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Abstract- Natural systems are inextricably affected by noise. Witleioent decades, the manner in
which noise affects the collective behavior of self-orgeadi systems, specifically, has garnered considerable
interest from researchers and developers in various figlmslescribe the collective motion of multiple in-
teracting particles, Vicsedt al. proposed a well-known self-propelled particle (SPP) systehich exhibits
a second-order phase transition from disordered to ordaggidn in simulation; due to its non-equilibrium,
randomness, and strong coupling nonlinear dynamics, henvéihere has been no rigorous analysis of such
a system to date. To decouple systems consisting of detistinilaws and randomness, we propose a gen-
eral method which transfers the analysis of these systethg tesign of cooperative control algorithms. In
this study, we rigorously analyzed the original Vicsek nadwler both open and periodic boundary condi-
tions for the first time, and developed extensions to hetaregus SPP systems (including leader-follower
models) using the proposed method. Theoretical resulis gret SPP systems switch an infinite number of
times between ordered and disordered states for any naegsity and population density, which implies
that the phase transition indeed takes a nontraditional.fé¥e also investigated the robust consensus and
connectivity of these systems. Moreover, the findings prteskin this paper suggest that our method can
be used to predict possible configurations during the elaniudf complex systems, including turn, vortex,
bifurcation and flock merger phenomena as they appear in BEeéhss.

Keywords- Vicsek model, collective motion, self-propelled partias, heterogeneous multi-agent system, ro-
bust consensus

1 Introduction

“Natural systems are undeniably subject to random fluainatiarising from either environmental vari-
ability or thermal effects”/[1]. The manner in which noisdeats the collective behavior of self-organized
systems, which are shaped by the interplay of determiriestis and randomness, has fascinated researchers
in various fields such as catalysis, cosmology, biologyctiea mixing, colloidal chemistry, geophysics,
electronic engineering, statistical physics, econonacsl, finance throughout the past several decades [1-
6]. The collective motion of groups of animals, for exampkea common (though highly remarkable)
natural phenomenon that closely relates to this area oarelseSchools of fish, flocks of birds, and groups
of ants typically move in a highly orderly fashion that hagb&uantitatively described, for instance, by
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the now well-known self-propelled particle (SPP) systewppsed by Vicsekt al. [7]. In this system each
agent moves with a constant speed, and at each time stes @ldejgiverage direction of motion of the other
agents in their local neighborhood up to some added noisegldsmulations, Vicselet al. explored the
relation between order, noise, and population densityfeunad that the SPP system exhibits a second-order
phase transition from disordered to ordered motion comegmoise and population density under periodic
boundary conditions [7].

The SPP system (also referred to as Yhesek modélis of interest to biologists, physicists, control
theorists, and mathematicians because it captures comeaturdés of a number of real-world systems and
is considered as a minimal model [5]. For example, the SPRmys phase transition is similar to the
ferromagnetic phase transition [7, 8] and to supercondud®,| 10]. Variations of the Vicsek model can be
applied to study the collective motion of a wide range of tiital systems such as cell colonies, flocks of
birds, and swarms of locusts [11+14], and are also relategriain engineering applications such as the
distributed computation and formation control of multieag systems [15-17]. Another important reason
that the Vicsek model has become a common approach to tleebresearch on complex systems is because
it represents a simple, local rule of interaction that rssinl complex, global behavior.

To mathematically analyze the Vicsek model, its basic rulstnbe modified in existing research. Jad-
babaieet al. did so by omitting the noise and locally linearizing the ujptla equation of the movement
direction of each agent [18]. This modification is adoptedother researchers [17,/19+21]. In a previous
study, we introduced the percolation theory to investighi® modified system with a large population, and
guantitatively described its smallest possible intecactiadius (or population density under a scaling) for
consensus [21]; this result shed light on the phase trangiti the Vicsek model from disordered to ordered
motion concerning population density in a short time pefjmvided the system encounters small noise),
because when the population size is large, according tath®l large numbers, the effect of the noise is
negligible in a brief time period. However, when the timeipéris lengthy, the cumulative effect of even
relatively small amounts of noise cannot be omitted and fdwathe system’s global behavior. Until now, as
mentioned above, the manner in which noise affects theatiskebehavior of the SPP system within longer
time periods is unclear. Another modification is to assunag¢ élach agent can communicate with all of the
others in the system at any time [22:-27]. The literature atsdains studies in which robust consensus is
investigated by assuming the interaction between agewrts wat depend on the states of individual agents
[26+33], as well as several reviews of the Vicsek model atatee concepts [5, 34, 35]. To the best of
our knowledge, however, no existing mathematical analgkigicsek-type models can maintain all three
features of the original Vicsek model (refers to the SPPesysh [7]): self-driving, local interaction, and
randomness.

Physicists mainly use hydrodynamics to analyze the Vicsetteh This method assumes that population
size is infinite and approximates the Vicsek model to cepgamial differential equations or stochastic partial
differential equations_[8]. However, this approximatioevitably changes some inherent properties of the
model, and can only represent some properties of the otigyséem. Though the Vicsek model has been
studied for twenty years and a number of works on the subgea provided valuable insight, physicists
still lack a global understanding of it [36].

In this study, we attempted a global analysis of the origifiaéek model and a few heterogeneous SPP
systems. The main contributions of this paper can be suraethés follows.

First, we propose a novel, general method of decoupling ¢terbgeneous self-organized system for-
mulated by deterministic laws and randomness which widglgt® in nature, engineering applications,
societies, and economies [1-6]. Our method transfers thlysia of such systems to the design of control
algorithms, though the models do not contain any contralinfsing the propose method, we rigorously
analyze the original Vicsek model and create extensionsteErbgeneous SPP systems (including the leader-
follower model). We also provide a few clear answers to robaasensus and connectivity problems which
are of interest in the field of multi-agent systeins [18, 28:433.
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In addition to analysis of final states, our method can alsodssl to predict possible configurations
during the evolution of complex systems. As an example, vasvdinat SPP systems can spontaneously
generate turn, vortex, bifurcation, and flock merger phesaam Our method is particularly adept at predict-
ing events which happen with small probability in finite tithat are difficult to observe through simulation,
demonstrating potential application in complex enginggpractices such as collision analysis/avoidance.

The results we present here also have significance in reggolysics and biology. We show that the
Vicsek model switches an infinite number of times betweemr@d and disordered states for any noise in-
tensity and population density, which indicates that evealbnoise may break the order of the system; this
lends mathematical proof to the concept that randomnessesait in non-equilibrium systems exhibiting
anomalously large fluctuations [4,37]. The same resultiesfihat the phase transition of the Vicsek model
actually differs in form from the one traditionally assunj@g38]. Furthermore, to some degree, our results
provide an explanation for switches in group movement tivacand large fluctuations of order parameters
observed in locust swarm experiments at low and middle @jonl densities [12], and allows us to predict
that these phenomena will continue to exist at high pomratiensities when the time step is sufficiently
large.

The rest of the paper is organized as follows: In Sedtion 2willéntroduce our model and give some
definitions. Sectio]3 provides a key method to analyze owlaiso The main results under open and
periodic boundary conditions are put in Sectibhs 4[dnd Secsly. In Sectiofl6 we give a theorem under
an assumption. Secti@h 7 provides some simulations, arttb8&cconcludes this paper with future works.

2 Models and definitions

2.1 The Original Vicsek Model

The original Vicsek model consists afautonomous agents moving in the plane with the same speed
v(v > 0), where each ageritcontains two state variables;(t) = ((z;1(t), z:2(t)) € R? and;(t) €
[—m, m), denoting its position and heading at timespectively. Then the agei's velocity isv(cos 6;(t), sin 6;(t))
at timet. Each agent's heading is updated according to a local ridedban the average direction of its
neighbors, and two agents are called neighbors if and oniheif distance is less than a pre-defined radius
r(r > 0). Let
Ni(t) = {7+ 1X:(t) — X;@)]l2 < 7}

denote the neighbor set of agérit timet, where|| - ||2 is the Euclidean norm. Followingl[7], the dynamics
of the original Vicsek model can be formulated by

0;(t + 1) = atan2 Z sin 0;(t), Z cos0;(t) | + Gi(t), (2.1)
JEN;(1) FEN(E)
and
Xi(t + 1) = Xl(t) + ‘/Z(t + 1) = Xl(t) + U(COS Ql(t + 1),sin Hl(t + 1)) (22)

for all i € [1,n] andt > 0, where the functiomtan?2 is the arctangent function with two argum@;tand
{¢i(t)} is a random noise sequence independently and uniformlisitaittd in a fixed interval whose mid-
pointis0. The systeni(2]1)-(2.2) is called as tiréginal Vicsek modelLet X (¢) = (X1 (t), Xa(t), ..., Xn(t))
andd(t) = (01(¢t),02(t),...,0,(t)). The original Vicsek model is very complex to analyze in neatiatics.

