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Abstract—We consider in this paper a networked system of
opinion dynamics in continuous time, where the agents are able
to evaluate their self-appraisals in a distributed way. In the model
we formulate, the underlying network topology is described by a
rooted digraph. For each ordered pair of agents (i, j), we assign
a function of self-appraisal to agent i, which measures the level
of importance of agent i to agent j. Thus, by communicating only
with her neighbors, each agent is able to calculate the difference
between her level of importance to others and others’ level of
importance to her. The dynamical system of self-appraisals is
then designed to drive these differences to zero. We show that
for almost all initial conditions, the trajectory generated by this
dynamical system asymptotically converges to an equilibrium
point which is exponentially stable.

I. INTRODUCTION

Social network is a social structure made up of actors, such
as agents and organizations, and the relationships between
these actors, particularly those that are neighbors to each
other. The concept of social networks is familiar to most
people because of the emergence of online social network-
ing services such as Facebook, Twitter, and Google+. Many
social behaviors spread through social networks of interacting
agents. Examples are opinion dynamics [1], adoption of new
technology or products [2], voting [3], and demonstrations [4].
In this paper, we will focus on an important issue in opinion
dynamics which is about how each agent in the social network
evaluates her importance in a distributed way.

Over the past decades, there has been considerable attention
paid to understanding how an agent’s opinion evolves over
time. In social science, various models have been proposed
to illustrate opinion dynamics. Notable among them are the
four classical models: the DeGroot model [1], the Friedkin-
Johnsen model [5], the Hegselmann-Krause model [6], and
the Deffuant-Weisbuch model [7]. In the DeGroot model,
each agent has a fixed set of neighbors and takes a convex
combination of her own opinion and the opinions of her
neighbors. The Friedkin-Johnsen model is a variation of the
DeGroot model in which each agent adheres to her initial
opinion to a certain degree, which can be interpreted as her
level of “stubbornness”. The Hegselmann-Krause model and
the Deffuant-Weisbuch model define the neighbor sets in a
different way: each agent takes a set of agents as her neighbors
only if the opinions of these agents differ from her by no
more than a certain confidence level. With the defined set
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of neighbors, each agent takes a convex combination of her
own opinion with either (i) all of her current neighbors in
the Hegselmann-Krause model, or (ii) only one of her current
neighbors in the Deffuant-Weisbuch model. Other important
opinion models are, for example, the Sznajd model [8], which
uses the Ising spin model to describe a mechanism of making
a decision in a closed community, and the voter model, which
is a continuous-time Markov process defined over a lattice of
integers, proposed by [9], [10].

Recently, with the rapid expansion of large-scale, online
networks, there has been an increased interest in the analysis
of opinion formation, with the objective of extending the
classical models by taking into account more factors of social
interactions [11]–[19]. In the work of [11] and [12], the effects
of the existence of stubborn agents–the agents who never
update their opinions–are investigated in a randomized pair-
wise updating process. In [13], the opinion formation process
is reformulated into a local interaction game, and the concept
of stubbornness of an agent regarding her initial opinion is
introduced. The Krause model and its variations are studied
in [14]–[17]. For example, a game-theoretic analysis of the
Krause model is studied in [16]. The work of [17] takes into
account exogenous factors, such as the influence of media,
and assumes that each agent updates her opinion via the
opinions of the population inside her “confidence range” and
the information from an exogenous input in that range. In the
literature, both discrete-time [1], [5] and continuous-time [20],
[21] approaches have been adopted to model the update rule
of opinions of agents.

Recently, Jia et al proposed the so-called DeGroot-Friedkin
model [18], [19]. This model uses the concept of reflected ap-
praisal from sociology [22], [23], and studies the evolution of
self-confidence, i.e., how confident an agent is in her opinions
on a variety of issues. Briefly speaking, reflected appraisal
describes the phenomenon that agents’ self-appraisals are in-
fluenced by the appraisals of other agents on them. Following
the work of [18], [19], a modified DeGroot-Friedkin model
is proposed in [24] in which each agent updates her level of
self-confidence in a more frequent manner. Specifically, all
the agents in the network update their own levels of self-
confidence immediately after each time of discussion, instead
of waiting for the opinion process to reach a consensus on
any particular issue, which generally takes infinite time. The
analysis of the modified DeGroot-Friedkin model is carried out
only in the special case when the so-called relative interaction
matrix is doubly stochastic. Yet, a complete understanding of
the system behavior for the most general case has remained
open.

We introduce in this paper a continuous-time self-appraisal
model whereby the agents in a social network are able to
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evaluate their self-appraisals in a distributed way. For each
ordered pair of agents i and j, we assign a function of self-
appraisal to agent i, which measures the level of importance
of agent i to agent j. With local interaction with her neighbors
only, each agent is able to calculate the difference between her
level of importance to others and others’ level of importance
to herself. The proposed dynamical system of self-appraisals
aims to drive these differences to zero.

Although many opinion dynamics are built on discrete-time
scales, a continuous-time model holds its merits in many ways:
(i) a continuous-time model would be a natural choice if
the opinions of individuals evolve gradually over time, and
moreover, can be used to describe the limiting behavior of
a discrete-time system if the exchange of the opinions are
frequent enough; (ii) often, the analysis of a continuous-time
system would be easier to carried out than a discrete-time sys-
tem; and (iii) a complete analysis of a continuous-time system
provides valuable insight into the dynamics of the discrete-
time counterpart. We should note that the asymptotic behavior
of the trajectories of the continuous-time self-appraisal model
studied in this paper matches numerical simulations of the
discrete-time modified DeGroot-Friedkin model, where the
latter does not permit a thorough analysis.

We note here that the analysis of the self-appraisal model
has been carried out earlier in our conference paper [25], but
for the case when the network topology is a strongly con-
nected graph, for which the convergence of the corresponding
dynamical system has been shown, with several of proofs left
out. In this paper, we generalize the result to the case when
the network topology is a rooted graph, and show that under
some mild assumptions, for almost all initial conditions, the
trajectory generated by the dynamical system asymptotically
converges to an equilibrium point which is exponentially
stable. We provide a complete analysis, as well as proofs for
establishing this result.

The remainder of the paper is organized as follows. In sec-
tion II, we describe in detail the self-appraisal model as well
as the motivation behind it. We also state the main theorem
of the paper on the convergence of the self-appraisal model.
In particular, the main theorem says that there is only one
stable equilibrium point in the unit simplex (as the underlying
space of the dynamical system), and moreover, for almost all
initial conditions in the unit simplex, the trajectories of the
dynamical system converge to that stable equilibrium point.
Sections III-V are devoted to establishing several properties
that are needed for the proof of the main theorem. A detailed
organization of these three sections will be given after the
statement of Theorem 1. We provide conclusions in the last
section. The paper ends with an Appendix.

II. THE SELF-APPRAISAL MODEL AND MAIN RESULT

In this section, we introduce the continuous-time self-
appraisal model, and state the main result of this paper.

A. Background and notations

By convention, the neighbor relation among the n agents in
the network is characterized by a directed graph (or digraph)

G = (V,E), with V = {1, . . . , n} the vertex set and E
the edge set. We consider in this paper only simple directed
graphs, that is directed graphs with no self loops, and with at
most one edge between each ordered pair of vertices. Denote
by i→ j a directed edge of G in which i is the start-vertex and
j is the end-vertex, and we say that j is an outgoing neighbor
of i and i is an incoming neighbor of j. Denote by V +

i and V −i
the sets of incoming and outgoing neighbors of i, respectively.
A directed path (or simply path) of G is a sequence of edges

i1 → i2 → . . .→ ik

connecting vertices of G, and all the vertices in the path are
distinct from each other. A vertex i is said to be a root if for
any other vertex j, there is a directed path from j to i in G.
The digraph G is said to be rooted if it contains at least a
root, and strongly connected if each vertex of G is a root.
For a subset V ′ ⊂ V , we call G′ a subgraph of G induced by
V ′ if G′ = (V ′, E′) and E′ contains any edge of E whose
start-vertex and end-vertex are in V ′. Denote by Vr ⊆ V the
collection of roots of G, and denote by Gr = (Vr, Er) the
subgraph of G induced by Vr. It is well known that the digraph
Gr is strongly connected.

Denote by Sp[V ] the (n−1)-simplex contained in Rn with
vertices the standard basis vectors e1, . . . , en ∈ Rn. For V ′ ⊂
V , we define similarly Sp[V ′] as the convex hull of {ei | i ∈
V ′}, i.e.,

Sp[V ′] :=

{∑
i∈V ′

αiei | αi ≥ 0,
∑
i∈V ′

αi = 1

}
.

