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A One-step Approach to Computing a Polytopic Robust Positively Invariant

Set

Paul Trodden,Member, IEEE

Abstract

A procedure and theoretical results are presented for the problem of determining a minimal robust

positively invariant (RPI) set for a linear discrete-time system subject to unknown, bounded disturbances.

The procedure computes, via the solving of a single LP, a polytopic RPI set that is minimal with respect

to the family of RPI sets generated from a finite number of inequalities with pre-defined normal vectors.

Index Terms

Linear systems; Uncertain systems; Computational methods; Optimization; Invariant sets

I. INTRODUCTION

We consider the problem of finding, for the discrete-time, linear time-invariant system,

x+ = Ax+ w, (1)

a robust positively invariant (RPI) set. That is, a setR ⊂ R
n with the property

Ax+ w ∈ R, ∀x ∈ R, w ∈ W. (2)

In this problem,x ∈ R
n is the current state andx+ its successor. The disturbancew ∈ R

n

is unknown but lies in a polytopic (compact and convex) setW that contains the origin in its

interior.

Robust or disturbance invariant sets are important in control, and their theory and computation

have attracted significant attention; see, for example, [1]–[4] and references therein. One set that

is of particular interest is theminimal RPI (mRPI) set—that is, the RPI set that is smallest in

volume among all the RPI sets for a system—which is also the set of states reachable from the

origin in the presence of a bounded disturbance. This set is an essential ingredient in many robust
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control algorithms. For example, in tube-based robust model predictive control (MPC) [5], an RPI

set is used to guarantee robust stability and feasibility inthe presence of bounded uncertainty;

moreover, since the constraints in the MPC optimization problem aretightenedaccording to the

size of the RPI set, then the smallest RPI set (i.e., the mRPI set) is desirable. However, computing

an exact representation of the mRPI is generally impossible(except for special instances ofA, as

identified later), and instead an approximation is usually sought. A seminal contribution in this

regard is [3], which proposes a method for computing an abitrarily close outer-approximation

to the mRPI set, which is itself RPI.

The essence of the problem of computing exactly the mRPI set is that this set is, in general,

not finitely determined. Methods for computing approximations to the mRPI set, including [3],

rely on finding finite representations of the set. Recently, in the context of tube-based MPC, [6]

introduced and studied the notion of a polytopic RPI set defined by a finite number,r, of a-

priori selected linear inequalities. For a non-autonomous systemx+ = Ax+Bu+w controlled

by a continuous positively homogeneous control law,u = κ(x), the authors showed that the

RPI set dynamic condition (2) has an equivalent representation asr functional inequalities. It

was established that a fixed-point solution to the functional equation corresponds to an RPI set

that is minimal, in volume, with respect to the entire family of RPI sets defined by the pre-

selected inequalities, and is an invariant outer-approximation to the mRPI set. To compute this

set, the authors of [6] give an iterative procedure, based onsolving a sequence of LPs, for which

convergence is guaranteed.

In this note, we adopt the notions of [6] and specialize theirresults to the case of the

linear autonomous system (1) (alternatively, the linear non-autonomous system with linear state

feedback control law) in order to develop a one-step approach, based on solving a single LP, to

the computation of the smallest RPI set defined by a pre-selected system of inequalities. Though

simple, to the author’s knowledge this has not appeared in the literature, although there are

related results; for example, it is known that checking the invariance of an existing polytope

is an LP [2]. On the other hand, the ability to synthesize a near-minimal RPI set by solving a

single LP potentially paves the way for robust control methods that re-compute the disturbance

invariant sets on-line, as done in, for example, the recently developed “plug-and-play” approach

to distributed MPC [7].

The proposed approach differs to the one of [3] in one important assumption: the number

and normal vectors of the inequalities that represent the RPI set are, as in [6], defineda priori,
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while in [3] both are unknown until termination of the algorithm. Thisa-priori definition, first

proposed and studied by [6], has two consequences: firstly, the RPI set obtained is not necessarily

the mRPI set, or even an abitrarily close outer-approximation (as it is in [3]); however, it is the

smallest RPI set that can be represented by the finite number,r, of chosen inequalities with

normal vectors{P⊤
i : i = 1 . . . r} [6]. To make a clear distinction, in this note we term this the

(P, r)-mRPI set when the number of chosen inequalities isr and the matrix of normal vectors

(the left-hand side of the defining system of inequalities) is P . Secondly, the method of [3]

involves solving a sequence of LPs and then computing a Minkowski summation, but here only

the solving of a single LP is required. The development of theprocedure here comprises two

steps, the enumeration of which also serves to clarify the contribution of this note with respect

to [6]: first, we show that, for the studied linear autonomoussystem (1), the fixed-point solution

to the functional equation, which [6] showed is guaranteed to exist, is in fact unique. Secondly,

we show that the corresponding RPI set—which [6] proved to beminimal with respect to the

family of RPI sets represented by(P, r)—can be computed via a single linear program (LP), as

an alternative the iterative sequence of LPs proposed by [6].