ILiterature [7] uses therctan function here, but it should be not correct because the quadhformation is lost.



An important step forward in analyzing this model was givgndadbabaiet al. in [18] who omitted the
noise item and locally linearized the updating r@](Z.lﬂm‘ heading as follows:

Z 0;(

A JEN ®)

0:(t+1)

2.2 Our Heterogeneous SPP systems

To be more practical this paper will make some extensionsaotiginal Vicsek model. First we assume
that each agerithas different interaction radius > 0, and the interaction weight between two agerdad
Jj is a non-negative functioffi;(¢) satisfying:
(i) fi:(t) > 0 for all 7, ¢, which means that each agent has a certain inertia,;
(i) fij(t) = 0 when|/X;(t) — X;(t)[2 > r; for all 4,j,¢, which indicates each agent cannot receive
information directly from the ones out of its interactiorinas.
Second we consider more general noise. 4;6t) denote the new noise. L& = Qf € R™*(+1) pe the
sample space d&;(t'))1<i<n.0<t'<t, andF! = F! be its Borelo-algebra. Additionally we defin@~! be
the empty set. LeP = P,, be the probability measure off® for (£;(t'))1<i<n,>0, SO the probability space
is written as(Q°°, 7°°, P). Throughout this paper we assume there exists a congtany,, > 0 such that
for all initial positions X (0) and headingg(0) andt > 0, the joint probability density of&; (¢), ..., &,(t))
in the region[—n,n]" has a uniform lower boungd = p(n,n) > 0 under all previous samples, i.e., for any
real numberscz,b with —n < a; <b; <n,1<1<n,

P (ﬂ {&i(t) € [ag, bi]} Vw1 € Qt—1> > p [ —a), vt>o. (2.3)
i=1 =1

We would like to point out that in addition to the independant uniform noise in the original Vicsek
model, the new noise ih (2.3) also contains non-degeneratesstgn white noise and some other bounded
or unbounded noises. With the above two extensions the iequ@.1) of the original Vicsek model is
changed to

0;(t+ 1) = atan2 (z”: fi;(t) sin 0;( Zflﬂ t) cos 6;( ) +&(t).

Jj=1

To simplify the exposition we record the system evolvedbg)2and [2.%) aSystem.|
We also consider the system whose updating equation ofigpasli

0i(t +1) = Z Fis(0)0; () + &(t). (2.4)

ZJ 1 fzg

For alli € [1,n] andt > 0, we restrict the value of headirgy(¢) to the interval[—=, 7) by modulo2z
when it is out of this interval. Similarly, we record the sst evolved by[(2]2) and (2.4) &ystem I
As a departure from existing modifications made for matharabanalysis, System Il maintains the self-
driving, local interaction, and randomness features obtiginal Vicsek model. We demonstrate below via
simulations that System Il in fact exhibits several prapersimilar to the original Vicsek model (Section
[7).

It is worth noting that Systems | and Il can satisfy leaddiefeer relationships within a flock - for
example, if agent is the follower of agenj, we can sef;;(t) to a large value andi;;.(t) = 0 whenk # i, j.
The leader-follower relationship has been observed inweald experiments [39], and ours is the first study
to investigate how noise affects order in this manner.
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2.3 Order, Robust Consensus and Connectivity

We first investigate how the noise affects the order. Folgwir], we define the order parameter
1, — .
o(t) == EH Z (cos 0;(t), sin 0;(t)) H2
i=1

for all t > 0. Clearly, p(t) is close to its extreme valu@, indicating all the agents move in almost the
same direction; when closer @ ¢(t) indicates an absence of any collective alignment. Natyra say
Systems | and Il arerderedat timet wheny(t) is close tol, and aredisorderedwheny(t) is close to0.

We also give an intuitive definition concerning the order:

Definition 2.1 For any heading vectof = (6,,60s,...,6,) € [—m,m)", define the length of the shortest
interval which can cover it as

dg :=inf {l € [0, 27) : there exists a constante [—, )
such thaty); € [c,c+ ] forall 1 <i <n},

where[c, ¢ + 1] := [¢,m) U [, ¢+ — 2r]| for the case of +{ > .

This definition can also be understood astiximum heading difference the flock. Clearlydy is close
to 0 when all the agents move in almost the same direction.

The robust consensus has attracted much attention in agétit system research [28+-33]. Wang and
Liu [28], for example, provided a definition of robust conses for systems whose network topologies do
not couple the agents’ states. We adapted this definitionit@sr model as follows:

Definition 2.2 System | (or ) achieves robust consensus if there existsaibng(-) satisfyinglim,_, g+ g(z) =
0, such that for any) > 0 andw € Q°°,

lim sup dg(y) < g(n).
t—o0

This paper will study whether the robust consensus can loheda

The connectivity of the network topology is a key issue fonsensus of multi-agent systems. For
System | (or Il), letG(t) = G(X,E(t)) denote its underlying graph at timewhere the vertex set is the
n agents, and the edge g#t) = {(j,7) : || X;(t) — X;(¢)|2 < r;}. Note thatG(t) is a directed graph in our
heterogeneous system. A directed graph is said &troagly connected there exists at least one path in
each direction between each pair of vertices of the graphGl(® denote the graph obtained by replacing
all directed edges af(¢) with undirected edges. Clearly, the gra@hﬁ) is undirected. An undirected graph
is said to beconnectedf there exists at least one path between its any two vertife§(¢) is connected,
then G(t) is said to beweakly connectedIf a directed graph is strongly connected, of course it o al
weakly connected.

Given two graphg7(X, &) andG(X, &), defineG(X, &) U G(X, &) = G(X, & U &). Following
[29], we give the definition of uniformly joint weak connadty as follows:

Definition 2.3 The graph sequendg(t) }22, is said to be uniformly jointly weakly connected if theresexi
an integerT > 0 such thatJt™'G(k) is connected for any > 0.

The assumption of uniformly joint connectivity is widelyregidered a sufficient condition of consensus
in multi-agent systems [17, 18,/20,/ 28+-31, 33, 40]. For systevhose topologies are coupled with states,
whether this assumption can be satisfied remains a quitegtitegy problem. In this paper, we will show
with probability 1 the underlying graphs of our heterogeneous SPP systemetargiformly jointly weakly
connected and, of course, they are not uniformly jointlyremied in a homogeneous case.

5



2.4 Turn, Vortex, Bifurcation and Merging

Turning, bifurcation, and merging of flocks are very commbemomena in nature. These phenomena
have been studied under the well-known Boid model using lsitions [41]. Olfati-Sabel [42], for example,
provided a specific flocking algorithm that can produce lifition and merger behavior by adding a global
leader and a few obstacles.We will show that the SPP modamamtaneously produce these phenomena,
which are difficult to precisely define.

TurnandVortex All agents of a flock gradually change their headings frora angle to another in a finite
amount of time, where the difference of the two angles isdiatban a certain value (for exampte/2).
During this time, all the agents stay nearly synchronizeal, their headings are almost the same at each
time step. A turn with change in angle exceedigis called avortex

Bifurcation A group of agents whose directions of motion are almost sarag separate into two groups
with different directions, where the agents in each groepnaarly synchronized.

Merging Two groups of agents moving in different directions may geeinto one group that moves in
almost the same direction.

3 Transform to Robust Cooperative Control

To analyze Systems | and II, we first must construct two robostrol systems capable of transforming
the analysis to the design of control algorithms. Foe 1,...,n andt > 0, let §;(t) € (0,n) be an
arbitrarily given real numbew;(t) € [—n + J;(t),n — ;(t)] denote a bounded control input, ahydt)
[—di(t), 6;(t)] denote the parameter uncertainty. For System | we congtradollowing control system

{ 0i(t +1) = atan2(3 74 fij(¢) sin0;(t), 327y fij () cos 0(¢)) + ua(t) + bi(t), (3.1)
Xi(t+1) = X;(t) + v(cos b;(t + 1),sin 6;(t + 1)), ’

and for System Il we do the same:

0;(t+1) = Zn f 70) 2?21 fij(t)gj(t) + wi(t) + bi(t), (3.2)
Xi(t+1) = ( ) +v(cosb;(t +1),sin6;(t + 1)).
Let S* := R?" x [—m,7)™(or [0, L]*" x [—m,m)" for the periodic boundary case defined in Section
B) be the state space 0K (¢),6(t)) for all ¢t > 0. GivenS; C S*, we sayS; is reached at time if
(X(¢),0(t)) € Sy, and b reached in the timé;, 5] if there existst’ € [t1, 2] such thatS; is reached at
timet'.

Definition 3.1 LetS{, So C S* be two state sets. Under protocbl (8.1) (or (3.2)),is said to be finite-time
robustly reachable fron®, if: For any (6(0), X (0)) € S, S; is reached at timé, or there exist constants
T > 0ande € (0,n) such that we can find;(t) € [e,n) andu;(t) € [-n + 4(t),n — 0;(t)], 1 < i < n,

0 < t < T which guarantees tha$; is reached in the tim¢l, T'| for arbitrary b;(t) € [—0:(t),d;:(t)],
1<i<n0<t<T.