A point x ∈ Sp[V ] is said to be a boundary point of Sp[V ]
if xi = 0 for some i ∈ V . If V ′ is a proper subset of V , then
each x ∈ Sp[V ′] is a boundary point of Sp[V ].

For an arbitrary dynamical system ẋ = f(x) in Rn, a subset
Q ⊆ Rn is said to be positive invariant if for any initial
condition x(0) ∈ Q, the solution x(t) of the dynamical system
is contained in Q for all time t ≥ 0.

B. The self-appraisal model

To introduce the self-appraisal model, we first consider the
following opinion consensus process, as a variation of the
DeGroot model [1], in continuous-time: Let G = (V,E) be
a rooted graph; each vertex i of G has at least one outgoing
neighbor. The opinion consensus process is described by

żi(t) = (1− xi(t))

−zi(t) +
∑
j∈V −i

cijzj(t)

 . (1)

Each zi(t) is a real number (or vector), representing the
opinion of agent i on certain ongoing issue(s) at time t. The
number xi(t) ∈ [0, 1] represents the current self-appraisal of
agent i in the social network. The coefficients cij’s, termed
as relative inter-personal weights in [18], are positive real
numbers, satisfying the following condition:∑

j∈V −i

cij = 1, ∀i ∈ V. (2)



Each cij can be set by agent i herself, encoding the willingness
of agent i to accept the opinion of agent j. Alternatively, cij
can be also viewed as a measure of the influence of the opinion
of agent j on the opinion of agent i.

We then recognize that system (1), with condition (2), is
a continuous-time consensus process [26], with the dynamics
of zi(t) scaled by the non-negative factor (1 − xi(t)). Note
that in (1), a larger value of xi(t) implies a smaller value of
‖żi(t)‖. So then, (1 − xi(t)) can be viewed as a measure of
the total amount of opinions agent i accepts from others at
time t, and cij(1−xi(t)) is the corresponding portion agent i
accepts from agent j.

With the opinion consensus-process (1) in mind, we propose
the following dynamics for the evolutions of self-appraisals:

ẋi = −(1− xi)xi +
∑
j∈V +

i

cji(1− xj)xj , ∀i ∈ V. (3)

Similar to the works [18], [24], the self-appraisals are scaled
so that they sum to one, i.e.,

x := (x1, . . . , xn) ∈ Sp[V ].

Note that such a scaling will be effective along the evolution;
indeed, we show in the next section that Sp[V ] is a positive
invariant set for system (3).

We now justify the self-appraisal model introduced above.
From (3), the evolution of xi is determined by two terms:∑
j∈V +

i
cji(1 − xj)xj and (1 − xi)xi. Explanations of these

two terms are given below.
Each summand cji(1− xj)xj in the first term is a product

of two factors: one is cji(1−xj) which measures the amount
of opinion agent j accepts from agent i during the consensus
process (1), and the other factor xj is the self-appraisal of
agent j which reflects the importance of agent j in the
network. Thus, their product cji(1− xj)xj can be viewed as
the measure of importance of agent i to agent j. Of course,
there are numerous ways of modeling these two factors, the
rationale behind the choice of using the product is given below.

We first consider the case where xj = 0; then agent j is not
important at all in the social network, and thus, agent i will
not increase her self-appraisal regardless of how much opinion
agent j accepts from her. On the other hand, consider the case
where xj = 1; then from the consensus process, we see that
agent j will not accept any opinion from agent i. Thus, in this
situation, agent i will not increase her self-appraisal either
regardless of how important agent j is in the network. By
taking these two cases into account, we realize that cji(1 −
xj)xj may be one of the simplest expressions that realistically
models how the neighbor j affects the self-appraisal of agent i.

The summation
∑
j∈V +

i
cji(1 − xj)xj can then be viewed

as the measure of importance of agent i to others. Conversely,
by (2), the other term (1−xi)xi can be expressed as follows:

(1− xi)xi =
∑
j∈V −i

cij(1− xi)xi,

We thus interpret (1 − xi)xi as the measure of importance
of others to agent i. Note that by communicating with her
neighbors, each agent i is able to compute these two terms by
herself.

The self-appraisal model is then designed so that agent i
measures the difference of the two terms, and drives it to
zero. In particular, note that if x∗ is an equilibrium point
of system (3), then for each agent i, we have the balance
equation:

(1− x∗i )x∗i =
∑
j∈V +

i

cji(1− x∗j )x∗j .

In other words, at an equilibrium point, the importance of
agent i to others is equal to the importance of others to agent i.

C. The main result
In this subsection, we state the main result of the paper. We

first recall that the coefficient cij can be viewed as a measure
of the influence of the opinion of agent j on the opinion of
agent i. The larger the value of cij is, the more influential is
agent j on agent i. We call agent j a dominant neighbor of
agent i if cij > 1/2. Note that in this case, because of (2), we
have

cij >
∑

j′∈V −i −{j}

cij′ ;

in other words, the influence of agent j on agent i exceeds the
influences of all the other neighbors of agent i together. Note
that if an agent i has agent j as its unique outgoing neighbor;
then, by (2), we have cij = 1, and hence agent j is a dominant
neighbor of agent i; indeed, in this case, agent i can only take
opinions from agent j. On the other hand, if agent i has at
least two outgoing neighbors, then, the coefficients cij , for
j ∈ V −i , can be set by agent i in a way so that there is no
dominant neighbor of agent i.

We assume in this paper that agents in the network act
cautiously when taking opinions from others so that there is
no dominant neighbor in the network. Specifically, we assume
that each vertex i of G has at least two outgoing neighbors.
Moreover, the coefficients cij , for i→ j ∈ E, are such that

cij ≤ 1/2, ∀i→ j ∈ E.

We formalize below the following facts about the self-appraisal
model: (i) There is a unique stable equilibrium point x∗ :=
(x∗1, . . . , x

∗
n) of system (3) in Sp[V ]; (ii) Almost all trajectories

x(t) converge to x∗, and hence x∗ can be interpreted as the
steady state of the self-appraisals of the agents in the network,
independent of their initial conditions; (iii) The self-appraisal
x∗i is zero if vertex i is not a root of the graph G. Furthermore,
we have x∗i < 1/2, for all i ∈ V . This, in particular, implies
that in the steady state, we have x∗i <

∑
j 6=i x

∗
j , i.e., there is

no single agent whose self-appraisal is greater than or equal
to the sum of the self-appraisals of the remaining agents.

We now state the main result in precise terms. We first
summarize the key conditions for system (3), which will be
assumed in the remainder of the paper:

Assumption 1. The digraph G = (V,E) is simple and rooted,
with Vr the set of roots. Each vertex i of G has at least two
outgoing neighbors. The coefficients cij of (3), for i→ j ∈ E,
satisfy the following conditions:∑

j∈V −i

cij = 1, ∀i ∈ V,



and
cij ≤ 1/2, ∀i→ j ∈ E.

We now have the main result, captured by the theorem
below:

Theorem 1. Under Assumption 1, the self-appraisal model (3)
satisfies the following properties:

1) The unit simplex Sp[V ] is a positive invariant set.
2) There are (n+1) equilibrium points of system (3). Each

of the n vertices ei of Sp[V ] is an unstable equilibrium
point. The remaining equilibrium point x∗ lies in Sp[Vr],
and satisfies the following condition:

0 < x∗i < 1/2, ∀i ∈ Vr.

Moreover, x∗ is exponentially stable.
3) For any initial condition x(0) other than a vertex of

Sp[V ], the solution x(t) of system (3) converges to x∗.

Remark 1. Note that the cascaded system (1) and (3) admits
a triangular structure (i.e., (3) feeds into (1) but not the other
way around), and hence the convergence of system (3) implies
the convergence of the consensus process (1).

We note here that the self-appraisal model (3) is similar, in
its format, to the replicator dynamics (see, for example, [27],
[28]), which is also defined over the unit simplex. Yet,
these are two different types of dynamical systems. Indeed,
a replicator dynamics equation is given by

ẋi = xi

gi(x)−
n∑

j∈V
xjgj(xj)

 , ∀ i ∈ V. (4)

First, note that the dynamics of each xi in (4) depends on a
global information of x. Yet, in the self-appraisal model (3),
the dynamics of xi depends only on xj for j ∈ V +

i . Second,
note that for the replicator dynamics, each subset Sp[V ′], for
V ′ ⊂ V , is a positive invariant set; indeed, from (4), if xi =
0, then ẋi = 0. Yet, such an invariance property does not
hold in the self-appraisal model; indeed, from Theorem 1, if
Sp[V ′] is positive invariant, then, either V ′ = {ei} for some
i ∈ V , or V ′ contains the root set Vr (we prove this fact
formally in the next section). We further note that if G is
a strongly connected graph, then Vr = V , and hence from
Theorem 1, there is a unique stable equilibrium point of (3)
in the interior of the simplex. For the replicator dynamics, a
stable equilibrium point may or may not lie in the interior of
the simplex (see, for example, [28]). All these facts point to
the intrinsic differences between the two types of models.

