matrix. Therefore it is more challenging
to answer what is the convergence rate of the multi-agent system
with the consideration of agent-dependent gains. Fortunately, by some
recent results in [17], if we assume that the noise-attenuation gain
belongs to certain representative class of functions, thenquantitatively
determining the convergence rate becomes possible. In thisnote, if
the noise-attenuation gain belongs to a class of functions bounded
above and below byt−β (β ∈ (0, 1)) asymptotically, then the
states of all follower agents are convergent in mean square to the
leader’s state with the rate characterized by a function bounded
above byt−β asymptotically. This convergence rate analysis is the
main improvement of this note compared to the previous conference
version [18].
Following notations are used throughout this note:C, R, N

+

denote the field of complex numbers, the field of real numbers
and the set of positive integer numbers, respectively;In denotes
the n-dimensional unit matrix;1n = (1, · · · , 1)T ∈ R

n; 0n =
(0, · · · , 0)T ∈ R

n; ⊗ denotes the Kronecker product; for a given
matrix X, XT denotes its transpose;‖X‖2 denotes its 2-norm;
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for a random variable/vectorx, E(x) denotes its mathematical
expectation; For any two functionsf(t) and g(t), f(t) = O(g(t))
representslim supt→∞ |f(t)/g(t)| < ∞; f(t) = o(g(t)) repre-
sents limt→∞ |f(t)/g(t)| = 0; f(t) = Θ(g(t)) represents0 <
lim inft→∞ |f(t)/g(t)| ≤ lim supt→∞ |f(t)/g(t)| < ∞; for any
x ∈ C, ℜ(x) denotes its real part.

II. PRELIMINARIES

Consider a multi-agent system composed ofN +1 agents labeled
from 0 to N . The communication network among agents is modeled
by a digraphG = {VG , EG ,AG} whereVG = {v0, · · · , vN} denotes
the node set;EG = {eij} ⊆ VG × VG denotes the edge set;
and AG = [aij ] ∈ R

(N+1)×(N+1) is the weight matrix. Herevi
represents theith agent;eij = (vj , vi) ∈ EG means that there is
an available communication link from agentj to agenti; aij ≥ 0
is the communication quality associated with the edgeeij and
aij > 0 if eij ∈ EG , aij = 0 if eij /∈ EG. Agent j is called
the parent of agenti if eij ∈ EG . The neighbor set of agenti is
the set of all its parent agents, i.e.,Ni = {vj |eij ∈ EG}. The
agent is called the leader if its neighbor set is empty, otherwise
the agent is called the follower. The Laplacian matrix ofG is
defined asL = diag

(
∑N

i=0 a0i, · · · ,
∑N

i=0 aNi

)

− AG . There is
a directed path from nodevi1 to nodevin if there is a set of nodes
{vi2 , · · · , vi(n−1)

} such that edgesei2i1 , · · · , eini(n−1)
all belong to

EG . The digraphG is called to have a spanning tree if there exists at
least one node such that there are directed paths from this node to any
other nodes inG. In this note, it is assumed that the communication
graph of the multi-agent system has a spanning tree. We assume that
this multi-agent system has one leader (the leader is labeled by 0). In
other words, the multi-agent system has a leader-followingstructure.
It is obvious that the Laplacian matrix of such a multi-agentsystem
has the following form

L =

[

0 0TN
L1 L2

]

. (1)

Lemma 1 (Theorem 2 in [8]). If the communication graphG of the
multi-agent system has a spanning tree, then all eigenvalues of L2

have positive real parts. Furthermore for any diagonal matrix D with
positive diagonal elements, all eigenvalues ofDL2 have positive real
parts as well.

The dynamics of theith agent is described by

ẋi(t) = Axi(t) +Bui(t), i = 0, · · · , N, (2)

wherexi(t) ∈ R
n is the state vector,ui(t) ∈ R is the control input,

A =











0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α1 α2 · · · αn











∈ R
n×n, B =











0
...
0
1











∈ R
n,

(α1, · · · , αn) are coefficients determined by the agent’s essential
dynamical characteristics. It is obvious that any controllable single
input single output system can be transformed into this Luenberger
canonical form.

The agents exchange information via a noisy communication
network. The information which theith agent receives from thejth
agent is denoted byyij(t) = xj(t) + ρijηij(t) where ηij(t) =
(ηij1(t), · · · , ηijn(t))

T ∈ R
n is the n-dimensional standard white

noise; ρij = diag(ρij1, · · · , ρijn) ∈ R
n×n (|ρijl| < ∞, l =

1, · · · , n) denotes the noise intensity matrix. It is assumed thatηijl(t)
(i, j = 0, 1, · · · , N ; l = 1, · · · , n) are all mutually independent.

