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Abstract- Natural systems are inextricably affected by noise. Withinrecent decades, the manner in
which noise affects the collective behavior of self-organized systems, specifically, has garnered considerable
interest from researchers and developers in various fields.To describe the collective motion of multiple in-
teracting particles, Vicseket al. proposed a well-known self-propelled particle (SPP) system, which exhibits
a second-order phase transition from disordered to orderedmotion in simulation; due to its non-equilibrium,
randomness, and strong coupling nonlinear dynamics, however, there has been no rigorous analysis of such
a system to date. To decouple systems consisting of deterministic laws and randomness, we propose a gen-
eral method which transfers the analysis of these systems tothe design of cooperative control algorithms. In
this study, we rigorously analyzed the original Vicsek model under both open and periodic boundary condi-
tions for the first time, and developed extensions to heterogeneous SPP systems (including leader-follower
models) using the proposed method. Theoretical results show that SPP systems switch an infinite number of
times between ordered and disordered states for any noise intensity and population density, which implies
that the phase transition indeed takes a nontraditional form. We also investigated the robust consensus and
connectivity of these systems. Moreover, the findings presented in this paper suggest that our method can
be used to predict possible configurations during the evolution of complex systems, including turn, vortex,
bifurcation and flock merger phenomena as they appear in SPP systems.

Keywords- Vicsek model, collective motion, self-propelled particles, heterogeneous multi-agent system, ro-
bust consensus

1 Introduction

“Natural systems are undeniably subject to random fluctuations, arising from either environmental vari-
ability or thermal effects” [1]. The manner in which noise affects the collective behavior of self-organized
systems, which are shaped by the interplay of deterministiclaws and randomness, has fascinated researchers
in various fields such as catalysis, cosmology, biology, reactive mixing, colloidal chemistry, geophysics,
electronic engineering, statistical physics, economics,and finance throughout the past several decades [1–
6]. The collective motion of groups of animals, for example,is a common (though highly remarkable)
natural phenomenon that closely relates to this area of research. Schools of fish, flocks of birds, and groups
of ants typically move in a highly orderly fashion that has been quantitatively described, for instance, by

*This work was supported by the National Key Basic Research Program of China (973 program) under grant
2014CB845301/2/3, and by the National Natural Science Foundation of China under grants No. 61203141 and 91427304.

*Part of this paper will been reported in The 34th Chinese Control Conference, 2015, Hangzhou, China.
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the now well-known self-propelled particle (SPP) system proposed by Vicseket al. [7]. In this system each
agent moves with a constant speed, and at each time step adopts the average direction of motion of the other
agents in their local neighborhood up to some added noise. Using simulations, Vicseket al. explored the
relation between order, noise, and population density, andfound that the SPP system exhibits a second-order
phase transition from disordered to ordered motion concerning noise and population density under periodic
boundary conditions [7].

The SPP system (also referred to as theVicsek model) is of interest to biologists, physicists, control
theorists, and mathematicians because it captures common features of a number of real-world systems and
is considered as a minimal model [5]. For example, the SPP system’s phase transition is similar to the
ferromagnetic phase transition [7, 8] and to superconduction [9, 10]. Variations of the Vicsek model can be
applied to study the collective motion of a wide range of biological systems such as cell colonies, flocks of
birds, and swarms of locusts [11–14], and are also related tocertain engineering applications such as the
distributed computation and formation control of multi-agent systems [15-17]. Another important reason
that the Vicsek model has become a common approach to theoretical research on complex systems is because
it represents a simple, local rule of interaction that results in complex, global behavior.

