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Stochastic Gradient-Push for Strongly Convex
Functions on Time-Varying Directed Graphs

Angelia Nedić and Alex Olshevsky

Abstract—We investigate the convergence rate of the recently
proposed subgradient-push method for distributed optimization
over time-varying directed graphs. The subgradient-push method
can be implemented in a distributed way without requiring
knowledge of either the number of agents or the graph sequence;
each node is only required to know its out-degree at each time.
Our main result is a convergence rate of O ((ln t)/t) for strongly
convex functions with Lipschitz gradients even if only stochastic
gradient samples are available; this is asymptotically faster than
the O

(
(ln t)/

√
t
)

rate previously known for (general) convex
functions.

I. INTRODUCTION

We consider the problem of cooperatively minimizing a sep-
arable convex function by a network of nodes. Our motivation
stems from much recent interest in distributed optimization
problems which arise when large clusters of nodes (which
can be sensors, processors, autonomous vehicles or UAVs)
wish to collectively optimize a global objective by means of
actions taken by each node and local coordination between
neighboring nodes.

Specifically, we will study the problem of optimizing a
sum of n convex functions by a network of n nodes when
the i’th function is known only to node i. The functions
will be assumed to be from Rd to R. This problem often
arises when control and signal processing algorithms are im-
plemented in sensor networks and global agreement is needed
on a parameter which minimizes a sum of local costs. Some
specific scenarios in which this problem has been considered
in the literature include statistical inference [31], formation
control [30], non-autonomous power control [32], distributed
“epidemic” message routing in networks [28], and spectrum
access coordination [17].

Our focus here is on the case when the communication
topology connecting the nodes is time-varying and directed. In
the context of wireless networks, time-varying communication
topologies arise if the nodes are mobile or if the commu-
nication between them is subject to unpredictable bouts of
interference. Directed communication links are also a natural
assumption as in many cases there is no reason to expect
different nodes to transmit wirelessly at the same power
level. Transmissions at different power levels will result in
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unidirectional communication between nodes (usually, after an
initial bidirectional exchange of “hello” messages).

In our previous work [25] we proposed an algorithm which
is guaranteed to drive all nodes to an optimal solution in this
setting. Our algorithm, which we called the subgradient-push,
can be implemented in a fully distributed way: no knowledge
of the (time-varying) communication topology or even of the
total number of nodes is required, although every node is
required to know its out-degree at each time. The subgradient-
push is a generalization of the so-called push-sum protocol for
computing averages on directed graphs proposed over a decade
ago [16] (see also the more recent development in [2], [7]).

Our main result in [25] was that the subgradient-push
protocol drives all the nodes to an optimal solution at a
rate O

(
(ln t)/

√
t
)
. Here, we consider the effect of stronger

assumptions on the individual functions. Our main result is
that if the functions at each node are strongly convex, then
even if each node only has access to noisy gradients of its
own function, an improvement to an O ((ln t)/t) rate can be
achieved.

Note that our convergence rate is quite close to best
achievable rate of O(1/t) in (centralized) strongly convex
optimization with noisy gradient samples of bounded variance
[29], [1]. Obtaining an algorithm with a O(1/t) rate in our
setting of distributed, noisy, strongly-convex optimization over
time-varying directed graphs of unknown size remains an open
problem.

Our work here contributes to the growing literature on
distributed methods for optimization over networks [27], [15],
[31], [14], [20], [42], [18], [19], [33], [22], [5], [9], [21], [12],
[39], [13]. It is a part of a recent strand of the distributed
optimization literature which studies effective protocols when
interactions between nodes are unidirectional [6], [40], [8],
[11], [10], [35]. Our work is most closely related to recent de-
velopments in [35], [36], [37], [11], [34], [41]. We specifically
mention [35], [36], which were the first papers to suggest the
use of push-sum-like updates for optimization over directed
graphs as well as [38], [41] which derived O(1/t) convergence
rates in the less stringent setting when every graph is fixed and
undirected.

Our paper is organized as follows. In Section II, we describe
the problem formally and present the algorithm along with the
main results. The results are then proved in Sections III and IV.
We conclude with some simulations in Section V and some
concluding remarks in Section VI.
Notation: We use boldface to distinguish between the vectors
in Rd and scalars associated with different nodes. For example,
the vector xi(t) is in boldface to identify a vector for node
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i, while a scalar yi(t) ∈ R is not in boldface. The vectors
such as y(t) ∈ Rn obtained by stacking scalar values yi(t)
associated with the n nodes are not in boldface. For a vector
y, we will also sometimes use [y]j to denote its j’th entry.
For a matrix A, we will use Aij or [A]ij to denote its i, j’th
entry. We use 1 to denote the vector of ones, and ‖y‖ for the
Euclidean norm of a vector y.

II. PROBLEM, ALGORITHM AND MAIN RESULT

We consider a network of n nodes which would like to
collectively solve the following minimization problem:

minimize F (z) ,
n∑
i=1

fi(z) over z ∈ Rd,

where only node i has any knowledge of the convex function
fi : Rd → R. Moreover, we assume that node i has access to
the convex function fi : Rd → R only through the ability to
generate noisy samples of its subgradient, i.e., given a point
u ∈ Rd node i can generate

gi(u) = ∇fi(u) + Ni(u), (1)

where∇fi(u) denotes a subgradient of fi at u and Ni(u) is an
independent random vector with zero mean, i.e., E[Ni(u)] =
0. We assume the noise-norm ‖Ni(u)‖ is almost surely
bounded, i.e., for every i, there is a scalar ci > 0 such that
every time a noisy subgradient is generated we have with
probability 1,

‖Ni(u)‖ ≤ ci for all u ∈ Rd. (2)

We make the assumption that at each time t, node i can only
send messages to its out-neighbors in some directed graph
G(t), where the graph G(t) has vertex set {1, . . . , n} and
edge set E(t). We will be assuming that the sequence {G(t)}
is B-strongly-connected, which means that there is a positive
integer B such that the graph with edge set

EB(k) =

(k+1)B−1⋃
i=kB

E(i)

is strongly connected for each k ≥ 0. Intuitively, we are
assuming the time-varying network G(t) must be repeatedly
connected over sufficiently long time scales.

We use N in
i (t) and Nout

i (t) denote the in- and out-
neighborhoods of node i at time t, respectively, where by
convention node i is always considered to be an in- and out-
neighbor of itself, so i ∈ N in(i)(t), i ∈ Nout(t) for all i, t. We
use di(t) to denote the out-degree of node i, and we assume
that every node i knows its out-degree di(t) at every time t.