Remark 3.2 Under normal circumstances;(¢) serves as a constaat> Oforall 1 <i <nand0 <t <

T to guarantee that systen (8.1) (br(3.2)) robustly reachdssignated state set in tinie 7']. Additionally,

e can be set to a sufficiently small value such that the uncextéiemd; (¢) does not affect the system’s macro
states, such as the ordered or disordered states in finite. tim

The following lemma establishes a connection between 8ybktend protocol[(3]1) , and also between
System Il and protocol(3.2).



Lemma 3.3 LetSy,..., S C 5% k > 1 be state sets and assume they are finite-time robustly reéeha
from S* under protocol[(3.11) (0 (312)). Suppose the initial paxis X (0) and heading®(0) are arbitrarily
given. Then for System I (or Il):

(i) With probability 1 there exists an infinite sequente< ¢, < ... such thatS; is reached at time;;,, ;
forall j=1,...,kandl > 0.

(i) There exist constant® > 0 andc € (0, 1) such that

P(ri—mii1 >t) <cltT) it >1,

wherery = 0 and 7; := min{t : thereexist;_; < t| < t5 < --- < t}, = tsuch thatforallj
[1, k], S; is reached at time/;} for i > 1.

Proof (i) Throughout this proof we assume the initial state istaabiy given. We recall tha@! C R™*(‘+1)
is the sample space &;(t'))1<i<n,0<t'<:. Under System | (or Il), the values of (t) andd(t) are deter-
mined by the sample;_; € Q'~!, so for anyt > 1 and;j € [1,n] we can set

Q;-_l = {'wt_l S Qt_l : (X(t),@(t))(wt_l) S S]}
to be the subset ¢2'~! such thatS; is reached at time: Thus,
P ({Sj is reached at time} |Vuw,_, € Q§‘1> =1. (3.3)

Also, by our assumptiois; is finite-time robustly reachable under protodol [3.1) &2]), so with Def-
inition [3.7 there exist constani§; > 2 ande; € (0,7) such that for any > 0 and (X (¢),0(t)) ¢ S;,
we can find paramete(t') € [e;,n) and control inputs; (¢') € [—n + & (t),n — &:(t')], 1 < i < n,

t < t' < t+T; — 2 with which the setS; is reached in the tim§ + 1,¢ + 7} — 1] for any uncertainties
bi(t") € [—0:i(t'),0;(¢')], 1 < i <mn,t <t <t+T; —2. This acts on System | (or Il) indicating that for
anyw;_, € (Q57)°,

P ({S;jisreached irit + 1,¢t + T; — 1]} |w;_,)

(3.4)
> P () &) € i) = 6t ualt') + 6 ()]} [wi_y | -
t<t! <t+T;—21<i<n
Here(©2/~!)* means the complement set(@j‘l. Define
= [ {&(0) € [uat) = 8i(t), wi(t) + 6:(t)]} -
1<i<n
By the Bayes' theorem we can get
t+T15—-2
the right side of[(3K)= P (F}|w;_1) H P | E/| ﬂ FLwi
“tt+1 t<i<t (3.5)

t+T—2 n
]

t'=t i=1

where the first inequality uses (2.3) and the factaf < u; (') — §;(t') < u;(t') + 6;(t') <nfor1 <i<n
andt < t' < t+ Tj. Define the event

E;, = {S;isreachedint,t +T; — 1]},
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Combining [3.B8),[(314) and (3.5) yields
P (BjyNwi—y € Q171) > plimt (2¢)" 50 | (3.6)

where the second inequality usés[2.3) and the factf< u;(t') — §;(t') < u;(t') + 6;(t') < n for
1 <i<nandt <t <t+T;— 2. Using the Bayes’ theorem arld (B.6) we have for apy; € Q1

k

k j—1
ﬂ G 1T’wt 1] =P (Erfwi) H < [y Tl‘mEl,tJrzi,_llTp’wt—l)
j=2 I=1

k
> H [BTj_l (26j)n(Tj_1)] =c
j=1

(3.7)

SetFE; := ﬂ szj i andT := Ty + 15 + ... + Tp. For any integetM > 0, using Bayes’
theorem again anE(B 7) we have

P Ew) =P T1 P(Eal N Eor)

m=M m=M+1 M<m/<m
=1 -PEur)] T [1-P(Bur| () Eir)] (3.8)
m=M+1 M<m/<m
<[] a-¢ =0
m=M

which indicates that with probability there exits an infinite sequenee; < mg < ... such thatt,,,r
occurs for alll > 1. HereE¢ .. is the complement set df,,,7. By the definition ofF;, for eachl > 0 we
can find a time sequenceg,;; € [m;T + Zf,;} Ty, myT + Zi:l T,—1],1 < j < k such thatS; is reached
attimet; ;.

(i) Forany M > 0 andi > 0, the eventr; — 7,_1 > MT means thatF; does not happen for all
te€ri-1+ 1,71+ 1+ (M — 1)T]. By the total probability theorem and (8.8) we have

M—1
P{r;—1i_1>MT} <P ( ﬂ E7(E¢1+1+mT>

m=0

0o M-1
= ZP(Ti—l =t)P < N tc+1+mT>
t=
o
1—CMZP7'Zl—t (1—C)M,
t=0
SO

P(ri—7i-1>t) <P <7'z' — T > L%JT) <(1- C)Lt/TJ )

Specially, for the case df = 1, from Lemmd 3.B we can get the following corollary:



Corollay 3.4 Let S C S* be a state set and assume it is finite-time robustly reachtbla S¢ under
protocol [3.1) (or [3.2)). Suppose the initial positioA0) and heading®(0) are arbitrarily given. Then
for System |1 (or II):

(i) With probability 1 .S will be reached an infinite number of times.

(i) There exist constantg > 0 andc € (0, 1) such that

P(r;— 7oy > 1) <P vt >1,
wherery := 0 and; := min{t > 7;,_1 : S'is reached at time} for ; > 1.

Proof Becauses is finite-time robustly reachable frosf, of course it is also finite-time robustly reachable
from S*. From Lemma&_3J3 our result can be deduced directly. O

Remark 3.5 Using Lemma313 and Corollafy 3.4, we can transfer the anslgESystems | and Il to design
the robust control algorithms for protocolg_(B.1) arid (3.2h fact, based on Remalk 8.2 we can choose
suitable parameters such that the uncertainty itg() does not affect the system’s macro states in finite
time, so the analysis of Systems | and Il can be transformeldetalesign of the controls of the protocols

B.1) and[(3.2).

Remark 3.6 The methods in Lemnia 8.3 and Corollary]3.4 do not depend ailetbtexpressions of the
systems. In fact, for the systertt + 1) = f(x(¢),{(t)) € R™ with the noiset(t) € R™, we can apply
the proposed methods to simplify the analysis - specificilypredict possible configurations during the
system’s evolution and its final states.

4 Analysis under Open Boundary Conditions

This section will give some results under open boundary itimmd of positions of agents, which indi-
cates that all the agents can moveRshwithout boundary limitation. Throughout this section wekaahe
following assumption:

(A1) Assume the population size > 2, the parameters > 0, p > 0,v > 0,7, > 0,1 < i < n, and
the initial positionsX (0) € R?" and heading8(0) € [—=, )" are arbitrarily given.

We also need introduce some definitions. Foramy0 andl < ¢ < n, set

atan2(2?:1 fij (t) sin 9j (t), Z?:l fz'j (t)
~ cos 0;(t)) for System I and protocol (B.1)),

0;(t) = "
" m > =1 fij ()0;(t)
for System II and protocol (B.2]).

Let X = (X1,...,X,) € R®andf = (6,,...,0,) € [-=, 7)™ For anya > 0, define
1._ x O
Se={(X,0)es '1I§n?§Xn|9Z| < 2}.

We seeS! is a set of ordered states whers small. The following Lemmds 4.1 ahd#.2 describe a tramsit
to the ordered state for protocols (3.2) and](3.1) respalgtiv

Lemma 4.1 Assume that (A1) holds. Then for any> 0, S} is finite-time robustly reachable frorf*
under protocol[(3.R).



Proof Without loss of generality we assumec (0,7]. The main idea of this proof is: For each ageérit
its neighbors’ average headifgt) is larger than an upper bound, we sgft) be a negative input; #;(t)
is less than a lower bound, we sg(t) be a positive input; otherwise we select a control input sheth
0;(t + 1) will be in the intervall—a/2, a/2]. With this idea, fort > 0 and1 < i < n we choose

(n/4,=3n/4) i 6(t) > n — /2,
(0i(t), uit)) =  (@/2,—=0:(t)) if 0;(¢) € [2/2 =, — /2],
(n/4,3n/4) if 0;(t) < /2 —n.

