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Plug-and-Play Fault Detection and Control-reconfiguration

for a Class of Nonlinear Large-scale Constrained Systems

Stefano Riverso, Francesca Boem, Giancarlo Ferrari-Trecate, and Thomas Parisini

Abstract—This paper deals with a novel Plug-and-Play (PnP)
architecture for the control and monitoring of Large-Scale
Systems (LSSs). The proposed approach integrates a distributed
Model Predictive Control (MPC) strategy with a distributed
Fault Detection (FD) architecture and methodology in a PnP
framework. The basic concept is to use the FD scheme as an
autonomous decision support system: once a fault is detected,
the faulty subsystem can be unplugged to avoid the propagation
of the fault in the interconnected LSS. Analogously, once the issue
has been solved, the disconnected subsystem can be re-plugged-in.
PnP design of local controllers and detectors allow these oper-
ations to be performed safely, i.e. without spoiling stability and
constraint satisfaction for the whole LSS. The PnP distributed
MPC is derived for a class of nonlinear LSSs and an integrated
PnP distributed FD architecture is proposed. Simulation results
in two paradigmatic examples show the effectiveness and the
potential of the general methodology.

I. INTRODUCTION

Nowadays, several man-made systems are characterized by

a large number of states and inputs with a significant spatial

distribution. triggering an increasing interest in the study of

Systems-of-Systems [1] and Cyber-Physical Systems [2]. LSSs

are often modeled as the interaction of many subsystems

coupled through physical variables or communication channels

[3]. When dealing with control of LSSs, centralized control

architectures can be impractical due to computational, com-

munication and reliability limits, and an alternative is offered

by the adoption of decentralized and distributed approaches.

The application domains for which the proposed approach

may result useful are countless (for instance, energy efficient

buildings, power networks, wind farms, cascade river reaches,

etc.).

In the past, several decentralized (De) and distributed (Di)

MPC schemes have been proposed for constrained LSS (see

the recent survey [4] and the references therein, such as [5]).

In the standard MPC control of LSSs, the prediction of the

LSS behaviour is carried out through a nominal model of
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each subsystem and of the local interactions. However, in

several applications, faults and malfunctions may occur thus

possibly causing critical and unpredictable changes in the LSS

dynamics. Hence, there is a need to devise fault diagnosis

schemes (see, for example, [6], [7]) providing on-line the

information about the health of the system and to exploit this

information to reconfigure the controller so as to guarantee

some degree of fault-tolerance (see the seminal paper [8]).

Model-based schemes have emerged as prominent approaches

to fault diagnosis of continuous and discrete-time systems [9].

As for centralized control, centralized FD architectures suffer

of scalability and robustness issues. To overcome these limits,

decentralized and distributed fault-tolerant control and fault

diagnosis algorithms have been proposed (see [10], [11], [12],

[13], [14], [15], [16], [17] as examples).

In this paper, the integration of a DiMPC scheme and

a distributed FD architecture is proposed for the first time.

Specifically, in the off-line control design phase we adopt a

decentralized algorithm and we assume that the design of a

local controller can use information at most from parents of

the corresponding subsystem, i.e., subsystems that influence

its dynamics. This implies that the whole model of the LSS

is never used in any step of the synthesis process [3]. This

approach has several advantages in terms of scalability: i) the

communication flow at the design phase has the same topology

of the coupling graph – usually sparse – ii) the local design

of controllers and fault detectors can be conducted indepen-

dently; iii) local design complexity scales with the number

of parent subsystems only; iv) if a subsystem joins/leaves

an existing network (plug-in/unplugging operation) at most

children/parents subsystems have to retune their controllers

and fault detectors. We refer to this kind of decentralized

synthesis as PnP design, if – in addition – the plug-in and

unplugging operations can be performed through a procedure

for automatically assessing whether the operation does not

spoil stability and constraint satisfaction for the overall LSS

(see [18] and [19]). Different definitions of PnP design are

given in [20], [21] and [22].

Novelties: The significant novelty presented in the paper1

is the integration of DiMPC and FD architectures in a PnP

framework for nonlinear LSSs (for centralized approaches, the

interested reader is referred to [24], [25], [26] and the related

work in [27]. Moreover, a centralized reconfiguration process,

based on hybrid systems, is proposed in [28]). Similarly to the

design of local controllers, we propose a PnP design method

for local fault detection. Motivations for PnP MPC/FD are the

following: i) when the behaviour of a subsystem is corrupted

1A preliminary version of this work has been presented at the 53rd IEEE
Conference on Decision and Control [23].
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by a fault, we show how the subsystem can be automati-

cally disconnected while preserving stability and constraint

satisfaction at each time instant for all other subsystems; ii)

when a faulty subsystem is repaired, it can be replugged-

in without changing all existing local controllers and fault

detectors. We highlight that, differently from [18] and [19],

in this paper we design local MPC controllers for a class

of nonlinear LSSs. As regards FD schemes – to the best

of the authors knowledge – it is the first time that a PnP

FD distributed architecture is proposed. Furthermore, in real

application contexts, usually MPC controllers are designed

based on the knowledge of a nominal model of the system.

Therefore a FD scheme is needed to monitor the behaviour

of the system. The proposed FD architecture is robust to

modeling and measurement uncertainties. To achieve this goal,

it considers local models that are different from those used in

local MPC controllers. In fact, another novel contribution of

this paper is the possibility to use different decompositions and

different models for the control and the monitoring compo-

nents. This feature is useful for applications: local controllers

must compute local control inputs based on local available

measurements only, sometimes with high sampling rates; on

the other hand local fault detectors may work at a different rate

and can keep advantage of the redundancy given by sharing

some variables in order to improve estimation performances.

The paper is organized as follows. After providing a few

notations and basic definitions in Section II, in Section III, we

define the problem addressed in the paper and we introduce the

dual decomposition of the LSS. Then, in Section IV, we design

the nonlinear DiMPC architecture, while in Section V we

derive the PnP distributed FD scheme. The fault detectability

analysis is presented in Section VI. The reconfiguration pro-

cess after unplugging and plugging-in operations are described

in Section VII. In Section VIII, we apply the proposed

architectures to a ring of coupled van der Pol Oscillators

(vdPOs) and to a Power Network System (PNS). Finally, some

concluding remarks are given in Section IX.

II. BASIC NOTATIONS AND DEFINITIONS

We use a : b for the set of integers {a, a+ 1, . . . , b}. The

symbols R+ and R0+ are the sets of positive real numbers,

respectively excluding and including 0. The column vector

with s components v1, . . . , vs is v = (v1, . . . , vs). The

symbols ⊕ and ⊖ denote the Minkowski sum and difference,

respectively, i.e. A = B⊕C if A = {a : a = b+c, for all b ∈
B and c ∈ C} and A = B ⊖ C if a ⊕ C ⊆ B, ∀a ∈ A.

Moreover,
⊕s

i=1Gi = G1 ⊕ . . . ⊕ Gs. For ρ > 0, Bρ(z) =
{x ∈ Rn : ||x− z|| ≤ ρ} where ||·|| is the Euclidean norm in

Rn. Given a set X ⊂ Rn, convh(X) denotes its convex hull.

Function dist(v,X) denotes the distance among a vector v and

a set X. The symbol 0r denotes a column vector in Rr with

all elements equal to 0. Let v, v̄ ∈ R
s, the inequality |v| ≤ v̄,

component-wise means |vi| ≤ v̄i, i = 1 : s.

Definition 1 (RCI set). Consider the discrete-time linear

system x(t + 1) = Ax(t) + Bu(t) + w(t), with x(t) ∈ Rn,

u(t) ∈ R
m, w(t) ∈ R

n and subject to constraints u(t) ∈ U ⊆
Rm and w(t) ∈ W ⊂ Rn. The set X ⊆ Rn is an RCI set with

respect to w(t) ∈ W, if ∀x(t) ∈ X there exists u(t) ∈ U such

that x(t+ 1) ∈ X, ∀w(t) ∈ W.

III. SYSTEM DEFINITION

Consider a class of discrete-time nonlinear LSSs composed

of M subsystems, using two different decompositions of the

system structural graph (see Figure 1). The control framework

Fig. 1: Two different decompositions of the LSS structural

graph: the non-overlapping subsystems of the control archi-

tecture (in green) and the overlapping subsystems of the fault

diagnosis framework (in red). The small circles represent state

and input variables; the yellow ones are the shared state

variables.

considers a nonlinear model described by the following dy-

namics:

Σ[i] : x+[i] = Aiix[i] +Bi[gi(x[i], ψ[i])u[i] + hi(x[i], ψ[i])]

+ wi(ψ[i]) (1)

where x[i] ∈ Rni , u[i] ∈ Rmi , i ∈ M = {1, . . . ,M}, are the

local state and input, respectively, at time t and x+[i] stands

for x[i] at time t + 1. The k-th component of vector x[i]
is specified by x[i,k]. A similar notation is used for input

and output variables. The vector of interconnection variables

ψ[i] ∈ Rpi collects the states {x[j]}j∈Ni
that influence the

dynamics of x[i], where Ni is the set of parents of subsystem

i defined as Ni = {j ∈ M :
∂x

+
[i]

∂x[j]
6= 0ni

, i 6= j}. We

also define Fi = {k : i ∈ Nk} as the set of children of

Σ[i]. For i ∈ M, Aii ∈ Rni×ni represent the linear nominal

dynamics, while Bi ∈ Rni×mi , gi(·) : Rni × Rpi → R

and hi(·) : Rni × Rpi → Rmi , consider possibly nonlin-

ear nominal dynamics. Nonlinear dynamics can also include

known relationships with parent subsystems by means of

the interconnection variables. Instead, wi(·) : Rpi → Rni

represents the unknown possibly nonlinear coupling among

subsystems and includes also modeling uncertainties.