On the other hand, the self-appraisal model (3) can be
viewed as a prototype of a general class of nonlinear dynam-
ical systems defined over the unit simplex:

ẋi = −gi(xi) +
∑
j∈V +

i

cjigj(xj).

with gi(x) ≥ 0 and gi(0) = gi(1) = 0 for all i ∈ V . Hence,
the analysis of system (3) provided in the paper, for locating

the set of equilibrium points and for establishing the global
convergence, might be of independent interest.

The remainder of the paper is now devoted to establishing
properties of system (3) that are needed to prove Theorem 1. In
section III, we focus on some basic properties of system (3). In
particular, we construct a family of subsets of the unit-simplex
each of which is a positive invariant set for system (3). In
section IV, we focus on the system behavior around a vertex
of the simplex. We show that there is a closed neighborhood
around each vertex in the simplex such that if the initial
condition is not the vertex, then the solution of system (3)
will be away from that neighborhood after a finite amount of
time. In section V, we establish the global convergence of the
self-appraisals towards the unique stable equilibrium point.

III. BASIC PROPERTIES OF THE SELF-APPRAISAL MODEL

In this section, we compute time-derivatives along trajec-
tories of system (3) at boundary points of the unit simplex.
We then exhibit a family of subsets of Sp[V ] (including
the simplex itself), each of which is positive invariant for
system (3).

A. Time-derivatives at boundary points

In this subsection, we assume that xi(t) = 0, for some
i ∈ V , and evaluate the time-derivatives dkxi(t)/dtk, for k ≥
1. We first establish in this subsection the following fact: let
dkxi(t)/dt

k be the first non-vanishing time derivative, i.e.,
dkxi(t)/dt

k 6= 0 and dlxi(t)/dt
l = 0 for all l < k; then,

we have dkxi(t)/dtk > 0. Toward that end, we first introduce
some definitions about the graph G:

Definition 1 (Supporting set). For a vertex i ∈ V , a set Si ⊆
V is a supporting set, if a vertex j is in Si whenever there
is a path from j to i. The vertex i is in Si by default.

Note that if i is a root of G, then Si = V . Indeed, if j ∈ Si,
then so is any vertex in V +

j .
Let γ be a path in G, and l(γ) denote its length. For each

non-negative integer k, we define Si(k) ⊆ Si as follows: if
j ∈ Si(k), then there is a path γ from j to i with l(γ) ≤ k.
We assume that i ∈ Si(k) for all k ≥ 0, and Si(0) = {i}. By
definition, we have Si(k − 1) ⊆ Si(k) for all k ≥ 1. Denote
by Di(k) the difference between Si(k) and Si(k − 1), i.e.,

Di(k) := Si(k)− Si(k − 1); (5)

for k = 0, we set Di(0) := {i}. Note that in the case k = 1,
we have Si(1) = {i} ∪ V +

i , and hence Di(1) = V +
i . We

further note the following fact:

Lemma 1. Let j ∈ Di(k) for some k ≥ 1. Then, V −j intersects
Si(k − 1) and their intersection lies in Di(k − 1).

Proof. First note that if j ∈ Di(k) and γ is a path from j
to i of shortest length, then l(γ) = k. Since j ∈ Di(k) for
k ≥ 1, there exists at least one vertex j′ ∈ V −j such that
j′ ∈ Si(k−1), because otherwise the length of any path from
j to i is greater than k. Now let j′ ∈ V −j ∩ Si(k− 1), and γ′

be a path from j′ to i; it suffices to show that l(γ′) ≥ (k−1).
We prove by contradiction. Suppose that l(γ′) < (k−1); then



by concatenating j → j′ with γ′, we get a path γ from j to
i with l(γ) < k, which contradicts the fact that j ∈ Di(k).
This completes the proof. �

Let j ∈ Di(k), and denote by Γji(k) the collection of paths
from j to i of length k. Choose any path γ ∈ Γji(k), and write

γ = jk → jk−1 → . . .→ j1 → j0

with jk = j and j0 = i. Then, each jl lies in the intersection
of Si(l) and V −jl+1

. Thus, by Lemma 1, we have

jl ∈ Di(l), ∀l = 0, . . . , k.

For each γ ∈ Γji(k), define a positive number as follows:

αγ := Πk
l=1cjljl−1

.

We further define

αji :=
∑

γ∈Γji(k)

αγ . (6)

Note that αji can be defined recursively as follows: For the
base case, we assume that j ∈ Di(1) = V +

i ; then, Γji(1) is
a singleton, comprised only of the edge j → i, and hence
αji = cji. For the inductive step, we assume that k > 1 and
αj′i, for j′ ∈ Di(k−1), are well defined. Let j ∈ Di(k), then

αji =
∑
j′

cjj′αj′i (7)

where the summation is over V −j ∩ Di(k − 1), which is
nonempty by Lemma 1.

To state the main result of this subsection, we further need
the following definition:

Definition 2 (Supporting path). Let x ∈ Sp[V ] with xi = 0
for some i ∈ V . A path

γ := jk → . . .→ j1 → i

is a supporting path for i at x if{
xjk > 0
xjl = 0 ∀l < k.

If, in addition, k is the least integer among the lengths of all
supporting paths for i at x, then γ is a critical supporting
path.

It should be clear that if there exists a supporting path for i
at x, then there will be a critical supporting path. Note that
all critical supporting paths for i at x have the same length.
We have, however, also the following fact:

Lemma 2. Let x ∈ Sp[V ] with xi = 0. If there is no
supporting path for i at x, then xj = 0 for all j ∈ Si.

Proof. We prove the result by contradiction. Suppose that
there exists some j ∈ Si such that xj 6= 0. Then, by the
construction of the set Si, we can choose a path γ from j to
i:

γ = j → jk−1 → . . .→ j1 → i.

By truncating the path if necessary, we can assume that xjl =
0 for all l = 1, . . . , k − 1. Then, γ is a supporting path for i
at x, which is a contradiction. �

With the preliminaries above, we compute below the time
derivatives of xi(t). For convenience, let

x
(k)
i (t) := dkxi(t)/dt

k.

We then have the following fact:

Proposition 1. Let the initial condition x(0) of system (3) be
in Sp[V ], other than a vertex. Suppose that xi(0) = 0 for
some i ∈ V . Then, the following properties hold:

1. If there does not exist a supporting path for i at x(0),
then, i /∈ Vr and xi(t) = 0 for all t ≥ 0.

2. If there is a critical supporting path for i at x(0), and
the length of the path is k, then,

x
(l)
i (0) = 0

for all l < k, and

x
(k)
i (0) =

∑
j∈Di(k)

αji(1− xj(0))xj(0) > 0

with Di(k) defined in (5) and αji defined in (6).

We refer to the Appendix for a proof of Proposition 1.

B. Positive invariant sets

Now, for each subset V ′ ⊆ V , we define

SV ′ := ∪i∈V ′Si. (8)

If V ′ is empty, then so is SV ′ . Note that if V ′ contains a root
of G, then SV ′ = V . Denote by ScV ′ the complement of SV ′
in V , i.e.,

ScV ′ := V − SV ′ .

Then, the set Sp[ScV ′ ] can be described by

Sp[ScV ′ ] = {x ∈ Sp[V ] | xi = 0,∀i ∈ SV ′}.

We next establish the following fact:

Proposition 2. Let V ′ be any subset of V . Then, Sp[ScV ′ ] is
a positive invariant set for system (3).

Proof. First, note that if x(0) ∈ Sp[ScV ′ ], then there is no
supporting path for i at x(0) for all i ∈ SV ′ . Then, by
Proposition 1, we have

xi(t) = 0, ∀t ≥ 0 and ∀i ∈ SV ′ .

Next, we show that
∑n
i=1 xi is invariant along the evolution.

To see this, note that∑n
i=1(1− xi)xi =

∑n
i=1

∑
j∈V −i

cij(1− xi)xi
=

∑n
i=1

∑
j∈V +

i
cji(1− xj)xj .

Hence, we have

n∑
i=1

ẋi =

n∑
i=1

∑
j∈V +

i

cji(1− xj)xj − (1− xi)xi

 = 0.

Thus,
∑n
i=1 xi(t) = 1 for t ≥ 0. It now suffices to show that

xi(t) ≥ 0, ∀t ≥ 0 and ∀i ∈ V.