Then it can be computed that
ui(t) € [=n+6i(t),n — d(t)], V1<i<n,t>0, (4.1)
which means our choice ¢fi;(t), 6;(t)) meets their requirements in Definitibn B.1. Define

Omax(t) :== max 6;(t) and Opin(t) := min 0;(t).

1<i<n 1<i<n
If Omax(t) > /2 4+ n/2 we can get
Bima(t + 1) < Bonae(t) — 7 (4.2)
That is because if there exist& [1,n] such that
it +1) > bna(t) = 3 > 5, (4.3)

by 6;(t + 1) = 6i(t) + wi(t) + b;(t) and [&1) we havé;(t) > 1 — a/2 andui(t) + b;(t) € [, —n/2].
But at the same time, by the definition@{¢) we haved;(t) < Omax(t), SO

0;(t + 1) < Oumac(t) + wi(t) + bi(t) < O (t) — g

which is contradictory with the first inequality of (4.3).
Similar to [4.2), we can get that#,;,(t) < —a/2 — n/2 then

Ounin (t + 1) > Orin(t) + g (4.4)

Combining this with[(4.R) we have ihax;<;<, |6;(t)| > a/2 4+ 1/2 then

. N
ax |6;(¢ + 1) < max [0:(¢)] - 3. (4.5)
Also, if maxi<;<p |0i(t)] < a/2 +n/2, by (43)
max 0:(t+1)] < a/2. (4.6)

Lett) := (%T‘a}. By (4.3), [4.6) and with the fact ahax;<;<,, [0;(t)| < 7, we can get

; <
max |6:(t1)] < /2. (4.7)

Combining [4.),[(411) and_(4.2) we ha is robustly reached at timg from any initial state under
protocol [3.2). O

10



Lemma 4.2 Suppose that (A1) holds and there exists a consjantl — T satisfying [[2.B). Then for any
a > 0, SL is finite-time robustly reachable frosi* under protocol [(3.11).

Proof Compared to the proof of Lemrha 4.1, the biggest differendlisfproof is to control the maximum
heading difference less thanat the beginning time. In this proof the anglec [b,c] meansa mod 27
belongs to the set of the elements[inc] module2r. Computed; (0 ) 1 < i < n, and the length of the
shortest interval which can cover them must be not bigger 2h@l — —) Let#* be the middle point of this
interval, therd; (0), 1 < i < n, are all in[¢* — (1 —L)0*+7(1-21)]. Setz; == mln{3( —5+5) %)
Forl < i < n, we choos&);(0) = ¢; and

—2e1 — 55=25(6,(0) — 6%)
if 6;(0) — 0" € [0,7(1 — )],
2 iy (0:(0) — 6)
0;(0) — 6* € [-m(1 — 1),0).

UZ(O) =

From this we can compute far< i < n,

n—2 1 T
T (1= = -2, -4+ >
2(n—1)ﬂ( n) ATyt E e

and similarlyu;(0) < n —e1, which indicates the condition of;(0) € [—n + §;(0), n — 6;(0)] in Definition
3.1 is satisfied. Also, we can get

UZ(O) > —261 —

@(0) +u;(0) — 0" € [min{—2€1, 2e1 — g},max{%l, —2e1 + g}
T 7
= {2&71 — 5,—251 + 5
and so with[(3.1)

a4 D), vi<i<n,

21_9* )
0:(1) € [e1 5 5

which indicates that

0;(1) — 0" € [e1 — g,—el—i-g], V1<i<n

Next we control all the headings of the agents to the neididmmt of6*. Lete; := min{%, ], 5} and

sett] 1= {%:"2221 +2. Forl <t <ty andl < i < nwe choose;(t) = e, and

—n+ €2 If0() 0* € (n—e2,%)
wit) = 0% = 0;(t) if 0,(t) — 0" € [e2 — m,m — &3],
n—ey ifOi(t) — 0" € (F,e2 —1).
With almost the same process bf (4.2)-{4.7) we have
Qi(tl) — 0" e [—62,62], V1l<i<n.
Finally we control all the headings of the agents to the rtesghood of0. Without loss of generality we
assume* € [—m,0]. Fort > ¢; and1l < i < n we choose;(t) = ¢ and

ui(t) = { noe MO0 Elr e )
Z —0;(t) otherwise

and can get that;(t2) € [—e2,e2],1 <i <nwithty := [ |+ 1. O

_T
n—2e2
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Remark 4.3 The condition of) > 7 — T in Lemmd 4.2 can be satisfied for any non-degenerate Gaussian
white noise sequence. Further, we posit that Lernmia 4.2 alkis fior anyn > 0. Strict proof of this does

not come easily, however. In essence, protdcal (3.1) wittimicontrol input and parameter uncertainty

is an isotropic system whose transition from disorderedrtieed state, called “symmetry breaking” in
physics, is rather difficult to analyze compared to the aniguc protocol [3.2)- so we add a lower bound

to the span of the control input of protoc@l(B.1) to break $lgetem’s symmetry.

The following lemma describes a connection between ther grdemmeter and the maximum heading
difference.

Lemma 4.4 For anye € (0,1) andd(t) € [—m,m)", if dgyy < arccos(l — ¢)? then the order function
p(t) >1—e.

Proof By the definition ofip(¢) we have
olt) = %u (Z cosext),Zsinez-(t)) I
=1 =1
= %\/Z cos [0;(t) — 0;(t)]
.J

> y/cos (arccos(l —€)2) > 1 —e.

For anys > 0, define

52 .= {(X,0) € 5*: EH 2(00892‘7811192‘)“2 <e}.

i=1

ThenS? is a set of disordered states providinglose to0. The following lemma describes a transition from
ordered states to disordered states.

Lemma 4.5 Assume (A1) holds. Then for any> 0, S? is finite-time robustly reachable froii; under
both protocols[(3.11) and (3.2).

To outline the proof of Lemma_4.5, we first divided the agents different sets, then we controlled the
agents’ headings in different sets to have a certain amdudisparity, breaking all the communications
between different sets after a finite time. Next, we corgbthe headings in each set to a designed angle so
that the order parameter of the system became very smallicfaited proof, see Appendix A.

We assert through the following theorem that the order patanwill switch an infinite number of times
between very large and very small. Please note that the ¢adps parameter indicates ordered states, and
the small order parameter indicates disordered states.

Theorem 4.6 Assume (A1) holds and lete (0, 1) be a constant arbitrarily given. Then for System Il (or
System | withy > § — 7), with probability 1 there exists an infinite time sequertge< ¢t < - -- such that

2
>1-¢ ifiisodd
(ti) { <e if i is even

Moreover, letry = 0 andT; denote the stopping time as

_fmin{t>7_1:p(t) >1—¢} ifiisodd
= min{t > 7,1 : o(t) < e} if 7 is even

12



fori > 1, then for allk > 0 andt > 0,
P (T2k+2 — Tof > t) < (1 — C)l-t/TJ, (48)
wherec € (0,1) andT" > 0 are constants depending @0 rm.yx, 7, v andp only.

Proof First by Lemmag4]1 (drd.2) ahd 4.5 we can §éts finite-time robustly reachable from any initial
state. Also, define

3 Ly - sind, _
Sc:={(X,0) € S*: nH Z(cos@l,sm&z)H >1—¢}.

i=1

By Lemmas 4.1 (dr4]2) aid 4.4 we ha¥eis also finite-time robustly reachable for any initial statksing
Lemma 3.3 our results can be obtained by tak$hg= S. and Sy = S2. O

Remark 4.7 Compared to System II, the results for System | in ThebrehasAd also in Theorenis 4.111,
[4.12,[4.18[ 5.3, 51%, 5.6 and b.7) contain a conditipn- 5 — Z. This difference is a direct result of the

n

difference between Lemnias]4.1 4.2. In fact, the conditio 5 — ~ for System | can be relaxed to
n > 0 under an assumption (Theoréml6.1). This assumption insltideassumption used by Liu and Guo
[43], who considered a consensus problem for the originab®k model without noise.

For anya > 0, similar to S}, we set
S3 .= {(X,0) € §*:dg < }.

Differing from S, S3 may not take the zero as its center angle. Without any additicondition Systems
I and Il can reach a disordered state from an ordered state:

Lemma 4.8 Assume (A1) holds, thei$?)c is finite-time robustly reachable froi2 under both protocol

@.1) and[(3.2).

The proof of this lemma is put in AppendiX B.
The following theorem says for any initial sate and systemameters the disordered states are still
reached an infinite number of times:

Theorem 4.9 Assume (A1) holds. Then for System | (or 1), with probabilithere exists an infinite time
sequence; <tz < --- suchthatdy,) > = forall : > 1; moreover, lety = 0 andr;, denote the stopping
time as

Tip1 := min{t > 7; : dgyy) > 7},
then for alli > 1 andt > 0,

P (1 —Tic1 > t) < (1 —¢)W/T]) (4.9)
wherec € (0,1) andT > 0 are constants depending @n7max, 7, v and p only.