We will analyze a version of the subgradient-push method
of [25], where each node i maintains vector variables
zi(t),xi(t),wi(t) ∈ Rd, as well as a scalar variable yi(t).
These quantities are updated according to the following rules:

for all t ≥ 0 and all i = 1, . . . , n,

wi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

dj(t)
,

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

dj(t)
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1), (3)

where the variables yi(t) are initialized as yi(0) = 1 for all i.
Here, we use gi(t+1) to abbreviate the notation gi(zi(t+1))
(see Eq. (1)). The positive stepsize α(t+ 1) will be specified
later.

These updates have a simple physical implementation: each
node j broadcasts the quantities xj(t)/dj(t), yj(t)/dj(t) to all
of the nodes i in its out-neighborhood. Each neighbor i then
sums the received messages to obtain wi(t+ 1) and yi(t+ 1).
The updates of zi(t + 1),xi(t + 1) then do not require any
additional communications among the nodes at step t.

To provide insights into the method, lets us focus on push-
sum method for distributed averaging. Suppose we have a
homogeneous and ergodic Markov chain with a single recur-
rent class, and let A be its transition matrix (A is column-
stochastic). Also, suppose the nodes of the chain have some
initial values xi(0) ∈ R. Let x(0) be a vector of these values,
and consider the following linear dynamic, initiated with x(0):

x(t+ 1) = Ax(t).

Since the chain is ergodic, the matrices At converge to a rank-
one matrix with identical columns, i.e., limt→∞At = π1′,
where π is a stochastic vector with πi > 0 for all i. Therefore,
for x(t) we have

lim
t→∞

x(t) =
(

lim
t→∞

At
)
x(0) = 1′x(0)π.

Suppose now, we replicate the dynamics from a different initial
state, say y(0) ∈ Rn, and we let y(t+ 1) = Ay(t). Then, we
have

lim
t→∞

y(t) =
(

lim
t→∞

At
)
y(0) = 1′y(0)π.

Consider the coordinate-wise ratio of the vectors x(t) and y(t).
The limits of these ratios satisfy the following relation

lim
t→∞

xi(t)

yi(t)
=

1′x(0)

1′y(0)
, (4)

which relies on the fact that πi > 0 (these values cancel out
in the ratio). Thus, any influence that the chain may induce,
as reflected in different steady state values πi, do not appear
in the limiting ratios of xi(t)/yi(t). Furthermore, as indicated
by Eq. (4), if we set y(0) = 1, we obtain

lim
t→∞

xi(t)

yi(t)
=

1′x(0)

n
,

showing that the ratios xi(t)/yi(t) approach the initial average
as t→∞. When the underlying Markov chain is time-varying
(i.e., the matrix A is time-varying, then one would expect that
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the limits of the ratios xi(t)/yi(t) track the running averages
1′x(t)
n with increasing accuracy.
The algorithm (3) is motivated by the insight that the

ratios xi(t)/yi(t) can track the running averages 1′x(t)
n with

the accuracy that can been characterized by the connectivity
stricture of the underlying graphs. Additionally, the running
averages are controlled by the ”gradient” field in order to move
them toward the set of optimal solutions of the problem of
our interest. Specifically, in the light of the above discussion,
the updates xi(t + 1) and yi(t + 1) in the algorithm (3)
correspond to updates of vector-variables of the nodes, where
y variables serve to cancel out the effects of scaling (which
is due to a time-varying Markov chain, as reflected by the
graph structure). The updates of zi(t+ 1) in algorithm (3) are
just keeping track of the ratios at the nodes (as these will be
consenting in a long run). The last update step in algorithm (3)
is basically forcing the consensus point to asymptotically
approach an optimal solution of the problem.

Our previous work in [25] provided a rate estimate for
a suitable averaged version of the variables zi(t) with the
stepsize choice α(t) = 1/

√
t. In particular, we showed in

[15] that, for each i = 1, . . . , n, a suitably averaged version
of zi(t) converges to the same global minimum of the function
F (z) at a rate of O((ln t)/

√
t). Our main contribution in this

paper is an improved convergence rate estimate O((ln t)/t)
under the strong convexity assumption on the functions fi.

Recall that a convex function f : Rd → R is µ-strongly
convex with µ > 0 if the following relation holds for all x,y ∈
Rd:

f(x)− f(y) ≥ g′(y)(x− y) +
µ

2
‖x− y‖2,

where g(y) is any subgradient of f(z) at z = y.
We next provide precise statements of our improved rate

estimates. For convenience, we define

x̄(t) =
1

n

n∑
j=1

xj(t)

to be the vector which averages all the xj(t) at each node. Fur-
thermore, let us introduce some notation for the assumptions
we will be making.

Assumption 1:
(a) The graph sequence {G(t)} is B-strongly-connected.
(b) Each function fi is µi-strongly convex with µi > 0.

Note that Assumption 1(b) implies the existence of a unique
global minimizer z∗ of F (z).

One of our technical innovations will be to resort to a
somewhat unusual type of averaging motivated by the work
in [23]. Specifically, we will require each node to maintain the
variable ẑi(t) ∈ Rd defined by

ẑi(t) =

∑t
s=1(s− 1)zi(s)

t(t− 1)/2
for t ≥ 2. (5)

This can easily be done recursively, e.g., by setting ẑi(1) =
zi(0) and updating as

ẑi(t+ 1) =
tzi(t+ 1) + S(t)ẑi(t)

S(t+ 1)
for t ≥ 1, (6)

where S(t) = t(t− 1)/2 for t ≥ 2.

We are now ready to state our first main result, which deals
with the speed at which the averaged iterates ẑi(t) we have
just described converge to the global minimizer z∗ of F (z).

Theorem 1: Suppose Assumption 1 is satisfied and
α(t) = p

t for t ≥ 1, where the constant p is such that

p

∑n
i=1 µi
n

≥ 4. (7)

Suppose further that there exists a scalar D such that with
probability 1, supt ‖zi(t)‖ ≤ D. Then, we have for all i =
1, . . . , n,

E

F (ẑi(τ))− F (z∗) +

n∑
j=1

µj‖ẑj(τ)− z∗‖2


≤ 80L

τδ

λ

1− λ

n∑
j=1

‖xj(0)‖1

+
80pLnmaxj Bj
τδ(1− λ)

(1 + ln(τ − 1)) +
p

τ

n∑
j=1

(Lj + cj)
2,

where Li is the largest-possible Euclidean norm of any
subgradient of fi on the ball of radius D around the origin,
L =

∑n
j=1 Lj , Bi =

√
d(Li+ci), while the scalars λ ∈ (0, 1)

and δ > 0 are functions of the graph sequence {G(t)} which
satisfy

δ ≥ 1

nnB
, λ ≤

(
1− 1

nnB

)1/(nB)

.