We prove this by contradiction. Suppose that, to the contrary,
there exists a vertex i ∈ V , an instant t > 0 and an ε > 0
such that xi(t) = 0 and

xi(t
′) < 0, ∀ t′ ∈ (t, t+ ε). (9)

There are two cases:
Case I. Suppose that there does not exist a supporting path

for i at x(t); then, by Proposition 1, xi(t′) = 0 for all t′ ≥ t,
which contradicts (9).

Case II. Suppose that there is a supporting path for i at
x(t); then, appealing again to Proposition 1, we have that there
exists a k such that x(k)

i (t) > 0 and x(l)
i (t) = 0 for all l < k.

This, in particular, implies that there is an ε′ > 0 such that
xi(t

′) > 0 for all t′ ∈ (t, t + ε′), which contradicts (9). This
completes the proof. �

We state below some implications of Proposition 2. First,
let V ′ be an empty set; then ScV ′ = V . Thus, we have the
following fact as an immediate consequence of Proposition 2:

Corollary 1. The unit simplex Sp[V ] is a positive invariant
set for system (3).

Recall that Vr is the root set of G; we establish the following
fact as another corollary to Proposition 2:

Corollary 2. The subset Sp[Vr] of Sp[V ] is a positive invari-
ant set for system (3).

Proof. Let V ′ := V − Vr; we prove the result by showing
that ScV ′ = Vr, and then, appealing to Proposition 2. It should
be clear that ScV ′ ⊆ Vr, and we prove that ScV ′ ⊇ Vr. The
proof is carried out by contradiction. Suppose that there is a
root i ∈ SV ′ . From (8), we know that there is a vertex j ∈ V ′,
together with a path γ from i to j. But then, since i is a root,
each vertex of γ is a root. In particular, we have that j ∈ Vr,
which contradicts the fact that j ∈ V ′. This completes the
proof. �

IV. VERTICES ARE REPELLERS

In this section, we focus on the system behavior around a
vertex of the simplex. First, observe that each vertex ei ∈ Rn
of the simplex is an equilibrium point of system (3). We show
below that each ei is unstable, and in fact, it is a repeller. To
this end, we choose an ε ∈ (0, 1), and define Pi(ε) ⊂ Sp[V ]
as follows:

Pi(ε) :=
{
x ∈ Sp[V ] | xi ≥ ε

}
.

It should be clear that each Pi(ε) is a closed neighborhood of
ei in Sp[V ], and

Pi(ε) ) Pi(ε
′), if ε < ε′.

Denote by f(x) the vector field of system (3), and by fi(x)
the i-th component of f(x), i.e.,

fi(x) := −(1− xi)xi +
∑
j∈V +

i

cji(1− xj)xj . (10)

We next establish the following fact:

Proposition 3. Suppose that for a vertex i ∈ V , there exists
ε ∈ (0, 1) such that cji ≤ ε for all j ∈ V +

i . Then, there exists
an αi ∈ (0, ε) such that fi(x) < 0 for all x ∈ Pi(αi)− {ei}.

Remark 2. We recall that cji measures the influence of agent i
on agent j. Proposition 3 then says that if the influence of
agent i on each of her incoming neighbors is less than ε,
then the self-appraisal xi(t) of agent i decreases along the
evolution and stays below ε.

Proof of Proposition 3. First, note that if vertex i does not
have any incoming neighbor, then

fi(x) = −xi(1− xi),

and hence, fi(x) < 0 as long as xi ∈ (0, 1). Hence, in this
case, Proposition 3 holds for any αi ∈ (0, ε). We thus assume
that V +

i is nonempty for the rest of the proof.
To prove the result, we first apply the condition that cji ≤ ε,

and obtain

fi(x) ≤ −(1− xi)xi + ε
∑
j∈V +

i
(1− xj)xj . (11)

Now, fix the value of xi, and consider the following optimiza-
tion problem:

max
∑
j∈V +

i
(1− xj)xj

s.t.
∑
j∈V +

i
xj ≤ 1− xi and xj ≥ 0.

Since the function
∑
j∈V +

i
(1− xj)xj is strictly concave, the

maximum is achieved uniquely at

xj = (1− xi)/di, ∀j ∈ V +
i

where di is the cardinality of V +
i . Thus,

max
∑
j∈V +

i

(1− xj)xj = (1− xi)(1− (1− xi)/di). (12)

We then combine (11) and (12), and get

fi(x) ≤ −(1− ε/di)(1− xi)
(
xi − ε

di − 1

di − ε

)
.

For the first term on the right hand side of the expression, we
have (1− ε/di) > 0. For the second, we have that if x 6= ei,
then (1− xi) > 0. For the last term, we let

αi := ε− 1

2

ε(1− ε)
di − ε

. (13)

Then, we have

xi − ε
di − 1

di − ε
≥ 1

2

ε(1− ε)
di − ε

> 0, ∀xi ≥ αi.

Combining these facts, we arrive at the result that fi(x) < 0,
for all x ∈ Pi(αi)− {ei}. �

Recall that cij ≤ 1/2 for all i → j ∈ E. Thus, if we let
ε = 1/2, then following (13), we have

αi =
1

2
− 1

4(2di − 1)
≤ 1

2
− 1

4(2n− 3)
.

The equality holds if and only if V +
i = V − {i}, and hence

di = n− 1. For convenience, let α be defined as follows:

α :=
1

2
− 1

4(2n− 3)
. (14)



It is the sharp upper-bound for all αi’s. This number α will
be fixed for the remainder of the paper.

Following Proposition 3, we now describe some relevant
properties of system (3). First, we define a subset Q ⊂ Sp[V ]
as follows:

Q := {x ∈ Sp[V ] | xi ≤ α, ∀i ∈ V }. (15)

Note that Q can be expressed as follows

Q =
⋂
i∈V

cl
(

Sp[V ]− Pi(α)
)

(16)

where cl(·) denotes the closure of a set in Rn. An illustration
of Q in the case n = 3 is given in Figure 1.

Fig. 1. Illustration of how Pi(α)’s and Q are defined and how these sets are
distributed over the simplex in the case n = 3.

We obtain some results as corollaries to Proposition 3:

Corollary 3. If x is a non-vertex equilibrium point of sys-
tem (3), then x ∈ Q.

Proof. If x ∈ Sp[V ] − Q, then x ∈ Pi(α) for some i ∈ V .
Since x is not a vertex, by Proposition 3, we have fi(x) < 0.
Thus, x can not be an equilibrium point if x /∈ Q. �

We now show that the set Q is also positive invariant:

Corollary 4. The set Q is positive invariant for system (3).
For any initial condition x(0) ∈ Sp[V ] other than a vertex,
the trajectory x(t) enters Q in a finite amount of time.

Proof. We first show that Q is positive invariant. From (16),
it suffices to show that each cl(Sp[V ]−Pi(α)) is positive in-
variant. By construction, xi ≤ α if and only if x ∈ cl(Sp[V ]−
Pi(α)). On the other hand, by Proposition 3, fi(x) < 0 for all
x ∈ Pi(α). It then follows that cl(Sp[V ]− Pi(α)) is positive
invariant.

We now show that if x(0) 6= ei for any i ∈ V , then there
exists an instant T ≥ 0 such that x(t) ∈ Q for all t ≥ T .
Similarly, it suffices to show that for each i ∈ V , there exists
an instant Ti ≥ 0 such that x(t) ∈ cl(Sp[V ]−Pi(α)) for all t ≥
Ti. First, note that if xi(0) ≤ α, then x ∈ cl(Sp[V ]− Pi(α)).

By the fact that cl(Sp[V ] − Pi(α)) is positive invariant, we
can choose Ti = 0. We now assume that xi(0) > α. Then,

Pi(α) ) Pi(xi(0)),

and hence the set Pi(α)− Pi(xi(0)) is nonempty. Let

vi := inf
{
|fi(x)| | x ∈ Pi(α)− Pi(xi(0))

}
Since cl (Pi(α)− Pi(xi(0))) is compact over which fi(x) is
strictly negative, we have vi > 0. Let

Ti :=
xi(0)− α

vi
+ 1

Then, by construction, the trajectory x(t) will enter cl(Sp[V ]−
Pi(α)) in no more than Ti units of time. This completes the
proof. �

V. THE GLOBAL CONVERGENCE OF
THE SELF-APPRAISAL MODEL

In this section, we establish the global convergence of
system (3). The section is divided into four parts: In subsec-
tion V-A, we show that the self-appraisals of non-root agents
converge to zero. In subsection V-B, we establish the second
part of Theorem 1, i.e., there is only one stable equilibrium
point x∗ of system (3), which lies in Sp[Vr], and moreover,
0 < x∗i < 1/2, for all i ∈ Vr. In subsection V-C, we show
that if the initial condition x(0) of system (3) is such that
x(0) ∈ Q, and xi(0) = 0 for i /∈ Vr, then, the trajectory
x(t) converges to the unique stable equilibrium point x∗.
In subsection V-D, we combine all the results and prove
Theorem 1.