Proof Immediate from Corollari3]4 and Lemrha®.8. O

The possible applications and significance of Theorlems A& are provided in Sectidn 5 together
with the corresponding results under periodic boundangditams.

As mentioned in the Subsectibn 2.3, the robust consensuseleasinterested by many researchers [28—
33]. We also give a result for the robust consensus:
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Corollay 4.10 Assume (A1) holds, then the robust consensus cannot beradh@ both Systems | and Il.

Proof Immediate from Definitiof 212 and Theorém14.9. O

Jadbabaieet al. [18] analyzed System Il without noise and found that to usiderd the effects of
additive noise, one must focus on how noise affects the aimitg of the associated neighbor graphs.
Later, Tahbaz-Salehi and Jadbabaie [44] investigated rigaal Vicsek model without noise and found
that the neighbor graphs are jointly connected over infinitgany time intervals for almost all initial states
under periodic boundary conditions. The following Theongravides an answer to how noise affects the
connectivity under the open boundary conditions:

Theorem 4.11 Assume (A1) holds. Then for System Il (or System | with T — T), {G(t)}{2, is not
uniformly jointly weakly connected with probability

The proof of this theorem which uses the idea appearing iptbef of Lemmad 4.5 is put in Appendix| C.

The colorful collective motion of animals has fascinatetbstists from a wide array of fields. What
exactly are the basic laws of collective motion, and how tey be understood empirically? Furthermore,
what are the commonalities among the different factors @seéhlaws? We established two theorems that
concern turn, vortex, bifurcation, and merging:

Theorem 4.12 Assume (A1) holds. Then for System Il (or System Iwith 5 — 7), the events of turn,
bifurcation and merging will happen an infinite number ofdsrwith probabilityl.

Theorem 4.13 Assume (A1) holds. Then for System | with 5 — 7, with probability 1 there exist vortices
whose duration can be arbitrarily long.

The proofs of Theorenis 4.12 and 4.13 are put in Appendix C.

Our proposed method has favorable possible applicatioernitaio engineering systems. For example,
Yin, Wang, and Sun_[45, 46] investigated some consensusithigs for a platoon model, however there
has been no crash analysis for them to date. Using the ideamafa3.B, the crash analysis for these
algorithms may be transformed to the design of cooperativérals such that the crash states are reached
in finite time. The method for the design of cooperative aulstrelates to the proofs of Theorems 4.12 and
[4.13. Similarly, we can explore the design of collision awice algorithms for platoon model consensus
via the proposed method.

5 Results under Periodic Boundary Conditions

The system outlined by Vicset al. [7] assumes that all agents move in the sqU@ré)? with periodic
boundary conditions, suggesting that if an agent hits thim8ary of the square, it will enter this square from
the opposite boundary with the same velocity and headingndthematics, periodic boundary conditions
contain two meanings: (i) For alle [1,n] andt > 1 we restrictz;; (¢) andz;»(¢) to the intervall0, L) by
modulo L when they are out of this interval; (ii) For allj € [1,n] andt > 0,

1Xi(8) — X;(t)113
= min{|zi1 () — 251 (8)], |wa (t) — 20 () + L[}
+min{lai(t) — zp2(t)], |22 (t) — 2j2(t) £ LI}
Similar to Sectiom 4, throughout this section we use the¥alhg assumption:
(A2) Assume that the population size> 2, the parameters > 0,v > 0,r; > 0,1 < i < n, and the

initial positions X (0) € [0, L)?" and headingg(0) € [, =)™ are arbitrarily given. Also, assume all the
agents move iff0, L)? with periodic boundary conditions.
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With the same proofs we can get that Lemimas 4.1 and 4.2 dhilluraler periodic boundary conditions.
Define

T = max 7;.
max 1<i<n )

For Lemmag 4J5 and 4.8, the corresponding versions und&rdigeboundary conditions are provided as
follows:

Lemma 5.1 Assume (A2) is satisfied and ket> 0 be a constant arbitrarily given. For both protocols (B.1)

and [3.2), if

2rmax + 20,2 ° sin(3 + kn)
if n is even o > 1,

L> | & +1L arcsin 1o -1 (5.1)
3rmax +20 Y ;20 " "t 2 sin(d 4 kn)
otherwise
thenS? is finite-time robustly reachable froisy).
Lemma 5.2 Assume (A2) holds. For both protocdls (3.1) and](3.2), if
L& —3]
i
L > 2rmax + 2 L4 kn), 5.2
> 2r —|—stm(2+n) (5.2)

k=0

then(S2)¢ is finite-time robustly reachable frost.

The proofs of Lemmds 5.1 ahd 5.2 are put in Appendides D andeotively.
Similar to Theoremk 416 and 4.9 we give the following The®é&n® and 5.)4:

Theorem 5.3 Assume (A2) and (5.1) hold, then all the results of Thedréis#l hold withc andT" de-
pending onL additionally.

Proof With the same proofs we can get that Lemimas 4.1 add 4.2 skillumaler periodic boundary condi-
tions. With the same proof as Theoréml4.6 but using Lemmanstead of Lemma 4.5 yields our result.
]

Theorem 5.4 Assume (A2) and (8.2) hold, then all the results of Thedréhs#l hold withc andT" de-
pending onL additionally.

Proof Immediate from Corollari 3]4 and Lemrhab.2. O

In the traditional sense, the order parameter of the SPRRmylshs a phase transition with respect to
noise and population density [7,/38]; this requires an agsiom that these systems will maintain order after
a certain time, provided the noise is small and the populalensity is high. We would like to point out,
however, that Theorenis 4.9 and]5.4 hold for gny 0 (providing [5.2) holds under periodic boundary
conditions), andh > 2, so for any noise intensity and population density, the oofi¢ghe SPP system can
be broken after a sufficient amount of time. Additionallycaing to Theoremis 4.6, 5.3, and the following
Theoreni 6.1, the SPP system will switch between ordered isnddgred states an infinite number of times
for any noise amplitude and population density. Thus, osults indicate that the order parameter does not
exhibit the simple phase transition described in the liteea[7, 38]. Combining the results of our previous
work [21], this allows us to deduce that the time intervalesn ordered and disordered states may exhibit
a phase transition concerning noise and population derBity results also provide mathematical proof of
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the observation that randomness can make non-equilibrystersis exhibit anomalously large fluctuations,
which is true of many real-world systems such as glassy systgranular packings, and active colloids
[4,137].

Similar to Theoreni 4.11, we provide a theorem on how noisectdfthe connectivity under periodic
boundary conditions.

Theorem 5.5 Assume (A2) holds. For System Il (or System | with 5 — Z), if L > 2rp,, then{G(t)}$2,
is not uniformly jointly weakly connected with probability

The proof of this Theorem is put in Appendix F.

By applying Theorem 515 to the homogeneous case, it becolaasthat{G(t)}°, is not uniformly
jointly connected with Probability. Corollary[4.10 asserts that robust consensus cannot bleegainder
open boundary conditions, however, for the periodic botiadait remains unclear whether robust consen-
sus can be reached. For systems whose network topologiesdirected and do not couple with their
states, the uniformly joint connectivity of the network tbpgies is a necessary and sufficient condition for
robust consensus [28]. This condition is not applicableuiornodel, however.

Finally we give the corresponding results of Theorémsl4r?4a13 for periodic boundary conditions.

Theorem 5.6 Assume (A2) holds. Then for System Il (or System Iqiths — 7), with probability 1 the
event of turn will happen an infinite number of times for dny- 0. Additionally, if (5.2) is satisfied, the

events of bifurcation and merging will also happen an indéimtimber of times with probabilitly.

Theorem 5.7 Assume (A2) holds. #f > 5 — = and L > 0, then with probabilityl System I will product
vortices whose duration can be arbitrarily long.

The proofs of Theorenis 5.6 ahd 5.7 are put in Appehdix F.

Buhl et al. [12] used a one-dimensional version of the Vicsek modehtestigate the collective behavior
of locusts. By simulation, they found that the system exbibiarge fluctuations of the order parameter and
repeated changes in group’s moving direction when the teokthe individuals was low or average, but
that the system became highly ordered after a short time wleesity was high. They also identified
similarities between their simulations and real-worldusicbehavior. Because the homogeneous versions
of Systems | and Il have rules and features similar to the iind&2], to some degree, Theoreisl4.3]5.6,
B.7 and 6.1 can explain the repeated switches of the groupianign direction and the large fluctuations of
the order parameter for low and medium densities - furthey allow us to predict that these behaviors still
exist for high densities when the time step is sufficientigda

6 Results under An Assumption

Naturally, the original Vicsek model can evolve from disened to ordered states; this has been verified
through simulation.[7], however, we can only prove it for tese ofp > 5 — 7 (which should also hold
for anyn > 0). If its proof for > 0 became possible, Theorems|4.6, 411,412 4.13, 513, 8,55 5.7
would still hold in System | after relaxing the conditigrt> 5 — Z ton > 0. This fact can be formulated as

2 n
the following theorem:

Theorem 6.1 For System |, assume that (A1) (or (A2)) holds and thereseaifinite timel” > 0 depending
on the system parameters only such that with a positive fpibyamin, <;<7 dy;) < 7. Then the results

about System | in Theorerns 4.6, 411, ¥[12,14.18 (dr 5.8[5565and 5.77) also hold whem > 7 — = is
replaced by, > 0.