Remark 1. The considered class of nonlinear functions is

general: the only constraints are the matched dependence on

the control input and the fact that the subsystems are input-

decoupled. These two constraints are necessary for the design

of the local tube-based controller in Section IV.

We assume that the state vector is completely measurable.

On the other hand, the distributed FD architecture monitors

a state vector x̃[i] which is extended with respect to the
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controlled one, since in addition to x[i] it includes some

variables x[j,s], j ∈ Ni, that it ”‘shares”’ with parent sub-

systems. These variables are a subset of the interconnection

variables ψ[i] influencing the dynamics of i and are directly

measured by the diagnoser monitoring the i-th subsystem.

We call shared variables of i both the variables belonging

to parents subsystems monitored also by subsystem i, and the

variables of subsystem i monitored by children subsystems.

Remark 2. In this paper, the structure of the subsystems,

and hence the decomposition of the large-scale system and

the choice of the variables that can be shared, is assumed

to be given a priori. An in-depth discussion about optimality

of the decomposition is out of the scope of this paper. Since

shared variables are monitored by more than one subsystem,

it is reasonable that they represent a connection between

subsystems.

Therefore, the model of the system dynamics exploited by

the i-th local diagnoser can be described as:

Σ̃[i] : x̃+[i] =Ãiix̃[i] + B̃i[g̃i(x̃[i], ψ̃[i], u[i]) + h̃i(x̃[i], ψ̃[i])]

+ w̃i(ψ̃[i]) + φi(x̃[i], ψ̃[i], u[i], t) (2a)

y[i] =x̃[i] + ̺[i] (2b)

where x̃[i] ∈ Rñi , u[i] ∈ Rmi , y[i] ∈ Rñi and ̺[i] ∈ Rñi ,

i ∈ M, are the local state, input, output and unknown

measurement error, respectively, for diagnosis purposes. The

vector of interconnection variables ψ̃[i] ∈ Rp̃i collects any

state and input variable of the parents subsystems influencing

the dynamics of Σ̃[i], namely the variables ψ[i] not measured

by the i-th diagnoser, plus any state and input variable of

j ∈ Ni influencing the dynamics of the shared variables of i
not controlled by i. As a consequence, the state matrix Aii is

extended to Ãii to describe the linear dynamics of the state

x̃[i], and similarly B̃i and functions g̃i, h̃i and w̃i, i ∈ M.

The fault detection model may also consider more complex

dynamics (compared to the control model) by means of the

general nonlinear functions g̃i and h̃i. Instead, the function

φi(·) : Rñi × Rp̃i × Rmi × R → Rñi represents the fault-

function, capturing deviations of the dynamics of Σ̃i from

the nominal healthy dynamics. Note that x̃[i] and ψ̃[i] are

defined in a way such that computing the left hand side of (2)

requires at most information from subsystems Σ[j], j ∈ Ni. In

other words only transmission of information from parent to

child subsystems is required. This is a notable feature of the

proposed approach. The following assumptions are in place.

Assumption 1. (I) The pair (Aii, Bi) is stabilizable, ∀i ∈
M.

(II) Subsystems Σ[i], i ∈ M are subject to the constraints

x[i] ∈ Xi, u[i] ∈ Ui, ̺[i] ∈ Oi , (3)

where Xi, Ui and Oi are compact, convex and contain

the origin in their nonempty interior. Constraints (3)

also induce suitable state constraints on Σ̃[i], i ∈ M,

namely X̃i, collecting all the possible values that each

component of the vector x̃[i] can have. Similarly, we

denote with Ψi (resp. Ψ̃i) constraints induced on in-

terconnection variables ψ[i] (resp. ψ̃[i]), i.e. they collect

all possible values that variables ψ[i] (resp. ψ̃[i]) can

assume, given the state constraints in (3).

(III) Functions wi(·) are bounded for all i ∈ M, i.e. there

are bounded sets Wi ⊂ Rni such that wi(Ψi) ⊆ Wi.

Moreover if Ψ̄i ⊂ Ψ̂i then wi(Ψ̄i) ⊂ wi(Ψ̂i).
(IV) Functions gi(x[i], ψ[i]) are such that

Gi = sup
x[i]∈Xi,ψ[i]∈Ψi

1
∣

∣gi(x[i], ψ[i])
∣

∣

< +∞.

(V) The measurement error ̺[i] is bounded for all i ∈ M at

each time t, i.e. |̺[i]| ≤ ¯̺[i] component-wise.

Now, let us provide a formal characterization of the system’s

decomposition already described in qualitative terms.

Definition 2 ([3]). A decomposition of the LSS into subsystems

Σ[i], i ∈ M is said non-overlapping if no state variables are

shared between subsystems. Otherwise, the decomposition is

termed overlapping.

In this section, we have introduced the models and the two

different decompositions of the LSS we are going to consider.

For what concerns the control architecture, a non-overlapping

decomposition is defined, so that each state component is

controlled by only one local controller. On the other hand, an

overlapping decomposition is proposed for the FD framework,

which implies that the shared state variables may be monitored

by more than one local diagnosers. In the following sections,

we explain how to design a control and a FD architectures

suitable for a PnP framework.

IV. NONLINEAR TUBE-BASED DISTRIBUTED MPC

In this section, we illustrate the proposed distributed tube-

based MPC controller. We design the controller so that it is

able to guarantee stability of the LSS interconnected subsys-

tems both during the healthy behaviour (when no faults are act-

ing on the LSS) and during the reconfiguration process (when

a faulty subsystem is detected and subsequently unplugged).

More specifically, we derive the DiMPC controller such that

it preserves overall feasibility and stability even when a faulty

subsystem is disconnected.

Concerning the control architecture, we consider a non-

overlapping decomposition of the LSS. Note that, in order to

design the local controllers, the model in (1) is used where

wi(·) represents coupling terms only. In the following, we

propose a distributed controller that can be designed in a PnP

fashion by treating parent subsystems as bounded disturbances.

Only for design purposes, as in [29], we define a nominal

model for each subsystem (1)

Σ̂[i] : x̂+[i] = Aiix̂[i] + Biv[i] , (4)

where v[i] is the input. As in [29] our goal is to relate inputs

v[i] in (4) to u[i] in (1) and compute sets Zi ⊆ Xi, i ∈ M
such that

x[i](0) ∈ x̂[i](0)⊕ Zi ⇒ x[i](t) ∈ x̂[i](t)⊕ Zi, ∀t ≥ 0. (5)

In other terms, as in [18] and [19], we want to confine x[i](t) in

a tube around x̂[i](t) of section Zi. Assume that if x[i] ∈ Zi

there exists u[i] = κ̄i(x[i]) : Zi → Ui such that x+[i] ∈ Zi,
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∀x[j] ∈ Xj , j ∈ Ni. Therefore if x[i] ∈ x̂[i] ⊕ Zi and the

controller

C[i] : u[i] = gi(x[i], ψ[i])
−1[−hi(x[i], ψ[i]) + v[i]

+ κ̄i(x[i] − x̄[i])] (6)

is used, where x̄[i] = x̂[i], then, for all v[i], we have x+[i] ∈

x̂+[i] ⊕ Zi. Controller C[i] is based on the well-known idea of

“canceling” the nonlinearities in the state equations. This is

possible because in (1) the nonlinear terms are matched, i.e.

they can be directly modified through the control input u[i]
[30].

Remark 3. We highlight that the proposed controller can be

easily generalized to the case where wi(·) represents both

coupling terms and model uncertainties. We refer the interested

reader to Chapter 7 of [31] where robustness has been studied

for linear LSSs.