A. Convergence of self-appraisals of non-root agents

An agent i is said to be a non-root agent if i is not a
root of G. We establish in this subsection the result that the
self-appraisals of non-root agents decay to zero.

Proposition 4. Let x(0) ∈ Sp[V ] be other than a vertex. Then,
xi(t) converges to 0 for all i /∈ Vr.

To prove Proposition 4, we first etablish the following fact:

Lemma 3. If xi(t) converges to 0, then so does xj(t) for all
j ∈ V +

i .

Proof. We prove Lemma 3 by contradiction. Suppose that
there is a vertex j ∈ V +

i such that xj(t) does not converge to
0. Then, there is an ε ∈ (0, 1/2), and an infinite time sequence
{tk}k∈N with limk→∞ tk = ∞ such that xj(tk) > ε for all
k ∈ N.

Since there is an upper bound for |fj(x)| for all x ∈ Sp[V ],
there is a finite duration time τ > 0 such that

xj(tk + τ ′) ≥ ε/2, ∀τ ′ ∈ [0, τ ] and ∀k ∈ N.

Rescale τ , if necessary, so that τ ≤ 1. On the other hand, by
Corollary 4, there exists an instant T ≥ 0 such that x(t) ∈ Q
for all t ≥ T . This, in particular, implies that xj(t) ≤ 1/2 for
all t ≥ T . Without loss of generality, assume that tk ≥ T for
all k ∈ N, and hence

xj(t) ∈ [ε/2, 1/2]



for all t ∈ [tk, tk + τ ] and for all k ∈ N. It then follows that

cji(1− xj(t))xj(t) ≥ cji(1− ε/2)ε/2. (17)

for all t ∈ [tk, tk + τ ] and for all k ∈ N.
For convenience, let δ := cji(1 − ε/2)ε/2. Since xi(t)

converges to 0, there is an instant T ′ such that

xi(t) ≤ τδ/2, ∀t ≥ T ′. (18)

Using the fact that τ < 1 and (1− xi(t)) < 1, we obtain

(1− xi(t))xi(t) < δ/2, ∀t ≥ T ′. (19)

We recall that fi(x) (defined in (10)) is given by

fi(x) = −(1− xi)xi +
∑
j∈V +

i

cji(1− xj)xj .

Combining (17) and (19), we then obtain

fi(x(t)) > δ/2, ∀t ∈ [tk, tk + τ ]

as long as tk ≥ T ′. It then follows that

xi(tk + τ) = xi(tk) +

∫ tk+τ

tk

fi(x(t))dt > δτ/2

which contradicts (18). This completes the proof. �

Recall that Si ⊂ V is the supporting set of i, and Si(k) ⊂ V
is defined such that if j ∈ Si(k), then there is a path γ from
j to i, with l(γ) ≤ k. Also, recall that for a subset V ′ of
V , we have defined SV ′ = ∪i∈V ′Si. In the remainder of this
subsection, we focus on the case where V ′ is Vr, the set of
roots of G.

First, note that by the definition of Vr, we have SVr = V ;
indeed, for any vertex j, there is a path from j to a root of
G. Now, for each k ≥ 0, we define

SVr (k) := ∪i∈VrSi(k).

For k = 0, we have SVr
(0) = Vr. It should be clear that

SVr
(k − 1) ⊆ SVr

(k), and moreover, there is an integer m
such that

SVr
(m) = V. (20)

We now assume that m is the least integer such that (20) holds.
Let

DVr
(k) := SVr

(k)− SVr
(k − 1).

With Lemma 3 and the notations above, we prove Proposi-
tion 4.

Proof of Proposition 4. We prove the proposition by subse-
quently showing that

lim
t→∞

xi(t) = 0, ∀i ∈ DVr
(k),

for k = 1, . . . ,m.
Base case. We prove for k = 1. Let φr be a function on

Sp[V ] defined as follows:

φr(x) :=
∑
i∈Vr

xi. (21)

We first compute the time derivative of φr(x) along a trajec-
tory x(t) of system (3): first, let E′ be a subset of E defined
by

E′ := {i→ j ∈ E | i ∈ DVr
(1), j ∈ Vr};

we then have
d

dt
φr(x) =

∑
i→j∈E′

cij(1− xi)xi ≥ 0. (22)

Note that by its definition (21), we have that φr(x) ≤ 1
for all x ∈ Sp[V ]. Also, note that from (22), φr(x(t)) is
monotonically increasing in t. So, limt→∞ φr(x(t)) exists.

Next, we show that φ̇r(x(t)) converges to 0. The proof
will be similar to the proof of Lemma 3, and is carried out
by contradiction. Suppose that there exists an ε, and a time
sequence {tk}k∈N with limk→∞ tk =∞, such that

φ̇r(x(tk)) ≥ ε, ∀k ∈ N.

Note that |φ̈r(x(t))| is bounded above for any x(t) ∈ Sp[V ],
and hence there is a duration time τ > 0 such that

φ̇r(x(t)) ≥ ε/2, ∀t ∈ [tk, tk + τ ] and ∀k ∈ N.

By passing to a subsequence, we can assume that tk+τ < tk+1

for all k ∈ N. Thus, we have

lim
t→∞

φr(x(t))− φr(x(0)) ≥
∑
k∈N

∫ tk+τ

tk

φ̇r(x(s))ds.

By construction, each summand on the right hand side is
bounded below by ετ/2, and hence the summation is infinite
which contradicts the fact that limt→∞ φr(x(t)) exists.

Since φ̇r(x(t)) converges to 0 and each summand of
φ̇r(x(t)) in (22) is non-negative, we have

lim
t→∞

xi(t)(1− xi(t)) = 0, ∀i ∈ DVr
(1).

Thus, xi(t) converges to either 0 or 1. Since x(0) is not a
vertex, by Corollary 4, the trajectory x(t) enters Q in a finite
amount of time. We thus conclude that xi(t) converges to 0
for all i ∈ DVr

(1).
Inductive step. We assume that xj(t) converges to 0 for all

j ∈ DVr
(k − 1) for k ≥ 2, and prove that xi(t) converges

to 0 for all i ∈ DVr
(k). Fix a vertex i in DVr

(k); then, from
Lemma 1, there is a vertex j ∈ V −i ∩ DVr (k − 1). From
the induction hypothesis, we have that xj(t) converges to 0.
Since i ∈ V +

j , by Lemma 3, xi(t) also converges to 0. This
completes the proof. �

B. The non-vertex equilibrium point

In this subsection, we prove that there exists a unique non-
vertex equilibrium point of system (3). First, recall that Q is
defined in (15) and Sp[Vr] is the convex hull spanned by ei,
for i ∈ Vr. We then define

Qr := Q ∩ Sp[Vr]. (23)

From Corollaries 2 and 4, both Sp[Vr] and Q are positive
invariant sets for system (3), and hence Qr is also a positive
invariant set. We establish in this subsection the following
result:



Proposition 5. There is a unique non-vertex equilibrium point
x∗ of system (3), which lies in Qr, and 0 < x∗i < 1/2 for all
i ∈ Vr. Moreover, x∗ is exponentially stable.

To prove Proposition 5, we re-write system (3) into a matrix
form. We first recall the definition of infinitesimally stochastic
matrices:

Definition 3 (Infinitesimally stochastic matrix). A square
matrix A is an infinitesimally stochastic matrix if each off-
diagonal entry of A is non-negative, and the entries of each
row sum to zero.

We now define an infinitesimally stochastic matrix C by
specifying its off-diagonal entries: define the ij-th entry of C
to be cij if i→ j ∈ E, and 0 otherwise. The diagonal entries
of C are then uniquely determined by the condition that the
rows of C sum to zero. We note here that the negative of
the matrix C is known as the Laplacian matrix of a weighted
graph G, with weights cij for i→ j ∈ E.

For a vector x in Sp[V ], let X be a diagonal matrix defined
as follows:

X := diag(x1, . . . , xn).