To mathematically analyze the Vicsek model, its basic rule must be modified in existing research. Jad-
babaieet al. did so by omitting the noise and locally linearizing the updating equation of the movement
direction of each agent [18]. This modification is adopted byother researchers [17, 19–21]. In a previous
study, we introduced the percolation theory to investigatethis modified system with a large population, and
quantitatively described its smallest possible interaction radius (or population density under a scaling) for
consensus [21]; this result shed light on the phase transition of the Vicsek model from disordered to ordered
motion concerning population density in a short time period(provided the system encounters small noise),
because when the population size is large, according to the law of large numbers, the effect of the noise is
negligible in a brief time period. However, when the time period is lengthy, the cumulative effect of even
relatively small amounts of noise cannot be omitted and do affect the system’s global behavior. Until now, as
mentioned above, the manner in which noise affects the collective behavior of the SPP system within longer
time periods is unclear. Another modification is to assume that each agent can communicate with all of the
others in the system at any time [22–27]. The literature alsocontains studies in which robust consensus is
investigated by assuming the interaction between agents does not depend on the states of individual agents
[28–33], as well as several reviews of the Vicsek model and related concepts [5, 34, 35]. To the best of
our knowledge, however, no existing mathematical analysisof Vicsek-type models can maintain all three
features of the original Vicsek model (refers to the SPP system in [7]): self-driving, local interaction, and
randomness.

Physicists mainly use hydrodynamics to analyze the Vicsek model. This method assumes that population
size is infinite and approximates the Vicsek model to certainpartial differential equations or stochastic partial
differential equations [8]. However, this approximation inevitably changes some inherent properties of the
model, and can only represent some properties of the original system. Though the Vicsek model has been
studied for twenty years and a number of works on the subject have provided valuable insight, physicists
still lack a global understanding of it [36].

In this study, we attempted a global analysis of the originalVicsek model and a few heterogeneous SPP
systems. The main contributions of this paper can be summarized as follows.

First, we propose a novel, general method of decoupling the heterogeneous self-organized system for-
mulated by deterministic laws and randomness which widely exists in nature, engineering applications,
societies, and economies [1–6]. Our method transfers the analysis of such systems to the design of control
algorithms, though the models do not contain any control input. Using the propose method, we rigorously
analyze the original Vicsek model and create extensions to heterogeneous SPP systems (including the leader-
follower model). We also provide a few clear answers to robust consensus and connectivity problems which
are of interest in the field of multi-agent systems [18, 28–33, 44].
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In addition to analysis of final states, our method can also beused to predict possible configurations
during the evolution of complex systems. As an example, we show that SPP systems can spontaneously
generate turn, vortex, bifurcation, and flock merger phenomena. Our method is particularly adept at predict-
ing events which happen with small probability in finite timethat are difficult to observe through simulation,
demonstrating potential application in complex engineering practices such as collision analysis/avoidance.

The results we present here also have significance in regard to physics and biology. We show that the
Vicsek model switches an infinite number of times between ordered and disordered states for any noise in-
tensity and population density, which indicates that even small noise may break the order of the system; this
lends mathematical proof to the concept that randomness canresult in non-equilibrium systems exhibiting
anomalously large fluctuations [4, 37]. The same result implies that the phase transition of the Vicsek model
actually differs in form from the one traditionally assumed[7, 38]. Furthermore, to some degree, our results
provide an explanation for switches in group movement direction and large fluctuations of order parameters
observed in locust swarm experiments at low and middle population densities [12], and allows us to predict
that these phenomena will continue to exist at high population densities when the time step is sufficiently
large.

The rest of the paper is organized as follows: In Section 2, wewill introduce our model and give some
definitions. Section 3 provides a key method to analyze our models. The main results under open and
periodic boundary conditions are put in Sections 4 and 5 respectively. In Section 6 we give a theorem under
an assumption. Section 7 provides some simulations, and Section 8 concludes this paper with future works.