The control objective is to achieve the mean square leader-
following consensus. That is: design control inputsui(t) by using

agenti and its neighbors’ information such thatlimt→∞ E‖xi(t)−
x0(t)‖

2 = 0 and lim supt→∞ E‖xi(t)‖
2 ≤ ∞, ∀i = 0, 1, · · · , N .

In this note, the leader-following consensus protocol for the ith
agent is proposed as follows

ui(t)=K1xi(t)+ai(t)
∑

j∈Ni

aijK2(yij(t)−xi(t)), i = 0, · · · , N,

(3)
where ai(t) > 0 is the consensus gain for theith agent;K1 =
(−α1,−α2 − b1, · · · ,−αn − bn−1) and K2 = (b1, · · · , bn−1, 1);
(b1, · · · , bn−1) are parameters to be determined later. It is easy to
see that the proposed protocol is different from the ones proposed in
[15], [16] because each agent has its own consensus gainai(t).

III. M AIN RESULTS

Let XF (t) =
(

xT
1 (t), · · · , x

T
N (t)

)T
. Then substituting (3) into (2)

obtains that

ẊF (t) = (IN ⊗ (A+BK1)− A(t)L2 ⊗BK2)XF (t)

− A(t)L1 ⊗BK2x0(t) + A(t)Ση(t),

where A(t) = diag(a1(t), · · · , aN (t)), Σ = diag(Σ1, · · · ,ΣN ),
Σi = BK2(ρi0, ρi1, · · · , ρiN ) and η(t) is the nN(N + 1)-
dimensional standard white noise vector composed ofηij(t), i, j =
0, 1, · · · , N .

Let X̄F (t) = XF (t)− 1N ⊗ x0(t). Then

˙̄XF (t) = (IN ⊗ (A+BK1)−A(t)L2⊗BK2)X̄F (t)+A(t)Ση(t).

Let X̂(t) = (IN ⊗K2)X̄F (t). It is easy to see thatK2(A+BK1) =
0TN andK2BK2 = K2. Therefore,

˙̂
X(t) = −A(t)L2X̂(t) + (IN ⊗K2)A(t)Ση(t). (4)

Let Φ(t, t0) denote the state transition matrix oḟΞ(t) =
−A(t)L2Ξ(t). By Itô integral formula, the solution to (4) can be
written as

X̂(t) = J1(t, t0) + J2(t, t0), (5)

where J1(t, t0) = Φ(t, t0)X̂(t0), J2(t, t0) =
∫ t

t0
Φ(t, s)(IN ⊗

K2)A(s)ΣdW (s) andW (t) is thenN(N+1)-dimensional standard
Brownian motion corresponding toη(t).

Throughout this note, the following four conditions hold.

(C1):
∫∞

0
ā(t)dt = ∞, whereā(t) = maxi=1,··· ,N{ai(t)}.

(C2): There exist positive constantsµ1 ≤ µ2 < ∞, T < ∞ and
β ∈ (0, 1) such that for∀t > T , µ1t

−β ≤ ai(t) ≤ µ2t
−β ,

i = 1, · · · , N .
(C3): All consensus gains{a1(t), · · · , aN(t)} are infinitesimal of the

same order as time goes to infinity.
(C4): All roots of the following polynomial have negative real parts

sn+1 + bn−1s
n−2 + · · ·+ b2s+ b1 = 0. (6)

Sincea1(t), · · · , aN(t) are infinitesimal of the same order as time
goes to infinity, there must existN positive constantsc1, · · · , cN
such thatlimt→∞ ai(t)

/

ā(t) = ci, i = 1, · · · , N .

Theorem 1. If Conditions (C1)–(C4) hold, then the proposed pro-
tocol defined by(3) can solve the mean square leader-following
consensus problem of(2). Furthermore, the convergence rate of
the multi-agent system is characterized by‖E(xi(t) − x0(t))‖2 =

O(e
−µ1(λmin−ε)

1−β t1−β) and E‖xi(t) − x0(t)‖
2
2 = O(t−β) (i =

1, · · · , N), where µ1 > 0 and β ∈ (0, 1) are defined in (C2);
λmin = min{ℜ(λ1), · · · ,ℜ(λN)} > 0, λ1, · · · , λN are eigenvalues
of CL2 and C = diag(c1, · · · , cN ); and ε is any constant in
(0,min{1, λmin}).



