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An Asynchronous Mini-Batch Algorithm for

Regularized Stochastic Optimization
Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson

Abstract

Mini-batch optimization has proven to be a powerful paradigm for large-scale learning. However, the state of

the art parallel mini-batch algorithms assume synchronous operation or cyclic update orders. When worker nodes

are heterogeneous (due to different computational capabilities or different communication delays), synchronous and

cyclic operations are inefficient since they will leave workers idle waiting for the slower nodes to complete their

computations. In this paper, we propose an asynchronous mini-batch algorithm for regularized stochastic optimization

problems with smooth loss functions that eliminates idle waiting and allows workers to run at their maximal update

rates. We show that by suitably choosing the step-size values, the algorithm achieves a rate of the order O(1/
√
T )

for general convex regularization functions, and the rate O(1/T ) for strongly convex regularization functions, where

T is the number of iterations. In both cases, the impact of asynchrony on the convergence rate of our algorithm is

asymptotically negligible, and a near-linear speedup in the number of workers can be expected. Theoretical results

are confirmed in real implementations on a distributed computing infrastructure.

I. INTRODUCTION

Many optimization problems that arise in machine learning, signal processing, and statistical estimation can be

formulated as regularized stochastic optimization (also referred to as stochastic composite optimization) problems in

which one jointly minimizes the expectation of a stochastic loss function plus a possibly nonsmooth regularization

term. Examples include Tikhonov and elastic net regularization, Lasso, sparse logistic regression, and support vector

machines [1]–[5].

Stochastic approximation methods such as stochastic gradient descent were among the first algorithms developed

for solving stochastic optimization problems [6]. Recently, these methods have received significant attention due

to their simplicity and effectiveness (see, e.g., [7]–[13]). In particular, Nemirovski et. al. [7] demonstrated that

for nonsmooth stochastic convex optimization problems, a modified stochastic approximation method, the mirror

descent, exhibits an unimprovable convergence rate O(1/
√
T ), where T is the number of iterations. Later, Lan [8]

developed a mirror descent algorithm for stochastic composite convex problems which explicitly accounts for the
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smoothness of the loss function and achieves the optimal rate. A similar result for the dual averaging method was

obtained by Xiao [9].

The methods for solving stochastic optimization problems cited above are inherently serial in the sense that the

gradient computations take place on a single processor which has access to the whole dataset. However, it happens

more and more often that one single computer is unable to store and handle the amounts of data that we encounter

in practical problems. This has caused a strong interest in developing parallel optimization algorithms which are

able to split the data and distribute the computation across multiple processors or multiple computer clusters (see,

e.g., [14]–[31] and references therein).

One simple and popular stochastic approximation method is mini-batching, where iterates are updated based on

the average gradient with respect to multiple data points rather than based on gradients evaluated at a single data at

a time. Recently, Dekel et. al. [32] proposed a parallel mini-batch algorithm for regularized stochastic optimization

problems, in which multiple processors compute gradients in parallel using their own local data, and then aggregate

the gradients up a spanning tree to obtain the averaged gradient. While this algorithm can achieve linear speedup

in the number of processors, it has the drawback that the processors need to synchronize at each round and, hence,

if one of them fails or is slower than the rest, then the entire algorithm runs at the pace of the slowest processor.

In this paper, we propose an asynchronous mini-batch algorithm for regularized stochastic optimization problems

with smooth loss functions that eliminates the overhead associated with global synchronization. Our algorithm allows

multiple processors to work at different rates, perform computations independently of each other, and update global

decision variables using out-of-date gradients. A similar model of parallel asynchronous computation was applied

to coordinate descent methods for deterministic optimization in [33]–[35] and mirror descent and dual averaging

methods for stochastic optimization in [36]. In particular, Agarwal and Duchi [36] have analyzed the convergence of

asynchronous mini-batch algorithms for smooth stochastic convex problems, and interestingly shown that bounded

delays do not degrade the asymptotic convergence. However, they only considered the case where the regularization

term is the indicator function of a compact convex set.

We extend the results of [36] to general regularization functions (like the l1 norm, often used to promote sparsity),

and establish a sharper expected-value type of convergence rate than the one given in [36]. Specifically, we make

the following contributions:

(i) For general convex regularization functions, we show that when the constraint set is closed and convex (but not

necessarily bounded), the running average of the iterates generated by our algorithm with constant step-sizes

converges at rate O(1/T ) to a ball around the optimum. We derive an explicit expression that quantifies how

the convergence rate and the residual error depends on loss function properties and algorithm parameters such

as the constant step-size, the batch size, and the maximum delay bound τmax.

(ii) For general convex regularization functions and compact constraint sets, we prove that the running average of

the iterates produced by our algorithm with a time-varying step-size converges to the true optimum (without
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residual error) at rate

O
(

(τmax + 1)2

T
+

1√
T

)
.

This result improves upon the previously known rate

O
(
τ2
max log T

T
+
τmax + 1

T
+

1√
T

)
for delayed stochastic mirror descent methods with time-varying step-sizes given in [36]. In this case, our

algorithm enjoys near-linear speedup as long as the number of processors is O(T 1/4).

(iii) When the regularization function is strongly convex and the constraint set is closed and convex, we establish

that the iterates converge at rate

O
(

(τmax + 1)4

T 2
+

1

T

)
.

If the number of processors is of the order of O(T 1/4), this rate is O(1/T ) asymptotically in T , which is the

best known rate for strongly convex stochastic optimization problems in a serial setting.

The remainder of the paper is organized as follows. In Section II, we introduce the notation and review some

preliminaries that are essential for the development of the results in this paper. In Section III, we formulate the

problem and discuss our assumptions. The proposed asynchronous mini-batch algorithm and its main theoretical

results are presented in Section IV. Computational experience is reported in Section V while Section VI concludes

the paper.

II. NOTATION AND PRELIMINARIES

A. Notation

We let N and N0 denote the set of natural numbers and the set of natural numbers including zero, respectively.

The inner product of two vectors x, y ∈ Rn is denoted by 〈x, y〉. We assume that Rn is endowed with a norm ‖ · ‖,

and use ‖ · ‖∗ to represent the corresponding dual norm, defined by

‖y‖∗ = sup
‖x‖≤1

〈x, y〉.

B. Preliminaries

Next, we review the key definitions and results necessary for developing the main results of this paper. We start

with the definition of a Bregman distance function, also referred to as a prox-function.

Definition 1: A function ω : X → R is called a distance generating function with modulus µω > 0 with respect

to norm ‖ · ‖, if ω is continuously differentiable and µω-strongly convex with respect to ‖ · ‖ over the set X ⊆ Rn.