We note that controller C[i] is distributed since it depends on

the state variables of parent subsystems by means of the inter-

connection variables, that have to be communicated during on-

line phases between neighbouring control stations. Following

[29], the next goal is to compute tightened constraints X̂i ⊆ Xi

and Vi ⊆ Ui in order to guarantee that

x̂[i] ∈ X̂i and v[i] ∈ Vi ⇒ x+[i] ∈ Xi and u[i] ∈ Ui,

at all time instants. Tightened state constraints must satisfy the

following inclusions

X̂i ⊕ Zi ⊆ Xi , (7a)

Gi (Hi ⊕ Vi ⊕ Uzi) ⊆ Ui , (7b)

where Hi = hi(Xi,Ψi) and Uzi = κ̄i(Zi). Obviously, as in

nonlinear tube-based MPC theory, the evaluation of sets Gi

and Hi can be very challenging. Estimates of these sets can be

obtained using methods of reachability analysis for nonlinear

systems, as those discussed in [32]. Therefore, since we want

to stabilize the nominal subsystems (4) and to guarantee

satisfaction of tightened state constraints, we need to solve

online the following local MPC problem PNi (x[i](t)):

min
x̂[i](0)

v[i](0:Ni−1)

Ni−1
∑

k=0

ℓi(x̂[i](k), v[i](k)) + Vfi(x̂[i](Ni)) (8a)

x[i](t)− x̂[i](0) ∈ Zi (8b)

x̂[i](k + 1) = Aiix̂[i](k) +Biv[i](k) k ∈ 0 : Ni − 1 (8c)

x̂[i](k) ∈ X̂i, v[i](k) ∈ Vi k ∈ 0 : Ni − 1 (8d)

x̂[i](Ni) ∈ X̂fi (8e)

In (8), Ni > 0 is the control horizon, ℓi(·) : Rni×mi → R0+

is the stage cost, Vfi(·) : R
ni → R0+ is the final cost and X̂fi

is the terminal set. Furthermore, following [29], in (6) we set

v[i](t) = v[i](0|t), x̄[i](t) = x̂[i](0|t) (9)

where v[i](0|t) and x̂[i](0|t) are optimal values of the variables

v[i](0) and x̂[i](0) in the MPC-i problem (8). Note that in (9)

we defined the variable x̄[i] depending on the nominal state

x̂[i], i.e. the state of the dynamics of the subsystem Σ[i] without

coupling terms. Note also that the re-definition of x̄[i] as in

(9) is at the core of the tube-MPC scheme proposed in [29].

Algorithm 1 summarizes the steps needed for computing

function κ̄i(·) in (6), sets Zi, Uzi , X̂i, Vi, X̂fi and functions

ℓi(·) and Vfi(·). During the design phases, the sets Xi are

communicated to child subsystems, while sets Xj are received

from fathers.

Algorithm 1 Design of controller C[i] for subsystem Σ[i]

Input: Aii, Bi, Xi, Ui, gi(·), hi(·), wi(·), Ni, Fi
Output: controller C[i]

(I) Send sets Xi to child subsystems j ∈ Fi
(II) Receive sets Xj from parent subsystems j ∈ Ni

(III) Compute the set

Wi = wi(Ψi) (10)

and choose Z̄0
i such that Xi ⊇ Z̄0

i ⊇ Wi ⊕ Bωi
(0) for

a sufficiently small ωi > 0. If Z̄0
i does not exist, then

stop (the controller C[i] cannot be designed)

(IV) Check the LP feasibility condition in Step (ii) of Al-

gorithm 1 in [19]. If it is not verified, then stop (the

controller C[i] cannot be designed)

(V) Execute Steps (iii) and (iv) of Algorithm 1 in [19].

They provide the MPC-i problem and the function κ̄i(·)
defined as in (25) in [19]

Steps (IV) and (V) of Algorithm 1, that provide constraints

in (7), are the most computationally expensive because in-

volve Minkowski sums and differences of polytopic sets. The

interested reader is referred to Sections 3.1-3.3 in [19], where

we show how to avoid burdensome computations exploiting

results from [33] and how to compute a suitable function κ̄i in

(6) through LP. We also highlight that Step (IV) is the core of

the algorithm: by checking the LP feasibility condition in Step

(ii) of Algorithm 1 in [19], we are able to verify if there exists

a set Zi guaranteeing Zi ⊆ Xi and (5). This is possible using

a suitable parametrization of the RCI set Zi, as proposed in

[33]. Note also that, by construction, Wi ⊆ Zi and, therefore,

the condition Zi ⊆ Xi is more difficult to fulfill for large sets

Wi modeling coupling uncertainties.

Next, we give the main results on stability and constraints

satisfaction for the network of subsystems controlled by dis-

tributed controllers C[i]. It is in fact important for the proposed

fault-tolerance scheme to be able to work in presence of

disturbances, also in healthy conditions.

Theorem 1. Let Assumption 1 hold. Assume state-feedback

controllers C[i] are computed using Algorithm 1 and de-

fine x(t) = (x[1], . . . , x[M ]). Let XNi = {s[i] ∈
Xi : (8) is feasible for x[i](t) = s[i]} be the feasibility region

for the MPC-i problem and XN =
∏

i∈M XNi . Then, the origin

of the closed-loop system is asymptotically stable. Moreover,

XN is a region of attraction for the origin and x(0) ∈ XN

guarantees state and input constraints are fulfilled at all time

instants.
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Proof: The proof of Theorem 1 is given in Appendix A.

Remark 4. Notice that Algorithm 1 provides an off-line de-

centralized procedure for designing distributed PnP regulators

and that it can be executed in parallel for all subsystems.

Therefore, as shown in [18], [19] and as we will see jointly

with the FD architecture presented in Sections VII and VII-B,

plug-in or unplugging operations involve only the update of

a limited number of controllers. Differently from [18] and

[19] (where only linear subsystems have been considered), the

proposed regulator allows to control subsystems described by

matched nonlinearities and nonlinear couplings with parents.

V. THE FAULT DETECTION ARCHITECTURE

In this section, we design a distributed FD architecture for

the considered PnP framework. Each subsystem is equipped

with a local diagnoser. According to the classical model-

based FD approach, an estimate ˆ̃x[i] of the local state vari-

ables is computed; the estimation error ǫ[i] , y[i] − ˆ̃x[i]
is compared component-wise with a suitable time-varying

detection threshold ǭ[i] ∈ R
ñi

+ , hence obtaining a local fault

decision classifying the status of the subsystem either as

healthy or faulty. If the residual crosses the threshold, under an

appropriate setting we can conclude that a fault has occurred.

The condition |ǫ[i,k](t)| ≤ ǭ[i,k](t), ∀k = 1 : ñi is a necessary

(but generally not sufficient) condition for the hypothesis

Hi : “Subsystem Σ̃[i] is healthy”. If the condition is violated

at some time instant, then the hypothesis Hi is falsified.

In the PnP framework, the diagnosers are designed so to

guarantee the absence of false alarms and the convergence of

the estimator error both during healthy operating conditions

and during the reconfiguration process: the healthy subsystems

diagnosers have to continue to work properly also when the

faulty subsystem(s) is (are) unplugged and then plugged-in

after problem solution.

A. The Fault Detection Estimator

For detection purposes, each subsystem is equipped with a

local nonlinear estimator, based on the local model Σ̃[i] in (2).

The k-th non-shared state variable of Σ̃[i] can be estimated as

ˆ̃x+[i,k] =λ(
ˆ̃x[i,k] − y[i,k]) + Ãii,ky[i] + B̃i,k[g̃i(y[i], z[i], u[i])

+ h̃i(y[i], z[i])],

where the filter parameter is chosen in the interval 0 < λ < 1
in order to guarantee convergence properties, z[i] = ψ̃[i] + θ[i]
is the vector of measured interconnection variables available

for diagnosis, θ[i] collects the involved measurement error ̺[j],

j ∈ Ni, Ãii,k and B̃i,k are the k-th row of matrices Ãii and B̃i,
respectively. Using the shared variable x̃[i,ki] = x̃[j,kj ], where

ki and kj are the ki-th and kj-th components of vectors x̃[i]
and x̃[j], respectively, we can take advantage of the redundancy

by using a kind of deterministic consensus protocol (see [13],

[15]). In the following, Sk is the set of subsystems Σ̃[i] sharing

a given state variable k of the LSS. The estimates of shared

variables are provided by

ˆ̃x+[i,ki] = λ(ˆ̃x[i,ki ] − y[i,ki]) +
∑

j∈Sk

W k
i,j

[

ˆ̃x[j,kj ] −
ˆ̃x[i,ki]

+Ãjj,kjy[j] + B̃j,kj [g̃j(y[j], z[j], u[j]) + h̃j(y[j], z[j])]
]

(11)

where, for each shared component k, W k
i,j are the components

of a row-stochastic matrix W k, which will be defined in

Subsection V-C, and is designed to allow plugging-in and

unplugging operations. By now, notice that W k collects the

consensus weights used by Σ̃[i] to weight the terms communi-

cated by Σ̃[j], with j ∈ Sk, to monitor component k. In fact,

as regards variables estimation, each subsystem communicates

with parents and children subsystems sharing that variable.

We also note that (11) holds also for the case of non-shared

variables, since, in this case, Sk = {i}, and W k
i,i = 1 by

definition. In the following, for the sake of simplicity, we drop

the subscript of the shared component index k, that is we write

x̃[i,k] instead of x̃[i,ki].