3

Proof: SinceG has a spanning tree, by Lemma 1,λmin > 0.
It is easy to see thatA(t)L2 = ā(t)CL2 + ā(t)D(t)L2, where
D(t) = (d1(t), · · · , dN (t)) and di(t) = ai(t)

/

ā(t) − ci. Then
limt→∞ D(t) is a zero matrix. Therefore, by Lemmas 2 and 7, for
∀ε ∈ (0,min{1, λmin}), there must exist two positive constants
M1,M2 < ∞ such that for∀t > t0,

‖Φ(t, t0)‖2 ≤ M1e
−(λmin−ε)

∫ t
t0

ā(s)ds
≤ M2e

−
µ1(λmin−ε)

1−β
t1−β

.
(7)

Therefore
‖J1(t, t0)‖2 = O(e−

µ1(λmin−ε)
1−β

t1−β

). (8)

Moreover, it is easy to see thatE(J2(t, t0)) = 0N . Therefore,∀i =
1, · · · , N ,

E(x̂i(t)) = E(K2(xi(t)− x0(t))) = O(e−
µ1(λmin−ε)

1−β
t1−β

), (9)

which together with Lemma 8 leads to the fact that‖E(xi(t) −

x0(t))‖2 = O(e
−µ1(λmin−ε)

1−β t1−β).
It can be calculated that

‖E(J2(t, t0)J
T
2 (t, t0))‖2

=

∥

∥

∥

∥

∫ t

t0

Φ(t, s)(IN ⊗K2)A(s)ΣΣ
T
A

T (s)(ITN ⊗KT
2 )ΦT (t, s)ds

∥

∥

∥

∥

2

≤ ‖IN ⊗K2‖
2
2‖Σ‖

2
2

∫ t

t0

‖Φ(t, s)‖22‖A(s)‖
2
2ds

≤ ‖IN ⊗K2‖
2
2‖Σ‖

2
2M

2
1

∫ t

t0

ā2(s)e−2µ1(λmin−ε)
∫ t
s
ā(τ)dτds,

which implies that

E‖J2(t, t0)‖
2
2 = O(‖E(J2(t, t0)J

T
2 (t, t0))‖2)

= O

(
∫ t

t0

ā2(s)e−2µ1(λmin−ε)
∫ t
s ā(τ)dτds

)

. (10)

By the same procedure of Lemma A.2 in [17], it can be proved
that

∫ t

t0

ā2(s)e−2µ1(λmin−ε)
∫ t
s ā(τ)dτds = O(t−β).

Hence,E‖X̂(t)‖22 = O(t−β), which indicates thatE|K2(xi(t) −
x0(t))|

2 = O(t−β), i = 1, · · · , N . By Lemma 8 and Condition (C4),
it can be obtained thatE‖xi(t)−x0(t)‖

2
2 = O(t−β), i = 1, · · · , N .

Finally, by (3), the closed-loop dynamics of the leader agent is
ẋ0(t) = (A + BK1)x0(t). Since Condition (C4) holds, there must
exist a constantv such thatlimt→∞ x0(t) = x∗ ≡ (v, 0, · · · , 0)T ∈
R

n. Therefore,E‖xi(t)‖
2
2 < ∞, i = 0, · · · , N .

Remark1. Compared to the leaderless consensus studied in [17], it is
interesting to see thatβ in (C2) can belong to(0, 0.5), which means
that the square integrable condition onai(t) (

∫∞

0
a2
i (s)ds < ∞) is

not necessary. From this point of view, the leader-following consensus
seems easier to be achieved than the leaderless one.

IV. SIMULATION EXAMPLES

Consider a multi-agent system composed of five agents. In (2),
xi(t) ∈ R

4, α1 = −1, α2 = 1, α3 = 0 andα4 = −2. The elements
of the weight matrixAG are set as:a10 = a20 = a24 = a41 = a43 =
1, a31 = 2 and all other elements are zero. The noise intensities
ρijl in (4) are all set to be1. The controller parameters in (3) are:
K1 = (1,−2,−3,−1), K2 = (1, 3, 3, 1), a0(t) = 0.15/(t + 1)0.4,
a1(t) = 1.2/(t + 1)0.4, a2(t) = 1.5/(3t + 1)0.4, a3(t) = 0.6/(t +
2)0.4 anda4(t) = 1.5/(4t+1)0.4. From the simulation results shown
in Fig. 1, it can be seen that the leader-following consensuscan be
achieved in the mean square sense. In addition, the trajectories of the
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Fig. 1. The trajectories of the state differences between the follower agents
and the leader agent under the proposed protocol.
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Fig. 2. The trajectories of the norms of all agents’ states under the leaderless
case.

state differences between the follower agents and the leader agent
are mostly upper-bounded by5/t0.4, which is consistent with the
theoretical analysis on the convergence rate.

Next, a simulation example is conducted to show that the leaderless
consensus studied in [15], [17] needs the square integrablecondition
on the noise-attenuation gain. To this end, an extra edgee04 is added
(a04 associated withe04 is set to be1), which results in a multi-agent
system without any leader. In this case,β cannot be set to be any
value belonging to(0, 0.5). For example, we set all noise-attenuation
gains as the same valueai(t) = 1/(1 + t)0.4, i = 0, · · · , 4. The
simulation result is given in Fig. 2. By the definition of leaderless
consensus in [15], [17], there must exist a random vectorx∗ satisfying
E‖x∗‖2 < ∞ such thatlimt→∞ E‖xi(t)−x∗‖2 = 0, i = 0, · · · , 4.
This definition implies thatlimt→∞ E‖xi(t)‖

2 < ∞, i = 0, · · · , 4.
Although by Fig. 2, it seems thatlim supt→∞ E‖xi(t)−xj(t)‖

2 <
∞, the requirement thatlimt→∞ E‖xi(t)‖

2 < ∞ (i = 0, · · · , 4)
cannot be satisfied.

