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A One-step Approach to Computing a Polytopic Robust Positively Invariant
Set

Paul TroddenMember, IEEE

Abstract

A procedure and theoretical results are presented for thielgm of determining a minimal robust
positively invariant (RPI) set for a linear discrete-tinystem subject to unknown, bounded disturbances.
The procedure computes, via the solving of a single LP, atpplg RPI set that is minimal with respect

to the family of RPI sets generated from a finite number of iraditjes with pre-defined normal vectors.
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I. INTRODUCTION

We consider the problem of finding, for the discrete-timeedr time-invariant system,
T = Az +w, (1)
a robust positively invariant (RPI) set. That is, a &t R™ with the property
Ar+w e R,V € R,w € W. (2)

In this problem,z € R" is the current state and™ its successor. The disturbanae € R"
is unknown but lies in a polytopic (compact and convex) @ethat contains the origin in its
interior.

Robust or disturbance invariant sets are important in ogrdand their theory and computation
have attracted significant attention; see, for example4]1Jand references therein. One set that
is of particular interest is theninimal RPI (mRPI) set—that is, the RPI set that is smallest in
volume among all the RPI sets for a system—which is also thefsgtates reachable from the

origin in the presence of a bounded disturbance. This set éssential ingredient in many robust
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control algorithms. For example, in tube-based robust na@elictive control (MPC)/[5], an RPI
set is used to guarantee robust stability and feasibilitthan presence of bounded uncertainty;
moreover, since the constraints in the MPC optimizatiorbjamm aretightenedaccording to the
size of the RPI set, then the smallest RPI get,the mRPI set) is desirable. However, computing
an exact representation of the mRPI is generally imposé#xeept for special instances df as
identified later), and instead an approximation is usuadlyght. A seminal contribution in this
regard is [[3], which proposes a method for computing an atilyr close outer-approximation
to the mRPI set, which is itself RPI.

The essence of the problem of computing exactly the mRPIssktait this set is, in general,
not finitely determined. Methods for computing approxiroas to the mRPI set, including![3],
rely on finding finite representations of the set. Recentlythe context of tube-based MPC| [6]
introduced and studied the notion of a polytopic RPI set éefiby a finite numbery, of a-
priori selected linear inequalities. For a non-autonomous system Ax + Bu + w controlled
by a continuous positively homogeneous control laws= x(z), the authors showed that the
RPI set dynamic conditiorL2) has an equivalent representats» functional inequalities. It
was established that a fixed-point solution to the funcli@sgation corresponds to an RPI set
that is minimal, in volume, with respect to the entire family of RPI sets dedirby the pre-
selected inequalities, and is an invariant outer-apprakion to the mRPI set. To compute this
set, the authors of [6] give an iterative procedure, basesbbring a sequence of LPs, for which
convergence is guaranteed.

In this note, we adopt the notions cfl [6] and specialize thesults to the case of the
linear autonomous systerm (1) (alternatively, the linear-antonomous system with linear state
feedback control law) in order to develop a one-step approa@sed on solving a single LP, to
the computation of the smallest RPI set defined by a pretselaystem of inequalities. Though
simple, to the author's knowledge this has not appeared enlitbrature, although there are
related results; for example, it is known that checking thvariance of an existing polytope
is an LP [2]. On the other hand, the ability to synthesize a-nd@aimal RPI set by solving a
single LP potentially paves the way for robust control meththat re-compute the disturbance
invariant sets on-line, as done in, for example, the regaidleloped “plug-and-play” approach
to distributed MPCI[7].

The proposed approach differs to the oneldf [3] in one impbrésssumption: the number