Then, system (3) can be rewritten into the following matrix
form:

ẋ = C>(I −X)x. (24)

For simplicity, but without loss of generality, we assume in
the rest of this subsection that

Vr = {1, . . . , k}. (25)

Note that k ≥ 3, i.e., the cardinality of Vr is at least three;
indeed, by the assumption, each vertex i of G has at least two
outgoing neighbors, and moreover, an outgoing neighbor of a
root is also a root. Following (25), we have that C is a lower
block-triangular matrix:

C =

(
C11 0
C21 C22

)
(26)

with C11 a k-by-k infinitesimally stochastic matrix.
We next state some known facts about the matrix C: (i)

Since G is rooted and cij > 0 for all i→ j ∈ E, the matrix C
has zero as a simple eigenvalue while all the other eigenvalues
of C have negative real parts (see, for example, [29]). Using
the fact that C11 is an infinitesimally stochastic matrix, we
have that C11 has zero as a simple eigenvalue, with all the
other eigenvalues of C11 having negative real parts, and that
C22 is a stable matrix, i.e., all the eigenvalues of C22 have
negative real parts. (ii) Let v ∈ Rn (resp. v′ ∈ Rk) be the
left-eigenvector of C (resp. C11) corresponding to the zero
eigenvalue; then v = (v′, 0). Scale v such that

∑n
i=1 vi = 1;

then all entries of v′ are positive, and they sum to one (see,
for example, [30]).

We next state another relevant property of v. Recall that
cij ≤ 1/2 for all i→ j ∈ E. It then follows that

vi ≤ 1/3, ∀i ∈ V. (27)

To see this, note that C>v = 0, and hence

vi =
∑
j∈V +

i

cjivj

for all i ∈ V . Thus,

vi ≤
1

2

∑
j 6=i

vj =
1

2
(1− vi),

from which (27) holds.
We now return to the proof of Proposition 5. We establish

the proposition by first showing that the unique equilibrium
point x∗ lies in Qr, with 0 < x∗i < 1/2 for all i ∈ Vr, and
then showing that x∗ is exponentially stable. This is done in
Lemmas 4 and 5 below.

Lemma 4. There exists a unique non-vertex equilibrium point
x∗ of system (3). Moreover, x∗ ∈ Qr, and 0 < x∗i < 1/2 for
all i ∈ Vr.

Proof. Note that from (24), if x∗ is an equilibrium point of
system (3), then

C>(I −X∗)x∗ = 0.

Since the null space of C> is spanned by the single vector v,
we must have

(I −X∗)x∗ = µv (28)

for some µ ∈ R. Note that the entries of (1 −X∗)x∗ and of
v are all nonnegative, and thus we have µ ≥ 0.

We first show that x∗i = 0 for all i > k. Since vi = 0 for
all i > k, we have (1− x∗i )x∗i = 0 for all i > k. Since x∗ is
not a vertex, we have x∗i 6= 1, and hence x∗i = 0 for all i > k.

We now solve for x∗i for all i ≤ k. Following (28), we have

(1− x∗i )x∗i = µvi, ∀i ≤ k.

From Corollary 3, we have x∗i < 1/2 for all i ≤ k. Thus, for
a fixed µ, we can solve for x∗i (µ) as

x∗i (µ) =
1

2

(
1−

√
1− 4µvi

)
.

It now suffices to show that there is a unique positive µ such
that

∑k
i=1 x

∗
i (µ) = 1. Define

ψ(µ) :=

k∑
i=1

x∗i (µ);

note that ψ(0) = 0, and moreover, ψ(µ) is strictly mono-
tonically increasing in µ as long as (1 − 4µvi) ≥ 0, for
all i = 1, . . . , k. Without loss of generality, we assume that
v1 ≥ vi for all i > 1. Let µ1 := 1/(4v1); it then suffices to
show that ψ(µ1) > 1.

Let wi := vi/v1; then, ψ(µ1) can be expressed as follows:

ψ(µ1) =
k

2
− 1

2

k∑
i=2

√
1− wi.

We then consider the following optimization problem:

max
∑k
i=2

√
1− wi

s.t. 0 ≤ wi ≤ 1 and
∑k
i=2 wi ≥ 2.

Note that the first constraint 0 ≤ wi ≤ 1 comes from the
assumption that vi ≤ v1, and the second constraint

∑k
i=2 wi ≥

2 follows from (27); indeed, we have
k∑
i=2

wi = (1− v1)/v1 ≥ 2.



Since the function
∑k
i=2

√
1− wi is strictly concave in wi,

the maximum is achieved uniquely at

wi =
2

k − 1
, ∀i = 2, . . . , k.

We recall that the cardinality of the root set Vr is at least three,
i.e., k ≥ 3, and hence

wi =
2

k − 1
≤ 1,

which satisfies the constraint that 0 ≤ wi ≤ 1. With the above
values of wi, for i = 2, . . . , k, we have

max

k∑
i=2

√
1− wi = (k − 1)

√
1− 2

k − 1
< (k − 2). (29)

The last inequality in (29) holds because

1− 2

k − 1
< 1− 2

k − 1
+

1

(k − 1)2
=

(
k − 2

k − 1

)2

.

Following (29), we then have

ψ(µ1) >
k

2
− 1

2
(k − 2) = 1.

which completes the proof. �

Note that in the case when G is strongly connected, the set
of equilibrium points of system (3) coincides with the set of
equilibrium points of the opinion system studied in [18], [19],
though with a completely different dynamical system.

It now remains to show that x∗ is exponentially stable. We
first have some preliminaries.

Definition 4 (Induced graphs). Let A ∈ Rn×n be an infinites-
imally stochastic matrix. We say a digraph GA = (V,EA) of
n vertices is induced by A if the edge set EA satisfies the
following condition: i→ j ∈ EA if and only if the ij-th entry
of A is positive.

It is well known that if GA is rooted, then A has zero
as a simple eigenvalue and all the other eigenvalues have
negative real parts (see, for example, [26], [29]). With the
notions above, we establish the following result:

Lemma 5. Let x∗ be the non-vertex equilibrium point of
system (3). Then, x∗ is exponentially stable.

Proof. Let J(x∗) be the Jacobian matrix of the vector field
f(x) at x∗, i.e.,

J(x∗) :=
∂f(x∗)

∂x
.

Then, by a direct computation,

J(x∗) := C>(I − 2X∗).

Since x∗ ∈ Qr, we have

1− 2x∗i ≥ 1− 2α = 1/(4n− 6), ∀i ∈ V,

with α defined in (14). In particular, each diagonal entry of
the diagonal matrix (I − 2X∗) is positive. Let 1 ∈ Rn be a
vector of all ones; then, we have

J(x∗)>1 = (I − 2X∗)C1 = 0,

and hence J(x∗)> is an infinitesimally stochastic matrix.
Moreover, the digraph induced by J(x∗)> is the same as the
digraph induced by C, which is G. Since G is rooted, J(x∗)
has zero as a simple eigenvalue and all the other eigenvalues
of J(x∗) have negative real parts. Let L be a linear subspace
of Rn perpendicular to the vector 1:

L :=
{
v ∈ Rn | 〈v,1〉 = 0

}
.

Then, L can be viewed as the tangent space of Sp[V ] at x for
all x ∈ Sp[V ]. Note that L is invariant under J(x∗), i.e., for
any vector v ∈ L, we have J(x∗)v ∈ L; indeed, we have

〈J(x∗)v,1〉 = 〈v, J(x∗)>1〉 = 0.

This, in particular, implies that the eigenvalues of J(x∗)
have negative real parts when restricted to L, and hence the
equilibrium point x∗ of system (3) is exponentially stable. �

Proposition 5 is then established by combining Lemmas 4
and 5.

C. System convergence over Qr
In this subsection, we establish the convergence for a

special class of trajectories x(t) of system (3). These are the
trajectories whose initial conditions are in the positive invariant
set Qr defined in (23). Precisely, we have the following:

Proposition 6. Suppose that the initial condition x(0) of
system (3) is in Qr; then, the trajectory x(t) converges to
the non-vertex equilibrium point x∗.

We establish Proposition 6 below. First, recall that we have
labeled the vertices of G such that the root set Vr is comprised
of the first k vertices. Let

x′ := (x1, . . . .xk)

and similarly, define

X ′ := diag(x1, . . . , xk).

Note that if x ∈ Qr, then x = (x′, 0). Since Qr is positive
invariant, the dynamics of x′ is simply given by

ẋ′ = C>11(I −X ′)x′ (30)

with C11 the k-by-k block matrix defined in (26). To prove
Proposition 6, it suffices to show that for any initial condition
x′(0), the solution x′(t) of system (30) converges to x′∗ :=
(x∗1, . . . , x

∗
k).

To do so, we first make a change of variables for sys-
tem (30). Recall that Gr = (Vr, Er) is the subgraph induced
by the root set Vr. We now define a set of new variables yi’s
as follows:

yi :=
(1− xi)xi
(1− x∗i )x∗i

, ∀i ∈ Vr.