Moreover, if each of the graphs G(t) is regular1, then

δ = 1, λ ≤ min

{(
1− 1

4n3

)1/B

,max
t≥0

σ2(A(t))

}
,

where A(t) is defined by

Aij(t) =

{
1/dj(t) whenever j ∈ N in

i (t),
0 otherwise. (8)

and σ2(A) is the second-largest singular value of A.
Note that each term on the right-hand side of the bound

in the above theorem has a τ in the denominator and an
ln(τ − 1) or a constant in the numerator. The convergence
time above should therefore be interpreted as proving a decay
with time which decreases at an expected O((ln t)/t) rate with
the number of iterations t. Note that this is an extended and
corrected version of a result from the conference version of
this paper [24].

We remark that our result is new even for undirected graphs,
which are included as a special case of the above theorem;
indeed, to our knowledge, we are the first to demonstrate a
decay rate of O((ln t)/t) for stochastic gradient descent over
time-varying undirected graphs (however, recall our earlier
discussion of [38], [41] which derived similar decay rates
for the deterministic case with a fixed undirected graph).
Surprisingly, the undirected and directed cases do not appear
to be very different; the main difference seems to do with

1A directed graph G(t) is regular if every out-degree and every in-degree
of a node in G(t) equals d(t) for some d(t).
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the constant δ and λ. Indeed, note that the bounds for the
constants δ and λ which appear in the bound are rather large
in the most general case; in particular, they grow exponentially
in the number of nodes n. At present, this scaling appears
unavoidable: those constants reflect the best available bounds
on the performance of average consensus protocols in directed
graphs, and it is an open question whether average consensus
on directed graphs can be done in time polynomial in n. In
the case of regular graphs, the bounds scale polynomially in
n due to the availability of good bounds on the convergence
of consensus. Similarly, for undirected case, the possibility of
modifyin the protocol by instead choosing a symmetric matrix
A leads to good bounds on δ and λ [26]. Our results therefore
further motivate problem of finding consensus algorithms with
good convergence times, especially on directed graphs.

Finally, we remark that choosing a stepsize parameter p
so that Eq. (7) is satisfied is most easily done by instead
insuring that p(mini µi)/n > 4. This is a more conservative
condition than that of Eq. (7) but ensuring it requires the nodes
only to compute mini µi. This is more convenient because the
minimum of any collection of numbers r1, . . . , rn (with ri
stored at node i) can be easily computed by the following
distributed protocol: node i sets its initial value to ri and then
repeatedly replaces its value with the minimum of the values
of its in-neighbors. It is easy to see that on any fixed network,
this process converges to the minimum in as many steps as the
diameter. Furthermore, on any B-strongly-connected sequence
this processes converges in the optimal O(nB) steps. Thus, the
pre-processing required to come up with a suitable step-size
parameter p is reasonably small.

A shortcoming of Theorem 1 is that we must assume that
the iterates zi(t) remain bounded (as opposed to obtaining
this as a by-product of the theorem). This is a common
situation in the analysis of subgradient-type methods in non-
differentiable optimization: the boundedness of the iterates or
their subgradients often needs to be assumed in advance in
order to obtain a result about convergence rate.

We next show that we can remedy this shortcoming at the
cost of imposing additional assumptions on the functions fi,
namely that they are differentiable and their gradients are
Lipschitz.

Assumption 2: Each fi is differentiable and its gradients
are Lipschitz continuous, i.e., for a scalar Mi > 0,

‖∇fi(x)−∇fi(y)‖ ≤Mi‖x− y‖ for all x, y ∈ Rd.

Theorem 2: Suppose that Assumption 1 and Assumption
2 hold and suppose limt→∞ α(t) = 0. Then, there exists a
scalar D such that with probability 1, supt ‖zi(t)‖ ≤ D for
all i.

The proof of this theorem is constructive in the sense than
an explicit expression for D can be derived in terms of the
level set growth of the functions fj . Additionally, the scalar
D depends on the initial points xi(0), the step-size sequence
α(t), the functions fi(·), the Lipschitz constants Mj and the
noise bounds cj (cf. (2)).

Putting Theorems 1 and 2 together, we obtain our main
result: for strongly convex functions with Lipschitz gradients,
the stochastic (sub)gradient-push with appropriately chosen

step-size and averaging strategy converges at an O((ln t)/t)
rate.

III. PROOF OF THEOREM 1

We briefly sketch the main ideas of the proof of Theorem
1. First, we will argue that if the subgradient terms in the
subgradient-push protocol are bounded, then as a consequence
of the decaying stepsize α(t), the protocol will achieve consen-
sus. We will then analyze the evolution of the average x̄(t)
and show that, as a consequence of the protocol achieving
consensus, x̄(t) satisfies approximately the same recursion as
the iterates of the ordinary subgradient method. Finally, the
key idea in our proof is the observation in [23] that, for a
noisy gradient update on a strongly convex function, a decay
of O(1/t) can be achieved by a simple averaging of iterates
that places more weight on recent iterations, specifically by
weighting the t’th iterate proportional to t. Here, we show
that, for the perturbed subgradient method which is followed
by the averaging step x̄(t), a nearly identical rate O((ln t)/t)
can be achieved.

Our starting point is an analysis of a perturbation of the
so-called push-sum protocol of [16] for computing averages
in directed networks. We next describe this perturbed push-
sum protocol. Every node i maintains scalar variables
xi(t), yi(t), zi(t), wi(t), where yi(0) = 1 for all i. Every node
i updates these variables according to the following rule: for
t ≥ 0,

wi(t+ 1) =
∑

j∈N in
i (t)

xj(t)

dj(t)
,

yi(t+ 1) =
∑

j∈N in
i (t)

yj(t)

dj(t)
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) = wi(t+ 1) + εi(t+ 1), (9)

where εi(t) is some (perhaps adversarially chosen) perturba-
tion at time t. Without the perturbation term εi(t), the method
in Eq. (9) is called push-sum. For the perturbed push-sum
method above in Eq. (9), we have that the following is true.

Lemma 1 ([25]): Consider the sequences {zi(t)}, i =
1, . . . , n, generated by the method in Eq. (9). Assuming that
the graph sequence {G(t)} is B-strongly-connected, we have
that for all t ≥ 1,∣∣∣∣zi(t+ 1)− 1′x(t)

n

∣∣∣∣ ≤ 8

δ

(
λt‖x(0)‖1

+

t∑
s=1

λt−s‖ε(s)‖1

)
,

where ε(s) is a vector in Rn which stacks up the scalar
variables εi(s), i = 1, . . . , n, and δ, λ satisfy the same
inequalities as in Theorem 1.