and normal vectors of the inequalities that represent thiesBPare, as in_[6], defined priori,
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while in [3] both are unknown until termination of the algdm. Thisa-priori definition, first
proposed and studied by [6], has two consequences: filsdyRPI set obtained is not necessarily
the mRPI set, or even an abitrarily close outer-approxiomagas it is in [3]); however, it is the
smallest RPI set that can be represented by the finite numpef, chosen inequalities with
normal vectors{ P, :i =1...r} [6]. To make a clear distinction, in this note we term this the
(P,r)-mRPI set when the number of chosen inequalities &1d the matrix of normal vectors
(the left-hand side of the defining system of inequalities)’i Secondly, the method of |[3]
involves solving a sequence of LPs and then computing a Miskosummation, but here only
the solving of a single LP is required. The development of ghecedure here comprises two
steps, the enumeration of which also serves to clarify therdmtion of this note with respect
to [6]: first, we show that, for the studied linear autonomsystem[(ll), the fixed-point solution
to the functional equation, which![6] showed is guaranteedxist, is in fact unique. Secondly,
we show that the corresponding RPI set—which [6] proved tori@mal with respect to the
family of RPI sets represented By, r)—can be computed via a single linear program (LP), as
an alternative the iterative sequence of LPs proposed by [6]

Another method that uses a single LP to compute a disturbiamagant set is the optimized
robust control invariance approach bf [4], applicable t® lihear non-autonomous systerm =
Az+ Bu+w. Because a robusbntrol invariant (RCI) set—and the associated control policy—is
obtained, then this subsumes the robust positive invagi@nbere dixedcontrol law is assumed)
considered here. However, that approach optimizes ovgrtbase control policies that guarantee
a finitely determined set, achieved by employing a relaxedhtian of the assumption, fofl(1),
that A*W C oW for somea € [0,1) and finite integerk. In this note, the assumption that
A has eigenvalues inside the unit circle is required, whicHifferent to the assumption used
for finite determination of RCI sets inl[4], but weaker thae thissumption required for finite
determination of the mRPI set fdrl(1).

The organization of this note is as follows. First, in Sewtild it is shown that for the
system [(I1), the fixed-point solution is, under suitable agstions, unique. Subsequently, in
Section[Tl, it is shown that thé P, r)-mRPI set for [(1) may be computed via a single LP.
Finally, examples are given in Sectibnl IV to illustrate thraqiicality of the proposed approach,
before conclusions are made in Section V.

Notation: The sets of non-negative and positive reals are, respsgtiRg, and R,. For

a,b € R", a < b applies element by element. A matri{ is non-negative, denotetl/ > 0, if
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M,;; > 0 for all ¢ and j. AX is the scaling of a set’ by A € R, defined as{\z : x € X'}.
AX denotes the image of a s&t C R™ under the linear mapl : R” — RP, and is given by
{Az : x € X}. The support function of a séf is h(X,v) = sup{v'z : z € X'}. A polyhedron is
the convex intersection of a finite number of halfspaces,apdlytope is a closed and bounded

(hence compact) polyhedron.

Il. EXISTENCE AND UNIQUENESS OF A(P,r)-MRPI SET

For the system[ (1), we consider the case of a polytopic diahge set
Wé{weR":ngg}, 3)

where F' € RP*", g € R{,, and make the following two standing assumptions.

Assumption 1The setW contains the origin in its interior.

Assumption 2The eigenvalues ofl are strictly within the unit circle.

The former assumption requires that R% . The latter assumption implies, as shownlinh [1],
that for a given compact disturbance $&tthere exists a compact RPI s&, for the system[{|1),
satisfying [(2).

Assumption 3The RPI setR is a polytope that contains the origin in its interior.

Note that Assumptions| 1 ard 3 imply that the support funstimW and R, respectively,
are positive—a key technical property that will be used iis tiote to establish the existence
and uniqueness of the RPI set that we aim to compute.

In this note, following [[6], we consider the RPI set consteagcfrom a finite number;, of

inequalities with pre-defined normal vectors. Thatis2 R(q), defined as
R(q) = {z €R": Pz <q}, (4)

whereP € R™", {P :i € {1,...,r}} spansR", P, is theith row of matrix P, andq € R}, .
The left-hand side of the inequalities—the matfx—is to be chosera priori by the designer.
The following result, which is an application of Farkas’ Lewa, establishes basic conditions on

the matricesd, P and F' for the existence of an RPI set for the systéin (1) given theidiance
polytope [(B).
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Theorem 1 (Adapted from Hennet and Castellan [@uppose Assumptions [1-3 hold. Then
the setR(q) with someq = ¢ is robust positive invariant for the systef (1) if and onlyhére

exist non-negative matrice§ € R"™*" and M € R"*? such that

HP = PA (5a)
MF =P (Sb)
Hi+Mg<q (5¢)

We will assume thaf’ is chosen so that an RPI set exists:

Assumption 4For the choserP, and the systemA, W), there exists & € R, such that[(R)
holds for allz € R(7q).