V. CONCLUSIONS

This technical note relaxes the assumption made in [15], [16] that
all agents have the same noise-attenuation gain. Each agentis allowed
to have its own time-varying gain function. It is proved thatif all
consensus gains are infinitesimal of the same order, then themodified
protocol can still solve the mean square leader-following consensus
problem of general linear multi-agent systems. In addition, this note
presents the convergence rate of the multi-agent system when the
noise-attenuation gains belong to a representative class of functions.
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APPENDIX

Lemma 2. If Condition (C2) holds, then∀b > 0, e−b
∫ t
t0

ā(s)ds
=

O(e
−bµ1
1−β

t1−β

) = o(t−β), whereβ ∈ (0, 1) is defined in Condition
(C2).

Proof: If Condition (C2) holds, then̄a(t) > µ1t
−β . Therefore,

e
−b

∫ t
t0

ā(s)ds
≤ e

−b
∫ t
t0

µ1s
−βds

= e
−

bµ1
1−β

(t1−β−t
1−β
0 )

= O(e
−

bµ1
1−β

t1−β

).

Let x = t1−β , then tβ = xβ/(1−β). Sinceβ > 0, there must exist
a positive integern such that β

1−β
≤ n. By L’Hôspotal’s rule, it is

obtained that

lim
t→∞

e−
bµ1
1−β

t1−β

t−β
= lim

x→∞

e−
bµ1
1−β

x

x
− β

1−β

= lim
x→∞

x
β

1−β

e
bµ1
1−β

x
≤ lim

x→∞

xn

e
bµ1
1−β

x

= lim
x→∞

nxn−1

bµ1
1−β

e
bµ1
1−β

x
= · · · = lim

x→∞

n!

( bµ1
1−β

)ne
bµ1
1−β

x
= 0.

Hence,e−b
∫ t
t0

ā(s)ds
= O(e−

bµ1
1−β

t1−β

) = o(t−β).

Lemma 3. Consider the following differential equation

ẋ(t) = −λa(t)(1− b(t))x(t), (11)

where a(t) ≥ 0, limt→∞ b(t) = 0 and ℜ(λ) > 0 (λ ∈ C). For
∀ε > 0, there exists a positive constantM < ∞ such that|x(t)| ≤

Me
−(ℜ(λ)−ε)

∫
t
t0

a(s)ds
|x(t0)|.

Proof: The solution to (11) isx(t) = e
−λ

∫
t
t0

a(s)(1−b(s))ds
x(t0).

Let δ = ε/ℜ(λ) > 0. Then there must exist a finite positive constant
T ≥ t0 such that∀t > T , 1− b(t) > 1− δ.

• If t0 ≤ T ≤ t, then

|x(t)|≤ e
−ℜ(λ)

∫ t
t0

a(s)(1−b(s))ds
|x(t0)|

≤ e−ℜ(λ)
∫ t
T a(s)(1−δ)dse

−ℜ(λ)
∫ T
t0

a(s)(1−δ+δ−b(s))ds
|x(t0)|

= M1e
−ℜ(λ)

∫ t
t0

a(s)(1−δ)ds
|x(t0)|,

whereM1 = e
ℜ(λ)

∫
T
t0

a(s)(b(s)−δ)ds
< ∞.

• If t0 < t < T , then

|x(t)|≤ e
−ℜ(λ)

∫ t
t0

a(s)(1−b(s))ds
|x(t0)|

≤ e
−ℜ(λ)

∫ t
t0

a(s)(1−δ+δ−b(s))ds
|x(t0)|

= M2e
−ℜ(λ)

∫ t
t0

a(s)(1−δ)ds
|x(t0)|,

whereM2 = supt∈(t0,T ) e
ℜ(λ)

∫
t
t0

a(s)(b(s)−δ)ds
< ∞.

Let M = max{M1,M2}. Then it is proved thatx(t) ≤

Me
−(1−δ)ℜ(λ)

∫ t
t0

a(s)ds
|x(t0)| = Me

−(ℜ(λ)−ε)
∫ t
t0

a(s)ds
|x(t0)|.

Lemma 4 (Lemma 2 in [7]). Consider the following differential
equation

ẋ(t) = −a(t)













λ 1
. . .

. . .