B. The detection threshold

In order to define an appropriate threshold for FD, we

analyze the dynamics of the local diagnoser estimation er-

ror when the subsystem is healthy. Defining W k such that
∑

j∈Sk
W k
i,j = 1 and since for shared variables ∀i, j ∈ Sk it

holds

Ãii,kx̃[i] + B̃i,k[g̃i(x̃[i], ψ̃[i], u[i]) + h̃i(x̃[i], ψ̃[i])]

= Ãjj,kx̃[j] + B̃j,k[g̃j(x̃[j], ψ̃[j], u[j]) + h̃j(x̃[j], ψ̃[j])],

the k-th state estimation error dynamics is given by

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] − Ãjj,k̺[j] + wj,k(ψ̃[j])

+B̃j,k(∆g̃j,k +∆h̃j,k)− λ̺[j,k]

]

+ λ̺[i,k] + ̺+[i,k] ,

where ∆g̃j,k , g̃j,k(x̃[j], ψ̃[j], u[j]) − g̃j,k(y[j], z[j], u[j]) and

∆h̃j,k , h̃j,k(x̃[j], ψ̃[j])− h̃j,k(y[j], z[j]).
As in [15], using the triangular inequality, we can bound

the estimation error, guaranteeing no false-positive alarms. By

taking the absolute value of ǫ+[i,k] component-wise, we get

|ǫ+[i,k]| ≤
∑

j∈Sk

W k
i,j

[

λ|ǫ[j,k]|+ |Ãjj,k̺[j]|+ λ|̺[j,k]|

+|B̃j,k(∆g̃j,k +∆h̃j,k)|+ |wj,k(ψ̃[j])|
]

+ λ|̺[i,k]|+ |̺+[i,k]| .

Therefore, we define the following time-varying threshold

ǭ[i,k] that can be computed in a distributed way:

ǭ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǭ[j,k] +
∣

∣

∣Ãjj,k

∣

∣

∣ ¯̺[j] + w̄j,k(z[j])

+
∣

∣

∣B̃j,k

∣

∣

∣ (∆ḡj +∆h̄j) + λ ¯̺[j,k]

]

+ λ ¯̺[i,k] + ¯̺+[i,k] , (12)

where ∆ḡj = maxx̃[j]∈X̃j ,ψ̃[j]∈Ψ̃j
|∆g̃j(t)| and ∆h̄j =

maxx̃[j]∈X̃j ,ψ̃[j]∈Ψ̃j
||∆h̃j(t)||∞. It is worth noting that As-

sumption 1 implies that the state and input variables are
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bounded; hence all quantities in (12) are bounded as well;

moreover, it is possible to define ∀i, k at each time step a

bound w̄i,k , so that
∣

∣wi,k(z[i])
∣

∣ ≤ w̄i,k(z[i]); ¯̺[i,k] is defined in

Assumption 1. The threshold dynamics (12) can be initialized

with ǭ[i,k](0) = ¯̺[i,k](0).

Remark 5. For FD purposes, the communication between

subsystems is limited. It is not necessary, in general, that each

diagnoser knows the model of parent subsystems. Instead, in

the shared case (11), it is sufficient that each subsystem Σ̃[j]

sends to subsystems i ∈ Sk only a limited number of variables:

the interconnection variables z[i] and the consensus terms for

estimates (ˆ̃x[j,kj ] and Ãjj,kj y[j] + B̃j,kj [g̃j(y[j], z[j], u[j]) +

h̃j(y[j], z[j])) and thresholds (λ(ǭ[j,k] + ¯̺[j,k]) +
∣

∣

∣Ãjj,k

∣

∣

∣ ¯̺[j] +
∣

∣

∣
B̃j,k

∣

∣

∣
(∆ḡj +∆h̄j) + w̄j,k(z[j])), locally computed.

The threshold in (12) guarantees the absence of false-

positive alarms before the occurrence of the fault caused by the

uncertainties. On the other hand, this is a conservative result

since it does not allow to detect faults whose magnitude is

lower than the uncertainties magnitude in the system dynam-

ics. This issue is formalized in the fault detectability section

(Section VI), where we consider also the issue that the fault

may be hidden by the control action.

C. The consensus matrix

In this subsection, we explain how to properly define

the consensus matrix in order to allow for PnP operations.

Consensus is applied to the shared variables, i.e. state variables

representing the interconnection between two or more subsys-

tems, measured and monitored by more than one diagnoser.

For PnP capabilities, we use a time-varying weighting matrix

W k whose dimension is equal to the maximum number of

subsystems that can be plugged in sharing that variable. This

is not a restrictive assumption since it is possible to choose

a dimension as large as wanted. Each row can have non null

elements only on correspondence of connected (plugged-in)

subsystems. In the case that, at a given time, the variable is not

shared (and hence at most one subsystem is using it) the only

non-null weight is the one corresponding to the considered

subsystem (this does not affect the convergence of the FD

estimator as illustrated in Subsection V-D).

Indeed, the introduction of the proposed time-varying con-

sensus matrix is advantageous from a second perspective.

Since the proposed threshold is conservative, it is important

to choose it as small as possible. Therefore, in the case of

shared variables, similarly as in [34], we design a time-varying

consensus-weighting matrix W k able to minimize the adaptive

threshold with respect to the consensus weights, by choosing

the smallest threshold term from all the threshold additive

terms in (12). In this consensus protocol, it is convenient to

weight more the subsystem which has got the lowest threshold

component, hence the subsystem that has lower uncertainty in

its measurements and in the local model. These aims can be

achieved by defining the following consensus matrix, where

each (i, j)-th component is computed as:

W k
i,j =















1 if j = argminj∈Sk λ(ǭ[j,k] + ¯̺[j,k]) +
∣

∣

∣Ãjj,k

∣

∣

∣ ¯̺[j]

+
∣

∣

∣
B̃j,k

∣

∣

∣
(∆ḡj +∆h̄j) + w̄j,k(z[j])

0 otherwise
(13)

At each time-step each local fault-diagnoser receives esti-

mates and consensus terms of variable x̃[i,k] only from the

subsystems sharing it at that specific time. Then, it selects

the contribution affected by “smaller uncertainty”. It is worth

noting that the set Sk is time-varying and collects only the

subsystems that share variable k and that are connected to

the LSS at that specific time instant. As briefly discussed

in Section VI, fault-detectability may be improved by this

approach. The intuitive idea is that the consensus approach

used to estimate the shared variables allows to decrease the un-

certainty on those variables, thus reducing the conservativeness

of the proposed thresholds and improving fault detectability.

The shared variables may then be chosen in order to improve

the detectability of some faults we are interested to detect.

In the architecture proposed in this paper using the designed

time-varying consensus matrix, sharing some variables always

improves (or does not change) detectability properties. Given

the particular structure of the considered networked subsys-

tems with bounded coupling, the choice of the shared variables

is constrained by Assumption 1(III). In this paper anyway, the

structure of the subsystems, and so the decomposition of the

large-scale system and the choice of the variables that can be

shared, is assumed to be given a priori.

D. Estimator convergence

Next, we address the convergence properties of the overall

estimator before the possible occurrence of a fault, that is for

t < T0. Towards this end, we introduce a vector formulation

of the state error equation for sake of compacting the notation,

just for analysis purposes. Specifically, we introduce the ex-

tended estimation error vector ǫk,E , which is a column vector

collecting the estimation error vectors of the Nk subsystems

sharing the k-th state component: ǫk,E , col
(

ǫ[j,k] : j ∈ Sk
)

.

Hence, the dynamics of ǫk,E can be described as:

ǫ+k,E =W k
[

λǫk,E + Ãk,E̺E + B̃k,E(∆g̃E +∆h̃E)

+wk,E − λ̺k,E ] + λ̺k,E + ̺+k,E , (14)

where ̺k,E is a column vector, collecting the corresponding

kj value of vector ̺[j], i.e. ̺[j,kJ ], for each j ∈ Sk; Ãk,E is

a block matrix with Nk rows and nE =
∑Nk

j=1 ñJ columns,

j ∈ Sk, where the elements on the diagonal are the row vectors

Ãjj,k; B̃k,E is defined in an analogous way. Finally, ̺E , ∆g̃E ,

∆h̃E and uE are column vectors collecting the vectors ̺[j],

∆g̃j , ∆h̃j and u[j], with j ∈ Sk, respectively, wk,E is defined

in an analogous way. The following convergence result is now

in place.

Proposition 1. System (14), where the consensus matrix is

given by (13), is BIBO stable.
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Proof: The proof is carried out exploiting the one reported

in [34] in a purely distributed fault-diagnosis framework.

Specifically, since W k is a stochastic matrix, its norm is

always equal to 1. Therefore, since 0 < λ < 1, then also

||λW k(t)|| ≤ γ < 1, with 0 < γ < 1. Let us define:

Uk,E(t) =W k(t)
[

Ãk,E̺E(t) + B̃k,E(∆g̃E(t) + ∆h̃E(t))

+wk,E(t)− λ̺k,E(t)] + λ̺k,E(t) + ̺k,E(t+ 1).