Another method that uses a single LP to compute a disturbanceinvariant set is the optimized

robust control invariance approach of [4], applicable to the linear non-autonomous systemx+ =

Ax+Bu+w. Because a robustcontrol invariant (RCI) set—and the associated control policy—is

obtained, then this subsumes the robust positive invariance (where afixedcontrol law is assumed)

considered here. However, that approach optimizes over only those control policies that guarantee

a finitely determined set, achieved by employing a relaxed variation of the assumption, for (1),

that Ak
W ⊆ αW for someα ∈ [0, 1) and finite integerk. In this note, the assumption that

A has eigenvalues inside the unit circle is required, which isdifferent to the assumption used

for finite determination of RCI sets in [4], but weaker than the assumption required for finite

determination of the mRPI set for (1).

The organization of this note is as follows. First, in Section II, it is shown that for the

system (1), the fixed-point solution is, under suitable assumptions, unique. Subsequently, in

Section III, it is shown that the(P, r)-mRPI set for (1) may be computed via a single LP.

Finally, examples are given in Section IV to illustrate the practicality of the proposed approach,

before conclusions are made in Section V.

Notation: The sets of non-negative and positive reals are, respectively, R0+ and R+. For

a, b ∈ R
n, a ≤ b applies element by element. A matrixM is non-negative, denotedM ≥ 0, if
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Mij ≥ 0 for all i and j. λX is the scaling of a setX by λ ∈ R, defined as{λx : x ∈ X}.

AX denotes the image of a setX ⊂ R
n under the linear mapA : Rn 7→ R

p, and is given by

{Ax : x ∈ X}. The support function of a setX is h(X , v) , sup{v⊤x : x ∈ X}. A polyhedron is

the convex intersection of a finite number of halfspaces, anda polytope is a closed and bounded

(hence compact) polyhedron.

II. EXISTENCE AND UNIQUENESS OF A(P, r)-MRPI SET

For the system (1), we consider the case of a polytopic disturbance set

W ,
{

w ∈ R
n : Fw ≤ g

}

, (3)

whereF ∈ R
p×n, g ∈ R

p
0+, and make the following two standing assumptions.

Assumption 1:The setW contains the origin in its interior.

Assumption 2:The eigenvalues ofA are strictly within the unit circle.

The former assumption requires thatg ∈ R
p
+. The latter assumption implies, as shown in [1],

that for a given compact disturbance setW there exists a compact RPI set,R, for the system (1),

satisfying (2).

Assumption 3:The RPI setR is a polytope that contains the origin in its interior.

Note that Assumptions 1 and 3 imply that the support functions to W andR, respectively,

are positive—a key technical property that will be used in this note to establish the existence

and uniqueness of the RPI set that we aim to compute.

In this note, following [6], we consider the RPI set constructed from a finite number,r, of

inequalities with pre-defined normal vectors. That is,R , R(q), defined as

R(q) ,
{

z ∈ R
n : Pz ≤ q

}

, (4)

whereP ∈ R
r×n,

{

P⊤
i : i ∈ {1, . . . , r}

}

spansRn, Pi is the ith row of matrixP , andq ∈ R
r
0+.

The left-hand side of the inequalities—the matrixP—is to be chosena priori by the designer.

The following result, which is an application of Farkas’ Lemma, establishes basic conditions on

the matricesA, P andF for the existence of an RPI set for the system (1) given the disturbance

polytope (3).
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Theorem 1 (Adapted from Hennet and Castellan [8]):Suppose Assumptions 1–3 hold. Then

the setR(q) with someq = q̄ is robust positive invariant for the system (1) if and only ifthere

exist non-negative matricesH ∈ R
r×r andM ∈ R

r×p such that

HP = PA (5a)

MF = P (5b)

Hq̄ +Mg ≤ q̄ (5c)

We will assume thatP is chosen so that an RPI set exists:

Assumption 4:For the chosenP , and the system(A,W), there exists āq ∈ R
r
+ such that (2)

holds for allx ∈ R(q̄).

Remark 1:While Assumption 4 may appear strong, it is needed to narrow the class of matrices

that we consider to those that admit an RPI set. However, the procedure presented in the next

section includes a easy certification of existence of an RPI set for a chosenP : if an RPI set exists,

the (P, r)-mRPI set is returned. If no RPI set exists, the optimizationproblem is unbounded.