. . . 1
λ













r×r

x(t), (12)

wherex(t) = (x1(t), · · · , xr(t))
T ∈ C

r. The state transition matrix
of (12) is

Φλ(t, t0) =











Pλ
0 (t, t0) Pλ

1 (t, t0) · · · Pλ
r−1(t, t0)

0 Pλ
0 (t, t0) · · · Pλ

r−2(t, t0)
...

...
. . .

...
0 0 · · · Pλ

0 (t, t0)











(13)

where λ ∈ C, Pλ
0 (t, t0) = e

−λ
∫ t
t0

a(τ)dτ and Pλ
i (t, t0) =

−
∫ t

t0
a(τ )Pλ

i−1(τ, t0)P
λ
0 (t, τ )dτ , i = 1, 2, · · · , r − 1.

Lemma 5. For ∀ε > 0, λ ∈ C, ℜ(λ) > 0 there exists a positive

constantM < ∞ such that‖Φλ(t, t0)‖2 ≤ Me
−(ℜ(λ)−ε)

∫ t
t0

a(s)ds,
whereΦλ(t, t0) is defined by(13).

Proof: It is easy to see that|Pλ
0 (t, t0)| = e

−ℜ(λ)
∫ t
t0

a(s)ds.

Assume that|Pλ
i (t, t0)| ≤ Mie

−(ℜ(λ)− i
r
ε)

∫
t
t0

a(s)ds, whereMi is
a finite positive constant. Then

|Pλ
i+1(t, t0)| ≤

∫ t

t0

a(τ )|Pλ
i (τ, t0)||P

λ
0 (t, τ )|dτ

≤ Mie
−(ℜ(λ)− i

r
ε)

∫
t
t0

a(s)ds
∫ t

t0

a(τ )dτ.

Let Mi+1 = Mir
/

εe, wheree is the Euler’s number. Then it is
calculated that

|Pλ
i+1(t, t0)| −Mi+1e

−(ℜ(λ)− i+1
r

ε)
∫
t
t0

a(s)ds

≤
Mi

∫ t

t0
a(τ )dτ

e
(ℜ(λ)− i

r
ε)

∫
t
t0

a(s)ds
−

Mi+1e
1
r
ε
∫ t
t0

a(s)ds

e
(ℜ(λ)− i

r
ε)

∫
t
t0

a(s)ds

=
Mi

∫ t

t0
a(τ )dτ −Mi+1e

1
r
ε
∫ t
t0

a(s)ds

e
(ℜ(λ)− i

r
ε)

∫
t
t0

a(s)ds
.

Define a functionf(ξ) = Miξ − Mi+1e
ε
r
ξ. It is easy to see

that maxξ≥0(f(ξ)) = f( r
ε
) = 0. Therefore, |Pλ

i+1(t, t0)| ≤

Mi+1e
−(ℜ(λ)− i+1

r
ε)

∫ t
t0

a(s)ds. By the mathematical induction, it
can be proved that|Pi(t, t0)| ≤ M̄e

−(ℜ(λ)−ε)
∫ t
t0

a(s)ds
, i =

1, · · · , r, where M̄ = max{1,M1, · · · ,Mr−1}. Hence, there
must exist a finite positive constantM such that‖Φλ(t, t0)‖1 ≤

Me
(ℜ(λ)−ε)

∫ t
t0

a(s)ds.

Lemma 6. Consider the following differential equation

ẋ(t) = −a(t)Ax(t), (14)

where a(t) ≥ 0 and x(t) ∈ R
n. The solution to this differ-

ential equation isx(t) = Φ(t, t0)x(t0), where Φ(t, t0) is the
state transition matrix. If all eigenvalues{λ1, · · · , λn} of A have
positive real parts, then for∀ε > 0, there exists a finite positive
constantM such that‖Φ(t, t0)‖2 ≤ Me

−(λmin−ε)
∫ t
t0

a(s)ds, where
λmin = min{ℜ(λi)|i = 1, · · · , n} > 0.

Proof: There exists a transformation matrixT such that
T−1AT = Λ = diag(Λ1, · · · ,Λs), whereΛi ∈ C

ri×ri (ri ∈ N
+

and
∑s

i=1 ri = n) is the Jordan block with the diagonal elements
beingλi.

The state transition matrixΦ(t, t0) can therefore be written in the
following form

Φ(t, t0) = T−1diag(Φλ1(t, t0), · · · ,Φλs (t, t0))T, (15)

whereΦλi
(t, t0) is defined by (13). By Lemma 5, there exists a finite

positive constantMi such that

‖Φλi
(t, t0)‖2 ≤ Mie

−(ℜ(λi)−ε)
∫ t
t0

a(s)ds
≤ Mie

−(λmin−ε)
∫ t
t0

a(s)ds
.

Therefore, ‖Φ(t, t0)‖2 ≤ Me
−(λmin−ε)

∫ t
t0

a(s)ds, where M =
‖T‖2‖T

−1‖2 maxi{Mi}.