We have:

||ǫk,E(t+ 1)|| ≤ ||λW k(t)ǫk,E(t)|| + ||Uk,E(t)||

≤ ||λW k(t)||||λW k(t− 1)|| . . . ||λW k(0)||||ǫk,E(0)||

+

t
∑

j=1

||λW k(t)||||λW k(t− 1)|| . . . ||λW k(j)||||Uk,E(j)||

≤ γt||ǫk,E(0)|| +
t

∑

j=1

γt−j||Uk,E(j)||

≤
1

1− γ
sup
j≥1

||Uk,E(j)||

For t → ∞, the state of the unforced system converges

to zero and the series converges to a bounded value (see

results in [35]). Moreover, using results in [36] for un-

forced systems, we can state that a system x(t + 1) =
A(t)x(t), with A(t) ∈ convh(A1, . . . , AN ) is exponen-

tially stable iff ∃ a sufficiently large integer q such that

||Ai1 Ai2 . . . Aiq || ≤ γ < 1, ∀(i1, . . . , iq) ∈ {1, . . . , N}q.
In our case, therefore, we only need to analyze matrix W k(t).
Since each row of W k(t) has all null elements except one

equal to 1, the product W k(t)W k(t − 1) . . .W k(0) is a

stochastic matrix. Hence, since 0 < λ < 1, we have

||λt(W k(t)W k(t− 1) . . .W k(0))|| < 1 and the hypothesis is

satisfied. Finally, since all the uncertain terms are bounded,

then the discrete-time system (14) is BIBO stable.

VI. FAULT DETECTABILITY ANALYSIS

In this section, we analyze the fault detectability properties

of the proposed FD architecture. In particular, we highlight the

effects of the control input on fault detectability conditions.

Let us now consider the case of a faulty subsystem, that is,

suppose that a fault φ(·) occurs at an unknown time t = T0 on

the k-th state variable. In the general case of a shared variable,

φk,E = φ[·,k](1, . . . , 1)
T denoting the extended fault function

vector collecting for the component k the same fault value for

each subsystem sharing the k-th variable. After the occurrence

of the fault, for t > T0, the state estimation error dynamics is

given by:

ǫ+k,E =W k
[

λǫk,E + Ãk,E̺E + B̃k,E(∆g̃E +∆h̃E)

+wk,E − λ̺k,E ] + λ̺k,E + ̺+k,E + φk,E .

Then, at a time instant t1 > T0, the estimation error is

ǫk,E(t1) =

t1−1
∑

h=0

(λW k(h))t1−1−h[−W k(h)Ãk,E̺E(h)

+ w̃k,E(h) +W k(h)B̃k,E(∆g̃E(h) + ∆h̃E)

− λW k(h)̺k,E(h) + λ̺k,E(h) + ̺k,E(h+ 1)

+ φk,E(h)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0) .

Now, we derive a sufficient condition in order to characterize a

class of faults that can be detected by the proposed FD scheme.

In order to detect the occurrence of the fault at a certain time

t1, the following inequality has to be satisfied:

|ǫk,E(t1)| > ǭk,E(t1),

for at least one subsystem i ∈ Sk. When dealing with vectors,

in this paper, the inequality operator is applied component-

by-component. Using the triangle inequality and the threshold

definition (12), the following is implied

|ǫk,E(t1)| ≥ −ǭk,E(t1) +

∣

∣

∣

∣

∣

t1−1
∑

h=T0

[λt1−1−hφk,E(h)]

∣

∣

∣

∣

∣

.

Since φk,E is a vector whose components are all equal to

φk = φi,ki = φj,kj , it is easy to see that the FD condition
∣

∣ǫ[i,k](t1)
∣

∣ > ǭ[i,k](t1) is satisfied if

∃t1 > T0 :

∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−hφk(h)

∣

∣

∣

∣

∣

> 2ǭ[i,k](t1) (15)

for at least one component k ∈ {1 . . . , ñi}, thus allowing

the detection of a fault at time t1. Condition (15) implicitly

characterizes the class of faults that are detectable by the

proposed FD architecture at time t1. Moreover, thanks to the

introduction of the time-varying consensus weighting matrix,

the threshold on the right-hand-side of (15) is the smallest

one in the set of the proposed conservative thresholds of

subsystems sharing the same variable, guaranteeing no false

alarms. The choice of a smaller threshold makes it easier the

detectability at the general time instant t1, thus we can say

intuitively from (15) that the class of detectable faults at time

t1 is enlarged thanks to this choice.

In the case that the fault detection subsystem are input-

decoupled as the control ones, ∆ḡE can be computed as

∆ḡE |uE(h)|. It is then worth emphasizing the influence of the

control inputs on the fault detectability condition by rewriting

(15) as
∣

∣

∣

∣

∣

t1−1
∑

h=T0

λt1−1−hφk,E(x̃E , ψ̃E , uE , h)

∣

∣

∣

∣

∣

>

2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
( ∣

∣

∣
Ãk,E

∣

∣

∣
¯̺E(h) + w̄k,E(h)

+
∣

∣

∣B̃k,E

∣

∣

∣ (∆ḡE |uE(h)|+∆h̄E) + λ ¯̺k,E(h)
)

+ λ ¯̺k,E(h) + ¯̺k,E(h+ 1)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0)
)

.

(16)
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Actually, the norm of the control term uE(t1 − 1) affects the

threshold on the right side of the inequality and, in particular,

it may have a detrimental effect on the fault detectability

by increasing the detection threshold. On the other hand, the

control influences also the left part of the condition inequality,

by acting on the fault function, which depends directly on

uE(t1 − 1) and, by means of x̃E , it depends also on the past

history of the control input. In order to analyze this point, it

is possible to rewrite (16) as

∣

∣

∣

∣

∣

t1−1
∑

h=T0

(λW k(h))t1−1−hW k(h)φk,E(x̃E , ψ̃E , uE, h)

∣

∣

∣

∣

∣

>

2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
∣

∣

∣B̃k,E

∣

∣

∣ (∆ḡE |uE(h)|

+∆h̄E)] + ςE(h)
)

(17)

where

ςE = 2
(

t1−1
∑

h=0

(λW k(h))t1−1−h[W k(h)
( ∣

∣

∣
Ãk,E

∣

∣

∣
¯̺E(h)

+ w̄k,E(h) + ∆h̄E) + λ ¯̺k,E(h)
)

+ λ ¯̺k,E(h)

+ ¯̺k,E(h+ 1)] +

t1−1
∏

h=0

(λW k(h))ǫk,E(0)
)

is the threshold part that does not depend directly on the

extended control input. Therefore, it is constant w.r.t. the

control input2. As a consequence, the contribution of the

control input to detectability properties at a certain time t1
could be highlighted by deriving the vectors of functions
∣

∣

∣φk,E(xE , ψ̃k,E , uE, h)
∣

∣

∣ and

∣

∣

∣B̃k,E

∣

∣

∣ (∆ḡE |uE(h)| + ∆h̄E)

w.r.t. the vector uE norm component-by-component. If it is

possible to obtain the derivatives vector of the fault function

we want to detect (as example, if it is possible to assume that

it is a Lipschitz function w.r.t. the control input norm and to

know the Lipschitz constant), then, it is possible to compare

the two derivatives for each subsystem i ∈ Sk. In fact, the

right side term is linear w.r.t. to the norm of the control input.

Intuitively, if the control input norm makes the magnitude of

the fault function grow less than the threshold bounds, then the

control input has a detrimental effect on detectability at time

step t1, since it increases the uncertainty threshold terms that

hide the fault effects. On the other hand, if the control input

norm makes the magnitude of the fault function grow much

more than the threshold bounds, then it could be possible to

take advantage of the control input effect trying to improve

detectability. A detailed analysis of this issue is out of the

scope of this paper.

VII. RECONFIGURATION STRATEGY

In the previous sections, we derived suitable control and

fault detection architectures for a PnP framework. We now

2This could be not always true since the control input could influence
also the bounds of the measurement error and coupling by means of the
state dynamics. However in some cases this dependence could be neglected
especially when considering conservative bounds.

explain how to use them during plugging-in and unplugging

operations. In this section, the reconfiguration of the LSS,

in case of detection of a fault in one of the subsystems, is

addressed (see Fig. 2 for a visual description). We assume

that, when the plant is started, all subsystems are healthy,

governed by local controllers designed through Algorithm 1

and monitored by local diagnosers proposed in Section V.

• At a certain time, in subsystem Σ̃[j], one or more residual

components may cross the corresponding threshold. We

then have local fault detection (see Fig. 2-a)).

• Depending on the specific application context, two dis-

tinct actions may turn out to be feasible: i) immediate

“disconnection” of the faulty subsystem or ii) continua-

tion of the system operation in “safety mode”. As in this

paper we deal with an active distributed fault-tolerant

control scheme, we consider only the first scenario.

Subsystem Σ̃[j] is then disconnected from the networked

system. This is the unplugging step and is shown in Fig.

2-b) in a pictorial way.

• Due to subsystem Σ̃[j] unplugging, the neighboring sub-

systems have to reconfigure their local controllers and

diagnosers. This is described in Fig. 2-c) and explained

in Subsection VII-A.