This is well defined because, from Proposition 5, we have x∗i ∈
(0, α], and hence the denominator is nonzero. We consider
below the dynamics of yi, for i ∈ Vr: First, we define a set
of new coefficients c̃ji as follows:

c̃ji := cji
(1− x∗j )x∗j
(1− x∗i )x∗i

, ∀i→ j ∈ Er. (31)



For a vertex i ∈ Vr, denote by V +
r,i the set of incoming

neighbors of i in Gr. It should be clear that

V +
r,i = V +

i ∩ Vr.

With the notations above, we can express the evolution equa-
tions of yi, for i ∈ Vr, as follows:

ẏi = (1− 2xi)

−yi +
∑
j∈V +

r,i

c̃ji yj

 , ∀i ∈ Vr. (32)

We further describe below some relevant properties of
system (32). First, note that x∗ ∈ Qr is an equilibrium point
of system (3), and hence

C>11(I −X ′∗)x′∗ = 0,

which implies that

(1− x∗i )x∗i =
∑
j∈V +

r,i

cji(1− x∗j )x∗j , ∀i ∈ Vr. (33)

Combining (31) and (33), we have that the coefficients c̃ji, for
i→ j ∈ Er, satisfy the following condition:∑

j∈V +
r,i

c̃ji =
∑
j∈V +

r,i

cji
(1− x∗j )x∗j
(1− x∗i )x∗i

= 1, ∀i ∈ Vr. (34)

Also, note that Qr is positive invariant for system (3). Thus,
if x(0) ∈ Qr, then x(t) ∈ Qr for all t ≥ 0; in particular, this
implies that

1− 2xi(t) ≥ 1− 2α > 0, ∀ t ≥ 0 and ∀ i ∈ Vr. (35)

for α defined in (14).
Combining (32) with (34) and (35), we recognize that the

dynamics of yi is a continuous-time consensus process scaled
by a time-varying, positive factor (1− 2xi(t)). Now, define a
k-by-k infinitesimally stochastic matrix A(x′) = (aij(x

′)) as
follows: for i 6= j, let

aij(x
′) :=

{
(1− 2xi)c̃ji if j → i ∈ Er
0 otherwise. (36)

The diagonal entries of A(x′) are set to be −(1 − 2xi), for
i ∈ Vr. With the matrix A(x′), we can rewrite system (32)
into the following matrix form:

ẏ = A(x′)y. (37)

With the definitions and notations above, we next prove
Proposition 6:

Proof of Proposition 6. We first establish the convergence of
system (37), and then show that it implies the convergence of
sysem (30).

Fix an initial condition x(0) ∈ Qr, and let x(t) be the
solution of system (3). Then, system (37) can be viewed
as a time-varying linear consensus process, with A(x(t))
(or simply written as A(t)) the time-varying infinitesimally
stochastic matrix, i.e.,

ẏ = A(t)y. (38)

Moreover, following (35), we obtain

aij(t) ≥ (1− 2α) c̃ji, ∀t ≥ 0 and ∀j → i ∈ Er. (39)

Now, consider the digraph induced by A(t): Let

G̃r = (Vr, Ẽr)

be defined by reversing directions of edges of Gr, i.e.,

i→ j ∈ Ẽr if and only if j → i ∈ Er.

Then, from (35) and (36), G̃r is the digraph induced by A(t).
Furthermore, since Gr is strongly connected, so is G̃r. In
summary, we have that

1. The induced digraph of A(t) is G̃r for all t ≥ 0, and G̃r
is strongly connected.

2. Following (39), there is a uniform lower bound δ > 0
such that

aij(t) ≥ δ, ∀t ≥ 0 and ∀i→ j ∈ Ẽr.

Then, it is known from [26] that the transition matrix Φ(t) of
the linear system (38) converges to a rank one matrix:

lim
t→∞

Φ(t) = 1 · u>

where 1 ∈ Rk is a vector of all ones, and u is a vector in the
(k − 1)-simplex. Hence, the solution y(t) also converges:

lim
t→∞

y(t) = 〈u, y(0)〉 · 1.

It suffices to show that the convergence of y(t) implies the
convergence of x′(t) of system (30). To see this, first note
that Qr is positive invariant, and hence,

xi(t) ∈ [0, α], ∀t ≥ 0 and ∀i ∈ Vr.

Since α < 1/2, the function (1 − x)x is invertible when
restricted to the closed interval [0, α]; indeed, (1 − x)x is
strictly monotonically increasing when restricted to [0, α].
Thus, if yi(t) = (1−xi(t))xi(t) converges, then so does xi(t),
for all i ∈ Vr. On the other hand, from Proposition 5, there is
only one equilibrium point x∗ in Qr; we thus conclude that
x′(t) converges to x′∗, and hence x(t) converges to x∗. This
completes the proof. �

D. Proof of Theorem 1

We provide in this subsection a complete proof of Theo-
rem 1. We first recall that α is a scalar (defined in (14)) given
by

α =
1

2
− 1

4(2n− 3)
,

We also recall that Q, Qr are subsets of Sp[V ], given by

Q = {x ∈ Sp[V ] | xi ≤ α, ∀ i ∈ V }

and
Qr = Q ∩ Sp[Vr].

To prove Theorem 1, we further need the following: for a
vector v = (v1, . . . , vn) ∈ Rn, let the one-norm of v be
defined as follows:

‖v‖1 :=

n∑
i=1

|vi|;



then, the following holds:

Lemma 6. Let x be in Q with
∑
i/∈Vr

xi ≤ ε, for ε ≤ 1/4;
then, there exists a point x′ in Qr such that

‖x− x′‖1 ≤ 2ε.

Proof. We first show that∑
i∈Vr

(α− xi) ≥ 1/4 (40)

This holds because
∑
i∈Vr

xi ≤ 1, and∑
i∈Vr

α ≥ 3α =
3

2
− 3

4(2n− 3)
≥ 5

4
.

The first (resp. last) inequality holds because |Vr| ≥ 3 (resp.
n ≥ 3). Since ε ≤ 1/4, from (40), there exists a vector x′ ∈ Qr
such that x′i ≥ xi for all i ∈ Vr, and moreover,∑

i∈Vr

(x′i − xi) =
∑
i/∈Vr

xi.

It then follows that

‖x′ − x‖1 = 2
∑
i/∈Vr

xi ≤ 2ε,

which completes the proof. �

We are now in a position to prove Theorem 1:

Proof of Theorem 1. Parts 1 and 2 of Theorem 1 are estab-
lished by Corollary 1 and Proposition 5, respectively. We prove
here Part 3.

First, we show that there is an open set U in Sp[V ]
containing Qr such that if x(0) ∈ U , then the solution x(t)
of system (3) converges to x∗. By Proposition 5, the non-
vertex equilibrium point x∗ is exponentially stable. Thus, there
exists an open neighborhood Ux∗ of x∗ in Sp[V ] such that if
x(0) ∈ Ux∗ , then x(t) converges exponentially fast to x∗.
Now choose a point x ∈ Qr. From Proposition 6, we know
that there exists an instant T ≥ 0 such that if x(0) = x, then
x(t) ∈ Ux∗ for all t ≥ T . This, in particular, implies that
there exists an open neighborhood Ux of x in Sp[V ] such that
if x(0) ∈ Ux, then x(T ) ∈ Ux∗ . Now, define

U := ∪x∈QrUx.

Then, U is the desired open set of Qr in Sp[V ].
Next, we show that there exists an ε > 0 such that if x lies

in Q and satisfies
∑
i/∈Vr

xi ≤ ε, then x ∈ U . Since Qr is
a compact subset and U is an open set containing Qr, there
exists an ε′ > 0 such that the ε′-neighborhood of Qr in Sp[V ]
is contained in U . Specifically, let

U ′ := {x ∈ Sp[V ] | ‖x− x′‖1 < ε′ for some x′ ∈ Qr};

then, U ′ ⊂ U . Now, choose ε positive but sufficiently small
such that

ε ≤ min{ε′/2, 1/4}.

Then, from Lemma 6, we have that for any x ∈ Q with∑
i/∈Vr

xi ≤ ε, there exists a x′ ∈ Qr such that

‖x− x′‖ ≤ 2ε ≤ ε′,

which implies that x ∈ U ′ ⊂ U .
We now show that any trajectory x(t) of system (3) inter-

sects the open set U . Note that if this is the case, then by using
the arguments as before, we know that x(t) converges to x∗.
To establish the statement, we first note that from Corollary 4,
there is an instant T1 such that x(t) ∈ Q for all t ≥ T1. We
also note that from Proposition 4, there exists an instant T2

such that ∑
i/∈Vr

xi(t) ≤ ε, ∀t ≥ T2.