The authors of [6] show—in the more general setting of a linear non-autonomous system

controlled by a positively homogeneous state-feedback control law—that RPI condition (2) is

equivalent to the functional inequality

c(q) + d ≤ b(q), (6)

where, for i = 1 . . . r, bi(q) , h(R(q), P⊤
i ), ci(q) , h(AR(q), P⊤

i ), di , h(W, P⊤
i ). That is,

the set inclusion requirement is replaced by support function inequalities, which is a standard

technique [9]. Note thatb(q) may be different toq; for example, in the case of redundant inequal-

ities definingR(q). The topological properties of these functions described in the following two

lemmas are essential to establishing existence and uniqueness of the fixed-point solution to (6).

Lemma 1 (Adapted from Proposition 1 of [6]):Suppose that Assumptions 1–3 hold. Then the

functionsb : Rr
0+ 7→ R

r
0+, c : Rr

0+ 7→ R
r
0+ are continuous and monotonically non-decreasing; that

is, b(a1) ≤ b(a2) for a1 ≤ a2. Also, d ∈ R
r
+.

Lemma 2 (Positive homegeneity ofb, c): Suppose Assumptions 2 and 3 hold. Then the functions

b(·) and c(·) are positively homogeneous; that isb(λa) = λb(a) for λ ≥ 0, with a similar

expression forc(·).

Proof: Considerbi(λa) = h (R(λa), Pi) for somea ∈ R
r
0+, λ ≥ 0 and i ∈ {1, . . . , r}.

By definition of R(·), R(λa) = λR(a). Thus,h (R(λa), Pi) = h (λR(a), Pi) = λh (R(a), Pi),

July 22, 2016 DRAFT
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for λ ≥ 0, where the latter equality follows directly from the definition of the support func-

tion [9]. Hence,bi(λa) = λbi(a), thereforeb(λa) = λb(a). Positive homogeneity ofc(·) may be

established by the same arguments.

The next result, which concerns the existence of a fixed-point solution to (6), was established

by [6] in the setting of a linear non-autonomous system controlled by positively homogeneous

state-feedback control law, and hence immediately appliesto the more specialized case considered

in this note.

Theorem 2 (Theorem 1 of [6]):Suppose Assumptions 1–3 hold. LetQ ,
{

q ∈ R
r
0+ : 0 ≤

q ≤ q̄
}

. Then, (i) for allq ∈ Q, c(q)+ d ∈ Q and (ii) there exists at least oneq∗ ∈ Q satisfying

c(q∗) + d = b(q∗) = q∗ if and only if Assumption 4 holds.

Remark 2:The necessity and sufficiency of Assumption 4 follows by definition. In particular,

if Assumption 4 does not hold, then there does not exist an RPIset for the system(A,W) with

the chosenP .

Remark 3:Note that, in view of the assumptions ong and the properties ofb(·), c(·), andd,

a fixed-point solutionq∗ must be strictly positive.

With respect to computing a fixed-point solution, the sequence generated by the iterative

procedureq[p+1] = c(q[p]) + d, with q[0] = 0, converges to the fixed-point solutionq∗ with the

smallest 1-norm value,‖q∗‖1 [6, Theorem 2]. As the following result states, the corresponding

setR(q∗) is RPI, and, in fact, is the minimal (smallest volume) RPI setover the family of RPI

sets defined by ther inequalities with left-hand sideP .

Lemma 3 (Corollary 1 of [6]):R(q∗) =
⋂

X∈S X where

S , {R(q) : q ∈ H} , andH ,
{

q ∈ R
r
0+ : c(q) + d ≤ b(q)

}

For convenience, we define this setR(q∗) as the(P, r)-mRPI set.

Definition 1 ((P, r)-mRPI set):The (P, r)-mRPI set for system (1) isR(q∗) where q∗ =

b(q∗) = c(q∗) + d.

In this note, we propose an alernative to the iterative procedure of [6]. To this end, the next

result shows that the fixed-point solution to (6) is, in fact,unique. This result is then exploited

in Section III, wherein the problem of finding the fixed-pointsolution is cast as an LP.

Theorem 3 (Uniqueness of fixed-point solution):Suppose Assumptions 1–4 hold. Then there

exists a uniqueq∗ ∈ R
r
+ satisfyingc(q∗) + d = b(q∗) = q∗.