• When subsystem Σ̃[j] has been repaired or replaced, it

can be re-plugged in into the networked system and the

neighboring subsystems local controllers and diagnosers

are retuned in Fig. 2-d) and Subsection VII-B).

In the following, the unplugging after fault-detection and

the possible plug-in after subsystem repair/replacement are

addressed separately.

Fig. 2: The reconfiguration process: the a), b), c), d) steps

described in Section VII.

A. Subsystem unplugging after fault detection

In this section, we show how to reconfigure local controllers

and fault-detectors when a fault is detected in a subsystem.

The proposed strategy is based on the isolation of the faulty
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subsystem and on the reconfiguration of controllers and fault-

detectors to guarantee closed-loop stability, constraint satis-

faction and monitoring of the new network with one less

subsystem.

In the following, we describe in depth the needed operations

after a fault detection. Let t = t1 the detection time of a fault in

the j-th subsystem (Σ̃[j] in the FD architecture and Σ[j] in the

control architecture), then the faulty subsystem is unplugged

and the involved subsystems reconfigured.

As regards the distributed FD, we need to perform the follow-

ing operations.

• In the children subsystems i ∈ Fj , for t ≥ t1, the

components of ψ̃[i] and z[i] related to subsystem Σ̃[j]

become equal to 0. Hence, for t ≥ t1, the interconnection

variables and measurements related to subsystem Σ̃[j] do

not influence the time-behaviour of the state estimation

(11) and of the threshold (12) of subsystems Σ̃[i].

• In the children subsystems i ∈ Fj , the adaptive threshold

ǭ[i] is computed through (12) by not considering the cou-

pling terms related to the j-th subsystem when computing

w̄i for t ≥ t1.

• In the neighbouring subsystems i, with i ∈ Fj or i ∈ Nj ,

sharing some variables with Σ̃[j], the weights associated

with Σ̃[j] in the consensus matrices W k computed in

(13) are set to zero, that is, j /∈ Sk for t ≥ t1 for all

the shared variables k. This allows to manage the fact

that after unplugging the connected subsystems have not

access anymore to the signals from Σ̃[j].

Beyond the above changes in the local estimators embedded

in the distributed FD framework as a consequence of the

subsystem unplugging after the detection of a fault, the re-

configuration of the control architecture has to be addressed as

well. Under Assumption 1-(III), for each i ∈ Fj , a contraction

of the set Ni takes place, since subsystem Σ[i] has one parent

less. Then, a contraction takes place also on set Wi in (10) and

the set Z̄0
i already computed still verifies the inclusions in Step

(III) of Algorithm 1. Therefore, for each i ∈ Fj , the previous

choice of Z̄0
i (made before the unplugging) still guarantees

the feasibility of the LP problem in Step (IV) of Algorithm 1

which finally implies that there is no need of redesigning the

controller C[i] to keep the overall stability.

In conclusion, thanks to the distributed MPC controllers and

distributed fault detectors schemes we designed, the detection

of a fault in a subsystem implies the isolation of the faulty

subsystem and the reconfiguration of local controllers and fault

detectors, at most, of parent and children subsystems. This

guarantees that the fault is not propagated in the network.

B. Subsystem plugging-in

The plug-in of a subsystem into the LSS interconnected

structure may be needed in case of replacement of a previ-

ously unplugged subsystem the fault diagnoser in use before

subsystem disconnection can be reused. Since we assumed

controllers C[i] existed for the subsystem and its children when

it was connected to the plant, this operation is always feasible

as regards the control framework3. For what concerns the

distributed FD architecture, thanks to the way the time-varying

shared variables estimator is defined, the plug-in is always

feasible as well.

Remark 6. Note that, differently from [18], [19], here we do

not consider the plugging-in of new subsystems but just the

reconnections of subsystems after they have been repaired.

Therefore, existence of controllers C[i] when all subsystems

are healthy guarantees that after a plugging-in or unplugging

operation in real-time

• constraints on the input and states of all subsystems are

still fulfilled;

• the new mode of operation of the whole plant is asymp-

totically stable (Theorem 1).

However, as well known in the hybrid system literature [37],

frequent and persistent switching between different modes of

operation could compromise asymptotic stability of the whole

plant. A remedy could be assuming a minimal dwell-time

between consecutive switches [37] although this issue deserves

further investigations.

Remark 7. For what concerns the control, the operations

that have to be performed on-line involve the computation

of the MPC control input and, in case of reconfiguration

operations, the reconfiguration of neighbouring controllers. As

regards the fault detection, it is necessary to compute at each

sampling time the state estimates and thresholds, including the

computation of the time-varying consensus matrix.

VIII. EXAMPLES

vdPO 1 vdPO 2 vdPO 3 vdPO 4 vdPO 5

vdPO 13

vdPO 21

vdPO 12 vdPO 11 vdPO 10 vdPO 9

vdPO 7

vdPO 8

vdPO 6

vdPO 14

vdPO 16

vdPO 15 vdPO 20

vdPO 17

vdPO 18

vdPO 19

Fig. 3: Matrix composed of coupled van der Pol oscillators.

A. Coupled van der Pol oscillators

In this example, we apply the proposed methodologies to a

matrix of coupled vdPOs as in Figure 3. They can be used to

model many oscillating systems in a wide area of applications,

3Otherwise, if considering the plug-in of new subsystems, we should check
the feasibility of this operation by verifying that the execution of Algorithm
1 for the new subsystem or its children does not stop.
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(a) Displacements of the vdPOs, i.e.
state x[i,1] for each i ∈ M.
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(b) Velocities of the vdPOs, i.e. state
x[i,2] for each i ∈ M.
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(c) Inputs u[i], i ∈ M.

Fig. 4: Positions, velocities and control inputs for all the

vdOPs.

including biological rhythms, heartbeat, chemical oscillations,

circadian rhythms [38].

The dynamical model of the i-th coupled vdPO (ΣC[i]) is

given by

ẋ[i,1] =x[i,2]

ẋ[i,2] =− (1 + |Ni|β̄)x[i,1] + β̄





∑

j∈Ni

x[j,1]





− ᾱ(x2[i,1] − 1)x[i,2] + gAi (x[i,1])u[i],

(18)

where gAi (x[i,1]) =
1

0.4+0.1x2
[i,1]

is the function describing the

nonlinear dynamics of an actuator. Each oscillator i ∈ M,

is a subsystem with state x[i] = (x[i,1], x[i,2]) and input

u[i], where x[i,1] is the displacements of oscillator i with

respect to a given equilibrium position on the matrix, x[i,2]
is the velocity of the oscillator i and u[i] is the force applied

to oscillator i. For all vdPOs, we consider ᾱ = 0.1 and

β̄ = −0.3. Subsystems are equipped with the state constraints

||x[i,1]||∞ ≤ 3, ||x[i,2]||∞ ≤ 2, i ∈ M and with the input con-

straints ||u[i]||∞ ≤ 8. We obtain models Σ[i] by discretizing

continuous-time models with Ts = 0.1 sec sampling time,

using Euler discretization. In this example, the local fault

detectors do not share variables, hence Σ[i] = Σ̃[i]. Moreover

the design parameter of fault detectors has been set λ = 0.1.

As regards the control architecture, for each controller, we set

u[i] = (0.4 + 0.1x2[i,1])
[

ᾱ(x2[i,1] − 1)x[i,2] + v[i]

+κ̄i(x[i] − x̄[i])
]

.

Then, we synthesize controllers C[i], i ∈ M using Algorithm

1.

In the following simulation, we consider a matrix composed

of M = 21 vdPOs (see Figure 3). We also consider the

measurement errors bounded in the sets

Oi = {̺[i] ∈ R
2 : ||̺[i]||∞ ≤ 10−1}.

The modelling of the LSS, the design of PnPMPC controllers

and the simulations have been performed using the PnPMPC

toolbox for MatLab [39]. During the simulation, the control

action u[i](t) computed by the controller C[i], for all i ∈ M,

is kept constant during the sampling interval and applied to

the continuous-time system. In Figure 4a and 4b we show

a simulation where at t = 0, all vdPOs except Σ[21] are

connected and placed in a random position around the origin.