The proof of this theorem is put in Appendik F.
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7 Simulations

To illustrate the relation between order parameters andlptipn density or noise intensity, this section
provides simulations of Systems | and Il under periodic lflaup conditions. All the following simulations
assume the agents’ speedvis= 0.01, and that their initial headings and positions are indepetig and
uniformly distributed in[—x, 7) and[0, 5)2, respectively. Fot < i,j < n andt > 0 we set the interaction
weight

fij(t) = { (1) i;!é(i(t) = X;(t)ll2 < 73,

Here we recall that; is the interaction radius of ageint

First, let's look at the order parameters of homogeneous$e8ys| and Il under different population
densities. In these simulations, we assumed the interaxddii of all agents are equal 19 and that noises
{&i(t) }1<i<n,t>0 are independently and uniformly distributed[#0.6,0.6]. The maximum time step was
set to108. Figured an@]2 show the values of the order functi¢t) of Systems | and Il with = 10, 25,
and40, which represent low, medium, and high densities, respaygtiAs shown, from low to high density,
Systems | and Il exhibit ordered state at some moments aondddied state at other moments when the
time grows large; this observation conforms entirely to thxeoretical results for System Il (Theoréml5.3),

and implies that the condition > 5 — 7 for System | can be relaxed.

n=10

Figure 1: The order paramete(t) of Figure 2: The order paramete(t) of
homogeneous System | (original Vicsek model) homogeneous System Il with= 10, 25, 40.
with n = 10, 25, 40.

We also simulated a heterogeneous System | by assuminghthatteraction radius of each agent is
independently and uniformly distributed [, 2]. With the same noise assumption shown in Fidure 1,
Figure[3 shows the value of the order parameter of heterogsn8ystem | withh = 40, 55, and80. By
comparing Figuréll to Figuté 3 with the same population size @0), it seems that homogeneity benefits
the order of the system rather than heterogeneity. In atdiEigure$ {43 show that for both Systems | and
I, higher population density reduces order parameterhtain.

Finally, we simulated a homogenous System | by assuri@()}i<i<n >0 to an i.i.d. zero-mean
Gaussian noise sequence. To investigate the influencefefafif noise intensities on the order parameter,
we set the varianceé of the noise to b®.06, 0.12, or 0.18 (Figure[4). We found that larger noise intensity
increases order parameter fluctuation.
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Figure 3: The order paramete(t) of Figure 4: The order parameteft) of
heterogeneous System | with= 40, 55, 80. homogeneous System | under Gaussian noise
with variances = 0.06,0.12,0.18.

8 Conclusion

Self-organized systems characterized by deterministis land randomness commonly exist in real-
world natural, engineering, social, and economic systefscurate analysis of the local rules of these
systems as they affect their global behavior is a common daitd challenging) problem in many fields. In
this paper, we proposed an innovative, general approadtig@itoblem that transforms it to the design of
cooperative control algorithms. Using our method, we rlagethe manner in which noise affects the order
and connectivity of heterogeneous SPP systems, and alseedhbat these systems can spontaneously
produce turn, vortex, bifurcation, and flock merging pheeom

An interesting problem inherent to the SPP system is minimgithe effects of noise to keep the system
in order. A possible method of doing so is to adopt the distald stochastic approximation, under which
each agent uses a decreasing gain function acting on itebw information to reduce measurement or
communication noise [15, 40,/45, 47].

Unfortunately, as many researchers have pointed out, tbeekimodel is very basic but probably not
particularly descriptive of actual biological clustersa the future, we plan to use our proposed method
to analyze more practical systems. Of course, the desigromtfa algorithms remains challenging in
terms of complex, real-world systems. Another attractivieife research direction is the development of
corresponding theories for designing these types of dlguos.
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Appendices

Appendix A Proof of Lemmal4.5

We first consider the protocdl(3.2). Without loss of gerigrate assume € (0, 1). Define the constant
£ := min{#, 2arcsin 5 }. we will prove our result for the following two cases respesdy:
Case L n is even. We separate theagents into two disjoint setd; and.A, with |A;| = |A3| = %, and
x2(0) > x;2(0) for any agent € A;,j € As. Here we recall that;»(0) denotes the second coordinate of

t = [WJ +1. (A1)
For0 <t < t;, we choose
5i(t) = g, V1<i<n, (A.2)
and set
3n _ g, if i
wo={ B0 e



From this we can get for all € [0,¢;),

ey e ([ e

From this for anyi € A; andj € Ay, we have

zio(ty) — wja(t1)
+ Z vsin 0;(t) — z;2(0) — Z vsin§;(t)
0<t<ty 0<t<ty

>0 3 2sin” =2 sing > Fax. (A.5)

4
0<t<ty

which indicates that there exists no edge betwggnand A, at timet;. Also, by (A.3), (A.4) and the
condition ofmax;<;<y [0;(0)| < Z we have

wt) e |- 3] = nva0m-s0) A6)

foranyl <i¢ <nand0 <t < t.
Next we will give a control algorithm to minimize the valuetbk order function. Set

-2 1
to ::max{tl—I— [71' 7 5—§—|,t1—|—1}.

Fort € [t1,t2), we choose

@By i et < /248 -
(0;(t),ui(t)) = { (é %4_ 6;(t)) otherwise A0
for i € Ay, and choose
| | (_7_3_77) 0i(t) > —m/2—B+n
(0;(t),ui(t)) = { (3, —%4— 0;(t)) otherwise #9

fori € Ay. From [A.4), [AT) andl(A.B) it can be computed that
ui(t) € [-n+0i(t),n —6;(t)], V1 < i<ty <t <t (A.9)
If the setsA; and. A are disconnected at timiethen with the similar methods to (4.2) aifd (4.4) we can get

€[5-8,5+8]if minb(t) >3- 51,
min 6;(t + 1) < i€ A

i€ A 2 + min 0;(t) otherwise

€A
and

€[-5-8-5+7]
if max6;(t) < -5+ 6+ 4,
1€A

< —7 +max0;(t) otherwise
1€A2

0;(t+1
SR
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So by [A.5) and induction we can gedt; and.A; are always disconnected in the tirfte, ¢5]. Then, similar
to (4.7) we have

[7/2 =B, w/2+p] ifie A,
9““)6{ —7/2— B, —m/2+ 8] if i € Ay, (A.10)

which is followed by

cp(tz):%u Z (cosH,-(tg),siHQi(tg))H

1€A1UA2
1
_ = 0;(Ly), sin 0;(t2) — 1 0;(ta), sin 0;(ts) + 1
nHi;:l(cos (t2),sin 0;(t2) )+i;;2(cos (t2),sin b;(t2) + )H (A1)
< [[(cos (5 = B).sin (5 = 8) 1)

= \/2—2005522sin§ <e.

Together this with[[AJ6) and (Al9) we haw? is robustly reachable at tintg.

Case II: n is odd. We separate the agents into three disjoint set4;, A, and A3 which satisfy that
|A1] = |As| = 252, | A3] = 1, andz;2(0) > 2j2(0) > x42(0) for any agent € Ay, j € As andk € As.
Let

L Tmax

] L

t3 := -
v Slnz —Slng

For0 <t < t3, we choos&;(t) = g 1 <4 < n,and set

M—6i(t) ifiecA,
ul(t) = —%7 — Hz(t) if i € Aa, (A12)

Similar to [A.4) and[(A.6), we can get for dlle [0, t3),
[n/4,n/2] ifie A,
O;(t+1)e ¢ [-n/2,—n/4] ifie As,
[=n/8,n/8] if i€ As,
and

Also, similar to [A.5) we can get the set, A, and.4; are mutually disconnected at time
Letc, := 5 + arcsin ﬁ and set

2¢, — 2 1
ty4 ::max{t3+ [%Tﬁ_§—|’t3+1}'

For allt € [t3,t4), similar to [A.7) and[(A.B) we choose

@y ) <ent B
(6i(t), ui(t) = { (é,ci — 6;(t)) otherwise
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for i € Ay, and choose

| ) (BB i 0,(t) > —cn — B
(6:(8), wi(t)) = { (éj _CA; —6;(t)) otherwise

fori € As. Also, fori € As, setd;(t) = 8 andu,(t) = —6;(t). Similar to [A9) we can get
ui(t) € [-n+6i(t),n — 0;(t)], VI<i<mit3<t<ts (A.14)

Also, similar to Case | we havd,, A, and.4; are always mutually disconnected in the tig t4]. Thus,
similar to [A.10) we can get

[en — Byen+ 8] ifie A
0:(ty) € [—cn— B,—cn+ 0] Ifie Ay | (A.15)

[—5,0] ifie As

which indicates that

o(ty) = %H Z (cos 0;(tg) — cos ¢y, sin b;(t4) — sin cn)

€A
+ Z (cos 0;(ty) — cos ¢y, sin b;(t4) + sin cn)
ieAs (A.16)
+ Z (cosb;(ts) — 1,sin6;(ts))||
1€A3

< \/2—20055225111% <e.