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

Proof: Existence is established by Theorem 2, so it remains to show that q∗ is unique. Let

l(q) = c(q)+d−b(q) andf(q) = b(q)−q. Finding the fixed-point solutionc(q∗)+d = b(q∗) = q∗

is equivalent to findingq∗ such thatl(q∗) = f(q∗) = 0. Suppose there existq1 ∈ R
r
+ andq2 ∈ R

r
+

such thatl(q1) = f(q1) = 0, l(q2) = f(q2) = 0, andq2 6= q1, i.e., q2 − q1 6= 0. There are two

possibilities:

(i) q2i > q1i for at least onei ∈ {1, . . . , r}, with q2j ≤ q1j otherwise;

(ii) q2 ≤ q1, with q2i < q1i for at least onei ∈ {1, . . . , r}.

Consider case (i). Let

α = min
i=1...r

{

q1i
q2i

}

=
q1p
q2p

> 0

Strict positivity follows from the discussion in Remark 3. Since q2i > q1i for at least onei,

thenα < 1. Let s = αq2 < q2. It follows, from positive homogeneity ofb(·) and the fact that

b(q2)− q2 = 0, that f(s) = b(s)− s = b(αq2)− αq2 = α
(

b(q2)− q2)
)

= 0. Similarly,

l(s) = c(s) + d− b(s)

= c(αq2) + d− b(αq2)

= αc(q2) + d− αb(q2)

= α
(

c(q2)− b(q2)
)

+ d

> 0

where the second line follows from the positive homegeneityof c(·) and b(·), and the strict

inquality with zero follows fromc(q2)− b(q2) = −d, α < 1 andd > 0. Now, by definition ofα,

and sinceα < 1, thens ≤ q1 with sp = q1p . For the samep, we havefp(q1) = bp(q
1)− q1p = 0,

fp(s) = bp(s) − sp = 0, and, sinces ≤ q1, then bp(s) ≤ bp(q
1). In fact, bp(s) = bp(q

1), as we

have already shown thatbp(s) = sp = q1p. We also havelp(q1) = cp(q
1)+dp− bp(q

1) andlp(s) =

cp(s)+ dp− bp(s). Becausebp(q1) = bp(s) andcp(s) ≤ cp(q
1), it follows that lp(s) ≤ lp(q

1). But

then 0 = lp(q
1) ≥ lp(s) > 0, and we have a contradiction: therefore, we conclude that case (i)

cannot hold, and either case (ii) holds orq2 = q1. Now consider case (ii), and its equivalent

statement:q1i > q2i for at least onei ∈ {1, . . . , r}, with q1j ≥ q2j otherwise. Following the same

set of arguments, starting with the opposite definitions ofα = mini=1...r {q
2
i /q

1
i } and s = αq1,

we find that that case (ii) cannot hold either. Therefore,q1 = q2 = q∗, and the solution is unique.

July 22, 2016 DRAFT
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III. COMPUTING THE (P, r)-MRPI SET VIA A SINGLE LP

The problem of computing the(P, r)-mRPI set is that of finding theq that satisfies the

functional inequality (RPI condition) (6) while attainingthe smallest value of‖q‖1. The results

in the previous section show that thisq in fact satisfies (6) with equality; it is the fixed-point

solutionq∗. Therefore, the problem of findingq∗ is

q∗ = argmin
q

{‖q‖1 : c(q) + d ≤ b(q)} (7)

This is not tractable, as, by the definitions ofb(·) and c(·), the constraints are maximization

problems involving the optimization variable:

max {PiAx : Px ≤ q}+max {Piw : Fw ≤ g}

≤ max {Pix : Px ≤ q}

for i = 1 . . . r. However, by noting that the fixed-point solution is unique,we may replace the

problem of (7) with the maximization problem

q∗ = argmax
q

{‖q‖1 : c(q) + d = b(q)}

This problem then easily converts to a linear program, as shown by the following. Introduce

auxiliary variablesξi ∈ R
n andωi ∈ R

n for each RPI inequalityi ∈ {1, . . . , r}. Then, noting

that q = b(q) = c(q) + d at the desired fixed-point solution, eliminateq andb(q), leading to the

problem

P : q∗ = c∗ + d∗, where(c∗, d∗) = arg max
{ci,di,ξ

i,ωi}
∀i∈{1,...,r}

r
∑

i=1

ci + di (8)

subject to, for alli ∈ {1, . . . , r},

ci ≤ PiAξ
i, (9a)

Pξi ≤ c+ d, (9b)

di ≤ Piω
i, (9c)

Fωi ≤ g. (9d)

In this problem, maximizing eachci subject to constraints (9a) and (9b) represents finding the

vector of support functions toAR. Constraint (9b) representsPx ≤ b(q), with the condition

c(q) + d = b(q) enforced. Constraints (9c) and (9d) represent findingd, the vector of support

functions toW.