We refer the reader to [25] for a proof where this statement
is Lemma 1. Informally, the push-sum protocol ensures that all
zi(t) track the running averages 1′x(t)

n with a geometric rate λ,
while the perturbations εi(t) push the node values apart. The
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perturbations can be viewed as an external force that influences
the node values and causes additional disagreement. Lemma 1
provides a bound on the size of the disagreements among the
agents in terms of the network caused imbalances and the
imbalances due to the external force.

Corollary 1: Consider the update of Eq. (9) with the
scalar variables xi(t), wi(t), zi(t), εi(t) replaced by the vec-
tor variables xi(t),wi(t), zi(t), ei(t) for each i = 1, . . . , n.
Assuming that the graph sequence {G(t)} is B-strongly-
connected, for all i = 1, . . . , n, t ≥ 1 we have∥∥∥∥∥zi(t+ 1)−

∑n
j=1 xj(t)

n

∥∥∥∥∥ ≤ 8

δ

λt n∑
j=1

‖xj(0)‖1

+

t∑
s=1

λt−s
n∑
j=1

‖ej(s)‖1

 ,

where δ, λ satisfy the same inequalities as in Theorem 1.
Corollary 1 follows immediately by applying Lemma 1 to

each coordinate of Rd and by using the fact that the Euclidean
norm of any vector is at most as large as the 1-norm. A more
specific setting when the perturbations ei(t) decay with t is
considered in the following corollary.

Corollary 2: Under the assumptions of Corollary 1 and
assuming that the perturbation vectors ei(t) are vectors satis-
fying for some scalar D > 0,

E [‖ei(t)‖1] ≤ D

t
for all i = 1, . . . , n and all t ≥ 1,

we then have that for all i = 1, . . . , n and all τ ≥ 1,

E

[
τ∑
t=1

∥∥∥∥∥zi(t+ 1)−
∑n
j=1 xj(t)

n

∥∥∥∥∥
]

≤ 8

δ

λ

1− λ

n∑
j=1

‖xj(0)‖1 +
8

δ

Dn

1− λ
(1 + ln τ).

The parameters δ > 0 and λ ∈ (0, 1) satisfy the same
inequalities as in Theorem 1.

Proof: We use Corollary 1. The first term in the estimate
follows immediately. The second term requires some attention:

E

 τ∑
t=1

t∑
s=1

λt−s
n∑
j=1

‖ej(s)‖1

 ≤ Dn

τ∑
t=1

t∑
s=1

λt−s

s

≤ Dn

1− λ

τ∑
s=1

1

s

and the result follows from the usual bound on the sum of
harmonic series,

∑τ
s=1

1
s ≤ 1 + ln τ .

In the proof of Theorem 1, we also use the following result,
which is a generalization of Lemma 8 in [25]. Before stating
this lemma, we introduce some notation. We define Ft to be
all the information generated by the stochastic gradient-push
method by time t, i.e., all the xi(k), zi(k),wi(k), yi(k),gi(k)
and so forth for k = 1, . . . , t. We then have the following
lemma.

Lemma 2: Assume that there is a scalar D > 0 such
that supt ‖zi(t)‖ ≤ D for all i with probability 1. Then,

we have supt ‖x̄(t)‖ ≤ D with probability 1. Furthermore,
if Assumption 1(b) holds, then we have with probability 1,
for all v ∈ Rd and t ≥ 0,

E [ ‖x̄(t+ 1)− v‖2 | Ft ] ≤ ‖x̄(t)− v‖2

− 2α(t+ 1)

n
(F (x̄(t))− F (v))

− α(t+ 1)

n

n∑
j=1

µj‖zj(t+ 1)− v‖2

+
4α(t+ 1)

n

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖

+
α2(t+ 1)

n

n∑
j=1

(Lj + cj)
2,

where Lj = max‖u‖≤D∇fj(u) and constants cj are from (2).
Proof: Note that the matrix A(t) defined in the statement

of Theorem 1 (see Eq. (8)) is column stochastic, so that
1′u = 1′A(t)u for any vector u ∈ Rn. We next show that
when {z̄j(t)} are bounded for all j with probability 1, so are
the averages x̄(t). To see this, we note that by the definition
of wi(t + 1) and the column-stochasticity of A(t), we have∑n
i=1 wi(t+ 1) =

∑n
j=1 xj(t), implying that

x̄(t) =
1

n

n∑
i=1

wi(t+ 1) =
1

n

n∑
i=1

yi(t+ 1)zi(t+ 1), (10)

where the last equality follows from the definition of zi(t+1).
Since the matrices A(t) are column stochastic, the sums of
yi(t) are preserved at all times, i.e.,

∑n
i=1 yi(t) = n for all

t. Furthermore, yi(t) > 0 for all i and t. Thus, relation (10)
shows that each vector x̄(t) is a convex combination of zi(t+
1), i = 1, . . . , n, implying that for all t ≥ 0

‖x̄(t)‖ ≤ max
i
‖zi(t+ 1)‖. (11)

Thus, with probability 1, we have ‖x̄(t)‖ ≤ D.
We next show the relation stated in the lemma. Due to the

column-stochasticity of the matrices A(t), for the stochastic
gradient-push update of Eq. (3) we have

x̄(t+ 1) = x̄(t)− α(t+ 1)

n

n∑
j=1

gj(t+ 1). (12)

Now, let v ∈ Rd be an arbitrary vector. From relation (12)
we can see that for all t ≥ 0,

‖x̄(t+ 1)− v‖2 ≤ ‖x̄(t)− v‖2

− 2α(t+ 1)

n

n∑
j=1

gj(t+ 1)′(x̄(t)− v)

+
α2(t+ 1)

n2
‖

n∑
j=1

gj(t+ 1)‖2.