Together this with[[A.183) and(A.14) we ha# is robustly reachable at timg.

For protocol[(3.1), ify < 7/2 we can get our result with the similar method as protdcol)(X2herwise,
by Lemmd 4.2 we can control the state of the syste@twith n' < /2, then with the similar method as
protocol [3.2) yields our result.

Appendix B Proof of Lemmal4.8

We will discuss protoco[(3]1) first. Because the System kthassotropic property under open boundary
conditions, without loss of generality we assume the ihiteading;(0), 1 < ¢ < n are distributed in the
interval [—7 /2, w/2). Thus we can get

Oumin (0) < 6;(0) < Onax(0), V1 <i < n. (B.1)

Fort > 0andl < i < n, we choos€d;(t),u;(t)) as same a$ (4.1) but usipgnstead ofa. With almost
the same process &f (4.2)-(4.7) we have
/
- <

max 10:(t)] < n/2, (B.2)

wheret} := [7]-1.
Similar to the case Il of the proof of Lemrha .5, we separagerthgents into three non-empty disjoint

setsA;, Az and Az with 20 (t]) > xj2(t]) > xke(t)) for any agent € Ay, j € Az andk € A,. Let

r
ty = 1] L 1.
3 1+ LU(SiD% — Simg)J +
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Fort) <t < tj, we choose);(t) = ¢, 1 < i < n, and set,(t) as same a$ (A.12). With the similar discus-
sion to the case Il of the proof of Lemrhald.5 we have the detsd, and.A3 are mutually disconnected at
timet.

Lett) :=t5 + [$2] — 1. Forallt € [t5,}) we set;(t) = 7/8, and choose

ui(t) = %17 if @(t) < %ﬂ o ??Tn
’ 37— 0;(t) otherwise

fori e Ay,

_31  if g _3m 4 3n
ui(t)_{ 1 00:(t) > = + 7

| -3 —6:(t) otherwise

fori € As, u;(t) = —0;(t) for i € As. Similar to [A.15) we can get
-3 A ifie Ay . (B.3)

With the fact ofy € (0, 7) we havedy,) > .
For protocol [(3.2), with the same process[as|(B.1)i(B.3)esult follows.

Appendix C  Proofs of Theoremd4.11,4.12 and 4.1.3

Proof of Theorem([4.11We first consider the System II. For ahy> 0, if max;<;<y |0;(t)| < 4, similar
to the proof of Lemm&4l5 we separate thagents into two disjoint setd; and.A; with |A;| = [4],
|A2| = [§], andz2(0) > 52(0) for any agent € Ay, j € Ay. LetTy := [ﬁmj + 1 andT be an
arbitrary large integer. Under protocbl (B.2), toe [t,t + T} + T'), we choosé; (t') andu;(t') as same as
(A.2) and [A.3) respectively. Then by (A.4) arid (A.5) we cat that there is always no edge betwegn

andS; in the time[t + T1,t + Ty + 7. With this and the method df (3.4) we have for System II,

t+T1+T 1
P |J G(')isnotweakly connectdd(X (t),0(t)) € S, | > ST (C.1)
t'=t+T1

Also, for any initial state, any > 0 andw;_; € Q'"!, together the proof process of Lemmal4.1 and the
method of [(3.4) we can get for System II,

1

P((X(t+T2),0(t + T)) € Sjlwin1) > 7o

(C.2)

whereT) := [M} = [27” —17. By (CJ), [C2) and Bayes’ theorem we have

t+Th+1o+T
P J  G()is not weakly connectda;_;

t'=t+T1+To
> P((X(t+T2),0(t+Tp)) € S%|wt_1)

t+ T +1e+T
Ny ( lJ  G()is not weakly connectddX (¢ + T»), 0(t + T5)) € S,%,wtl)
V=t4+ Ty +T
>_ L
= gnTegn(Th+T) "
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Similar to [3.8) with probabilityl there is a time* > 0 such that J;, 72257257 G(¢) is not weakly con-

t'=t*+T1+T>
nected.
For System I, with the same process as above but using Lén#friastead of Lemmpa 4.1 we can get
our result. O

Proof of Theorem[4.12For anyt > 0, if max<;<, |0;(t)] < § with € being a small positive constant, then

we set]’ := (%1 with K being a large integer, and choagét’) = 5% and

ui(t') = { _ZVLK " 6:8) <_%+%—77
T —6;(t') otherwise

fort € [t,t +T)andi = 1,...,n. For System Il (or I), under this process we can get that+ 7)) €
(3 — 5% 5 + 3] for 1 <i < n, and during the timé, ¢ 4 T') all the agents keep almost synchronization,
which indicate the event of turn has happened. Using Lerin8har{ 4.1 (of 4]2) we can get for System |l
(or lwithn > 5 — 7), the event of turn will happen an infinite number of timeshagtobability 1.

Similarly, combing[(A.1D), Lemmds 3.3 and .1 [(or]4.2) we ganfor System Il (or | withy > 5 — T),
the events of bifurcation and merging will happen an infinibenber of times with probability. O
Proof of Theorem[4.13Because System | has the property of isotropy, we can getsitsexortices with

arbitrarily long duration by adding the turning angles ie firoof of the turn event of Theorems 4.12.]

Appendix D Proof of Lemmal5.1

We consider protoco[(32) first. This proof partly takes itheas of the proof of Lemnla4.5. Given
a large integetk’ > 0, throughout this proof we choosg(t) = 5% fori = 1,...,n andt > 0. Set

= [ml Fori=1,...,nandt € [0,ty), we choose
3 -~ .
wit)={ G2k 200 e € [5 L), (D.1)
% — Z(t) if :L'Z'g(t) c [0, 5).

Under protocol[(3.2), fot € [0, 1), in the case of(t) > L/2, we haved;(t + 1) € [-2n/K, —n/K] and

2
Tio(t + 1) = x40(t) + vsinb;(t + 1) € [xi2(t) — vsin %,wig(t) — vsin %],

and in the case of;3(t) < L/2, we haved;(t + 1) € [n/K,2n/K] and

2
Zio(t + 1) € [zi2(t) + vsin %,wig(t) + vsin fn]

From these and with the conditianax; <;<y, |0;(0)| < n/2 we have
ui(t) € [-n+0;(t),n — 6i(t)], V1<i<n,0<t<t, (D.2)
and can compute that

2n L . 2n
(to)] < =L a(to) — = | < vsin =L .
lrgizglwz(toﬂ <% and lréliagl ‘$22(t0) 2| < vsin - (D.3)

Next we proceed with the proof for the following two casegeesively:
Case l:n is even o= > 1/n. We separate the agents into two disjoint setd; and.4; with |A;| = [5],
|Az| = | 5], andxa(t) > xj2(t) for any agent € Ay, j € A,. Let

Tmax

_— 1.
2vsin(g — %)J +

11 I:t0+t
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Forty <t < t;1, we choose
n_n _g i
Ui(t):{ 2 o —Oill) Tie A, (D.4)
2

From this and the protocdl (3.2) we can get

bt +1) 6{ %g%ﬂ Pl (D.5)
Thus, similar to[(A.5) we have
xio(t1) — zjo(t1) > rmax, Vi€ A1,j € As, (D.6)
and togethe(D]3) and (B.5) we can compute
|w12 t1) — —| < vsm%} +v(ty — to)sm V1 <i<n. (D.7)
Also, combining [[D.%),[(D.5) and the first inequality 6f (Ip\8e have
ui(t) € [-n+0;(t),n — &i(t)] V1 <i <n,to <t <ty (D.8)
Next we will give the control algorithm to minimize the valaéthe order function. Set
ty := max {tl + [%Ltl + 1} .
Fort; <t < t9, we choose
o= {1, W0 T
5 —0;(t) otherwise
fori e Ay, and
wlt) = { 0+ gk 0> -5+
—% —0;(t) otherwise
for i € Ay. From these and the fact ofax;<;<, |0;(t1)| < ¥ it can be obtained that
ui(t) € [=n+6i(t),n — &), V1 < i <m, by <t <t (D.9)

Also, if the sets4; and.A; are disconnected at time with the similar methods té_(4.2) and (4.4) we can
get

€[5 5+ 3] 1 mindi()> 5+ 5% —n.
min 0;(t + 1) (K=1)y ) T
€A > + mln 0;(t) otherwise
and
. [ =% — 2k ok — 5] If maxi(t) <n— g — 3,
max 0;(t + _
ieAs i L) +mix0i(t) otherwise
1EA2



Therefore, for any; < t < to, if there exists no edge betweegh and.A; at every time if¢;, t) we can get
that: for alli € Ay, together[(D.b),[(D.10) and the fact of(¢) + b;(t) < n we have

n n 1 n
- — = t—1t1)(1l— =)np<6;(t) <= t—t1)n,
) - e (=)= 2 S0 < L+ (=t
SO we can ge{tm(t) > xi9 (tl) and
Zio(t) = zi(t1) + Z vsin 0;(k)
t1<k<t
L .2 _
< §+USID£+U(1€1 —to)smg
to—1
+ v Z InaX1 ]Sin(g+0‘>

k=t1+1 Q’E[—%-‘r(t—tl)(l— ?)nv(t_tl)n

L2y —3]

L Tmax
5 +v Z sm( —i—kn) askK — oo,

where the first inequality us€s (ID.7); symmetrically, for A, we can getr;2(t) < x;2(t1) and

L35

l\')‘:‘

—3J

to\»—‘

h

;U‘72 (t) > - Tmax

5 5 sin (2 —|—k777) asK — oo.