Remark 1:While Assumption 4 may appear strong, it is needed to narh@xlass of matrices
that we consider to those that admit an RPI set. However, theedure presented in the next
section includes a easy certification of existence of an BPfios a choser?: if an RPI set exists,
the (P, r)-mRPI set is returned. If no RPI set exists, the optimizapasblem is unbounded.

The authors of[[6] show—in the more general setting of a line@an-autonomous system
controlled by a positively homogeneous state-feedbackrablaw—that RPI condition[(2) is

equivalent to the functional inequality
c(q) +d < b(g), (6)

where, fori = 1...7, bi(q) £ h(R(q), P,"), c;i(q) = h(AR(q),P,"), d; = h(W, P,"). That is,
the set inclusion requirement is replaced by support foncthequalities, which is a standard
techniquel[[9]. Note that(q) may be different tay; for example, in the case of redundant inequal-
ities definingR(q). The topological properties of these functions descrilmethé following two
lemmas are essential to establishing existence and urégsefi the fixed-point solution t61(6).

Lemma 1 (Adapted from Proposition 1 of [6Fuppose that Assumptiohs[1-3 hold. Then the
functionsb: Ry, — Rf,, c: Rf, — Rf, are continuous and monotonically non-decreasing; that
is, b(a1) < b(az) for a; < ay. Also, d € R,

Lemma 2 (Positive homegeneitybpt): Suppose Assumptions 2 and 3 hold. Then the functions
b(-) and ¢(-) are positively homogeneous; that i§6\a) = A\b(a) for A > 0, with a similar
expression for(-).

Proof: Considerb;(Aa) = h(R(Xa), P;) for somea € R{,, A > 0 andi € {1,...,r}.
By definition of R(-), R(Aa) = AR(a). Thus,h (R(Xa), P;) = h(AR(a), P;) = Ah (R(a), P;),
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for A > 0, where the latter equality follows directly from the defioit of the support func-
tion [9]. Hence,b;(Aa) = A\b;(a), thereforeb(Aa) = A\b(a). Positive homogeneity of(-) may be
established by the same arguments. [ |

The next result, which concerns the existence of a fixedtmmtution to [(6), was established
by [6] in the setting of a linear non-autonomous system adletl by positively homogeneous
state-feedback control law, and hence immediately apfaitse more specialized case considered
in this note.

Theorem 2 (Theorem 1 ofI[6])Suppose Assumptioris [I-3 hold. L&t= {q € R, : 0 <
q< cj}. Then, (i) for allg € Q, c¢(q) +d € Q and (ii) there exists at least ogé € Q satisfying
c(q*) +d = b(q*) = ¢* if and only if Assumptiori %4 holds.

Remark 2:The necessity and sufficiency of Assumption 4 follows by d&din. In particular,
if Assumption[4 does not hold, then there does not exist andePfor the systengA, W) with
the chosenP.

Remark 3:Note that, in view of the assumptions grand the properties df(-), ¢(-), andd,

a fixed-point solution;* must be strictly positive.

With respect to computing a fixed-point solution, the segeegenerated by the iterative
procedureg?t! = ¢(¢P!) 4 d, with ¢! = 0, converges to the fixed-point solutiar with the
smallest 1-norm valud|q*||; [6, Theorem 2]. As the following result states, the corresjiog
setR(q*) is RPI, and, in fact, is the minimal (smallest volume) RPI ®e&tr the family of RPI
sets defined by the inequalities with left-hand sidé .

Lemma 3 (Corollary 1 of[[6]):R(¢*) = (xes X Where

SL{R(q):qeM}, andH 2 {ge Ry, : c(q)+d <bq)}

For convenience, we define this $@tq¢*) as the(P, r)-mRPI set.

Definition 1 (P,r)-mRPI set):The (P,r)-mRPI set for system{1) i®R(¢*) where ¢* =
b(q") = c(q") + d.