Lemma 7. Consider the following differential equation

ẋ(t) = −a(t)(A−B(t))x(t), (16)

where a(t) ≥ 0, x(t) ∈ R
n and limt→∞ B(t) is a zero matrix.

If all eigenvalues ofA have positive real parts, then for∀ε > 0,
there exists a finite positive constantM such that‖Ψ(t, t0)‖2 ≤



5

M1e
−(λmin−ε)

∫ t
0 a(s)ds, whereΨ(t, t0) is the state matrix of(16)

and λmin is defined in Lemma 6.

Proof: The solution to (16) can be written asx(t) =
Φ(t, t0)x(t0) +

∫ t

t0
a(s)Φ(t, s)B(s)x(s)d(s), whereΦ(t, t0) is the

state transition matrix of (14).
By Lemma 6, there exists a finite positive constantM1 > 1 such

that ‖Φ(t, t0)‖ ≤ M1e
−(λmin−ε/2)

∫
t
t0

a(s)ds. Hence,

‖x(t)‖2 ≤ ‖Φ(t, t0)‖2‖x(t0)‖2

+

∫ t

t0

a(s)‖Φ(t, s)‖2‖B(s)‖2‖x(s)‖2d(s)

≤ M1e
−(λmin−ε/2)

∫
t
t0

a(s)ds
‖x(t0)‖2

+

∫ t

t0

a(s)e−(λmin−ε/2)
∫ t
s a(τ)dτM1‖B(s)‖2‖x(s)‖2ds.

Consider another differential equation

ẏ(t) = −(λmin − ε/2)a(t)y(t) + a(t)M1‖B(t)‖2y(t), (17)

where y(t) ∈ R. By Lemma 3, there must exist a finite positive
constantM2 such that∀t > t0,

|y(t)| ≤ M2e
−(λmin−ε)

∫ t
t0

a(s)ds
|y(t0)|. (18)

The solution to (17) isy(t) = e
−(λmin−ε/2)

∫
t
t0

a(s)ds
y(t0) +

∫ t

t0
a(s)e−(λmin−ε/2)

∫
t
s
a(τ)dτM1‖B(s)‖2y(s)ds. Therefore, if

y(t0) = ‖x(t0)‖2, then for∀t ≥ t0, ‖Ψ(t, t0)x(t0)‖2 = ‖x(t)‖2 ≤

M1y(t) ≤ M1M2e
−(λmin−ε)

∫ t
t0

a(s)ds
‖x(t0)‖2. By the arbitrariness

of x(t0), there must exist a positive constantM < ∞ such that

∀t > t0, ‖Ψ(t, t0)‖2 ≤ Me
−(λmin−ε)

∫ t
t0

a(s)ds.

Lemma 8. Consider the following stochastic differential equation

ξ(n) + bn−1ξ
(n−1)ξ(n−1) + · · ·+ b1ξ̇(t) + b0ξ(t) = ζ(t), (19)

where ζ(t) is a mean square continuous random process. It is
assumed thatζ(t) is convergent to a random vectorζ∗ in mean
square, whereE‖ζ∗‖22 < ∞. If all roots of polynomial sn +
bn−1s

n−1 + · · ·+ b0 = 0 have negative real parts, then we have

(I) limt→∞ E‖ξ(t)− ζ∗/b0‖
2
2 = 0 and limt→∞ ‖ξ(i)(t)‖22 =

0, i = 1, · · · , n.
(II) If E(ζ(t)− ζ∗) = O(e−µtβ ) whereµ > 0 and β ∈ (0, 1),

then E(ξ(t) − ζ∗/b0) = O(e−µtβ ) and E(ξ(i)(t)) =

O(e−µtβ ), i = 1, · · · , n.
(III) If E|ζ(t) − ζ∗|2 = O(t−β) where β ∈ (0, 1), then

E|ξ(t) − ζ∗/b0|
2 = O(t−β) and E|ξ(i)(t)|2 = O(t−β),

i = 1, · · · , n.

Proof: (I) see the proof of Lemma 2 in [16].
(II) Let D denote the differential operator, namelyDiξ(t) =

ξ(i)(t). Let {r1, · · · , rn} denote the roots of polynomialsn +
bn−1s

n−1 + · · · + b0 = 0, where ℜ(ri) < 0, i = 1, · · · , n.
Then the stochastic differential equation (19) can be rewritten as
∏n

i=1(D − ri)ξ(t) = ζ(t). Let xi(t) =
∏n

j=i+1(D − rj)ξ(t)
(i = 1, · · · , n− 1) andxn(t) = ξ(t).

Part I : By the definition of x1(t), it can be obtained that
there must existn − 2 constantsk1, · · · , kn−2 such thatx1(t) =
D

n−1ξ(t) + kn−2D
n−2ξ(t) + · · · + k1Dξ(t) +

∏n
i=2(−ri)ξ(t).