That is, for all x, y ∈ X ,

ω(y) ≥ ω(x) + 〈∇ω(x), y − x〉+
µω
2
‖y − x‖2.
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Every distance generating function introduces a corresponding Bregman distance function

Dω(x, y) := ω(y)− ω(x)− 〈∇ω(x), y − x〉.

For example, choosing ω(x) = 1
2‖x‖

2
2, which is 1-strongly convex with respect to the l2-norm over any convex

set X , would result in Dω(x, y) = 1
2‖x − y‖

2
2. Another common example of distance generating functions is the

entropy function

ω(x) =

n∑
i=1

xi log xi,

which is 1-strongly convex with respect to the l1-norm over the standard simplex

∆ :=

{
x ∈ Rn

∣∣∣∣ n∑
i=1

xi = 1, x ≥ 0

}
,

and its associated Bregman distance function is

Dω(x, y) =

n∑
i=1

yi log
yi
xi
.

The main motivation to use a generalized distance generating function, instead of the usual Euclidean distance

function, is to design optimization algorithms that can take advantage of the geometry of the feasible set (see,

e.g., [7], [37]–[39]).

Remark 1: The strong convexity of the distance generating function ω always ensures that

Dω(x, y) ≥ µω
2
‖y − x‖2, ∀x, y ∈ X,

and Dω(x, y) = 0 if and only if x = y.

Remark 2: Throughout the paper, there is no loss of generality to assume that µω = 1. Indeed, if µω 6= 1, we

can choose the scaled function ω(x) = 1
µω
ω(x), which has modulus µω = 1, to generate the Bregman distance

function.

The following definition introduces subgradients of proper convex functions.

Definition 2: For a convex function Ψ : Rn → R ∪ {+∞}, a vector s ∈ Rn is called a subgradient of Ψ at

x ∈ Rn if

Ψ(y) ≥ Ψ(x) + 〈s, y − x〉, ∀y ∈ Rn.

The set of all subgradients of Ψ at x is called the subdifferential of Ψ at x, and is denoted by ∂Ψ(x).

III. PROBLEM SETUP

We consider stochastic convex optimization problems of the form

minimize
x

φ(x) := Eξ
[
F (x, ξ)

]
+ Ψ(x). (1)
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Here, x ∈ Rn is the decision variable, ξ is a random vector whose probability distribution P is supported on a set

Ξ ⊆ Rm, F (·, ξ) is convex and differentiable for each ξ ∈ Ξ, and Ψ(x) is a proper convex function that may be

nonsmooth and extended real-valued. Let us define

f(x) := Eξ
[
F (x, ξ)

]
=

∫
Ξ

F (x, ξ)dP(ξ). (2)

Note that the expectation function f is convex, differentiable, and ∇f(x) = Eξ[∇xF (x, ξ)] [40]. We use X? to

denote the set of optimal solutions of Problem (1) and φ? to denote the corresponding optimal value.

A difficulty when solving optimization problem (1) is that the distribution P is often unknown, so the expecta-

tion (2) cannot be computed. This situation occurs frequently in data-driven applications such as machine learning.

To support these applications, we do not assume knowledge of f (or of P), only access to a stochastic oracle. Each

time the oracle is queried with an x ∈ Rn, it generates an independent and identically distributed (i.i.d.) sample ξ

from P and returns ∇xF (x, ξ).

We also impose the following assumptions on Problem (1).

Assumption 1 (Existence of a minimum): The optimal set X? is nonempty.

Assumption 2 (Lipschitz continuity of F ): For each ξ ∈ Ξ, the function F (·, ξ) has Lipschitz continuous gradient

with constant L. That is, for all y, z ∈ Rn,

‖∇xF (y, ξ)−∇xF (z, ξ)‖∗ ≤ L‖y − z‖.

Note that under Assumption 2, ∇f(x) is also Lipschitz continuous with the same constant L [9].

Assumption 3 (Bounded gradient variance): There exists a constant σ ≥ 0 such that

Eξ
[
‖∇xF (x, ξ)−∇f(x)‖2∗

]
≤ σ2, ∀x ∈ Rn.

Assumption 4 (Closed effective domain of Ψ): The function Ψ is simple and lower semi-continuous, and its ef-

fective domain, dom Ψ = {x ∈ Rn | Ψ(x) < +∞}, is closed.

Possible choices of Ψ include:

• Unconstrained smooth minimization: Ψ(x) = 0.

• Constrained smooth minimization: Ψ is the indicator function of a non-empty closed convex set C ⊆ Rn, i.e.,

Ψ(x) = IC(x) :=

 0, if x ∈ C,

+∞, otherwise.

• l1-regularized minimization: Ψ(x) = λ‖x‖1 with λ > 0.

• Constrained l1-regularized minimization: In this case, Ψ(x) = λ‖x‖1 + IC(x) with λ > 0.

Several practical problems in machine learning, statistical applications, and signal processing satisfy Assump-

tions 1–4 (see, e.g., [2]–[4]). One such example is l1-regularized logistic regression for sparse binary classification.

We are then given a large number of observations{
ξj = (aj , bj) | aj ∈ Rn, bj ∈ {−1,+1}, j = 1, . . . ,m

}
,
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drawn i.i.d. from an unknown distribution P , and want to solve the minimization problem (1) with

F (x, ξ) = log
(
1 + exp(−b〈a, x〉

)
,

and Ψ(x) = λ‖x‖1. The role of l1 regularization is to produce sparse solutions.

One approach for solving Problem (1) is the serial mini-batch method based on the mirror descent scheme [32].

Given a point x ∈ dom Ψ, a single processor updates the decision variable x by sampling b i.i.d. random variables

ξ1, . . . , ξb from P , computing the averaged stochastic gradient

gave =
1

b

b∑
i=1

∇xF (x, ξi),

and performing the composite mirror descent update

x← argmin
z

{〈
gave, z

〉
+ Ψ(z) +

1

γ
Dω(x, z)

}
,

where γ is a positive step-size parameter. Under Assumptions 1–4 and choosing an appropriate step-size, this

algorithm is guaranteed to converge to the optimum [32, Theorem 9]. However, in many emerging applications,

such as large-scale machine learning and statistics, the size of dataset is so huge that it cannot fit on one machine.

Hence, we need optimization algorithms that can be conveniently and efficiently executed in parallel on multiple

processors.

IV. AN ASYNCHRONOUS MINI-BATCH ALGORITHM

In this section, we will present an asynchronous mini-batch algorithm that exploits multiple processors to solve

Problem (1). We characterize the iteration complexity and the convergence rate of the proposed algorithm, and

show that these compare favourably with the state of the art.