In this note, we propose an alernative to the iterative mtoce of [6]. To this end, the next
result shows that the fixed-point solution td (6) is, in fagtjque. This result is then exploited
in Sectionll, wherein the problem of finding the fixed-posdlution is cast as an LP.

Theorem 3 (Uniqueness of fixed-point soluticB)tppose Assumptions [I-4 hold. Then there
exists a unique* € R, satisfyingc(q¢*) + d = b(¢*) = ¢*.
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Proof: Existence is established by Theoreim 2, so it remains to shatvt is unique. Let
l(q) = c(q)+d—b(q) and f(q) = b(¢q) —q. Finding the fixed-point solution(¢*)+d = b(¢*) = ¢*
is equivalent to finding* such that(¢*) = f(¢*) = 0. Suppose there exigt € R, andg® € R’,
such thatl(¢') = f(¢') =0, I(¢*) = f(¢*) =0, and¢® # ¢, i.e, ¢* — ¢* # 0. There are two
possibilities:
(i) ¢ > ¢ for at least one € {1,...,7}, with ¢7 < ¢j otherwise;

(i) ¢* <q', with ¢ < ¢} for at least one € {1,...,r}.

1 1

o = min {q—;}:q—‘;>0
i=1...r 4 q
P

(2

Consider cas {(i). Let

Strict positivity follows from the discussion in Remark 3in& ¢? > ¢! for at least onei,
thena < 1. Let s = ag® < ¢%. It follows, from positive homogeneity df(-) and the fact that
b(¢®) — ¢* =0, that f(s) = b(s) — s = b(ag?) — ag® = a(b(¢*) — ¢*)) = 0. Similarly,

I(s) = c(s) +d — b(s)
= c(ag®) +d —blag®)
= ac(q®) +d — ab(q®)
= a(e(¢®) —0(¢*)) +d
>0

where the second line follows from the positive homegenefty:(-) and b(-), and the strict
inquality with zero follows frome(¢?) — b(¢?) = —d, a < 1 andd > 0. Now, by definition ofa,
and sincen < 1, thens < ¢' with s, = ¢}. For the same, we havef,(¢') = b,(¢') — ¢, =0,
fo(s) = by(s) — s, = 0, and, sinces < ¢*, thenb,(s) < b,(¢"). In fact, b,(s) = b,(¢"), as we
have already shown thaf(s) = s, = ¢,. We also havé,(q') = ¢,(¢") +d, —b,(¢") andi,(s) =
cp(8)+d, —by(s). Because,(¢') = b,(s) andc,(s) < c,(q"), it follows thati,(s) < 1,(¢"). But
then0 = 1,(¢*) > I,(s) > 0, and we have a contradiction: therefore, we conclude these[¢A
cannot hold, and either cafe|(ii) holds @r = ¢'. Now consider casg (ji), and its equivalent
statementy; > ¢; for at least one € {1,...,7}, with ¢; > ¢? otherwise. Following the same
set of arguments, starting with the opposite definitiongvef min,—; , {¢?/q¢}} ands = aq¢',
we find that that cade (ji) cannot hold either. Therefgtes ¢> = ¢*, and the solution is unique.

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

[Il. COMPUTING THE (P, 7)-MRPI SET VIA A SINGLE LP

The problem of computing théP, r)-mRPI set is that of finding the that satisfies the
functional inequality (RPI condition) (6) while attainirige smallest value ofq||;. The results
in the previous section show that thjsin fact satisfies (6) with equality; it is the fixed-point

solutiong*. Therefore, the problem of finding' is

q" = arg rl”gn{|IQI|1 ce(q)+d < b(g)} (7)

This is not tractable, as, by the definitions &f) and ¢(-), the constraints are maximization

problems involving the optimization variable:

max { P Az : Pr < q} + max{Pw : Fw < ¢}
<max{Pz : Pz < q}

for i = 1...r. However, by noting that the fixed-point solution is unique may replace the

problem of [7) with the maximization problem

q = argmgx{llﬂll re(q) +d="0(q)}

This problem then easily converts to a linear program, asvehoy the following. Introduce
auxiliary variablest’ € R" andw® € R™ for each RPI inequality € {1,...,r}. Then, noting
thatg = b(¢q) = ¢(q) + d at the desired fixed-point solution, eliminateandb(q), leading to the
problem