July 22, 2016 DRAFT
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Remark 4:Note that, by definition,di = h(W, P⊤
i ) is constant and does not depend on

q. Therefore,d could be computed prior to solvingP, by solving a sequence of LPs, before

entering the optimization as a parameter. However, our aim is to formulate a single LP (a one-

step procedure) that computes, simultaneously,d, c and henceq.

Note that eachdi andωi is bounded, via (9c) and (9d) and the assumptions onW. Further note

that this problem always has afeasiblesolution, since one can choose, for example,ci = di = 0

and ξi = ωi = 0. The question, then, is whether an optimal solution exists,or the problem is

unbounded. To this end, we require the following result, which specializes Theorem 1 to the

fixed-point solution.

Proposition 1:Suppose Assumptions 1–4 hold. A vectorq∗ satisfies the fixed-point relation

c(q∗)+d = b(q∗) = q∗ if and only if there exist non-negative matricesH ∈ R
r×r andM ∈ R

r×p

such that

HP = PA (10a)

MF = P (10b)

Hq∗ +Mg = q∗ (10c)

Proof: Consider theith element of each ofc(q∗), d andb(q∗), defined by the (primal) LPs

ci(q
∗) = max

{

PiAx : Px ≤ q∗
}

(11a)

di = max
{

Piw : Fw ≤ g
}

(11b)

bi(q
∗) = max

{

Pix : Px ≤ q∗
}

(11c)

If Assumptions 1–4 hold, then by the previous results there exists aq∗ satisfying the fixed-point

equation. Moreover, each of the terms in (11) is well defined,which is the case if and only if

each LP is feasible and attains an finite optimum. Therefore,by weak duality, the dual of each

LP

ci(q
∗) : min

{

h⊤
i q

∗ : h⊤
i P = PiA, hi ≥ 0

}

,

di : min
{

m⊤
i g : m⊤

i F = Pi, mi ≥ 0
}

,

bi(q
∗) : min

{

y⊤i q
∗ : y⊤i P = Pi, yi ≥ 0

}

,

July 22, 2016 DRAFT
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is feasible. Examining these dual problems, dual feasible solutions exist if and only if there exist

non-negativehi ∈ R
r, mi ∈ R

p, yi ∈ R
r such that

h⊤
i P = PiA,

m⊤
i F = Pi,

y⊤i P = Pi.

Applying strong duality, which holds in view of the previousarguments, to each of the three

LPs

ci(q
∗) = h⊤

i q
∗,

di = m⊤
i g,

bi(q
∗) = y⊤i q

∗.

Collecting all rowsi = 1 . . . r,

c(q∗) = Hq∗

d = Mg,

b(q∗) = Y q∗,

whereHP = PA, MF = P , Y P = P . Therefore, it follows that if the fixed-point equation

c(q∗) + d = b(q∗) = q∗

is satisfied, then so are the conditions (10); conversely, if(10) are satisfied, then so is the

fixed-point equation.

Then the main result of this section follows.

Theorem 4:Suppose Assumptions 1–3 hold. IfP satisfies Assumption 4, then problem

P admits an optimal solution corresponding to the fixed-pointsolution q∗. Otherwise,P is

unbounded above.

Proof: We use duality to prove the theorem. Our goal is to prove that the optimal solution

to P satisfies the conditions (10), for some non-negativeH andM , if and only if Assumption 4

holds, and thatP is otherwise unbounded. Since the primal LP problemP is known to be feasible,

it suffices to show that the dual problem is feasible—and the solution is as claimed—if and only

if P satisfies Assumption 4; on the other hand, if the dual is infeasible, then by weak duality

the primal problemP is unbounded.

July 22, 2016 DRAFT
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The dual problem is

D : min
{λi,νi,µ

i,ηi}
∀i∈{1,...,r}

r
∑

k=1

(ηk)⊤g (12)

subject to, for alli ∈ {1, . . . , r},

λ−
r
∑

k=1

µk = 1, (13a)

ν −
r
∑

k=1

µk = 1, (13b)

P⊤µi − A⊤P⊤
i λi = 0, (13c)

F⊤ηi − P⊤
i νi = 0, (13d)

λi, νi ≥ 0 (13e)

µi, ηi ≥ 0 (13f)

whereλi ∈ R, µi ∈ R
r, νi ∈ R, ηi ∈ R

p are the dual variables associated with constraints (9a)–

(9d) respectively.