A. Description of Algorithm

We assume p processors have access to a shared memory for the decision variable x. The processors may have

different capabilities (in terms of processing power and access to data) and are able to update x without the need for

coordination or synchronization. Conceptually, the algorithm lets each processor run its own stochastic composite

mirror descent process, repeating the following steps:

1) Read x from the shared memory and load it into the local storage location x̂;

2) Sample b i.i.d random variables ξ1, . . . , ξb from the distribution P;

3) Compute the averaged stochastic gradient vector

ĝave =
1

b

b∑
i=1

∇xF (x̂, ξi);

4) Update current x in the shared memory via

x← argmin
z

{〈
ĝave, z

〉
+ Ψ(z) +

1

γ
Dω(x, z)

}
.
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The algorithm can be implemented in many ways as depicted in Figure 1. One way is to consider the p processors

as peers that each execute the four-step algorithm independently of each other and only share the global memory

for storing x. In this case, each processor reads the decision vector twice in each round: once in the first step

(before evaluating the averaged gradient), and once in the last step (before carrying out the minimization). To

ensure correctness, Step 4 must be an atomic operation, where the executing processor puts a write lock on the

global memory until it has written back the result of the minimization (cf. Figure 1, left). The algorithm can also

be executed in a master-worker setting. In this case, each of the worker nodes retrieves x from the master in Step 1

and returns the averaged gradient to the master in Step 3; the fourth step (carrying out the minimization) is executed

by the master (cf. Figure 1, right)

Fig. 1. Illustration of two conceptually different realizations of Algorithm 1: (1) a shared memory implementation (left); (2) a master-worker

implementation (right). In the shared memory setting shown to the left, processor P2 reads x(2) from the shared memory and computes the

averaged gradient vector gave(2) = 1
b

∑b
i=1 ∇xF

(
x(2), ξi

)
. As the processors are being run without synchronization, x(3) and x(4) are

written to the shared memory by other processors while P2 is evaluating gave(2). The figure shows a snapshot of the algorithm at time instance

k = 5, at which the shared memory is locked by P2 to read the current x, i.e. x(4), to update it using the out-of-date gradient gave(2), and

write x(5) to the memory. In the master-worker setting illustrated to the right, workers evaluate averaged gradient vectors in parallel and send

their computations to buffers on the master processor, which is the sole entity with access to the global memory. The master performs an update

using (possibly) out-of-date gradients and passes the updated decision vector x back to the workers.

Independently of how we choose to implement the algorithm, processors may work at different rates: while one

processor updates the decision vector (in the shared memory setting) or send its averaged gradient to the master

(in the master-worker setting), the others are generally busy computing averaged gradient vectors. The processors
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Algorithm 1 Asynchronous Mini-batch Algorithm (running on each processor)
1: Inputs: positive step-sizes {γ(k)}k∈N0

; batch size b ∈ N.

2: Initialization: x(0) ∈ dom Ψ; k = 0.

3: repeat

4: receive inputs ξ1, . . . , ξb sampled i.i.d. from distribution P;

gave
(
d(k)

)
← 1

b

b∑
i=1

∇xF
(
x(d(k)), ξi

)
;

x(k + 1)← argmin
z

{〈
gave
(
d(k)

)
, z
〉

+ Ψ(z) +
1

γ(k)
Dω(x(k), z)

}
(3)

k ← k + 1;

5: until termination test satisfied

that perform gradient evaluations do not need to be aware of updates to the decision vector, but can continue to

operate on stale information about x. Therefore, unlike synchronous parallel mini-batch algorithms [32], there is

no need for processors to wait for each other to finish the gradient computations. Moreover, the value x̂ at which

the average of gradients is evaluated by a processor may differ from the value of x to which the update is applied.

Algorithm 1 describes the p asynchronous processes that run in parallel. To describe the progress of the overall

optimization process, we introduce a counter k that is incremented each time x is updated. We let d(k) denote the

time at which x̂ used to compute the averaged gradient involved in the update of x(k) was read from the shared

memory. It is clear that 0 ≤ d(k) ≤ k for all k ∈ N0. The value

τ(k) := k − d(k)

can be viewed as the delay between reading and updating for processors and captures the staleness of the information

used to compute the average of gradients for the k-th update. We assume that the delay is not too long, i.e., there

is a nonnegative integer τmax such that

0 ≤ τ(k) ≤ τmax.

The value of τmax is an indicator of the asynchronism in the algorithm and in the execution platform. In practice,

τmax will depend on the number of parallel processors used in the algorithm [33]–[35]. Note that the cyclic-delay

mini-batch algorithm [36], in which the processors are ordered and each updates the decision variable under a fixed

schedule, is a special case of Algorithm 1 where d(k) = k − p+ 1, or, equivalently, τ(k) = p− 1 for all k.

B. Convergence Rate for General Convex Regularization

The following theorem establishes convergence properties of Algorithm 1 when a constant step-size is used.

Theorem 1: Let Assumptions 1–4 hold. Assume also that for all k ∈ N0,

γ(k) = γ ∈
(

0,
1

L(τmax + 1)2

)
. (4)
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Then, for every T ∈ N and any optimizer x? of (1), we have

E
[
φ
(
xave(T )

)]
− φ? ≤

Dω

(
x(0), x?

)
γT

+
γcσ2

2b
(
1− γL(τmax + 1)2

) ,
where xave(T ) is the Cesáro average of the iterates, i.e.,

xave(T ) :=
1

T

T∑
k=1

x(k).

Furthermore, b is the batch size, the expectation is taken with respect to all random variables {ξi(k) | i =

1, . . . , b, k = 0, . . . , T − 1}, and c ∈ [1, b] is given by

c =

 1, if ‖ · ‖∗ = ‖ · ‖2,

2 max‖x‖≤1 ω(x), otherwise.

Proof: See Appendix A.

Theorem 1 demonstrates that for any constant step-size γ satisfying (4), the running average of iterates generated

by Algorithm 1 will converge in expectation to a ball around the optimum at a rate of O(1/T ). The convergence

rate and the residual error depend on the choice of γ: decreasing γ reduces the residual error, but it also results in

a slower convergence. We now describe a possible strategy for selecting the constant step-size. Let Tε be the total

number of iterations necessary to achieve ε-optimal solution to Problem (1), that is, E
[
φ
(
xave(T )

)]
−φ? ≤ ε when

T ≥ Tε. If we pick

γ =
ε

Lε(τmax + 1)2 + cσ2/b
, (5)

it follows from Theorem 1 that the corresponding xave(T ) satisfies

E
[
φ
(
xave(T )

)]
− φ? ≤ ε0

T

(
L(τmax + 1)2 +

cσ2

bε

)
+
ε

2
,

where ε0 = Dω

(
x(0), x?