Taking expectations of both sides with respect to Ft, and using
gj(t+ 1) = ∇fj(zj(t+ 1)) +Nj(zj(t+ 1)) (see Eq. (1)) and
the relation

E[Nj(zj(t+ 1)) | Ft] = 0,
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we obtain

E [ ‖x̄(t+ 1)− v‖2 | Ft ] ≤ ‖x̄(t)− v‖2

− 2α(t+ 1)

n

n∑
j=1

∇fj(zj(t+ 1))′(x̄(t)− v)

+
α2(t+ 1)

n2
E

‖ n∑
j=1

gj(t+ 1)‖2 | Ft

.
Next, we upper-bound the last term in the preceding relation.
By using the inequality (

∑n
j=1 aj)

2 ≤ n
∑n
j=1 a

2
j we obtain

that with probability 1,

‖
n∑
j=1

gj(t+ 1)‖2 ≤ n
n∑
j=1

‖gj(t+ 1)‖2 ≤ n
n∑
j=1

(Lj + cj)
2,

since ‖gj(t+ 1)‖ ≤ max‖u‖≤D ‖∇fj(u)‖+ cj from Eq. (2).
This implies for all t ≥ 1,

E [ ‖x̄(t+ 1)− v‖2 | Ft ] ≤ ‖x̄(t)− v‖2

− 2α(t+ 1)

n

n∑
j=1

∇fj(zj(t+ 1))′(x̄(t)− v)

+
α2(t+ 1)

n

n∑
j=1

(Lj + cj)
2. (13)

Now, consider each of the cross-terms ∇fj(zj(t+1))′(x̄(t)−
v) in (13), for which we write

∇fj(zj(t+ 1))′(x̄(t)− v)

= ∇fj(zj(t+ 1))′(x̄(t)− zj(t+ 1))

+∇fj(zj(t+ 1))′(zj(t+ 1)− v). (14)

By using the Cauchy-Schwarz inequality we have with prob-
ability 1,

∇fj(zj(t+ 1))′(x̄(t)− zj(t+ 1))
≥ −Lj‖x̄(t)− zj(t+ 1)‖, (15)

As for the term ∇fj(zj(t + 1))′(zj(t + 1) − v), we use the
fact that the function fj is µi-strongly convex to obtain

∇fj(zj(t+ 1))′(zj(t+ 1)− v) ≥ fj(zj(t+ 1))− fj(v)

+
µj
2
‖zj(t+ 1)− v‖2.

(16)

By writing fj(zj(t+1))−fj(v) = (fj(zj(t+1))−fj(x̄(t))+
(fj(x̄(t))− fj(v)) and by using the convexity of fj , we have

fj(zj(t+ 1))− fj(v) ≥ ∇fj(x̄(t))′(zj(t+ 1)− x̄(t))

+ (fj(x̄(t))− fj(v)), (17)

where ∇fj(x̄(t)) is a subgradient of fj at x̄(t). In view of
relation (11), the sub-gradients ∇fj(x̄(t)) are also bounded
with probability 1, so we have

∇fj(x̄(t))′(zj(t+ 1)− x̄(t))− Lj‖zj(t+ 1)− x̄(t)‖. (18)

From relation (16), (17) and (18), we conclude that with
probability 1,

∇fj(zj(t+ 1))′(zj(t+ 1)− v) ≥ −Lj‖zj(t+ 1)− x̄(t)‖
+ fj(x̄(t))− fi(v)

+
µj
2
‖zj(t+ 1)− v‖2. (19)

By substituting the estimates of Eqs. (15) and (19) back in
relation (14), and using F (x) =

∑n
j=1 fj(x) we obtain

n∑
i=1

∇fj(zj(t+ 1))′(x̄(t)− v) ≥ F (x̄(t))− F (v)

+
1

2

n∑
j=1

µj‖zj(t+ 1)− v‖2

− 2

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖.

Plugging this relation into Eq. (13), we obtain the statement
of this lemma.

With Lemma 2 in place, we are now ready to provide the
proof of Theorem 1. Besides Lemma 2, our arguments will
also crucially rely on the results established earlier for the
perturbed push-sum method.

Proof of Theorem 1: The function F =
∑n
i=1 fi has a

unique minimum which we will denote by z∗. In Lemma 2
we let v = z∗ to obtain for all t ≥ 0,

E [ ‖x̄(t+ 1)− z∗‖2 | Ft ] ≤ ‖x̄(t)− z∗‖2

− 2α(t+ 1)

n
(F (x̄(t))− F (z∗))

− α(t+ 1)

n

n∑
j=1

µj‖zj(t+ 1)− z∗‖2

+
4α(t+ 1)

n

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖

+
α2(t+ 1)

n

n∑
j=1

(Lj + cj)
2. (20)

Next, we estimate the term F (x̄(t)) − F (z∗) in the above
equation by breaking it into two parts. On the one hand,

F (x̄(t))− F (z∗) ≥ 1

2

 n∑
j=1

µj

 ‖x̄(t)− z∗‖2.

On the other hand, since the function F is Lipschitz continuous
with constant L = L1 + · · · + Ln over the ball of radius
D around the origin to which all zj(t),x(t) always belong
(by assumption and by Lemma 2), we also have that for any
i = 1, . . . , n,

F (x̄(t))− F (z∗) = (F (x̄(t))− F (zi(t+ 1)))

+ (F (zi(t+ 1))− F (z∗))

≥ −L‖zi(t+ 1)− x̄(t)‖
+ F (zi(t+ 1))− F (z∗).
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Therefore, using the preceeding two estimates we obtain for
all i = 1, . . . , n,

2 (F (x̄(t))− F (z∗)) ≥ 1

2

 n∑
j=1

µj

 ‖x̄(t)− z∗‖2

− L‖zi(t+ 1)− x̄(t)‖
+ (F (zi(t+ 1))− F (z∗)) . (21)

Combining relation (21) with Eq. (20), we obtain that for
each i = 1, . . . , n, with probability 1,

E [ ‖x̄(t+ 1)− z∗‖2 | Ft ] ≤ ‖x̄(t)− z∗‖2

− α(t+ 1)

n

1

2

 n∑
j=1

µj

 ||x(t)− z∗||2

− α(t+ 1)

n
(F (zi(t+ 1))− F (z∗))

+
α(t+ 1)

n
L||zi(t+ 1)− x(t)||

− α(t+ 1)

n

n∑
j=1

µj‖zj(t+ 1)− z∗‖2

+
4α(t+ 1)

n

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖

+
α2(t+ 1)

n

n∑
j=1

(Lj + cj)
2.