2 Models and definitions

2.1 The Original Vicsek Model

The original Vicsek model consists ofn autonomous agents moving in the plane with the same speed
v(v > 0), where each agenti contains two state variables:Xi(t) = ((xi1(t), xi2(t)) ∈ R

2 andθi(t) ∈
[−π, π), denoting its position and heading at timet respectively. Then the agenti’s velocity isv(cos θi(t), sin θi(t))
at timet. Each agent’s heading is updated according to a local rule based on the average direction of its
neighbors, and two agents are called neighbors if and only iftheir distance is less than a pre-defined radius
r(r > 0). Let

Ni(t) := {j : ‖Xi(t)−Xj(t)‖2 ≤ r}

denote the neighbor set of agenti at timet, where‖ · ‖2 is the Euclidean norm. Following [7], the dynamics
of the original Vicsek model can be formulated by

θi(t+ 1) = atan2



∑

j∈Ni(t)

sin θj(t),
∑

j∈Ni(t)

cos θj(t)


+ ζi(t), (2.1)

and

Xi(t+ 1) = Xi(t) + Vi(t+ 1) = Xi(t) + v(cos θi(t+ 1), sin θi(t+ 1)) (2.2)

for all i ∈ [1, n] andt ≥ 0, where the functionatan2 is the arctangent function with two arguments1, and
{ζi(t)} is a random noise sequence independently and uniformly distributed in a fixed interval whose mid-
point is0. The system (2.1)-(2.2) is called as theoriginal Vicsek model. LetX(t) = (X1(t),X2(t), . . . ,Xn(t))
andθ(t) = (θ1(t), θ2(t), . . . , θn(t)). The original Vicsek model is very complex to analyze in mathematics.

1Literature [7] uses thearctan function here, but it should be not correct because the quadrant information is lost.
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An important step forward in analyzing this model was given by Jadbabaieet al. in [18] who omitted the
noise item and locally linearized the updating rule (2.1) ofthe heading as follows:

θi(t+ 1) =
1

Ni(t)

∑

j∈Ni(t)

θj(t).

2.2 Our Heterogeneous SPP systems

To be more practical this paper will make some extensions to the original Vicsek model. First we assume
that each agenti has different interaction radiusri > 0, and the interaction weight between two agentsi and
j is a non-negative functionfij(t) satisfying:
(i) fii(t) > 0 for all i, t, which means that each agent has a certain inertia;
(ii) fij(t) = 0 when ‖Xi(t) − Xj(t)‖2 > ri for all i, j, t, which indicates each agent cannot receive
information directly from the ones out of its interaction radius.
Second we consider more general noise. Letξi(t) denote the new noise. LetΩt = Ωt

n ⊆ R
n×(t+1) be the

sample space of(ξi(t′))1≤i≤n,0≤t′≤t, andF t = F t
n be its Borelσ-algebra. Additionally we defineΩ−1 be

the empty set. LetP = Pn be the probability measure onF∞ for (ξi(t′))1≤i≤n,t′≥0, so the probability space
is written as(Ω∞,F∞, P ). Throughout this paper we assume there exists a constantη = ηn > 0 such that
for all initial positionsX(0) and headingsθ(0) andt ≥ 0, the joint probability density of(ξ1(t), . . . , ξn(t))
in the region[−η, η]n has a uniform lower boundρ = ρ(η, n) > 0 under all previous samples, i.e., for any
real numbersai, bi with −η ≤ ai < bi ≤ η, 1 ≤ i ≤ n,

P

(
n⋂

i=1

{ξi(t) ∈ [ai, bi]} |∀wt−1 ∈ Ωt−1

)
≥ ρ

n∏

i=1

(bi − ai), ∀t ≥ 0. (2.3)

We would like to point out that in addition to the independentand uniform noise in the original Vicsek
model, the new noise in (2.3) also contains non-degenerate Gaussian white noise and some other bounded
or unbounded noises. With the above two extensions the equation (2.1) of the original Vicsek model is
changed to

θi(t+ 1) = atan2




n∑

j=1

fij(t) sin θj(t),
n∑

j=1

fij(t) cos θj(t)


 + ξi(t).