We first suppose the dual problemD is feasible. From (13a) and (13b),λi = νi = 1+
∑r

k=1 µ
k
i ,

for all i = 1, . . . , r, whereµk
i is theith element ofµk ∈ R

r. From this and (13c), (13d), it follows

that

PiA =
(µi)⊤

1 +
∑r

k=1 µ
k
i

P,

Pi =
(ηi)⊤

1 +
∑r

k=1 µ
k
i

F,

where the division is permitted since
∑r

k=1 µ
k
i ≥ 0. Collecting all rowsi = 1 . . . r of P , it

follows that afeasiblesolution toD satisfies (10a) and (10b) withHij = µi
j/(1+

∑r

k=1 µ
k
i ) ≥ 0,

j = 1 . . . r, Mij = ηij/(1 +
∑r

k=1 µ
k
i ) ≥ 0, j = 1 . . . p; therefore,H andM are non-negative

matrices.

Now we study theoptimalsolution toD. Since the primal problemP is known to be feasible,

and we assumedD to be feasible, then by strong duality (which holds regardless of the feasibility

July 22, 2016 DRAFT
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of D) the optimal solutions toP andD are attained and equal in objective value. So, applying

complementary slackness to (9a) and (9c),
r
∑

i=1

λ∗
i (c

∗
i − PiAξ

i∗) = 0

r
∑

i=1

ν∗
i (d

∗
i − Piω

i∗) = 0.

where∗ denotes a variable in the optimal solution. Since each term in these sums is non-positive,

λ∗
i (c

∗
i − PiAξ

i∗) = 0,

ν∗
i (d

∗
i − Piω

i∗) = 0,

for i = 1, . . . , r. Morever, because (by (13a) and (13b))λ∗
i > 0 andν∗

i > 0, then, at the optimum,

c∗i = PiAξ
i∗,

d∗i = Piω
i∗.

Hence,

c∗i + d∗i = PiAξ
i∗ + Piω

i∗

=
(µi∗)⊤

1 +
∑r

k=1 µ
k∗
i

Pξi∗ +
(ηi∗)⊤

1 +
∑r

k=1 µ
k∗
i

Fωi∗

=
1

1 +
∑r

k=1 µ
k∗
i

(

r
∑

j=1

µi∗
j Pjξ

i∗ +

p
∑

j=1

ηi∗j Fjω
i∗

)

.

(14)

Now consider the inequality (9d). SupposeFωi∗ < g for somei ∈ {1, . . . , r} (i.e., Fjω
i∗ < gj for

all j = 1 . . . p). Complementary slackness implies thatηi∗ = 0 which in turn implies (from (13d),

assuming thatPi is not trivially all zeros) thatν∗
i = 0; but ν∗

i ≥ 1 by (13b), which is a

contradiction. Hence, there must exist a subsetK ⊂ {1, . . . , p} of active constraints for which

Fkω
i∗ = gk for k ∈ K. But for anyj /∈ K, ηi∗j = 0.

Similarly, consider the inequality (9b). By complementaryslackness, ifPξi∗ < c∗ + d∗ then

µi∗ = 0. By (13c), this implies thatA⊤P⊤
i λ∗

i = 0. There are two cases to consider: (i) if any

elements ofPiA are non-zero thenλ∗
i = 0; (ii) if PiA = 0 thenλ∗

i > 0 is permitted. We leave

case (ii) for now and consider (i) first.λ∗
i = 0 contradicts (13a), which requiresλ∗

i ≥ 1. Hence,

there must exist a subsetJ ⊂ {1, . . . , r} of active constraints for whichPjξ
i∗ = c∗j + d∗j for
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j ∈ J . But for anyk /∈ J , µi∗
k = 0. As a consequence of the preceding arguments, (14) may

be re-written as

c∗i + d∗i =
1

1 +
∑r

k=1 µ
k∗
i

(

∑

j∈J

µi∗
j Pjξ

i∗ +
∑

k∈K

ηi∗k Fkω
i∗

)

= Hi(c
∗ + d∗) +Mig

whereHi is the ith row of H andMi is the ith row of M . The second line follows because

Hij = 0 for j /∈ J andMik = 0 for k /∈ K, while Pjξ
i∗ = c∗j + d∗j for j ∈ J andFkω

i∗ = gk

for k ∈ K.

Now case (ii). If PiA = 0 then c∗i = 0. Moreover,λ∗
i ≥ 1 is permitted, so the same

contradiction is not constructed. Then, however, eitherPξi∗ < d∗, henceµi∗ = 0, or Pξ∗ij = d∗j ,

with µi∗
j ≥ 0, for j ∈ J ⊂ {1, . . . , r}, andµi∗

k = 0 for all k /∈ J . Either way,

c∗i + d∗i = Hi(c
∗ + d∗) +Mig

as before.