)
. This inequality tells us that if the first term on the right-hand side is less than ε/2, i.e.,

if

T ≥ Tε := 2ε0

(
L(τmax + 1)2

ε
+
cσ2

bε2

)
,

then E
[
φ
(
xave(T )

)]
−φ? ≤ ε. Hence, the iteration complexity of Algorithm 1 with the step-size choice (5) is given

by

O
(
L(τmax + 1)2

ε
+
cσ2

bε2

)
. (6)

As long as the maximum delay bound τmax is of the order 1/
√
ε, the first term in (6) is asymptotically negligible,

and hence the iteration complexity of Algorithm 1 is asymptotically O(cσ2/bε2), which is exactly the iteration

complexity achieved by the mini-batch algorithm for solving stochastic convex optimization problems in a serial

setting [32]. As discussed before, τmax is related to the number of processors used in the algorithm. Therefore,

if the number of processors is of the order of O(1/
√
ε), parallelization does not appreciably degrade asymptotic

convergence of Algorithm 1. Furthermore, as p processors are being run in parallel, updates occur roughly p times
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as quickly and in time scaling as T/p, the processors may compute T averaged gradient vectors (instead of T/p

vectors). This means that the near-linear speedup in the number of processors can be expected.

Remark 3: Another strategy for the selection of the constant step-size in Algorithm 1 is to use γ that depends

on the prior knowledge of the number of iterations to be performed. More precisely, assume that the number of

iterations is fixed in advance, say equal to TF . By choosing γ as

γ =
1

L(τmax + 1)2 + α
√
TF

,

for some α > 0, it follows from Theorem 1 that the running average of the iterates after TF iterations satisfies

E
[
φ
(
xave(TF )

)]
− φ? ≤

L(τmax + 1)2Dω

(
x(0), x?

)
TF

+
1√
TF

(
αDω

(
x(0), x?

)
+
cσ2

2αb

)
.

It is easy to verify that the optimal choice of α, which minimizes the second term on the right-hand-side of the

above inequality, is

α? =
σ
√
c√

2bDω

(
x(0), x?

) .
With this choice of α, we then have

E
[
φ
(
xave(TF )

)]
− φ? ≤

L(τmax + 1)2Dω

(
x(0), x?

)
TF

+
σ
√

2cDω

(
x(0), x?

)
√
bTF

.

In the case that τmax = 0, the preceding guaranteed bound reduces to the one obtained in [8, Theorem 1] for the

serial stochastic mirror descent algorithm with constant step-sizes. Note that in order to implement Algorithm 1 with

the optimal constant step-size policy, we need to estimate an upper bound on Dω

(
x(0), x?

)
, since Dω

(
x(0), x?

)
is usually unknown.

The following theorem characterizes the convergence of Algorithm 1 with a time-varying step-size sequence

when dom Ψ is bounded in addition to being closed and convex.

Theorem 2: Suppose that Assumptions 1–4 hold. In addition, suppose that dom Ψ is compact and that Dω(·, ·)

is bounded on dom Ψ. Let

R2 = max
x,y∈dom Ψ

Dω(x, y).

If {γ(k)}k∈N0 is set to γ(k)−1 = L(τmax + 1)2 + α(k) with

α(k) =
σ
√
c
√
k + 1

R
√
b

,

then the Cesáro average of the iterates generated by Algorithm 1 satisfies

E
[
φ
(
xave(T )

)]
− φ? ≤ LR2(τmax + 1)2

T
+

2σR
√
c√

bT
,

for all T ∈ N.

Proof: See Appendix B.

The time-varying step-size γ(k), which ensures the convergence of the algorithm, consists of two terms: the

time-varying term η(k) should control the errors from stochastic gradient information while the role of the constant
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term (L(τmax +1)2) is to decrease the effects of asynchrony (bounded delays) on the convergence of the algorithm.

According to Theorem 2, in the case that τmax = O(T 1/4), the delay becomes increasingly harmless as the algorithm

progresses and the expected function value evaluated at xave(T ) converges asymptotically at a rate O(1/
√
T ), which

is known to be the best achievable rate of the mirror descent method for nonsmooth stochastic convex optimization

problems [7].

For the special case of the optimization problem (1) where Ψ is restricted to be the indicator function of a compact

convex set, Agarwal and Duchi [36, Theorem 2] showed that the convergence rate of the delayed stochastic mirror

descent method with time-varying step-size is

O
(
LR2 +RGτmax

T
+
σR
√
c√

Tb
+
LR2G2τ2

maxb log T

cσ2T

)
,

where G is the maximum bound on
√
E[‖∇xF (x, ξ)‖2∗]. Comparing with this result, instead of a asymptotic penalty

of the form O(τ2
max log T/T ) due to the delays, we have the penalty O(τ2

max/T ), which is much smaller for large

T . Therefore, not only do we extend the result of [36] to general regularization functions, but we also obtain a

sharper guaranteed convergence rate than the one presented in [36].

C. Convergence Rate for Strongly Convex Regularization

In this subsection, we restrict our attention to stochastic composite optimization problems with strongly convex

regularization terms. Specifically, we assume that Ψ is µΨ-strongly convex with respect to ‖ · ‖, that is, for any

x, y ∈ dom Ψ,

Ψ(y) ≥ Ψ(x) + 〈s, y − x〉+
µΨ

2
‖y − x‖2, ∀s ∈ ∂Ψ(x).

Examples of the strongly convex function Ψ include:

• l2-regularization: Ψ(x) = (ρ/2)‖x‖22 with ρ > 0.

• Elastic net regularization: Ψ(x) = λ‖x‖1 + (ρ/2)‖x‖22 with λ > 0 and ρ > 0.

Remark 4: The strong convexity of Ψ implies that Problem (1) has a unique minimizer x? [41, Corollary 11.16].

In order to derive the convergence rate of Algorithm 1 for solving (1) with a strongly convex regularization term,

we need to assume that the Bregman distance function D(x, y) used in the algorithm satisfies the next assumption.

Assumption 5 (Quadratic growth condition): For all x, y ∈ dom Ψ, we have

Dω(x, y) ≤ Q

2
‖x− y‖2,

with Q ≥ µω .

For example, if ω(x) = 1
2‖x‖

2
2, then Dω(x, y) = 1

2‖x−y‖
2
2 and Q = 1. Note that Assumption 5 will automatically

hold when the distance generating function ω has Lipschitz continuous gradient with a constant Q [12].