Now plugging in the expression for α(t) and using the
definition of p to combine the first two terms, we see that
for all i = 1, . . . , n and all t ≥ 0,

E [‖x̄(t+ 1)− z∗‖2 | Ft ] ≤
(

1− 2

t+ 1

)
‖x̄(t)− z∗‖2

− p

n(t+ 1)
(F (zi(t+ 1))− F (z∗))

+
pL

n(t+ 1)
‖zi(t+ 1)− x̄(t)‖

− p

n(t+ 1)

n∑
j=1

µj‖zj(t+ 1)− z∗‖2

+
4p

n(t+ 1)

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖+
p2

(t+ 1)2
q2

n
,

where q2 =
∑n
j=1(Lj + cj)

2. We multiply the preceding
relation by t(t + 1), and we obtain that for all i = 1, . . . , n
and all t ≥ 1,

(t+ 1)tE [ ‖x̄(t+ 1)− z∗‖2 | Ft ]

≤ t(t− 1)‖x̄(t)− z∗‖2

− pt

n
(F (zi(t+ 1))− F (z∗)) +

pLt

n
‖zi(t+ 1)− x̄(t)‖

− pt

n

n∑
j=1

µj‖zj(t+ 1)− z∗‖2

+
4pt

n

n∑
j=1

Lj‖zj(t+ 1)− x̄(t)‖+
p2t

(t+ 1)

q2

n
. (22)

By iterating the expectations in (22) and applying the resulting
inequality, recursively, we obtain that all τ ≥ 2,

τ(τ − 1)E‖ [ x̄(τ)− z∗‖2 ] ≤

− p

n

τ−1∑
t=1

tE

F (zi(t+ 1))− F (z∗) +

n∑
j=1

µj‖zj(t+ 1)− z∗‖2


+
pL

n

τ−1∑
t=1

tE [‖zi(t+ 1)− x̄(t)‖] (23)

+
4p

n

τ−1∑
t=1

t

n∑
j=1

LjE [‖zj(t+ 1)− x̄(t)‖] +
p2q2

n

τ−1∑
t=1

t

t+ 1
.

By viewing the stochastic gradient-push method as an instance
of the perturbed push-sum protocol, we can apply Corollary 2
with ei(t) = α(t)gi(t). Since ‖gi(t)‖1 ≤

√
d‖gi(t)‖ ≤ Bi for

all i, t, with Bi =
√
d(Li+ci), we see that with probability 1,

E [‖ei(t)‖1] ≤ pBi
t

for all i and t ≥ 1.

Thus, by Corollary 2 we obtain for all i = 1, . . . , n,

E [

τ−1∑
t=1

‖ zi(t+ 1)−
∑n
j=1 xj(t)

n
‖ ] ≤ 8

δ

λ

1− λ

n∑
j=1

‖xj(0)‖1

+
8

δ

pn maxj Bj
1− λ

(1 + ln(τ − 1)).

Upon substituting the preceding inequality into relation (23)
and dividing both sides by τ(τ − 1), after re-arranging the
terms, we obtain for all τ ≥ 2,

p

nτ(τ − 1)

τ−1∑
t=1

tE [ F (zi(t+ 1))− F (z∗) +

n∑
j=1

µj‖zj(t+ 1)− z∗‖2 ]

≤ pL

nτ

8

δ

 λ

1− λ

n∑
j=1

‖xj(0)‖1 +
pnmaxj Bj

1− λ
(1 + ln(τ − 1)


+

4p

nτ

n∑
j=1

Lj
8

δ

 λ

1− λ

n∑
j=1

‖xj(0)‖1 +
pnmaxj Bj

1− λ
(1 + ln(τ − 1)


+
p2q2

τn
.

Combining the first two terms on the right hand side of the
preceding relation, using L =

∑n
j=1 Lj and canceling p/n

from both sides, we get

1

τ(τ − 1)

τ−1∑
t=1

tE [ F (zi(t+ 1))− F (z∗) +

n∑
j=1

µj‖zj(t+ 1)− z∗‖2 ]

≤ 5L

τ

8

δ

 λ

1− λ

n∑
j=1

||xj(0)||1 +
pnmaxj Bj

1− λ
(1 + ln(τ − 1)


+
pq2

τ
.

(24)

Finally, by convexity we have for each i = 1, . . . , n,∑τ−1
t=1 t

(
F (zi(t+ 1))− F (z∗) +

∑n
j=1 µj‖zj(t+ 1)− z∗‖2

)
τ(τ − 1)/2
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≥ F (ẑi(τ))− F (z∗) +

n∑
j=1

µj‖ẑj(τ)− z∗‖2 (25)

Putting together Eqs. (24) and (25) concludes the proof.

IV. PROOF OF THEOREM 2

We begin by briefly sketching the main idea of the proof.
The proof proceeds by simply arguing that if maxi ‖zi(t)‖
gets large, it decreases. Since the stochastic subgradient-
push protocol (Eq. (3)) is somewhat involved, proving this
will require some involved arguments relying on the level-
set boundedness of strongly convex functions with Lipschitz
gradients and some special properties of element-wise ratios
of products of column-stochastic matrices.

Our starting point is a lemma that exploits the structure of
strongly convex functions with Lipschitz gradients.

Lemma 3: Let q : Rd → R be a µ-strongly convex
function with µ > 0 and have Lipschitz continuous gradients
with constant M > 0. Let v ∈ Rd and let u ∈ Rd be defined
by

u = v − α (∇q(v) + φ(v)) ,

where α ∈ (0, µ
8M2 ] and φ : Rd → Rd is a mapping such that

‖φ(v)‖ ≤ c for all v ∈ Rd.

Then, there exists a compact set V ⊂ Rd (which depends on
c and the funtion q(·) but not on α) such that

‖u‖ ≤
{
‖v‖ for all v 6∈ V
R for all v ∈ V,

where R = maxz∈V
{
‖z‖+ (µ/(8M2))‖∇q(z)‖

}
+

(µc)/(8M2).
Proof: The strong convexity of the function q implies

∇q(v)′v ≥ q(v)− q(0) +
µ

2
||v||2

Consequently, for the vector u we have

‖u‖2 = ‖v‖2 − 2α(∇q(v) + φ(v))′v + α2‖∇q(v) + φ(v)‖2

≤ (1− αµ)‖v‖2 − 2α(q(v)− q(0))
−2αφ(v)′v + α2‖∇q(v) + φ(v)‖2,

For the last term in the preceding relation, we write

‖∇q(v) + φ(v)‖2 ≤ 2‖∇q(v)‖2 + 2‖φ(v)‖2, (26)

where we use the inequality

(a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R. (27)

We can further write

‖∇q(v)‖2 ≤ (‖∇q(v)−∇q(0)‖+ ‖∇q(0)‖)2

≤ 2M2‖v‖2 + 2‖∇q(0)‖2, (28)

where the last inequality is obtained by using Eq. (27) and by
exploiting the Lipchitz property of the gradient of q. Similarly,
using the given growth-property of ‖φ(v)‖ we obtain

‖φ(v)‖2 ≤ c2, |φ(v)′v| ≤ c‖v‖. (29)

By substituting Eqs. (28)–(29) in relation (26), we find

‖∇q(v) + φ(v)‖2 ≤ 4M2‖v‖2 + 4‖∇q(0)‖2 + 4c2.