We consider that the 21-st vdPO is plugged-in at time t = 1.5s.
For 0 ≤ t < 2.5s, due to the presence of measurements errors,

the state is kept around the origin. In particular each controller

C[i] computes the control inputs shown in Figure 4c. At time

t = 1.5s, oscillator Σ[21] is plugged-in connected as in Figure

3, hence N21 = 17 : 20. Since all parents of Σ[21] have

one more child, they receive state constraints from the new

oscillator and retune their controllers based on the presence

of the new subsystem. The 21-st oscillator is initialized with

x[21](1.5s) = (−2.5, 0) and then the controller steers the state

around the origin. At time t̄ = 2.5s, a fault occurs in the 11-

th vdPO: the actuator breaks down and saturates the control

input, hence u[11](t) = 8, ∀t ≥ t̄, and we can also see in

Fig. 4b that the velocity of the 11-th vdPO diverges. The next

time instant, due to a large error between the state estimates

and the measured states, the 11-th FD detects the fault, indeed

|y[11,2](t̄+ Ts)− ˆ̃x[11,2](t̄+ Ts)| ≥ ǭ[11,2](t̄+Ts) (see Figure

6). At this time instant, the reconfiguration process starts:

the faulty subsystem is unplugged and then the neighbouring

oscillators (Σ[j], j = {10, 12, 19}) retune their controllers and

their fault detectors. At time t = t̄+10Ts, the 11-th actuator is

fixed, then the vdPO can be plugged in: therefore neighbouring

oscillators retune their controllers and fault detectors. The

oscillator is initialized with x[11](t̄+10Ts) = (2.5, 0) and then

the controller steers the state around the origin. In Figure 4a

and 4b, we can note that for t ≥ t̄+10Ts, all states are still kept

around the origin. In Figure 5, we can see that the estimators
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Fig. 5: Simulation of the networked vdPOs in Fig. 3. Dashed lines are the absolute values of errors ǫ[i] = |y[i] − ˆ̃x[i]| (where

|·| is used component-wise) and bold lines are the thresholds ǭ[i], for i = {10, 11, 12, 19}. The same color has been used for

each scalar component of the error and the corresponding scalar threshold.
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Fig. 6: Dashed lines are the absolute values of errors ǫ[11] =

|y[11] − ˆ̃x[11]| and bold lines are the thresholds ǭ[11] during the

detection of the fault in the 11-th vdPO.

of the neighboring oscillators j = {10, 12, 19} continue to

work and thresholds continue to guarantee the absence of false

alarms during all the reconfiguration procedures.

B. Power Networks System

Fig. 7: Power network system of Scenario 2 in Appendix B

of [31].

In this example, we apply the proposed state-feedback

PnPMPC and FD scheme to the PNS proposed in Appendix

B of [31]. In the following we first design the Automatic

Generation Control (AGC) layer for the PNS composed of 5
areas as in Figure 7, then we show how, after a fault in area 4,

we can disconnect the faulty area (unplugging operation) and

redesign the controllers of neighbouring areas (reconfiguration

operation). The dynamics of an area equipped with primary

control and linearized around the equilibrium value for all

variables can be described by the following model [40]

ΣC[i] : ẋ[i] = Aiix[i]+Biu[i]+Li∆PLi
+

∑

j∈Ni

Aijx[j] , (19)

where x[i] = (∆θi, ∆ωi, ∆Pmi
, ∆Pvi ) is the state, u[i] =

∆Prefi is the control input of each area, ∆PL is the local

power load and Ni is the set of neighbouring areas, i.e. areas

directly connected to ΣC[i] through tie-lines. The matrices of

system (19) are

Aii({Pij}j∈Ni
) =











0 1 0 0

−
∑

j∈Ni
Pij

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi











Bi =









0
0
0
1
Tgi









, Aij =









0 0 0 0
Pij

2Hi
0 0 0

0 0 0 0
0 0 0 0









, Li =









0
− 1

2Hi

0
0









For the meaning of constants as well as parameter values we

refer the reader to Appendix B of [31]. We highlight that all

parameter values are within the range of those used in Chapter

12 of [40]. Model (19) is input decoupled since both ∆Prefi
and ∆PLi

act only on subsystem ΣC[i]. Moreover, subsystems

ΣC[i] are parameter dependent since the local dynamics depends

on the quantities −
∑

j∈Ni
Pij

2Hi
. Each subsystem ΣC[i] is subject

to constraints on ∆θi and on ∆Prefi in Appendix B of [31].

We obtain models Σ[i] by discretizing models ΣC[i] with 1
sec sampling time, using exact discretization and treating u[i],
∆PLi

, x[j], j ∈ Ni as exogenous signals. As regards the FD

architecture, each area is equipped with a local fault detector

Σ̃[i] sharing some state variables. In particular area 1 and 2

share ∆θ1, area 2 and 3 share ∆θ3, area 2 and 5 share ∆θ5
and area 3, 4 and 5 share ∆θ4. We note that the choice

of shared variables allow each FD to locally consider the

effect of coupling terms and hence, from an electrical point of

view, to take into account how tie-line powers are exchanged

among areas. Moreover we consider the following bounded

measurement errors

Oi = {̺[i] ∈ R
4 : ||̺[i]||∞ ≤ 10−3}.

The modelling of the LSS, the design of PnPMPC controllers

and the simulations have been performed using the PnPMPC
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(a) Frequency deviation in each area controlled by PnPMPC controllers. Note that ∆ω4 = 0 after unplugging of area 4.
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(b) Load reference set-point in each area controlled by PnPMPC controllers. Note that ∆Pref4 = 0 after unplugging of area 4.

Fig. 8: First simulation example of a fault in area 4 at time t = 50 and t = 80: frequency deviation (panel 8a) and load

reference (panel 8b) in each area.

toolbox for MatLab [39]. For each subsystem Σ[i], the con-

troller C[i], i ∈ M is designed by executing Algorithm 1. The

aim of the AGC layer is to restore the frequency in each area

next to step loads, therefore each controller must be designed

in order to stabilize the local area around an equilibria that

depends on ∆PLi
. As regards fault diagnosis, for each local

FD Σ̃[i], the filter parameter λ is set to 0.4.

In the simulation, step power loads ∆PLi
specified in Table

I have been used and they cause the step-like changes of the

control variables in Figure 8.

In Figure 8a we show, how in presence of loads, the

frequency deviation is steered in a neighbourhood of zero:

however, due to the presence of measurement errors ̺[i]
(randomly extracted in the sets Oi), ∆ωi cannot be perfectly

zeroed. In Figure 8b we note how the power references ∆Prefi
are changed in order to compensate for local loads.

We consider two simulation examples. In the first, at time

instant t = 50, the following fault occurs in area 4: the

inertia constant H4 is reduced from 8 to 6. From an electrical

point of view, there is a fault in a local generator, hence,

Step time Area i ∆PLi

5 1 +0.10

15 2 -0.16

20 1 -0.22

20 2 +0.12

20 3 -0.10

30 3 +0.10

40 4 +0.08

40 5 -0.10

TABLE I: Load of power ∆PLi
(p.u.) for simulation. +∆PLi

means a step of required power, hence a decrease of the

frequency deviation ∆ωi and therefore an increase of the

power reference ∆Prefi .

for safety reasons, area 4 must be isolated in order to not

propagate faults in the PNS. However, the fault is not detected

by the FD Σ̃[4], as it is possible to see in Fig.9 in the initial

part of the simulation. This is probably due to the fact that

the magnitude of the fault is lower than the measurement

and modeling uncertainties and therefore hidden by them.

Moreover, we also note that, in absence of disturbances, the
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Fig. 9: First simulation example: for each area, for each color,

dashed lines are the absolute values of errors ǫ[i] = y[i] − ˆ̃x[i]
and bold lines are the corresponding thresholds ǭ[i].

PNS is at steady-state, therefore the states change around the

steady-state equilibrium due to the measurement disturbances.

In these conditions, then there is no guarantee to detect the

fault. At time instant t = 80, the inertia constant H4 is reduced

from 6 to 1. In Figure 9, we note that for t < 82, the errors

|ǫ[i]| are always upper bounded by the thresholds ǭ[i], hence

no faults are detected3. At time instant t = 82, FD Σ̃[4] detects

the fault in area 4, indeed at time t = 82, |ǫ[∆Pv4 ]
| > ǭ[∆Pv4 ]

.

Therefore, area 4 is unplugged and controllers C[i] and FDs

Σ̃[i], i = {3, 5} are retuned. Note that the reconfiguration

operation does not involve areas 1 and 2 since they where not

connected with area 4 and they did not share any state variables

with it. As a consequence, the reconfiguration process is not

propagated in the network. Next to the unplugging of area 4,

the new PNS can still compensate power loads and FDs do

not detect any fault3.

We propose a second simulation example (see Figures 10

and 11), where at t = 50 we still consider that in area 4 the

inertia constant H4 is reduced from 8 to 6. However in this

example we change the power load in area 4 as ∆PL4 = 0.15
at t = 60 and ∆PL4 = −0.25 at t = 70. In Figures 10 and 11

simulation results are shown. For time instants 50 ≤ t ≤ 59,

as in the previous example, the fault is not detected by the

FD Σ̃[4]. At time t = 60 the increase of power load in area 4

can be compensated locally even in presence of the fault and

the fault is still not detected. This is due to multiple reasons:

the magnitude of the fault is lower than the measurement and

modeling uncertainties and the controller is robust enough to

compensate the increasing of requested power even in presence

of the fault. At time t = 70 the power load changes from

∆PL4 = 0.15 to ∆PL4 = −0.25 and the fault is detected by

FD Σ̃[4]. In this case even if the magnitude of the fault is not

changed, the power reference ∆Pref4 changes and the fault is

not hidden anymore. Summarizing, this second example shows

that, as highlighted in Section VI, the detectability of a fault

depends on the uncertainty as well as on the trajectories and

the excitability of the system.