To simplify the exposition we record the system evolved by (2.2) and (2.4) asSystem I.
We also consider the system whose updating equation of heading is

θi(t+ 1) =
1∑n

j=1 fij(t)

n∑

j=1

fij(t)θj(t) + ξi(t). (2.4)

For all i ∈ [1, n] and t ≥ 0, we restrict the value of headingθi(t) to the interval[−π, π) by modulo2π
when it is out of this interval. Similarly, we record the system evolved by (2.2) and (2.4) asSystem II.
As a departure from existing modifications made for mathematical analysis, System II maintains the self-
driving, local interaction, and randomness features of theoriginal Vicsek model. We demonstrate below via
simulations that System II in fact exhibits several properties similar to the original Vicsek model (Section
7).

It is worth noting that Systems I and II can satisfy leader-follower relationships within a flock - for
example, if agenti is the follower of agentj, we can setfij(t) to a large value andfik(t) = 0 whenk 6= i, j.
The leader-follower relationship has been observed in real-world experiments [39], and ours is the first study
to investigate how noise affects order in this manner.
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2.3 Order, Robust Consensus and Connectivity

We first investigate how the noise affects the order. Following [7], we define the order parameter

ϕ(t) :=
1

n

∥∥
n∑

i=1

(cos θi(t), sin θi(t))
∥∥
2

for all t ≥ 0. Clearly,ϕ(t) is close to its extreme value,1, indicating all the agents move in almost the
same direction; when closer to0, ϕ(t) indicates an absence of any collective alignment. Naturally, we say
Systems I and II areorderedat timet whenϕ(t) is close to1, and aredisorderedwhenϕ(t) is close to0.

We also give an intuitive definition concerning the order:

Definition 2.1 For any heading vectorθ = (θ1, θ2, . . . , θn) ∈ [−π, π)n, define the length of the shortest
interval which can cover it as

dθ := inf {l ∈ [0, 2π) : there exists a constantc ∈ [−π, π)

such thatθi ∈ [c, c+ l] for all 1 ≤ i ≤ n} ,

where[c, c+ l] := [c, π) ∪ [−π, c+ l − 2π] for the case ofc+ l ≥ π.

This definition can also be understood as themaximum heading differencein the flock. Clearly,dθ is close
to 0 when all the agents move in almost the same direction.

The robust consensus has attracted much attention in multi-agent system research [28–33]. Wang and
Liu [28], for example, provided a definition of robust consensus for systems whose network topologies do
not couple the agents’ states. We adapted this definition to suit our model as follows:

Definition 2.2 System I (or II) achieves robust consensus if there exists a functiong(·) satisfyinglimx→0+ g(x) =
0, such that for anyη > 0 andω ∈ Ω∞,

lim sup
t→∞

dθ(t) ≤ g(η).

This paper will study whether the robust consensus can be reached.
The connectivity of the network topology is a key issue for consensus of multi-agent systems. For

System I (or II), letG(t) = G(X , E(t)) denote its underlying graph at timet, where the vertex setX is the
n agents, and the edge setE(t) = {(j, i) : ‖Xi(t)−Xj(t)‖2 ≤ ri}. Note thatG(t) is a directed graph in our
heterogeneous system. A directed graph is said to bestrongly connectedif there exists at least one path in
each direction between each pair of vertices of the graph. Let G̃(t) denote the graph obtained by replacing
all directed edges ofG(t) with undirected edges. Clearly, the graphG̃(t) is undirected. An undirected graph
is said to beconnectedif there exists at least one path between its any two vertices. If G̃(t) is connected,
thenG(t) is said to beweakly connected. If a directed graph is strongly connected, of course it is also
weakly connected.

Given two graphsG(X , E1) andG(X , E2), defineG(X , E1) ∪ G(X , E2) := G(X , E1 ∪ E2). Following
[29], we give the definition of uniformly joint weak connectivity as follows:

Definition 2.3 The graph sequence{G(t)}∞t=0 is said to be uniformly jointly weakly connected if there exists
an integerT > 0 such that∪t+T

k=t G̃(k) is connected for anyt > 0.