Therefore,

‖u‖2 ≤
(
1− α(µ− 4αM2)

)
‖v‖2

− 2α(q(v)− q(0))+2αc‖v‖+ 4α2(‖∇q(0)‖2 + c2),

which for α ∈ (0, µ
8M2 ] yields

‖u‖2 ≤‖v‖2 − α
( µ

2
‖v‖2 − 2c‖v‖

)
− 2α

(
q(v)− q(0) + 2α(‖∇q(0)‖2 + c2)

)
. (30)

Define the set V ′ to be the following level set of q:

V ′ = {z | q(z) ≤ q(0) + 2
µ

8M2
(‖∇q(0)‖2 + c2)}.

Being the level-set of a strongly-convex function, the set V ′
is compact [4](see Proposition 2.3.1(b), page 93). Let B(0, ε)
be the Euclidean ball centered at the origin and with a radius
ε > 0. Define the set V as follows:

V = V ′ ∪B(0, 4c/µ).

If v is such that ‖v‖ ≥ 4c/µ and q(v) ≥ q(0) +
2α(‖∇q(0)‖2 + c2) (i.e., v 6∈ V), then by relation (30), we
obtain ‖u‖2 ≤ ‖v‖2. On the other hand, if v ∈ V , then by
using the definition of u and the bound ||φ(v)|| ≤ c we can
see that

‖u‖ ≤ ‖v‖+ α‖∇q(v)‖+ αc.

By using the upper bound on α we obtain the stated relation.

We next state an important relation for the images of two
vectors under a linear transformation with a column-stochastic
matrix. This is a generalization of a relation from [3], Section
7.3.2.

Lemma 4: Suppose P is an n × n column-stochastic
matrix with positive diagonal entries, and let u, v ∈ Rn with
the vector v having all entries positive. Consider the vectors
û and v̂ given, respectively, by

û = Pu, v̂ = Pv.

Define the vectors r and r̂ with their i’th entries given by
ri = ui/vi and r̂i = ûi/v̂i, respectively. Then, we have

r̂ = Qr,

where Q is a row-stochastic matrix.
Proof: Indeed, note that

ûi =

n∑
j=1

Pijuj for all i.

Since ûi = v̂iûi and uj = vjrj , the preceding equation can
be rewritten as

v̂ir̂i =

n∑
j=1

Pijvjrj .

Since v has all entries positive and P has positive diagonal
entries, it follows that v̂ also has all entries positive. Therefore,

r̂i =
1

v̂i

n∑
j=1

Pijvjrj =

n∑
j=1

Pijvj
v̂i

rj .
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Define the matrix Q from this equation, i.e., Qij =
Pijvj
v̂i

for
all i, j. The fact that Q is row-stochastic follows from v̂ = Pv.

Informally speaking, the above lemma reduces the “push-
sum” iteration to a simple stochastic “consensus” update.
We note that it could be used to provide considerable
simplifications of many of the arguments that have been used
to show the convergence of push-sum in the past, though this
is beyond the scope of the present paper. With this lemma in
place, we now proceed to prove our second theorem.

Proof of Theorem 2: Letting y(t) be the vector with
entries yi(t), we can write y(t + 1) = A(t)y(t), where A(t)
is the matrix given in Eq. (8). Thus, since yi(0) = 1 for all i,
we have

y(t) = A(t)A(t− 1) · · ·A(0)1 for all i and t ≥ 1,

where 1 is the vector with all entries equal to 1. Under
Assumption 1(a), we have shown in [25] (see there Corollary
2(b)) that for all i,

δ = inf
t=0,1,...

(
min

1≤i≤n
[A(t)A(t− 1) · · ·A(0)1]i

)
> 0.

Therefore, we have

yi(t) ≥ δ for all i and t. (31)

Thus, using the definition of xi(t+ 1), we can see that for all
t ≥ 1,

xi(t) = wi(t)− α(t)gi(t)

= yi(t)

(
zi(t)−

α(t)

yi(t)
gi(t)

)
implying that for all i and t ≥ 1,

xi(t)

yi(t)
= zi(t)−

α(t)

yi(t)
gi(t). (32)

Since the matrix A(t)A(t−1) · · ·A(0) is column stochastic
and y(0) = 1, we have that

∑n
i=1 yi(t) = n. Therefore,

yi(t) ≤ n, which together with Eq. (31) and α(t)→ 0 yields

lim
t→0

α(t)

yi(t)
= 0 for all i.

Therefore, for every i, there is a time τi > 1 such that
α(t)/yi(t) ≤ µi

8M2
i

for all t ≥ τi. Hence, for each i, Lemma 3
applies to the vector xi(t)/yi(t) for t ≥ τi. By Lemma 3, it
follows that for each function fi, there is a compact set Vi
and a time τi such that for all t ≥ τi,∥∥∥∥xi(t)yi(t)

∥∥∥∥ ≤ { ‖zi(t)‖ if zi(t) 6∈ Vi,
Ri if zi(t) ∈ Vi,

(33)

Let τ = maxi τi. By using the mathematical induction, we
will prove that for all t ≥ τ ,

max
1≤i≤n

‖zi(t)‖ ≤ R̄, (34)

where R̄ = max{maxiRi,maxj ‖zj(τ)‖}. Indeed, rela-
tion (34) is true for t = τ . Suppose it is true at some time
t≥τ . Then, by Eq. (33) we have∥∥∥∥xi(t)yi(t)

∥∥∥∥ ≤ max{Ri,max
j
‖zj(t)‖} ≤ R̄ for all i, (35)

where the last inequality follows by the induction hypothesis.
Next, we use Lemma 4 with v = y(t), P = A(t), and u
taken as the vector of the `’th coordinates of the vectors xj(t),
j = 1, . . . , n, where the coordinate index ` is arbitrary. In
this way, we obtain that each vector zi(t + 1) is a convex
combination of the vectors xi(t)/yi(t), i.e.,

zi(t+ 1) =

n∑
j=1

Qij(t)
xj(t)

yj(t)
for all i and t ≥ 0, (36)

where Q(t) is a row stochastic matrix with entries Qij(t) =
Aij(t)yj(t)
yi(t+1) . By the convexity of the Euclidean norm, it follows

that for all i,

‖zi(t+ 1)‖ ≤
n∑
j=1

Qij(t)

∥∥∥∥xj(t)yj(t)

∥∥∥∥ ≤ max
1≤j≤n

∥∥∥∥xj(t)yj(t)

∥∥∥∥ ,
which together with Eq. (35) yields ‖zi(t + 1)‖ ≤ R̄, thus
implying that at time t+ 1 we have

max
1≤i≤n

‖zi(t+ 1)‖ ≤ R̄.