P: ¢* =c¢" +d", where(c",d*) = arg max ch- +d; (8)
it &

subject to, for alli € {1,...,r},

¢ < PAE, (9a)
P¢ < c+d, (9b)
d; < Puw', (9c)
Fu' < g. (9d)

In this problem, maximizing each subject to constraint$ (Pa) arld (9b) represents finding the
vector of support functions telR. Constraint [(9b) represent8z < b(q), with the condition
c(q) + d = b(q) enforced. Constraints (9c) and [9d) represent findinthe vector of support

functions toW.
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Remark 4:Note that, by definitiond; = h(W, P,") is constant and does not depend on
q. Therefore,d could be computed prior to solving, by solving a sequence of LPs, before
entering the optimization as a parameter. However, our aite formulate a single LP (a one-
step procedure) that computes, simultaneously, and hence;.

Note that eacll; andw; is bounded, via(9c) and (Pd) and the assumption§Vorrurther note
that this problem always hasfeasiblesolution, since one can choose, for examples d; = 0
and ¢ = w' = 0. The question, then, is whether an optimal solution existshe problem is
unbounded. To this end, we require the following result,chspecializes Theorefd 1 to the
fixed-point solution.

Proposition 1:Suppose Assumptions [I-4 hold. A vectgrsatisfies the fixed-point relation
c(q*)+d =b(¢*) = ¢* if and only if there exist non-negative matricesc R™*" and M € R"*?

such that
HP = PA (10a)
MF =P (10b)
Hq" + Mg = q" (10c)

Proof: Consider theth element of each of(¢*), d andb(¢*), defined by the (primal) LPs

¢i(¢") = max{PAz : Px < ¢*} (11a)
d; = max{Ew Fw < g} (11b)
bi(q*) = max{Bx : Px < q*} (11c)

If Assumptiong 1E4 hold, then by the previous results tharsteaq* satisfying the fixed-point
equation. Moreover, each of the terms [inl(11) is well defineldich is the case if and only if
each LP is feasible and attains an finite optimum. Theretoyeyeak duality, the dual of each
LP

¢i(q*): min{h/¢*: h) P = PA h; >0},
d;: min{m:g : miTF =P,m; > 0},

bi(q*): min{y ¢y P = P,y > 0},
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is feasible. Examining these dual problems, dual feasitligtions exist if and only if there exist

non-negativeh; € R”, m; € R?, y; € R” such that

h! P = PA,
m, F = P,
y, P =P,

Applying strong duality, which holds in view of the previoasguments, to each of the three
LPs

ci(q*) = h q*,
d; =m, g,
bi(q*) = v, ¢"

Collecting all rowsi =1.. .7,

c(¢*) = Hq"
d= My,
b(¢*) =Yq",

where HP = PA, MF = P, Y P = P. Therefore, it follows that if the fixed-point equation
c(¢")+d=0b(q") =q"

is satisfied, then so are the conditions](10); conversel{fI@®) are satisfied, then so is the
fixed-point equation. [ |

Then the main result of this section follows.

Theorem 4:Suppose Assumptiorls [I-3 hold. I satisfies Assumption] 4, then problem
P admits an optimal solution corresponding to the fixed-p@alution ¢*. Otherwise,P is
unbounded above.

Proof: We use duality to prove the theorem. Our goal is to prove thatoptimal solution
to IP satisfies the condition (1L0), for some non-negafivand M/, if and only if Assumption i
holds, and thaP is otherwise unbounded. Since the primal LP probem known to be feasible,
it suffices to show that the dual problem is feasible—and tieti®on is as claimed—if and only
if P satisfies Assumption] 4; on the other hand, if the dual is Bifde, then by weak duality

the primal problenP is unbounded.
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The dual problem is

D: min nk Tg (12)
{Nisviut '} ;( )
vie{l,...,r}
subject to, for alli € {1,...,r},
A\ — Z =1, (13a)
k=1
I/—Z,uk =1, (13b)
k=1
Pt —ATP N =0, (13c)
Fy' = Plv =0, (13d)
)\ia V; Z 0 (136)
pon' >0 (13f)

where\; € R, ' € R", 1; € R, n* € R? are the dual variables associated with constraints (9a)—
(@d) respectively.