Finally, collecting all rowsi = 1 . . . r,

H(c∗ + d∗) +Mg = c∗ + d∗

which is the third condition in (10). This establishes that the solution toP, if it is attainable,

satisfies the conditions (10) for it to be the fixed-point solution. It is attainable if and only if

the dual problemD is feasible. Therefore, it remains to show that theD is feasible if and only

if Assumption 4 holds.

First, necessity of Assumption 4. Suppose Assumption 4 is not satisfied, but the dualD

is feasible. By definition, if Assumption 4 is not satisfied then for the chosenP and system

(A,W) there does not exist aq satisfying the functional inequality (6). Therefore, there exists

no q∗ satisfying the functional equation and, by Proposition 1, the conditions (10). However, the

attainable optimal solution toP andD satisfies (10) with non-negativeH andM , as has been

shown. Therefore, we have a contradiction, and conclude theoptimal solution is attainable, and

D is feasible, only if Assumption 4 holds.

Second, sufficiency of Assumption 4. Writing the primal constraints (9) in the formAx ≤ b,

wherex is the vector of primal decision variables, it follows that the dual constraints (13) may

be written in the formA⊤y = c, y ≥ 0, wherey is the vector of dual variables andc is the

coefficients vector in the vectorized form,c⊤x, of the objective function (8). By Farkas’ Lemma,
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a feasible solution toA⊤y = c, y ≥ 0 exists if and only ifAx ≥ 0 =⇒ c⊤x ≥ 0. Hence,

we aim to show that, if Assumption 4 holds, then for allx satisfyingAx ≥ 0 we also have

c⊤x ≥ 0. The systemAx ≥ 0 may be written in terms of the primal variables as

ci ≥ PiAξ
i

Pξi ≥ c+ d

di ≥ Piω
i

Fωi ≥ 0

for i = 1 . . . r. If Assumption 4 holds, thenHiP = PiA andMiF = Pi for some non-negative

Hi andMi. Substituting into the systemAx ≥ 0,

ci ≥ HiPξi

Pξi ≥ c+ d

di ≥ MiFωi

Fωi ≥ 0,

from which it follows thatdi ≥ 0 and ci ≥ Hi(c + d), hencec ≥ Hc. But we also have that,

if Assumption (4) holds, then there exists someq ∈ R
r
+ for which 0 ≤ Hq ≤ Hq + Mg ≤ q.

Applying recursively,0 ≤ Hnq ≤ Hq ≤ q, Hn ≥ 0 becauseH ≥ 0, and thereforelimn→∞Hn ≥

0, if the limit exists. In fact, becauseHP = PA, the nullspace ofP is A-invariant andP has

rankn, then the eigenvalues ofH are are subset of the eigenvalues ofA; hence,limn→∞Hn = 0

becauseρ(A) < 1. Thenc ≥ Hc ≥ limn→∞Hnc = 0. Consequently,c⊤x =
∑r

i=1 ci + di ≥ 0.

Therefore,D is feasible if Assumption 4 holds.

IV. EXAMPLES

We consider the non-autonomous system

x+ =





1 1

0 1



 x+





0.5

1



 u+ w, (15)

with w ∈ W = {w ∈ R
2 : ‖w‖∞ ≤ 0.1}. This is converted to the linear autonomous system (1)

by use of a state feedback control lawu = Kx.
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A. Computation of(P, r)-mRPI from selected inequalities

First, we use the feedback matrixK = [−0.4345,−1.0285], corresponding to the infinite-

horizon LQR solution with cost matricesQ = I andR = 1. Note that in this example the mRPI

set is not finitely determined, and therefore an approximation is required.

Figure 1(a) shows the(P, r)-mRPI sets generated fromr = 6, 20 and48 inequalities, wherein

the ith row of P is designed as

Pi =
[

sin
(

2π(i−1)
r

)

cos
(

2π(i−1)
r

)]

, (16)

i.e., so thatPx ≤ 1 is the r-sided regular polygon. Also shown is the outer approximation to

the mRPI, which is itself RPI, computed using the algorithm of [3] and a toleranceǫ = 10−4.

This set, termed theǫ-mRPI set, is defined by48 non-redundant inequalities.

Figure 1(b) shows a similar comparison usingK = [−0.0796,−0.4068], obtained as the LQR

solution withQ = I andR = 100. Now the ǫ-mRPI (ǫ = 10−4) comprises172 non-redundant

inequalities, while the(P, r)-mRPI sets computed using the proposed method are shown for

r = 20, 60 and172, again using (16) forP .