The assumption of uniformly joint connectivity is widely considered a sufficient condition of consensus
in multi-agent systems [17, 18, 20, 28–31, 33, 40]. For systems whose topologies are coupled with states,
whether this assumption can be satisfied remains a quite interesting problem. In this paper, we will show
with probability1 the underlying graphs of our heterogeneous SPP systems are not uniformly jointly weakly
connected and, of course, they are not uniformly jointly connected in a homogeneous case.
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2.4 Turn, Vortex, Bifurcation and Merging

Turning, bifurcation, and merging of flocks are very common phenomena in nature. These phenomena
have been studied under the well-known Boid model using simulations [41]. Olfati-Saber [42], for example,
provided a specific flocking algorithm that can produce bifurcation and merger behavior by adding a global
leader and a few obstacles.We will show that the SPP model canspontaneously produce these phenomena,
which are difficult to precisely define.
Turn andVortex: All agents of a flock gradually change their headings from one angle to another in a finite
amount of time, where the difference of the two angles is larger than a certain value (for example,π/2).
During this time, all the agents stay nearly synchronized, i.e., their headings are almost the same at each
time step. A turn with change in angle exceeding2π is called avortex.
Bifurcation: A group of agents whose directions of motion are almost samemay separate into two groups
with different directions, where the agents in each group are nearly synchronized.
Merging: Two groups of agents moving in different directions may merge into one group that moves in
almost the same direction.

3 Transform to Robust Cooperative Control

To analyze Systems I and II, we first must construct two robustcontrol systems capable of transforming
the analysis to the design of control algorithms. Fori = 1, . . . , n and t ≥ 0, let δi(t) ∈ (0, η) be an
arbitrarily given real number,ui(t) ∈ [−η + δi(t), η − δi(t)] denote a bounded control input, andbi(t) ∈
[−δi(t), δi(t)] denote the parameter uncertainty. For System I we constructthe following control system

{
θi(t+ 1) = atan2(

∑n
j=1 fij(t) sin θj(t),

∑n
j=1 fij(t) cos θj(t)) + ui(t) + bi(t),

Xi(t+ 1) = Xi(t) + v(cos θi(t+ 1), sin θi(t+ 1)),
(3.1)

and for System II we do the same:
{

θi(t+ 1) = 1∑n
j=1

fij(t)

∑n
j=1 fij(t)θj(t) + ui(t) + bi(t),

Xi(t+ 1) = Xi(t) + v(cos θi(t+ 1), sin θi(t+ 1)).
(3.2)

Let S∗ := R
2n × [−π, π)n(or [0, L]2n × [−π, π)n for the periodic boundary case defined in Section

5) be the state space of(X(t), θ(t)) for all t ≥ 0. GivenS1 ⊆ S∗, we sayS1 is reached at timet if
(X(t), θ(t)) ∈ S1, and is reached in the time[t1, t2] if there existst′ ∈ [t1, t2] such thatS1 is reached at
time t′.

Definition 3.1 LetS1, S2 ⊆ S∗ be two state sets. Under protocol (3.1) (or (3.2)),S1 is said to be finite-time
robustly reachable fromS2 if: For any (θ(0),X(0)) ∈ S2, S1 is reached at time0, or there exist constants
T > 0 andε ∈ (0, η) such that we can findδi(t) ∈ [ε, η) andui(t) ∈ [−η + δi(t), η − δi(t)], 1 ≤ i ≤ n,
0 ≤ t < T which guarantees thatS1 is reached in the time[1, T ] for arbitrary bi(t) ∈ [−δi(t), δi(t)],
1 ≤ i ≤ n, 0 ≤ t < T .

Remark 3.2 Under normal circumstances,δi(t) serves as a constantε > 0 for all 1 ≤ i ≤ n and0 ≤ t <
T to guarantee that system (3.1) (or (3.2)) robustly reaches adesignated state set in time[1, T ]. Additionally,
ε can be set to a sufficiently small value such that the uncertainty itembi(t) does not affect the system’s macro
states, such as the ordered or disordered states in finite time.