The associated convergence result now reads as follows.
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Theorem 3: Suppose that the regularization function Ψ is µΨ-strongly convex and that Assumptions 2–5 hold.

If {γ(k)}k∈N0
is set to γ(k)−1 = 2L(τmax + 1)2 + β(k) with

β(k) =
µΨ

3Q

(
k + τmax + 1

)
,

then the iterates produced by Algorithm 1 satisfies

E
[
‖x(T )− x?‖2

]
≤

2
(

6LQ
µΨ

+ 1
)2

(τmax + 1)4

(T + 1)2
Dω

(
x(0), x?

)
+

18cσ2Q2

bµ2
Ψ(T + 1)

,

for all T ∈ N.

Proof: See Appendix C.

An interesting point regarding Theorem 3 is that for solving stochastic composite optimization problems with

strongly convex regularization functions, the maximum delay bound τmax can be as large as O(T 1/4) without

affecting the asymptotic convergence rate of Algorithm 1. In this case, our asynchronous mini-batch algorithm

converges asymptotically at a rate of O(1/T ), which matches the best known rate achievable in a serial setting.

V. EXPERIMENTAL RESULTS

We have developed a complete master-worker implementation of our algorithm in C/++ using the Massage

Passing Interface libraries (OpenMPI). Although we argued in Section IV that Algorithm 1 can be implemented

using atomic operations on shared-memory computing architectures, we have chosen the MPI implementation due

to its flexibility in scaling the problem to distributed-memory environments.

We evaluated our algorithm on a document classification problem using the text categorization dataset rcv1 [42].

This dataset consists of m ≈ 800000 documents, with n ≈ 50000 unique stemmed tokens spanning 103 topics. Out

of these topics, we decided to classify sports-related documents. To this end, we trained a sparse (binary) classifier

by solving the following l1-regularized logistic regression problem

minimize
x

E{(ai,bi)} [log (1 + exp (−bi〈ai, x〉))] + λ‖x‖1

subject to ‖x‖2 ≤ R .

Here, ai ∈ Rn is the sparse vector of token weights assigned to each document, and bi ∈ {−1, 1} indicates whether

a selected document is sports-related, or not (bi is 1 if the document is about sport, −1 otherwise). To evaluate

scalability, we used both the training and test sets available when solving the optimization problem. We implemented

Algorithm 1 with time-varying step-sizes, and used a batch size of 1000 documents. The regularization parameter

was set to λ = 0.01, and the algorithm was run until a fixed tolerance ε was met.

Figure 2 presents the achieved relative speedup of the algorithm with respect to the number of workers used.

The relative speedup of the algorithm on p processors is defined as S(p) = t1/tp, where t1 and tp are the time it

takes to run the corresponding algorithm (to ε-accuracy) on 1 and p processing units, respectively. We observe a

near-linear relative speedup, consistent with our theoretical results. The timings are averaged over 10 Monte Carlo

runs.
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Fig. 2. Speedup of Algorithm 1 with respect to the number of workers.

VI. CONCLUSIONS

We have proposed an asynchronous mini-batch algorithm that exploits multiple processors to solve regularized

stochastic optimization problems with smooth loss functions. We have established that for closed and convex

constraint sets, the iteration complexity of the algorithm with constant step-sizes is asymptotically O(1/ε2). For

compact constraint sets, we have proved that the running average of the iterates generated by our algorithm with

time-varying step-size converges to the optimum at a rate O(1/
√
T ). When the regularization function is strongly

convex and the constraint set is closed and convex, the algorithm achieves the rate of the order O(1/T ). We have

shown that the penalty in convergence rate of the algorithm due to asynchrony is asymptotically negligible and

a near-linear speedup in the number of processors can be expected. Our computational experience confirmed the

theory.

APPENDIX

In this section, we prove the main results of the paper, namely, Theorems 1–3. We first state three key lemmas

which are instrumental in our argument.

The following result establishes an important recursion for the iterates generated by Algorithm 1.
Lemma 1: Suppose Assumptions 1–4 hold. Then, the iterates {x(k)}k∈N0 generated by Algorithm 1 satisfy

φ
(
x(k + 1)

)
− φ? +

1

γ(k)
Dω
(
x(k + 1), x?

)
≤ 1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+
〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(k)
Dω
(
x(k), x?

)
+
L(τmax + 1)

2

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− 1

2

(
1

γ(k)
− η(k)

)
‖x(k + 1)− x(k)‖2

− µΨ

2

∥∥x(k + 1)− x?)
∥∥2
, (7)
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where x? ∈ X?, {η(k)} is a sequence of strictly positive numbers, and e(k) := ∇f(x(k))− gave(k) is the error in

the gradient estimate.

Proof: We start with the first-order optimality condition for the point x(k+1) in the minimization problem (3):

there exists subgradient s(k + 1) ∈ ∂Ψ(x(k + 1)) such that for all z ∈ dom Ψ, we have〈
gave
(
d(k)

)
+ s(k + 1) +

1

γ(k)
∇(2)Dω

(
x(k), x(k + 1)

)
, z − x(k + 1)

〉
≥ 0,

where ∇(2)Dω(·, ·) denotes the partial derivative of the Bregman distance function with respect to the second

variable. Plugging the following equality

∇(2)Dω

(
x(k), x(k + 1)

)
= ∇ω

(
x(k + 1)

)
−∇ω

(
x(k)

)
,

into the previous inequality and re-arranging terms gives

1

γ(k)

〈
∇ω
(
x(k)

)
−∇ω

(
x(k + 1)

)
, z − x(k + 1)

〉
≤
〈
gave
(
d(k)

)
+ s(k + 1), z − x(k + 1)

〉
=

〈
gave
(
d(k)

)
, z − x(k + 1)

〉
+

〈
s(k + 1), z − x(k + 1)

〉
≤
〈
gave
(
d(k)

)
, z − x(k + 1)

〉
+ Ψ(z)−Ψ(x(k + 1))− µΨ

2

∥∥z − x(k + 1)
∥∥2
, (8)

where the last inequality used

Ψ(z) ≥ Ψ
(
x(k + 1)

)
+
〈
s(k + 1), z − x(k + 1)

〉
+
µΨ

2

∥∥z − x(k + 1)
∥∥2
,

by the (strong) convexity of Ψ. We now use the following well-known three point identity of the Bregman distance

function [43] to rewrite the left-hand side of (8):〈
∇ω(a)−∇ω(b), c− b

〉
= Dω(a, b)−Dω(a, c) +Dω(b, c).