IIM

Thus, together these with (D.6) and the condition

L3y —3]

L > 2rpax + 20 Z: sin (g +/<;77),

by induction we can getl; and.A;, are always disconnected during the time interfvalt,) for large K.
Using this and the similar method {0 (Al11) we haug;) < ¢ for large K. Combining [D.2),[(D.B),[(D.9)
this yields our result.

Case II: nis odd ands < —. We separate the agents into three disjoint sets;, A, and.A3 which satisfy
that|A;| = |A2| = |A3| =1, and[X;(t)]2 > [X;(t)]2 > [Xk(t)]2 for any agent € A;,j € Az and
k€ As. Let

T'max
3:=1p+ - - + 1.
Lv(sm(g — %) — sin %)J

Forty <t < t3, we choosey;(t) to be the same values as (D.4) when A; U A,, and to be—@(t) when
1 € Az, which indicates that

4 - 2,1 ifie A,
0;(t+1) e [—3, -2+ #] ifie A,
[~ 5k, 55| ifie As.

Then with the similar argument t6 (A.5) we can get the séfs.4> and. A3 are mutually disconnected at
timets.
Letc, := § + arcsin ﬁ and set

t4 := max {tg +



Forts <t < t4, we choose

’LLZ(t) =

n—ok 6(t) <catgk—n
cn — 0;(t)) otherwise

fori e Ay, and

wi(t) = —nt ok W Oi() > —cn — o+
Z —c, — 0;(t) otherwise

for i € Ay, andu;(t) = —6;(t) for i € Az. With the similar argument to Case | and using the conditibn o

c 1
|T+—35

L > 2rpax + 20 l;) sin (g + k:n)

we can getAd;, A, and.A; are mutually disconnected at every time frogrto ¢4, and sop(t4) < e by the
similar method of[(A.I6). Also, similar to Case | we can get

wilt) € [—n+ 8i(t),n — ()], Y1 <i<mtg<t<ts

Together these with (Dl.2) our result is obtained.

For the protocol[(3]1), ify < 7/2 we can get our result with the similar method as protocall)(3.2
Otherwise, by Lemmia4.2 we can control the state of the syméfﬁ; with ' < 7/2, then with the similar
method as protocol (3.2) yields our result.

Appendix E  Proof of Lemmal5.2

We consider protocol (3.1) first. Létbe the middle value of the minimal interval contains all thigial
headings of the agents. Without loss of generality we assue@®, 7/4). Lett := [7]-1. Fort € [0,29)
andl < : < n, we choose

(n/4,=3n/4) it 6:(t) > b+n/2,
(0i(t),ui(t)) = § (/2,6 —0;(t)) if 0;(t) € [b—n/2,b+n/2],
(n/4,3n/4) if 0;(t) <b—mn/2.
Similar to [B.2) we can get

n
1<q 2

max |6;(to) — bl <
ax
Setty :=to + [ ]-1. Fort € [to, ¢1) andl < i < n, we choose

/4, =3n/4) i 0i(t) > /2,
ilt)uitt)) = { (1/2,~8:(0)) 11 B,(6) € [-n/2,n/2]

With the similar method td_(Bl2) again we have

0.(t1)] <
@%I i(t1)] <

N3

(E.1)
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Setty =t + [y

- ]. Fori = 1,...,nandt € [t;,t2), we choose&);(t) = 5% andu,(t) as [D.1).
Similar to [D.3) we have

2n L . 2n
i(t2)] < — and i2(t2) — =| <
fi3, 1002 < T and o foo(ta) = 5] < vsin

Next we separate the agents into four disjoint nonempty sets, i = 1,2, 3,4, which satisfy that
[(Xi(®)l2 > [X;(t)]2 = [Xk(t)]2 = [Xk(t)]2 forany agent € Ay, j € Ag, k € A3 andl € A,. Let

T
ta 1=ty + L max

2usin(4 — 7

)J + 1.
Forty <t < t3, we choose
n_n _g if 7
u,(t) 277 2Kn 91(~t) !fZ.G.Al U As,
Set

(m —n)K +2n
ty = t — | ts+15.
o iy [ L
In the timet € [t3,t4), we choose

fori e Ay, and

"/ if 92 )< I —
ui(t) = { Z _2£ _ 04(t§ ) othzer\N?SG
2 2K v
fori € A, and

ity = 4 N3k if 6:(t) > =5+
—% + 5% — 0i(t) otherwise
fori € As, and

K

_ /T ) _m_n
wilt) = Z+ 2K if 0;(t) > —3 “ &kt
—5 — 3¢ — 0i(t) otherwise

for i € A4. With the similar discuss as the Case | of the proof of Lerhnianke can getly;,) > m under
condition [5.2).

For protocol [(3.2), combining (D.3) and the process of thevatparagraph our result follows.

Appendix F  Proofs of Theorems$ 5.5, 516, 5.7 arid 6.1

n

Proof of Theorem[5.5Givent > 0, supposenax;<;<, |#;(t)| < 4. We separate the agents into two
disjoint setsA4; and. A with |A;| = [5], |A2| = | 5], andx;a(t) > xj2(t) for any agent € Ay, j € As.
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Setly = L%&WJ + 1, whereK is an integer not smaller thah) and sefl” be an arbitrary large integer.

Under protocol[(3.2) (0i(311)), far € [t,t + T1 + T') we choose); (') = 5 for1 < i < mn,

wilf) = —ak = 0i(t))  if ap(t) > 2E
’ 23—}7{ — Gi(t’) if [L'Z'Q(t,) < %,

fori e Ay, and

2 if zio(t') > L/4

o — 0;(t")
ui(t') = { ;_117{2 —6;(t")  if zp(t)) < L/4

for i € A,. Similar to [D.3), for allt’ € [t + T3,¢ + T1 + T] we can get,

3L 2n
/ .
ma [2io(t') = =] < wsin g
and
L 2n
L) — 2| < i
max|aia(t) - 3| < vsin e,

which indicates that if. > 27, then Ui?jTG(t/ ) is not weakly connected for largl€. Under protocol

@24) (or [Z4)), similar ti{Cl1) we have

t+1T1+T

P J G(¥)isnotweakly connectddd(X (t),0(t)) € Sy | > (2K)""+7),
t'=t+11

Because for protocol(3.2) (dr(3.1) with> 5 — T) S% is also finite-time robustly reachable fraftf under

the periodic boundary conditions, with the similar proces (C.2) to the end of the proof of Theorem

[4.11 we can get our result. O

Proof of Theorem[5.6With the same discussion to the first paragraph of the prodhebrem 4.12 we can
get the event of turn will happen an infinite number of timethvarobability 1.

Given a timet;, supposenax;<;<, |#;(t1)| < 5 for a small constant > 0. Under the similar process
from (E.1) to the end of the proof of Lemrha b.1 we can get thetewébifurcation happens in the time
[t1,t4), Wheret, is the same constant in the proof of Lemimd 5.1. Also, with imél@r process to the proof
of Lemmal4.1 (of_412) we can get there exist a titpe> t4 such that the event of merging happens in
the time[t4, t5). Using Lemmasg 3]3 arid 4.1 (or #.2) we can get the events afchifion and merging will

happen an infinite number of times with probability d
Proof of Theorem[5.7This proof is as same as the proof of Theofem4.13 but usingréh&5.6 instead of
Theoreni 4.12. O

Proof of Theorem[6.1By our assumptions we can gef is finite-time robustly reachable fro@* under
protocol [3.1). Also, for any: > 0, by (B.2) we can gef, is finite-time robustly reachable frof? under
protocol [3.1). Thus, similar to Lemnia®.1 we haWg is finite-time robustly reachable frof* under
protocol [3.1). With the same proofs of Theordmd 4.6,14.113 #.18[ 5.8, 515, 5.6 and 5.7 but using this
instead of LemmB& 412 our results can be obtained. 0
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