The following lemma establishes a connection between System I and protocol (3.1) , and also between
System II and protocol (3.2).
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Lemma 3.3 LetS1, . . . , Sk ⊆ S∗, k ≥ 1 be state sets and assume they are finite-time robustly reachable
fromS∗ under protocol (3.1) (or (3.2)). Suppose the initial positionsX(0) and headingsθ(0) are arbitrarily
given. Then for System I (or II):
(i) With probability 1 there exists an infinite sequencet1 < t2 < . . . such thatSj is reached at timetlk+j

for all j = 1, . . . , k and l ≥ 0.
(ii) There exist constantsT > 0 andc ∈ (0, 1) such that

P (τi − τi−1 > t) ≤ c⌊t/T ⌋,∀i, t ≥ 1,

whereτ0 = 0 and τi := min{t : there existτi−1 < t′1 < t′2 < · · · < t′k = t such that for allj ∈
[1, k], Sj is reached at timet′j} for i ≥ 1.

Proof (i) Throughout this proof we assume the initial state is arbitrarily given. We recall thatΩt ⊆ Rn×(t+1)

is the sample space of(ξi(t′))1≤i≤n,0≤t′≤t. Under System I (or II), the values ofX(t) andθ(t) are deter-
mined by the samplewt−1 ∈ Ωt−1, so for anyt ≥ 1 andj ∈ [1, n] we can set

Ωt−1
j :=

{
wt−1 ∈ Ωt−1 : (X(t), θ(t))(wt−1) ∈ Sj

}

to be the subset ofΩt−1 such thatSj is reached at timet. Thus,

P
(
{Sj is reached at timet} |∀w′

t−1 ∈ Ωt−1
j

)
= 1. (3.3)

Also, by our assumptionSj is finite-time robustly reachable under protocol (3.1) (or (3.2)), so with Def-
inition 3.1 there exist constantsTj ≥ 2 andεj ∈ (0, η) such that for anyt ≥ 0 and(X(t), θ(t)) /∈ Sj,
we can find parametersδi(t′) ∈ [εj , η) and control inputsui(t′) ∈ [−η + δi(t

′), η − δi(t
′)], 1 ≤ i ≤ n,

t ≤ t′ ≤ t + Tj − 2 with which the setSj is reached in the time[t + 1, t + Tj − 1] for any uncertainties
bi(t

′) ∈ [−δi(t
′), δi(t

′)], 1 ≤ i ≤ n, t ≤ t′ ≤ t + Tj − 2. This acts on System I (or II) indicating that for
anyw∗

t−1 ∈ (Ωt−1
j )c,

P
(
{Sj is reached in[t+ 1, t+ Tj − 1]} |w∗

t−1

)

≥ P




⋂

t≤t′≤t+Tj−2

⋂

1≤i≤n

{
ξi(t

′) ∈ [ui(t
′)− δi(t

′), ui(t
′) + δi(t

′)]
}
|w∗

t−1


 .

(3.4)

Here(Ωt−1
j )c means the complement set ofΩt−1

j . Define

Ft :=
⋂

1≤i≤n

{ξi(t) ∈ [ui(t)− δi(t), ui(t) + δi(t)]} .

By the Bayes’ theorem we can get

the right side of (3.4)= P (Ft|wt−1)

t+Tj−2∏

t′=t+1

P


Ft′ |

⋂

t≤l<t′

Fl, w
∗
t−1




≥

t+Tj−2∏

t′=t

[
ρ

n∏

i=1

(2δi(t
′))