From this relation, with a = x(k), b = x(k + 1), and c = z, we have〈
∇ω
(
x(k)

)
−∇ω

(
x(k + 1)

)
, z − x(k + 1)

〉
= Dω

(
x(k), x(k + 1)

)
−Dω

(
x(k), z

)
+Dω

(
x(k + 1), z

)
.

Substituting the preceding equality into (8) and re-arranging terms result in

Ψ(x(k + 1))−Ψ(z) +
1

γ(k)
Dω
(
x(k + 1), z

)
≤
〈
gave
(
d(k)

)
, z − x(k + 1)

〉
+

1

γ(k)
Dω
(
x(k), z

)
− 1

γ(k)
Dω
(
x(k), x(k + 1)

)
− µΨ

2

∥∥z − x(k + 1)
∥∥2
.

Since the distance generating function ω(x) is 1-strongly convex, we have the lower bound

Dω

(
x(k), x(k + 1)

)
≥ 1

2
‖x(k + 1)− x(k)‖2,

which implies that

Ψ(x(k + 1))−Ψ(z) +
1

γ(k)
Dω
(
x(k + 1), z

)
≤
〈
gave
(
d(k)

)
, z − x(k + 1)

〉
+

1

γ(k)
Dω
(
x(k), z

)
− 1

2γ(k)
‖x(k + 1)− x(k)‖2 − µΨ

2

∥∥z − x(k + 1)
∥∥2
. (9)
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The essential idea in the rest of the proof is to use convexity and smoothness of the expectation function f to

bound f(x(k + 1) − f(z) for each z ∈ dom Ψ and each k ∈ N0. According to Assumption 2, ∇F (x, ξ) and,

hence, ∇f(x) are Lipschitz continuous with the constant L. By using the L-Lipschitz continuity of ∇f and then

the convexity of f , we have

f(x(k + 1)) ≤ f(x(d(k))) + 〈∇f(x(d(k))), x(k + 1)− x(d(k))〉+
L

2
‖x(k + 1)− x(d(k))‖2

≤ f
(
z
)

+
〈
∇f
(
x(d(k))

)
, x(k + 1)− z

〉
+
L

2

∥∥x(k + 1)− x(d(k))
∥∥2
, (10)

for any z ∈ dom Ψ. Combining inequalities (9) and (10), and recalling that φ(x) = f(x) + Ψ(x), we obtain

φ(x(k + 1))− φ(z) +
1

γ(k)
Dω
(
x(k + 1), z

)
≤
〈
∇f
(
x(d(k))

)
− gave

(
d(k)

)
, x(k + 1)− z

〉
+

1

γ(k)
Dω
(
x(k), z

)
− 1

2γ(k)
‖x(k + 1)− x(k)‖2 − µΨ

2

∥∥z − x(k + 1)
∥∥2

+
L

2
‖x(k + 1)− x(d(k))‖2.

We now rewrite the above inequality in terms of the error e(d(k)) = ∇f(x(d(k)))− gave(d(k)) as follows:

φ(x(k + 1))− φ(z) +
1

γ(k)
Dω
(
x(k + 1), z

)
≤
〈
e
(
d(k)

)
, x(k + 1)− z

〉
+

1

γ(k)
Dω
(
x(k), z

)
− 1

2γ(k)
‖x(k + 1)− x(k)‖2 − µΨ

2

∥∥z − x(k + 1)
∥∥2

+
L

2
‖x(k + 1)− x(d(k))‖2

=
〈
e
(
d(k)

)
, x(k + 1)− x(k)

〉︸ ︷︷ ︸
U1

+
〈
e
(
d(k)

)
, x(k)− z

〉
+

1

γ(k)
Dω
(
x(k), z

)
− 1

2γ(k)
‖x(k + 1)− x(k)‖2 − µΨ

2

∥∥z − x(k + 1)
∥∥2

+
L

2
‖x(k + 1)− x(d(k))‖2︸ ︷︷ ︸

U2

. (11)

We will seek upper bounds on the quantities U1 and U2. Let {η(k)}k∈N0 be a sequence of positive numbers. For

U1, we have

U1 ≤

∣∣∣∣∣
〈

1√
η(k)

e
(
d(k)

)
,
√
η(k)

(
x(k + 1)− x(k)

)〉∣∣∣∣∣
≤ 1

2η(k)

∥∥e(d(k)
)∥∥2

∗ +
η(k)

2

∥∥x(k + 1)− x(k)
∥∥2
, (12)

where the second inequality follows from the Fenchel-Young inequality applied to the conjugate pair 1
2‖ · ‖

2 and
1
2‖ · ‖

2
∗, i.e., ∣∣〈a, b〉∣∣ ≤ 1

2

∥∥a∥∥2

∗ +
1

2

∥∥b∥∥2
.
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We now turn to U2. It follows from definition τ(k) = k − d(k) that

U2 =
(
k − d(k) + 1

)2 ∥∥∥∥∥∥
k−d(k)∑
j=0

x(k − j)− x(k − j + 1)

k − d(k) + 1

∥∥∥∥∥∥
2

=
(
τ(k) + 1

)2 ∥∥∥∥∥∥
τ(k)∑
j=0

x(k − j)− x(k − j + 1)

τ(k) + 1

∥∥∥∥∥∥
2

.

Then, by the convexity of the norm ‖ · ‖, we conclude that

U2 ≤
(
τ(k) + 1

) τ(k)∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

≤
(
τmax + 1

) τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2
, (13)

where the last inequality comes from our assumption that τ(k) ≤ τmax for all k ∈ N0. Substituting inequalities (12)
and (13) into the bound (11) and simplifying yield

φ(x(k + 1))− φ(z) +
1

γ(k)
Dω
(
x(k + 1), z

)
≤ 1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+
〈
e
(
d(k)

)
, x(k)− z

〉
+

1

γ(k)
Dω
(
x(k), z

)
+
L(τmax + 1)

2

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− 1

2

(
1

γ(k)
− η(k)

)
‖x(k + 1)− x(k)‖2

− µΨ

2

∥∥z − x(k + 1)
∥∥2
.

Setting z = x?, where x? ∈ X?, completes the proof.

The next result follows from Lemma 1 by taking summation of the relations in (7).

Lemma 2: Let Assumptions 1–4 hold. Assume also that {γ(k)}k∈N0
is set to

γ(k) =
1

η(k) + L(τmax + 1)2
, k ∈ N0,

where η(k) is positive for all k. Then, the iterates {x(k)}k∈N0
produced by Algorithm 1 satisfy

T−1∑
k=0

(
φ(x(k + 1))− φ?

)
≤
T−1∑
k=0

1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+

T−1∑
k=0

〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(0)
Dω
(
x(0), x?