Table I compares the computation times and number of operations for computing the(P, r)-

mRPI with those for obtaining theǫ-outer approximation using the algorithm of [3]. For the latter,

the Multi-Parametric Toolbox v3.0 [10] was used for set operations, with CPLEX 12.6 as the

LP solver for support function calculations. For the(P, r)-mRPI set computations (i.e., solving

the LP), CPLEX 12.6 was used as the LP solver. The platform wasa 64-bit Intel Core i7-2600

at 3.40 GHz with 8 GB RAM. Times are reported as the mean elapsed time over100 runs.

Comparison was also made with the iterative procedure of [6]for computing the(P, r)-mRPI.

The iterative procedure is

qk+1 = c(qk) + d with q0 = 0

for which qk → q∗ ask → ∞. This was implemented in MATLAB using the MPT v3.0 [10] for

support function calculations (with CPLEX 12.6 as underlying LP solver). The functionc(·) was

evaluated element by element at each iteration; that is, asr separate support function calculations.

For the simplest case considered ofK = [−0.4345,−1.0285] andr = 6 (the first row of Table I),

the number of iterations to convergence (of|qk+1−qk| to within a chosen tolerance of10−6) was

34, which included the solving of238 LPs and took a mean total time of1.7 seconds. At the

other end of the scale, for the most difficult problem considered (K = [−0.0796,−0.4068] and
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ǫ-mRPI

(a) K = [−0.4345,−1.0285]

−2 −1 0 1 2

−0.4

−0.2

0

0.2

0.4

x1

x
2

r = 20
r = 60
r = 172
ǫ-mRPI

(b) K = [−0.0796,−0.4068]

Fig. 1. Comparison of(P, r)-mRPI andǫ-mRPI sets for the system (15) with different feedback matricesK.

r = 172), the iterative procedure required70 iterations, the solving of over12000 LPs, and took,

on average,90 seconds. While these times can, of course, be shortened by using optimized code,

the intention here is merely to report the times obtained using standard computational tools.

B. Re-computing the(P, r)-mRPI set givenP

An interesting use of the method is when an RPI set for the system is available, but is desired

to be re-computed or modified; for example, if the disturbance set changes. Potential applications

of this include “plug-and-play” tube-based approaches to distributed MPC, wherein a dynamic

subsystems’ disturbance set evolves over time as other subsystems are added to and removed

from the system of coupled subsystems [7]; in such situations, one needs a new RPI set that

takes into account the latest disturbance set. One could re-compute from scratch a new RPI set,

July 22, 2016 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 17

but it may be advantageous, in the interests of computation time, to modify an existing RPI set

instead. In the context of the approach proposed here, theP matrix of the known RPI set may

be used as a basis for computing the new RPI set.

For the system (15) withK = [−0.4345,−1.0285] andW = {w ∈ R
2 : |w|∞ ≤ 0.1}, theP

matrix is obtained as that of theǫ-mRPI set. Forǫ = 10−4, this comprises48 inequalities. Now

suppose the disturbance set enlarges to

W =







w ∈ R
2 :





−0.3

−0.4



 ≤ w ≤





0.1

0.2











Figure 2 shows the(P, r)-mRPI andǫ-mRPI sets based on the new disturbance set, using

for the former theP matrix from the oldǫ-mRPI set. The(P, r)-mRPI set, computed in0.03 s

using the proposed method, is visually indistinguishable from the newǫ-mRPI set.

V. CONCLUSIONS

A procedure for computing a polytopic robust positively invariant set for a linear uncertain

system has been presented. The method, which requires the solution of a single LP, obtains the

an RPI set that is the smallest among those represented by a finite number inequalities with

pre-defined normal vectors, and offers an alternative method of computation to the iterative

procedure of [6]. Existence and uniqueness of a solution hasbeen established. The practicality

of the approach has been demonstrated via examples.

TABLE I

COMPARISON OF COMPUTATION TIMES AND OPERATIONS FOR(P, r)-MRPI AND ǫ-MRPI SETS.

LPs solved Minkowski sums Mean time (s)

K = [−0.4345,−1.0285]

r = 6 1 0 0.005

r = 20 1 0 0.007

r = 48 1 0 0.019

ǫ-mRPI [3] (r = 48) 369 11 2.9

K = [−0.0796,−0.4068]

r = 20 1 0 0.008

r = 60 1 0 0.036

r = 172 1 0 0.30

ǫ-mRPI [3] (r = 172) 3250 42 25
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New ǫ-mRPI

Original ǫ-mRPI

Fig. 2. Comparison of(P, r)-mRPI andǫ-mRPI sets for the system (15) withK = [−0.4345,−1.0285] and different disturbance

sets.
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