IX. CONCLUDING REMARKS

In this paper, a novel integrated architecture composed of a

distributed MPC scheme and of a distributed FD architecture

has been proposed in the context of fault-tolerant control

for a class of large-scale nonlinear systems. The integrated

control scheme guarantees closed-loop asymptotic stability

and constraints satisfaction at each time instant, while the FD

architecture allows to detect faulty subsystems guaranteeing

the absence of false-alarms and the convergence the estimators

also during reconfiguration processes. The innovative idea is

to combine distributed MPC and distributed FD architectures,

where local controllers and state estimators can be designed

in a PnP fashion, i.e. the overall model of the LSS is never

used in any step of the design phase. The proposed architec-

ture is suitable for several large-scale applications, allowing

revamping of actuators and isolating faulty subsystems before

the fault is propagate in the network.

Future research efforts will be devoted to generalizing the

approach to a larger class of nonlinear systems and to address

the important issue of optimal decomposition of the LSS

towards better fault detectability properties (preliminary results

are given in [41]).

APPENDIX

A. Proof of Theorem 1

Proof: The proof of Theorem 1 is an adaptation of the

proof of Theorem 9 in [19] to the nonlinear case. Due to

space limitation in [19], this proof is available in [31] as

the proof of Theorem 6.1. First, we can easily show that, if

x[i](0) ∈ XNi , the MPC-i optimization problem defined n (8) is

always feasible and its optimizers x̂[i](0|t) and v[i](0|t) verify

x̂[i](0|t) → 0ni
and v[i](0|t) → 0mi

as t→ ∞.

Differently from [31], where coupling terms have been

defined as linear functions, subsystems Σ[i], i ∈ M defined

in this paper take into account nonlinearities in the coupling

among subsystems.

Similarly to Step 1 of the proof of Theorem 6.1 in [31], we

aim at showing that if x[i](0) ∈ XNi there is T̃ > 0 such that

3For the convenience of the reader, in Figure 9, after the reconfiguration
process, errors and thresholds involving state variables of area 4 are kept
constants for display purposes. After fault detection, the local estimator is
stopped.
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Fig. 10: Second simulation of a fault in area 4 at time t = 50: frequency deviation (10a) and load reference (10b) in each area.
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Fig. 11: Second simulation: for each area, for each color,

dashed lines are the absolute values of errors ǫ[i] = y[i] − ˆ̃x[i]
and bold lines are the corresponding thresholds ǭ[i].

x[i](T̃ ) ∈ Zi and hence dist(Zi, x[i](T̃ )) = 0. From (1) and

(6), we can write

x[i](t+ 1) = Aiix[i](t) +Biκ̄i(x[i](t)) + wi(ψ[i](t)) + η̄i(t)
(20)

where

η̄i(t) = Bi(v[i](t) + κ̄i(z[i](t))− κ̄i(x[i](t))) (21)

and z[i](t) = x[i](t)− x̂[i](0|t). In particular, if x[i](0) ∈ XNi ,

recursive feasibility of the MPC-i problem (8) implies that

(20) holds for all t ≥ 0.

Note that Step (III) of Algorithm 1 guarantees that Assumption

6.3 in [31] is verified and therefore, the LP problem (6.14) in

[31] is feasible for all z[i] ∈ Rni . This implies that the function

κ̄i(x[i](t)) in (20) is always well defined.

From the asymptotic convergence to zero of the nominal state

x̂[i](0|t) and the input signal v[i](0|t), it holds

∀δi > 0, ∃Ti,1 > 0 : ||x̂[i](0|t)|| ≤ δi and ||v[i](0|t)|| ≤ δi,
(22)

∀t ≥ Ti,1. Moreover, according to [42], we can assume

without loss of generality that κ̄i(·) is a continuous piecewise

affine map. In view of this, κ̄i(·) is also globally Lipschitz,

i.e.

∃ Li > 0 : ||κ̄i(x[i] − x̂[i])− κ̄i(x[i])|| ≤ Li||x̂[i]|| (23)

for all (x[i], x̂[i]) such that x[i] ∈ Xi and x[i]−x̂[i] ∈ Zi. Using

(23) one can show that setting δi =
ǫi

||Bi||(1+Li)
the following

implication holds for all ǫi > 0:

||x̂[i](0|t)|| ≤ δi and ||v[i](0|t)|| ≤ δi ⇒ ||η̄i(t)|| ≤ ǫi,

∀x[i](t) ∈ Xi. Therefore, from (22),

∀ǫi > 0, ∃Ti,1 > 0 : ||η̄i(t)|| ≤ ǫi, ∀t ≥ Ti,1. (24)

Since x̂[i](0|t) → 0ni
, as t → ∞, and Zi contains Bωi

(0ni
)

(see Step (III) of Algorithm 1), then

∀δzi > 0, ∃Ti,2 > 0 : x̂[i](0|t) ∈ δziZi, ∀t ≥ Ti,2 (25)

Hence, from (8b),

x[i](t) = x̂[i](0|t)+(x[i](t)−x̂[i](0|t)) ∈ (1+δzi)Zi, ∀t ≥ Ti,2.
(26)

From (20) we have, for all i ∈ M,

x[i](t+ 1) = Aiix[i](t) +Biκ̄i(x[i](t)) + ŵ[i](t) (27)

where ŵ[i] = wi(ψ[i]) + η̄[i], ∀i ∈ M. Let Pi be the

map that builds the vector ψ[i] from {x[j]}j∈Ni
, i.e. ψ[i] =

Pi({x[j]}j∈Ni
) and define Ψ̂[i] = {Pi({x[j]}j∈Ni

) : x[j] ∈
(1 + δzi)Zj}. Setting T̄ = maxi∈M{Ti,1, Ti,2} and δz =
maxi∈M δzi , using (24) and (26), remembering that ψ[i] is

the vector of coupling variables, one has, ∀t ≥ T̄

ŵ[i] ∈ wi(Ψ̂i)⊕Bǫi(0ni
). (28)
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From Steps (III)-(V) of Algorithm 1, since Ψi =
{Pi({x[j]}j∈Ni

) : x[j] ∈ Xj}, using (7), we can deduce that

Ψ̂i ⊂ Ψ̇i. Under Assumption 1-(III), we have

wi(Ψ̂i) ⊂ Wi = wi(Ψi) (29a)

Therefore, there is ξi ∈ [0, 1) (that does not depend on ǫi)
such that

wi(Ψ̂i) ⊆ ξiWi, (30)

and then, from (28),

ŵ[i] ∈ (1 + δz)ξiWi ⊕Bǫi(0ni
), ∀t ≥ T̄ .

Note that in (24) the parameter ǫi > 0 can be chosen arbitrarily

small. Assume that it verifies ǫi < (1+δz)ξiω̄i, ∀i ∈ M where

ω̄i are the radii of the balls in Assumption 6.3 in [31]. Then,

using Assumption 6.3 in [31] we get for t ≥ T̄

ŵ[i](t) ∈ (1 + δz)ξi(Wi ⊕Bω̄i
(0ni

)) ⊆ (1 + δz)ξiZ̄
0
i . (31)

In view of (26) and (31), Lemma 6.2 in [31] guarantees that

x+[i] ∈ (1 + δz)(Zi ⊖ (1− ξi)Z̄
0
i ) (32)

From Assumption 6.3 in [31], one has Zi⊖ (1−ξi)Z̄0
i ⊂ Zi⊖

B(1−ξi)ωi
(0ni

) and hence, since Zi contains the origin in its

interior, there is µi ∈ [0, 1) such that Zi⊖ (1− ξi)Z
0
i ⊂ µiZi.

From (32) we get x+[i] ∈ (1 + δz)µiZi. If in (25) we set δz
such that (1 + δz)µi < 1, we have shown that for t = T̄ it

holds x[i](T̄ + 1) ∈ Zi and Step 1 of the proof is concluded

setting T̃ = T̄ + 1.

The proof of Theorem 1 can be concluded using Steps 2 and

3 of the proof of Theorem 6.1 in [31]. In particular in Step 2

we prove the convergence of the overall state to the origin and

in Step 3 we prove stability of the closed-loop overall system.

We note that Steps 2 and 3 use the fact that set Z =
∏

i∈M Zi

is an RCI set for the overall closed-loop system.
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0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2535724, IEEE
Transactions on Automatic Control

16

2014. [Online]. Available: http://sisdin.unipv.it/pnpmpc/phpinclude/
papers/phd thesis riverso.pdf

[32] D. M. Raimondo, S. Riverso, S. Summers, C. N. Jones, J. Lygeros, and
M. Morari, “A set theoretic method for verifying feasibility of a fast
explicit nonlinear Model Predictive Controller,” in Distributed Decision

Making and Control, R. Johansson and A. Rantzer, Eds. Springer,
Lecture Notes in Control and Information Sciences vol. 417, ch. 13, pp.
289–311, 2012.
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