)
+

T−1∑
k=0

(
1

γ(k + 1)
− 1

γ(k)

)
Dω
(
x(k + 1), x?

)
− µΨ

2

T−1∑
k=0

∥∥x(k + 1)− x?
∥∥2
,

for all T ∈ N.

May 20, 2015 DRAFT



17

Proof: Applying Lemma 1 with

η(k) =
1

γ(k)
− L(τmax + 1)2,

adding and subtracting γ(k+ 1)−1Dω

(
x(k+ 1), x?

)
to the left-hand side of (7), and re-arranging terms, we obtain

φ(x(k + 1))− φ? +
1

γ(k + 1)
Dω
(
x(k + 1), x?

)
≤ 1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+
〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(k)
Dω
(
x(k), x?

)
+

(
1

γ(k + 1)
− 1

γ(k)

)
Dω
(
x(k + 1), x?

)
+
L(τmax + 1)

2

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− L(τmax + 1)2

2
‖x(k + 1)− x(k)‖2

− µΨ

2

∥∥x(k + 1)− x?
∥∥2
.

Summing the preceding inequality over k = 0, . . . , T − 1, T ∈ N, yields
T−1∑
k=0

(
φ(x(k + 1))− φ?

)
+

1

γ(T )
Dω
(
x(T ), x?

)
≤
T−1∑
k=0

1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+

T−1∑
k=0

〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(0)
Dω
(
x(0), x?

)
+

T−1∑
k=0

(
1

γ(k + 1)
− 1

γ(k)

)
Dω
(
x(k + 1), x?

)
+
L(τmax + 1)

2

T−1∑
k=0

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− L(τmax + 1)2

2

T−1∑
k=0

‖x(k + 1)− x(k)‖2

− µΨ

2

T−1∑
k=0

∥∥x(k + 1)− x?
∥∥2

≤
T−1∑
k=0

1

2η(k)

∥∥e(d(k)
)∥∥2

∗

+

T−1∑
k=0

〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(0)
Dω
(
x(0), x?

)
+

T−1∑
k=0

(
1

γ(k + 1)
− 1

γ(k)

)
Dω
(
x(k + 1), x?

)
− µΨ

2

T−1∑
k=0

∥∥x(k + 1)− x?
∥∥2
, (14)
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where the second inequality used the facts

T−1∑
k=0

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

=

τmax∑
j=0

T−j−1∑
k=−j

∥∥x(k)− x(k + 1)
∥∥2

=

τmax∑
j=0

T−j−1∑
k=0

∥∥x(k)− x(k + 1)
∥∥2

≤
τmax∑
j=0

T−1∑
k=0

∥∥x(k)− x(k + 1)
∥∥2

≤ (τmax + 1)

T−1∑
k=0

∥∥x(k)− x(k + 1)
∥∥2
,

and x(k) = x(0) for all k ≤ 0. Dropping the second term on the left-hand side of (14) concludes the proof.

Lemma 3: Let ‖ · ‖ be a norm over Rn and let ‖ · ‖? be its dual norm. Let ω be a 1-strongly convex function

with respect to ‖ · ‖ over Rn. If y1, . . . , yb ∈ Rn are mean zero random variables drawn i.i.d. from a distribution

P , then

E

∥∥∥∥∥1

b

b∑
i=1

yi

∥∥∥∥∥
2

∗

 ≤ c

b2

b∑
i=1

E
[
‖yi‖2∗

]
,

where c ∈ [1, b] is given by

c =

 1, if ‖ · ‖∗ = ‖ · ‖2,

2 max‖x‖=1 ω(x), otherwise.

Proof: The result follows from [44, Lemma B.2] and convexity of the norm ‖ · ‖∗. For further details, see [32,

§4.1].

A. Proof of Theorem 1

Assume that the step-size {γ(k)}k∈N0
is set to

γ(k) = γ =
1

η + L(τmax + 1)2
,

for some η > 0. It is clear that γ satisfies (4). Applying Lemma 2 with µΨ = 0, γ(k) = γ and η(k) = η, we obtain
T−1∑
k=0

(
φ(x(k + 1))− φ?

)
≤
T−1∑
k=0

1

2η

∥∥e(d(k)
)∥∥2

∗ +

T−1∑
k=0

〈
e
(
d(k)

)
, x(k)− x?

〉
+
Dω
(
x(0), x?

)
γ

, (15)

for all T ∈ N. Each x(k), k ∈ N, is a deterministic function of the history ξ[k−1] := {ξi(t) | i = 1, . . . , b, t =

0, . . . , k − 1} but not of ξi(k). Since ∇f(x) = Eξ[∇xF (x, ξ)], it follows that

E|ξ[k−1]

[〈
e
(
d(k)

)
, x(k)− x?

〉]
= 0.
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Moreover, as ξi and ξj are independent whenever i 6= j, it follows from Lemma 3 that

E
[
‖e
(
d(k)

)
‖2∗
]

= E

∥∥∥∥∥1

b

b∑
i=1

(
∇f(x(d(k)))−∇xF (x(d(k)), ξi)

)∥∥∥∥∥
2

∗


≤ c

b2

b∑
i=1

E
[
‖∇f(x(d(k)))−∇xF (x(d(k)), ξi)‖2∗

]
≤ cσ2

b
,

where the last inequality follows from Assumption 3. Taking expectation on both sides of (15) and using the above

observations yield
T∑
k=1

(
E[φ(x(k))]− φ?

)
≤ cσ2

2ηb
T +

Dω

(
x(0), x?

)
γ

.

By the convexity of φ, we have

φ
(
xave(T )

)
= φ

(
1

T

T∑
k=1

x(k)

)
≤ 1

T

T∑
k=1

φ
(
x(k)

)
,

which implies that

E
[
φ(xave

(
T )
)]
− φ? ≤ cσ2

2ηb
+
Dω

(
x(0), x?

)
γT

.

Substituting η = γ−1 − L(τmax + 1)2 into the above inequality proves the theorem.

B. Proof of Theorem 2

Assume that the step-size {γ(k)}k∈N0
is chosen such that γ(k)−1 = L(τmax + 1)2 + α(k) where

α(k) =
σ
√
c
√
k + 1

R
√
b

.

Since γ(k) is a non-increasing sequence, and Dω(x, y) ≤ R2 for all x, y ∈ dom Ψ, we have
T−1∑
k=0

(
1

γ(k + 1)
− 1

γ(k)

)
Dω

(
x(k + 1), x?

)
≤
(

1

γ(T )
− 1

γ(0)

)
R2.