We first suppose the dual probldinis feasible. From{13a) anf (I3, = v; = 1+ _,_, pF,
foralli =1,...,r, whereu! is theith element ofu* € R”. From this and[{13c)[(13d), it follows
that

T
RA:#R ’
L+ e 1
T
1+Zk:1:ui

where the division is permitted since),_, u¥ > 0. Collecting all rowsi = 1...r of P, it
follows that afeasiblesolution toD satisfies[(I0a) and(I0b) witH;; = /(1 + >, _, uf) >0,
j=1..r, My =ni/(1+>_uf) >0,j=1...p; therefore,H and M are non-negative
matrices.

Now we study theoptimal solution toD. Since the primal probleri is known to be feasible,
and we assumel to be feasible, then by strong duality (which holds regaslief the feasibility
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of D) the optimal solutions td® andD are attained and equal in objective value. So, applying

complementary slackness fo{9a) ahd (9c),

D Xile = PAEY) =0
i=1

> vi(d; = Pw™) =0.

=1
where* denotes a variable in the optimal solution. Since each tarthése sums is non-positive,
N (¢ — RAE") =0
vi(di — Pw™) =0,
fori=1,...,r. Morever, because (bl (I3a) and (13h))> 0 andv; > 0, then, at the optimum,
¢ = PBAE™,
di = Pw™.
Hence,

¢ +df = BAE™ + Puw™

x\ T i\ T
_ W) pe 4 @) MFM*

:1+kaﬁ<zhﬁpﬁ+§:”ﬂwﬁ'

Now consider the inequality (9d). SuppaBe’™ < ¢ for some: € {1,...,r} (i.e, Fw™ < g; for
all j = 1...p). Complementary slackness implies that= 0 which in turn implies (from[(13d),
assuming thatP; is not trivially all zeros) thaty; = 0; but v > 1 by (13B), which is a
contradiction. Hence, there must exist a subSet {1,...,p} of active constraints for which
Fpw™ = g for k € K. But for anyj ¢ K, n* = 0.

Similarly, consider the inequality (®b). By complementatgckness, ifP¢* < c¢* + d* then
p* = 0. By (I38), this implies thatd" P,"\} = 0. There are two cases to consider: (i) if any
elements ofP, A are non-zero then! = 0; (ii) if P,A =0 then\? > 0 is permitted. We leave
case (ii) for now and consider (i) firsh’ = 0 contradicts[(13a), which requireg > 1. Hence,

there must exist a subsgt C {1,...,r} of active constraints for whiclP;,¢* = ¢} + d; for
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j € J.Butfor anyk ¢ J, pi¥ = 0. As a consequence of the preceding argumehis, (14) may
be re-written as
= H;(c"+d")+ Mg

where H; is theith row of H and M; is the ith row of M. The second line follows because
H;; =0 for j ¢ J and M, = 0 for k ¢ K, while P;¢™ = ¢; + d; for j € J and Fpw"™ = g;
for k € K.

Now case (ii). If A = 0 thenc¢’ = 0. Moreover,\! > 1 is permitted, so the same
contradiction is not constructed. Then, however, eitRet* < d*, hencey™ = 0, or P& = d7,
with p2* >0, for j € 7 C {1,...,r}, andy;* = 0 for all k ¢ J. Either way,

i +df = Hi(c"+d*) + Mg

as before.

Finally, collecting all rowsi =1...r,
H(c"+d)+ Mg=c"+d

which is the third condition in[(10). This establishes tha solution toP, if it is attainable,
satisfies the conditiong (1L0) for it to be the fixed-point siolu It is attainable if and only if
the dual problenD is feasible. Therefore, it remains to show that Ihés feasible if and only
if Assumption[4 holds.