Therefore, according to (I), it can be obtained thatx1(t) is conver-
gent to

∏n
i=2(−ri)ζ

∗/b0 = −ζ∗/r1 in mean square. Furthermore,
ẋ1(t) = r1x1(t) + ζ(t). Then,

x1(t) = er1(t−t0)x1(t0)+

∫ t

t0

er1(t−s)((ζ(s)− ζ∗)+ ζ∗)ds, (20)

which follows that E{x1(t)} = R1(t, t0) + R2(t, t0) +
R3(t, t0), where R1(t, t0) = er1(t−t0)x1(t0), R2(t, t0) =
∫ t

t0
er1(t−s)E(ζ(s) − ζ∗)ds and R3(t, t0) =

∫ t

t0
er1(t−s)E(ζ∗)ds.

It is easy to see that

R1(t, t0) = O(er1t). (21)

SinceE(ζ(t)− ζ∗) = O(e−µtβ ), there must exist a finite positive
constantM such that|E(ζ(t)− ζ∗)| ≤ Me−µtβ . Therefore,

|R2(t, t0)| ≤ M

∫ t

t0

eℜ(r1)(t−s)e−µsβds. (22)

It is easy to see thatlimt→∞ e−ℜ(r1)t−µtβ = ∞ and
∫∞

t0
e−ℜ(r1)s−µsβds = ∞. Therefore, by L’Hôspital’s rule, it is

obtained that

lim
t→∞

∫ t

t0

eℜ(r1)(t−s)e−µsβds
/

e−µtβ

= lim
t→∞

∫ t

t0

e−ℜ(r1)s−µsβds
/

e−ℜ(r1)t−µtβ = −1
/

ℜ(r1).

Hence
∫ t

t0
eℜ(r1)(t−s)e−µsβds = O(e−µtβ ). This together with (22)

leads to the fact that

R2(t, t0) = O(e−µtβ ). (23)

It can be calculated that

R3(t, t0) =
E(ζ∗)(e−r1t − e−r1t0)

−r1e−r1t
= O(er1t). (24)

Therefore by (20), (21), (23) and (24), it is proved thatE(x1(t)−

ζ∗/(−r1)) = O(e−µtβ ). By the same procedure, it can be proved
that

E
(

xi(t)− ζ∗/
∏i

j=1
(−rj)

)

= O(e−µtβ ), i = 1, · · · , n. (25)

Part II: It is easy to see that
∏n

r=1(−ri) = b0. Therefore, it is
obtained from (25) that

E(ξ(t)− ζ∗/b0) = O(e−µtβ ). (26)

By (25),E
(

xn−1(t)+rnζ
∗/b0

)

= E
(

ξ̇(t)−rnξ(t)+rnζ
∗/b0

)

=

O(e−µtβ ), which together with (26) leads to the fact thatE(ξ̇(t)) =

rnE(ξ(t)− ζ∗/b0) +O(e−µtβ ) = O(e−µtβ ).
Assume that there exists a positive integerk < n such

that for ∀i ∈ {1, · · · , k}, E(ξ(i)(t)) = O(e−µtβ ). It is ob-
tained from (25) thatE(xn−k−1(t) −

∏n
i=n−k(−ri)ζ

∗/b0) =

E(
∏n

i=n−k(D−ri)ξ(t)−
∏n

i=n−k(−ri)ζ
∗/b0) = O(e−µtβ ), which

follows that E(ξ(k+1)(t)) = O(e−µtβ ) +
∏n

i=n−k(−ri)E(ξ(t) −

ζ∗/b0) = O(e−µtβ ). By the mathematical induction, it is proved
thatE(ξ(i)(t)) = O(e−µtβ ), i = 1, · · · , n.

(III) By (20), it is obtained that
∣

∣

∣

∣

x1 +
ζ∗

r1

∣

∣

∣

∣

2

≤ 3(R4(t, t0) +R5(t, t0) +R6(t, t0)), (27)

where R4(t, t0) = |er1(t−t0)x1(t0)|
2, R5(t, t0) =

∣

∣

∣

∫ t

t0
er1(t−s)(ζ(s)− ζ∗)ds

∣

∣

∣

2

and R6(t, t0) =
∣

∣

∫ t

t0
er1(t−s)ζ∗ds +

ζ∗

r1

∣

∣

2
.

It is easy to see that

E(R4(t, t0)) = O(e2ℜ(r1)t) = o(t−β). (28)

According to the properties of mean square integral, it can be obtained
that

E(R5(t, t0)) ≤

(
∫ t

t0

eℜ(r1)(t−s)E
1
2 |ζ(s)− ζ∗|2ds

)2

. (29)
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Since E|ζ(t) − ζ∗|2 = O(t−β), there must exist two positive
constantsT andM such that for∀t > T , E|ζ(t)− ζ∗|2 < Mt−β .