Applying Lemma 2 with µΨ = 0 and η(k) = α(k), taking expecation, and using Lemma 3 completely identically

to the proof of Theorem 1, we then obtain
T∑
k=1

(
E[φ(x(k))]− φ?

)
≤ R2

γ(T )
+
cσ2

2b

T−1∑
k=0

1

α(k)
. (16)

Viewing the sum as an lower-estimate of the integral of the function y(t) = 1/
√
t+ 1, one can verify that

T−1∑
k=0

1

α(k)
=

T−1∑
k=0

1

α̃
√
k + 1

≤ 1

α̃

(
1 +

∫ T−1

0

dt√
t+ 1

)

≤ 2
√
T

α̃
,

where α̃ = (σ
√
c)/(R

√
b). Substituting this inequality into the bound (16), we obtain the claimed guaranteed bound.
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C. Proof of Theorem 3

Assume that the step-size {γ(k)}k∈N0
in Algorithm 1 is set to γ(k)−1 = 2L(τmax + 1)2 + β(k), with

β(k) =
µΨ

3Q

(
k + τmax + 1

)
.

We first describe some important properties of γ(k) relevant to our proof. Clearly, γ(k) is non-increasing, i.e.,

1

γ(k)
≤ 1

γ(k + 1)
, (17)

for all k ∈ N0. Since γ(0)−1 ≤ γ(k)−1, we have

2L(τmax + 1)2 +
µΨτmax

3Q
≤ 1

γ(k)
. (18)

Moreover, one can easily verify that

1

γ(k + 1)2
− 1

γ(k)2
=
µΨ

Q

(
4L

3
(τmax + 1)2 +

µΨ

3Q

(
2

3
(k + τmax) + 1

))
≤ µΨ

Q

(
2L(τmax + 1)2 +

µΨ

3Q

(
k + τmax + 1

))
=
µΨ

Q

1

γ(k)
,

which implies that

1

γ(k + 1)2
≤ 1

γ(k)

(
1

γ(k)
+
µΨ

Q

)
, (19)

for all k ∈ N0. Finally, by the definition of γ(k), we have

γ(k)

γ(k + τmax)
= 1 +

µΨ

3Qτmax

2L(τmax + 1)2 + µΨ

3Q

(
k + τmax + 1

)
≤ 1 +

µΨτmax

6LQ(τmax + 1)2
,

and hence,

1

γ(k + τmax)
≤
(

1 +
µΨτmax

6LQ(τmax + 1)2

)
1

γ(k)
. (20)

We are now ready to prove Theorem 3. Applying Lemma 1 with

η(k) =
1

2γ(k)
, k ∈ N0,

and using the fact

Dω

(
x(k + 1), x?

)
≤ Q

2

∥∥x(k + 1)− x?
∥∥2
,

by Assumption 5, we obtain

φ
(
x(k + 1)

)
− φ? +

(
1

γ(k)
+
µΨ

Q

)
Dω
(
x(k + 1), x?

)
≤ γ(k)

∥∥e(d(k)
)∥∥2

∗

+
〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(k)
Dω
(
x(k), x?

)
+
L(τmax + 1)

2

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− 1

4γ(k)
‖x(k + 1)− x(k)‖2.
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Multiplying both sides of this relation by 1/γ(k), and then using (19), we have

1

γ(k)

(
φ
(
x(k + 1)

)
− φ?

)
+

1

γ(k + 1)2
Dω
(
x(k + 1), x?

)
≤
∥∥e(d(k)

)∥∥2

∗

+
1

γ(k)

〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(k)2
Dω
(
x(k), x?

)
+
L(τmax + 1)

2γ(k)

τmax∑
j=0

∥∥x(k − j)− x(k − j + 1)
∥∥2

− 1

4γ(k)2
‖x(k + 1)− x(k)‖2.

Summing the above inequality from k = 0 to k = T − 1, T ∈ N, and dropping the first term on the left-hand side
yield

1

γ(T )2
Dω
(
x(T ), x?

)
≤
T−1∑
k=0

∥∥e(d(k)
)∥∥2

∗

+

T−1∑
k=0

1

γ(k)

〈
e
(
d(k)

)
, x(k)− x?

〉
+

1

γ(0)2
Dω
(
x(0), x?

)
+
L(τmax + 1)

2

T−1∑
k=0

τmax∑
j=0

1

γ(k)

∥∥x(k − j)− x(k − j + 1)
∥∥2

− 1

4

T−1∑
k=0

1

γ(k)2
‖x(k + 1)− x(k)‖2. (21)

What remains is to bound the third term on the right-hand side of (21). It follows from (17)–(20) that

L(τmax + 1)

2

T−1∑
k=0

τmax∑
j=0

1

γ(k)

∥∥x(k − j)− x(k − j + 1)
∥∥2

=
L(τmax + 1)

2

τmax∑
j=0

T−j−1∑
k=0

1

γ(k + j)

∥∥x(k)− x(k + 1)
∥∥2

≤ L(τmax + 1)

2

τmax∑
j=0

T−1∑
k=0

1

γ(k + j)

∥∥x(k)− x(k + 1)
∥∥2

(17)
≤ L(τmax + 1)

2

τmax∑
j=0

T−1∑
k=0

1

γ(k + τmax)

∥∥x(k)− x(k + 1)
∥∥2

=
L(τmax + 1)2

2

T−1∑
k=0

1

γ(k + τmax)

∥∥x(k)− x(k + 1)
∥∥2

(20)
≤

2L(τmax + 1)2 + µΨτmax
3Q

4

T−1∑
k=0

1

γ(k)

∥∥x(k)− x(k + 1)
∥∥2

(18)
≤ 1

4

T−1∑
k=0

1

γ(k)2

∥∥x(k)− x(k + 1)
∥∥2
.

Substituting the above inequality into (21), and then taking expectation on both sides (similarly to the proof of

Theorems 1 and 2), we have

1

γ(T )2
E
[
Dω

(
x(T ), x?

)]
≤ cσ2T

b
+

1

γ(0)2
Dω

(
x(0), x?

)
. (22)

According to Remark 1,

1

2
‖x(T )− x?‖2 ≤ Dω

(
x(T ), x?

)
.
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Moreover, by the definition of γ(k),

µΨ(T + 1)

3Q
≤ β(T ) ≤ 1

γ(T )
.

Combing these inequalities with the bound (22), we conclude

E
[
‖x(T )− x?‖2

]
≤ 18cσ2Q2

bµ2
Ψ(T + 1)

+
2
(

6LQ
µΨ

+ 1
)2

(τmax + 1)4

(T + 1)2
Dω

(
x(0), x?

)
.

The proof is complete.
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