First, necessity of Assumptidn 4. Suppose Assumpfion 4 issatisfied, but the duaD
is feasible. By definition, if Assumptionl 4 is not satisfiecenhfor the chosernP and system
(A, W) there does not exist @ satisfying the functional inequality1(6). Therefore, theaxists
no ¢* satisfying the functional equation and, by Propositibrh#, ¢onditions[(10). However, the
attainable optimal solution t® andD satisfies[(10) with non-negativE and M, as has been
shown. Therefore, we have a contradiction, and conclud@ptienal solution is attainable, and
D is feasible, only if Assumptiohl4 holds.

Second, sufficiency of Assumptiéh 4. Writing the primal doaisits [9) in the formAx < b,
wherex is the vector of primal decision variables, it follows thhetdual constraints (13) may
be written in the formA Ty = ¢, y > 0, wherey is the vector of dual variables andis the

coefficients vector in the vectorized form) x, of the objective functior({8). By Farkas’ Lemma,
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a feasible solution ttATy = ¢, y > 0 exists if and only ifAx > 0 = c¢'x > 0. Hence,
we aim to show that, if Assumptidd 4 holds, then for =llsatisfying Ax > 0 we also have

c'x > 0. The systemAx > 0 may be written in terms of the primal variables as
ci > BAE
P& >c+d
d; > Piwi
Fu'>0

for i = 1...r. If Assumption[4 holds, thei/;P = P,A and M;F = P, for some non-negative
H; and M;. Substituting into the systemAx > 0,

c; > H;P¢'

P¢>c+d

Fuw' >0,
from which it follows thatd; > 0 and¢; > H;(c + d), hencec > Hc. But we also have that,
if Assumption [(4) holds, then there exists some R, for which 0 < Hq < Hq+ Mg < q.
Applying recursively) < H"q < Hq < ¢, H™ > 0 becausd{ > 0, and thereforéim,, ., H" >
0, if the limit exists. In fact, becaus&f P = P A, the nullspace ofP is A-invariant andP has
rankn, then the eigenvalues @f are are subset of the eigenvaluesfthence lim,, ... H" =0

becausep(A4) < 1. Thenc > He > lim,, o H"c = 0. Consequentlye'x = >0 ¢; +d; > 0.
Therefore,D is feasible if Assumptiofl4 holds. [ |

IV. EXAMPLES

We consider the non-autonomous system
A T+ u+ w, (15)

with w € W = {w € R? : |w]||o < 0.1}. This is converted to the linear autonomous system (1)

by use of a state feedback control law= K.

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 15

A. Computation of P, r)-mRPI from selected inequalities

First, we use the feedback matriX = [—0.4345, —1.0285], corresponding to the infinite-
horizon LQR solution with cost matrice&g = [ and R = 1. Note that in this example the mRPI
set is not finitely determined, and therefore an approxiomaits required.

Figure[I(a) shows theP, r)-mRPI sets generated from= 6, 20 and48 inequalities, wherein

the ith row of P is designed as

P, = [sin (@) coS (@)] , (16)

i.e, so thatPz < 1 is the r-sided regular polygon. Also shown is the outer approxiorato
the mRPI, which is itself RPI, computed using the algorithfrj3) and a tolerance = 10~
This set, termed the-mRPI set, is defined by8 non-redundant inequalities.

Figure[I(b) shows a similar comparison usiig= [—0.0796, —0.4068], obtained as the LQR
solution with@ = I and R = 100. Now thee-mRPI ¢ = 10~%) comprisesl72 non-redundant
inequalities, while the P, r)-mRPI sets computed using the proposed method are shown for
r = 20, 60 and 172, again using[(16) forP.

Table[l compares the computation times and number of opasafor computing th€ P, r)-
mRP1 with those for obtaining theouter approximation using the algorithm of [3]. For thedat
the Multi-Parametric Toolbox v3.0 [10] was used for set apiens, with CPLEX 12.6 as the
LP solver for support function calculations. For the r)-mRPI set computations.€., solving
the LP), CPLEX 12.6 was used as the LP solver. The platformanashbit Intel Core i7-2600
at 3.40 GHz with 8 GB RAM. Times are reported as the mean elapsed time tueruns.