Therefore,
∫ t

t0

eℜ(r1)(t−s)E
1
2 (ζ(s)− ζ∗)2ds ≤ eℜ(r1)t

∫ T

t0

e−ℜ(r1)s

×E
1
2 (ζ(s)− ζ∗)2ds+M

1
2

∫ t

T

eℜ(r1)(t−s)s
−β
2 ds. (30)

It is easy to see that

eℜ(r1)t

∫ T

t0

e−ℜ(r1)sE
1
2 (ζ(s)−ζ∗)2ds = O(eℜ(r1)t) = o(t−β). (31)

By L’Hôspital’s rule, it is obtained that

lim
t→∞

∫ t

T
eℜ(r1)(t−s)s

−β
2 ds

t−
β
2

= lim
t→∞

∫ t

T
e−ℜ(r1)ss

−β
2 ds

e−ℜ(r1)tt−
β
2

= lim
t→∞

e−ℜ(r1)tt
−β
2

−ℜ(r1)e−ℜ(r1)tt−
β
2 − β

2
e−ℜ(r1)tt−

β
2
−1

= −
1

ℜ(r1)
.

Hence
∫ t

T
er1(t−s)s

−β
2 ds = O(t−

β
2 ), which together with (29), (30)

and (31) leads to

E(R5(t, t0)) = O(t−β). (32)

It can be calculated that

E(R6(t, t0)) = E

∣

∣

∣

∣

er1t

−r1
(e−r1t − er1t0)ζ∗ +

ζ∗

r1

∣

∣

∣

∣

2

= E

∣

∣

∣

∣

er1(t−t0)

r1
ζ∗
∣

∣

∣

∣

2

= O(e2ℜ(r1)t) = o(t−β). (33)

By (27), (28), (32) and (33), it is obtained thatE |x1(t) + ζ∗/r1|
2 =

O(t−β).
By the same procedure, it can be proved that

E

∣

∣

∣

∣

∣

xi(t)−
ζ∗

∏i
j=1(−rj)

∣

∣

∣

∣

∣

2

= O(t−β), i = 1, · · · , n, (34)

which indicates thatE|ξ(t)− ζ∗/b0|
2 = O(t−β).

Sincexn−1(t) = ξ̇(t)− rnξ(t), it is obtained that

E|ξ̇(t)|2 = E

∣

∣

∣

∣

xn−1(t)−
−rnζ

∗

b0
+

−rnζ
∗

b0
+ rnξ(t)

∣

∣

∣

∣

2

≤ 2E

∣

∣

∣

∣

xn−1(t)−
−rnζ

∗

b0

∣

∣

∣

∣

2

+ 2|rn|
2E

∣

∣

∣

∣

ζ∗

b0
− ξ(t)

∣

∣

∣

∣

2

= O(t−β).

Assume that there exists a positive integerk < n such
that for ∀i ∈ {1, 2, · · · , k}, E|ξ(i)(t)|2 = O(t−β). It is ob-
tained from (34) thatE

∣

∣xn−k−1(t)−
∏n

i=n−k(−ri)ζ
∗/b0

∣

∣

2
=

E
∣

∣

∏n
i=n−k(D− ri)ξ(t)−

∏n
i=n−k(−ri)ζ

∗/b0
∣

∣

2
= O(t−β).

There must existk constantsρ1, · · · , ρk such that

xn−k−1(t) =
∏n

i=n−k
(D− ri)ξ(t) , ξ(k+1)(t)

+

k
∑

j=1

ρjξ
(j)(t) +

∏n

i=n−k
(−ri)ξ(t).

Therefore, |ξ(k+1)(t)|2 =
∣

∣xn−k−1(t) −
∑k

j=1 ρjξ
(j)(t) −

∏n
i=n−k(−ri)ξ(t)

∣

∣

2
=

∣

∣xn−k−1(t) −
∏n

i=n−k(−ri)ζ
∗/b0 −

∑k
j=1 ρjξ

(j)(t)+
∏n

i=n−k(−ri)ζ
∗/b0−

∏n
i=n−k(−ri)ξ(t)

∣

∣

2
, which

follows that

E|ξ(k+1)(t)|2 ≤ (k + 2)

(

E

∣

∣

∣

∣

xn−k−1(t)−

∏n
i=n−k(−ri)ζ

∗

b0

∣

∣

∣

∣

2

+
k
∑

j=1

|ρj |
2E|ξ(j)(t)|2 +

∣

∣

∣

∏n

i=n−k
(−ri)

∣

∣

∣

2

E |ζ∗/b0 − ξ(t)|2
)

= O(t−β).

By the mathematical induction, it is proved thatE|ξ(i)(t)| = O(t−β),
i = 1, · · · , n.
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