]
≥ ρTj−1 (2εj)

n(Tj−1) ,

(3.5)

where the first inequality uses (2.3) and the fact of−η ≤ ui(t
′)− δi(t

′) < ui(t
′)+ δi(t

′) ≤ η for 1 ≤ i ≤ n
andt ≤ t′ < t+ Tj . Define the event

Ej,t := {Sj is reached in[t, t+ Tj − 1]} ,

7



Combining (3.3), (3.4) and (3.5) yields

P
(
Ej,t|∀wt−1 ∈ Ωt−1

)
≥ ρTj−1 (2εj)

n(Tj−1) , (3.6)

where the second inequality uses (2.3) and the fact of−η ≤ ui(t
′) − δi(t

′) < ui(t
′) + δi(t

′) ≤ η for
1 ≤ i ≤ n andt ≤ t′ ≤ t+ Tj − 2. Using the Bayes’ theorem and (3.6) we have for anywt−1 ∈ Ωt−1,

P




k⋂

j=1

E
j,t+

∑j−1

l=1
Tl
|wt−1


 = P (E1,t|wt−1)

k∏

j=2

P

(
E

j,t+
∑j−1

l=1
Tl

∣∣∣
j−1⋂

l=1

El,t+
∑l−1

p=1
Tp
, wt−1

)

≥
k∏

j=1

[
ρTj−1 (2εj)

n(Tj−1)
]
:= c.

(3.7)

SetEt :=
⋂k

j=1Ej,t+
∑j−1

l=1
Tl

andT := T1 + T2 + . . . + Tk. For any integerM > 0, using Bayes’

theorem again and (3.7) we have

P
( ∞⋂

m=M

Ec
mT

)
= P (Ec

MT )

∞∏

m=M+1

P
(
Ec

mT

∣∣ ⋂

M≤m′<m

Ec
m′T

)

= [1− P (EMT )]
∞∏

m=M+1

[
1− P

(
EmT

∣∣ ⋂

M≤m′<m

Ec
m′T

)]

≤
∞∏

m=M

(1− c) = 0,

(3.8)

which indicates that with probability1 there exits an infinite sequencem1 < m2 < . . . such thatEmlT

occurs for alll ≥ 1. HereEc
mT is the complement set ofEmT . By the definition ofEt, for eachl ≥ 0 we

can find a time sequencetlk+j ∈ [mlT +
∑j−1

p=1 Tp,mlT +
∑j

p=1 Tp−1], 1 ≤ j ≤ k such thatSj is reached
at timetlk+j.

(ii) For anyM ≥ 0 and i > 0, the eventτi − τi−1 > MT means thatEt does not happen for all
t ∈ [τi−1 + 1, τi−1 + 1 + (M − 1)T ]. By the total probability theorem and (3.8) we have

P {τi − τi−1 > MT} ≤ P

(
M−1⋂

m=0

Ec
τi−1+1+mT

)

=

∞∑

t=0

P (τi−1 = t)P

(
M−1⋂

m=0

Ec
t+1+mT

)

≤ (1− c)M
∞∑

t=0

P (τi−1 = t) = (1− c)M ,

so

P (τi − τi−1 > t) ≤ P

(
τi − τi−1 > ⌊

t

T
⌋T

)
≤ (1− c)⌊t/T ⌋ .

�

Specially, for the case ofk = 1, from Lemma 3.3 we can get the following corollary:
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Corollay 3.4 Let S ⊆ S∗ be a state set and assume it is finite-time robustly reachablefrom Sc under
protocol (3.1) (or (3.2)). Suppose the initial positionsX(0) and headingsθ(0) are arbitrarily given. Then
for System I (or II):
(i) With probability1 S will be reached an infinite number of times.
(ii) There exist constantsT > 0 andc ∈ (0, 1) such that

P (τi − τi−1 > t) ≤ c⌊t/T ⌋,∀i, t ≥ 1,

whereτ0 := 0 andτi := min{t > τi−1 : S is reached at timet} for i ≥ 1.

Proof BecauseS is finite-time robustly reachable fromSc, of course it is also finite-time robustly reachable
from S∗. From Lemma 3.3 our result can be deduced directly. �

Remark 3.5 Using Lemma 3.3 and Corollary 3.4, we can transfer the analysis of Systems I and II to design
the robust control algorithms for protocols (3.1) and (3.2). In fact, based on Remark 3.2 we can choose
suitable parameters such that the uncertainty itembi(t) does not affect the system’s macro states in finite
time, so the analysis of Systems I and II can be transformed tothe design of the controls of the protocols
(3.1) and (3.2).