Comparison was also made with the iterative procedurg|ofdifomputing the( P, r)-mRPI.
The iterative procedure is

Qrs1 = c(qr) + d with go =0

for which ¢, — ¢* ask — oo. This was implemented in MrLAB using the MPT v3.0.[10] for
support function calculations (with CPLEX 12.6 as undexyLP solver). The function(-) was
evaluated element by element at each iteration; that issaparate support function calculations.
For the simplest case consideredrof= [—0.4345, —1.0285] andr = 6 (the first row of Tabléll),
the number of iterations to convergence [@f,; — ¢x| to within a chosen tolerance af)~%) was
34, which included the solving 0238 LPs and took a mean total time @f7 seconds. At the
other end of the scale, for the most difficult problem consdegK = [—0.0796, —0.4068] and
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Cr=6
- = 20
0.2 - =48
_1e-mRPI
g o :
—0.2 |
\ \ \ \ \
—0.5 —0.25 0 0.25 0.5
X1
(a) K = [—0.4345, —1.0285]
C1r=20
0.4 =60 |
=172
021 1 emRPI ]
g 0 |
—0.2 - .
—0.4 .
\ \ \ \ \
—2 -1 0 1 2

T

(b) K = [—0.0796, —0.4068]

Fig. 1. Comparison of P,r)-mRPI ande-mRPI sets for the systerh {15) with different feedback maes¥K .

r = 172), the iterative procedure requir&d iterations, the solving of over2000 LPs, and took,
on average90 seconds. While these times can, of course, be shortenedriy ejstimized code,

the intention here is merely to report the times obtainedgistandard computational tools.

B. Re-computing théP, r)-mRPI set giverP

An interesting use of the method is when an RPI set for theesy$t available, but is desired
to be re-computed or modified; for example, if the disturleaset changes. Potential applications
of this include “plug-and-play” tube-based approachesistriduted MPC, wherein a dynamic
subsystems’ disturbance set evolves over time as otheystieinss are added to and removed
from the system of coupled subsysterns [7]; in such situafione needs a new RPI set that

takes into account the latest disturbance set. One coutdmgute from scratch a new RPI set,
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but it may be advantageous, in the interests of computaitoe, to modify an existing RPI set
instead. In the context of the approach proposed herePtheatrix of the known RPI set may
be used as a basis for computing the new RPI set.

For the system[{15) with = [—0.4345, —1.0285] andW = {w € R? : |w|s < 0.1}, the P
matrix is obtained as that of themRPI set. For = 10—, this comprisest8 inequalities. Now

suppose the disturbance set enlarges to

, |—03 0.1
W=<weR": <w<
—0.4 0.2
Figure[2 shows th€ P, r)-mRPIl ande-mRPI sets based on the new disturbance set, using
for the former theP matrix from the olde-mRPI set. Thg P, r)-mRPI set, computed i0.03 s

using the proposed method, is visually indistinguishalbenfthe newe-mRPI set.

V. CONCLUSIONS

A procedure for computing a polytopic robust positivelyanant set for a linear uncertain
system has been presented. The method, which requireslth®s®f a single LP, obtains the
an RPI set that is the smallest among those represented bytearfiimber inequalities with
pre-defined normal vectors, and offers an alternative ntetbifocomputation to the iterative
procedure of[[6]. Existence and uniqueness of a solutionbleas established. The practicality

of the approach has been demonstrated via examples.

TABLE |

COMPARISON OF COMPUTATION TIMES AND OPERATIONS FORP, 7)-MRPIAND ¢-MRPISETS

LPs solved Minkowski sums Mean time (s)

K = [—0.4345, —1.0285)

r==6 1 0 0.005
r =20 1 0 0.007
r =48 1 0 0.019
emRPI [3] (- = 48) 369 11 2.9

K = [~0.0796, —0.4068)

r =20 1 0 0.008
r =60 1 0 0.036
r =172 1 0 0.30
emRPI [3] (- = 172) 3250 42 25
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mm New r-mRPI

05l 1 NewemRPI ||

' [ Original e-mRPI
8 = |
—-0.5 |- R

| | | |
-1 -0.5 0 0.5

z1

Fig. 2. Comparison of P, r)-mRPI ande-mRPI sets for the system (15) wifki = [—0.4345, —1.0285] and different disturbance

sets.
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