Hence, Eq. (34) is valid for all t ≥ τ .
Note that the constant R̄ is random as it depends on the

random vectors zi(τ), i = 1, . . . , n, where the time τ is
deterministic. However, we next argue that we may replace
R̄ with a deterministic constant which upper bounds all
‖zi(t+1)‖, i = 1, . . . , n, t ≥ 1. Indeed, it would suffice to find
a constant which upper bounds all ‖zi(t)‖ with i = 1, . . . , n
and t = 1, . . . , τ .

Using Eqs. (32) and (36), we can see that for all t ≥ 1,

max
1≤i≤n

‖zi(t+ 1)‖ ≤ max
1≤j≤n

(
‖zj(t)‖+

α(t)

yj(t)
‖gj(t)‖

)
.

Let z∗j be the minimizer of fj , which exists and is unique
due to the strong convexity of fj . Then, by Assumption 2 it
follows that

‖gj(t)‖ ≤ ‖∇fj(zj(t))‖+ cj
≤ Mj‖zj(t)− z∗j‖+ cj
≤ Mj‖zj(t)‖+Mj‖z∗j‖+ cj .

Consequently,

max
1≤i≤n

‖zi(t+ 1)‖ ≤ γ1 max
1≤j≤n

‖zj(t)‖+ γ2 max
1≤j≤n

‖z∗j‖+ γ3,

where γ1 = 1 + (ᾱ/δ) maxjMj , γ2 = (ᾱ/δ) maxjMj , γ3 =
(ᾱ/δ) maxj cj , and ᾱ = maxt α(t). Thus, using the preceding
relation recursively for t = 1, . . . , τ − 1, and the fact that the
initial points xi(0) are deterministic, we conclude that there
exists a uniform deterministic bound on ‖zi(t)‖ for all t ≥ 1
and i.
Remark: It is possible to generalize our results to more
general models of noise where

‖Ni(u)‖ ≤ εi‖u‖+ ci
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and each εi is small compared to µi. We omit the details as
the proofs are essentially identical to the proofs given here for
the case of εi = 0.

V. SIMULATIONS

We report some simulations of the subgradient-push method
which experimentally demonstrate its performance. We con-
sider the scalar function F (θ) =

∑n
i=1 pi(θ − ui)

2 where
ui is a variable that is known only to node i. This is
a canonical problem in distributed estimation, whereby the
nodes are attempting to measure a parameter θ̂. Each node
i measures ui = θ̂ + wi, where wi are jointly Gaussian and
zero mean. Letting pi be the inverse of the variance of wi,
the maximum likelihood estimate is the minimizer θ∗ of F (θ)
(θ∗ is unique provided that pi > 0 for at least one i). Each
pi is a uniformly random variable taking values between 0
and 1. The initial points xi(0) are generated as independent
random variables, each with a standard Gaussian distribution.
This setup is especially attractive since the optimal solution
can be computed explicitly (it is a weighted average of the
ui) allowing us to see exactly how far from optimality our
protocol is at every stage.

The subgradient-push method is run for 200 iterations with
the stepsize α(t) = p/t and p = 2n/(

∑n
i=1 pi). The graph

sequence is constructed over 1000 nodes with a random
connectivity pattern.

Figure 1 shows the results obtained for simple random
graphs where every node has two out-neighbors, one belonging
to a fixed cycle and the other one chosen uniformly at
random at each step. The top plot shows how ln(|z̃i(t)− θ∗|)
decays on average (over 25 Monte Carlo simulations) for five
randomly selected nodes. The bottom plot shows a sample of
ln(|z̃i(t) − θ∗|) for a single Monte Carlo run and the same
selection of 5 nodes.

Figure 2 illustrates the same quantities for the sequence of
graphs which alternate between two (undirected) star graphs.

We see that the error decays at a fairly speedy rate, espe-
cially given both the relatively large number of nodes in the
system (a thousand) and the sparsity of the graph at each stage
(every node has two out-neighbors). Our simulation results
suggest the gradient-push methods we have proposed have
the potential to be effective tools for network optimization
problems. For example, the simulation of Figure 1 shows that
a relatively fast convergence time can be obtained if each node
can support only a single long-distance out-link.

VI. CONCLUSION

We have considered a variant of the subgradient-push
method of our prior work [25], where the nodes have access
to noisy subgradients of their individual objective functions
fi. Our main result was that the functions fi are strongly
convex functions with Lipchitz gradients, we have estab-
lished O(ln t/t) convergence rate of the method, which is
an improvement of the previously known rate O(ln t/

√
t) for

(noiseless) subgradient-push method shown in [25].
Our work suggests a number of open questions. Our bounds

on the performance of the (sub)gradient-push directly involve
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Fig. 1. Top plot: the number of iterations (x-axis) and the average of
ln |z̃i(t) − θ∗| (y-axis) over 25 Monte Carlo runs for 5 randomly chosen
nodes. Bottom plot: a sample of one a single run for the same node selection.

the convergence speed λ of consensus on directed graphs.
Thus the problem of designing well-performing consensus
algorithms is further motivated by this work. In particular, a
directed average consensus algorithm with polynomial scaling
with n on arbitrary time-varying graphs would lead to poly-
nomial convergence-time scalings for distributed optimization
over time-varying directed graphs. However, such an algorithm
is not available to the best of the authors’ knowledge.

Moreover, it would be interesting to relate the convergence
speed of distributed optimization procedures to the properties
possessed by the individual functions. We have begun on
this research program here by showing an improved rate for
strongly convex functions with Lipschitz gradients. However,
one might expect that stronger results might be available under
additional assumptions. It is not clear, for example, under what
conditions a geometric rate can be achieved when graphs are
directed and time-varying, if at all.

Finally, in many applications convergence speed should be
measured not by the number of iterations but by different
metrics. For example, it may be appropriate to count the
number of bits that have to be exchanged before all nodes
are close to the solution. Alternatively, when some of the
variables correspond to physical positions which must be
adjusted as a result of the protocol, the dominating factor
may be the total distance traveled by each node. Furthermore,
there may be tradeoffs between these metrics that we do
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Fig. 2. Top plot: the number of iterations (x-axis) and the average of
ln |z̃i(t) − θ∗| (y-axis) over 25 Monte Carlo runs for 5 randomly chosen
nodes. Bottom plot: a sample of a single run for the same node selection.

not at present understand. Understanding the performance of
protocols for convex optimization in these scenarios remains
an open problem.
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