Thus, if we let T := max{T1, T2}, then x(t) ∈ Q and∑
i/∈Vr

xi(t) ≤ ε for all t ≥ T , which implies that

x(t) ∈ U, ∀t ≥ T.

This completes the proof. �

VI. CONCLUSIONS

In this paper, we have introduced a continuous-time model
whereby a number of agents in a social network are able to
evaluate their self-appraisals over time in a distributed way. We
have shown that under a particular assumption (Assumption 1),
the solution of the system converges to the unique non-vertex
equilibrium point x∗ as long as the initial condition is not a
vertex, and moreover, x∗ is exponentially stable. This stable
equilibrium point can be interpreted as the steady state of the
self-appraisals of the agents, and we have related the value of
each x∗i to the values of cji, as described by Proposition 3 and
Corollary 3.

Future work may focus on the case where each cij is
time-variant. For example, we can assume that each cij also
depends on the self-appraisal of xj , e.g., how much opinion
agent i accepts from agent j now depends on how influential
agent j is in the social network. Also we note that this model
can be developed into many other interesting problems. For
example, a question related to sparse systems is that given
the underlying graph G, what is the collection of achievable
steady states x∗ by the choice of cij’s? A similar question
has been asked and answered in the context of the consensus
process [31]. Another problem related to optimal control is
to assume that there is an agent i who is able to manipulate
her own weights cij , and we ask whether there is a choice of
these weights so that self-appraisal of agent i is maximized?
If further, we assume that there are two such players each of
whom is trying to maximize her own self-appraisal, then what
would be the strategy for each of the players to choose the
cij’s? This list of examples indicates that the self-appraisal
model has a rich structure which can be investigated under
various assumptions and from different perspectives.
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APPENDIX

We prove here Proposition 1. We first have some definitions.
A polynomial m(x1, . . . , xn) is said to be a monomial if it
can be expressed as follows:

m(x1, . . . , xn) = Πn
i=1x

ki
i .

with ki ≥ 0 for all i = 1, . . . , n. The degree of the
monomial m(x1, . . . , xn) is defined to be

∑n
i=1 ki. A poly-

nomial p(x1, . . . , xn) can be uniquely expressed as a linear
combination of monomials. We say a monomial is contained in
p if the corresponding coefficient is nonzero. Furthermore, the
degree of p is defined to be the highest degree of a monomial
contained in p. With these definitions at hand, we have the
following result:

Lemma 7. Let x(0) be any initial condition of system (3)
in Sp[V ]. The time derivative x

(k)
i (0) is a degree-(k + 1)

polynomial in xj(0), for j ∈ Si(k), and it does not contain
a constant term. Moreover, if Di(k) is nonempty for k ≥ 1,
then the following properties hold:

1) The only monomials in variables xj(0), for j ∈ Di(k),
contained in x(k)

i (t) are

xj(0) and x2
j (0), ∀ j ∈ Di(k).

2) The coefficients of xj(0) and x2
j (0), for j ∈ Di(k), in

x
(k)
i (0) are αji and −αji, respectively.

Proof. In the proof, we will simply write x(k)
i by omitting the

argument. The proof will be carried out by induction on k.
Base case. We assume that k = 1; in this case, we have

x
(1)
i = −(1− xi)xi +

∑
j∈V +

i

cji(1− xj)xj .

We recall the fact that

Si(1) = V +
i ∪ {i} and Di(1) = V +

i ,

and the fact that

αji = cji, ∀ j ∈ V +
i .

It then follows that Lemma 7 holds for k = 1.
Inductive step. We assume that Lemma 7 holds for (k− 1),

and prove for k. We first show that x(k)
i is a degree-(k + 1)

polynomial in variables xj’s, for j ∈ Si(k), and it does not
contain a constant term.

Label the elements of Si(k − 1) as i1, . . . , is. By the
induction hypothesis, we can write x(k−1)

i as follows:

x
(k−1)
i =

t∑
q=1

σqmq.



Each mq is a monomial in variables xi1 , . . . , xis , and σq is
the associated coefficient. The degree of mq is at most k. By
chain rule, we have

x
(k)
i =

t∑
q=1

s∑
p=1

σq
∂mq

∂xip
fip(x). (41)

Note that each fip(x) (defined in (10)) is a degree-2 polyno-
mial in variables xj , for j ∈ Sip(1), and it does not contain
a constant term. Also, note that since ip ∈ Si(k − 1), each
Sip(1) is a subset of Si(k). Thus, by following (41), we know
that (i) x(k)

i is a polynomial in variables xj , for j ∈ Si(k); (ii)
the degree of x(k)

i is at most (k + 1); and (iii) x(k)
i does not

contain a constant term. Further, a direct computation yields
that the monomial xk+1

i is contained in x(k)
i with coefficient

k!. Thus, the degree of x(k)
i is (k + 1).

We now assume that Di(k) is nonempty, and establish
items 1 and 2 of the lemma. First, note that each ∂mq/∂xip
is a monomial in xj , for j ∈ Si(k − 1). Hence, if
(∂mq/∂xip)fip(x) contains a monomial in xj , for j ∈ Di(k);
then, we must have

mq = xip (42)

so that ∂mq/∂xip = 1, and moreover, fip(x) has to contain a
monomial in xj , for j ∈ Di(k). On the other hand, fip(x) is
a polynomial in variables xj , for j ∈ Sip(1). From Lemma 1,
if Sip(1) intersects Di(k), then

ip ∈ Di(k − 1). (43)

Combining (42) and (43), we know that x(k)
i contains at most

xj and x2
j , for j ∈ Di(k), as the monomials in xj , for j ∈

Di(k).
Now, fix a vertex j ∈ Di(k), and let σ′j and σ′′j be the

coefficients of xj and x2
j in x(k)

i . It suffices to show that

σ′j = αji and σ′′j = −αji.

First, from Lemma 1, V −j intersects Si(k − 1), and their
intersection lies in Di(k − 1). We thus define

W := Di(k − 1) ∩ V −j .

Then, using the fact that (∂mq/∂xip)fip(x) contains the
monomials xj and x2

j if and only if mq = xip and ip ∈ W ,
we obtain that

σ′j = −σ′′j =
∑
ip∈W

cjipσip ,

where σip is the coefficient of xip in x
(k−1)
i . From the

induction hypothesis, we have σip = αipi, and hence

σ′j = −σ′′j =
∑
ip∈W

cjipαipi,

which is αji by (7). This completes the proof. �

With Lemma 7 at hand, we now prove Proposition 1:

Proof of Proposition 1. We first prove for the case where
there does not exist a supporting path for i at x(0). The fact
that i /∈ Vr follows from Lemma 2. To see this, we assume

that i ∈ Vr. But then, Si = V , and hence, xj(0) = 0 for all
j ∈ V , which contradicts the fact that x(0) ∈ Sp[V ]. We now
show that

xj(t) = 0, ∀t ≥ 0 and ∀j ∈ Si. (44)

Note that the dynamics of xj depends only on xk’s for k ∈
Sj(1). Since j ∈ Si, we have Sj(1) ⊆ Si. This, in particular,
implies that the following system:

ẋj = −(1− xj)xj +
∑
k∈V +

j

ckj(1− xk)xk, ∀j ∈ Si (45)

formed by xj’s, for j ∈ Si, is an isolated system, independent
of xj′ , for j′ /∈ Si. Since there is no supporting path for i at
x(0), by Lemma 2, we have

xj(0) = 0, ∀j ∈ Si.

But then, following this initial condition, (44) is the unique
solution of system (45).

We now prove for the case when there exists a critical
supporting path for i at x(0) of length k. We first show that
x

(l)
i (0) = 0 for all l < k, and then show that x(k)

i (0) > 0.
By Lemma 7, x(l)

i (0) is a polynomial in xj(0), for j ∈ Si(l),
and it does not contain a constant term. Since the length of a
critical supporting path for i at x(0) is k, we have xj(0) = 0

for all j ∈ Si(l). Thus, x(l)
i (0) = 0 for all l < k.

We now show that x(k)
i (0) > 0. Since there is a critical

supporting path for i at x(0), Di(k) is nonempty. Then, by
Lemma 7, we have

x
(k)
i (0) =

∑
j∈Di(k)

αji(xj(0)− x2
j (0)).

Since x(0) is not a vertex of Sp[V ], we have xj(0) < 1 for
all j ∈ V . On the other hand, there exists at least a vertex
j ∈ Di(k) such that xj(0) > 0. This holds because there
exists a critical supporting path for i at x(0) of length k. It
then follows that x(k)

i (0) > 0, which completes the proof. �
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