Remark 3.6 The methods in Lemma 3.3 and Corollary 3.4 do not depend on detailed expressions of the
systems. In fact, for the systemx(t + 1) = f(x(t), ξ(t)) ∈ Rn with the noiseξ(t) ∈ Rm, we can apply
the proposed methods to simplify the analysis - specifically, to predict possible configurations during the
system’s evolution and its final states.

4 Analysis under Open Boundary Conditions

This section will give some results under open boundary conditions of positions of agents, which indi-
cates that all the agents can move onR

2 without boundary limitation. Throughout this section we make the
following assumption:

(A1) Assume the population sizen ≥ 2, the parametersη > 0, ρ > 0, v > 0, ri ≥ 0, 1 ≤ i ≤ n, and
the initial positionsX(0) ∈ R

2n and headingsθ(0) ∈ [−π, π)n are arbitrarily given.
We also need introduce some definitions. For anyt ≥ 0 and1 ≤ i ≤ n, set

θ̃i(t) =





atan2(
∑n

j=1 fij(t) sin θj(t),
∑n

j=1 fij(t)

cos θj(t)) for System I and protocol (3.1),
1∑n

j=1
fij(t)

∑n
j=1 fij(t)θj(t)

for System II and protocol (3.2).

LetX = (X1, . . . ,Xn) ∈ R
2n andθ = (θ1, . . . , θn) ∈ [−π, π)n. For anyα > 0, define

S1
α :=

{
(X, θ) ∈ S∗ : max

1≤i≤n
|θi| ≤

α

2

}
.

We seeS1
α is a set of ordered states whenα is small. The following Lemmas 4.1 and 4.2 describe a transition

to the ordered state for protocols (3.2) and (3.1) respectively.

Lemma 4.1 Assume that (A1) holds. Then for anyα > 0, S1
α is finite-time robustly reachable fromS∗

under protocol (3.2).
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Proof Without loss of generality we assumeα ∈ (0, η]. The main idea of this proof is: For each agenti, if
its neighbors’ average heading̃θi(t) is larger than an upper bound, we setui(t) be a negative input; if̃θi(t)
is less than a lower bound, we setui(t) be a positive input; otherwise we select a control input suchthat
θi(t+ 1) will be in the interval[−α/2, α/2]. With this idea, fort ≥ 0 and1 ≤ i ≤ n we choose

(δi(t), ui(t)) =





(η/4,−3η/4) if θ̃i(t) > η − α/2,

(α/2,−θ̃i(t)) if θ̃i(t) ∈ [α/2 − η, η − α/2],

(η/4, 3η/4) if θ̃i(t) < α/2 − η.

Then it can be computed that

ui(t) ∈ [−η + δi(t), η − δi(t)], ∀1 ≤ i ≤ n, t ≥ 0, (4.1)

which means our choice of(ui(t), δi(t)) meets their requirements in Definition 3.1. Define

θmax(t) := max
1≤i≤n

θi(t) and θmin(t) := min
1≤i≤n

θi(t).

If θmax(t) > α/2 + η/2 we can get

θmax(t+ 1) ≤ θmax(t)−
η

2
. (4.2)

That is because if there existsi ∈ [1, n] such that

θi(t+ 1) > θmax(t)−
η

2
>

α

2
, (4.3)

by θi(t + 1) = θ̃i(t) + ui(t) + bi(t) and (4.1) we havẽθi(t) > η − α/2 andui(t) + bi(t) ∈ [−η,−η/2].
But at the same time, by the definition ofθ̃i(t) we haveθ̃i(t) ≤ θmax(t), so

θi(t+ 1) ≤ θmax(t) + ui(t) + bi(t) ≤ θmax(t)−
η

2
,

which is contradictory with the first inequality of (4.3).
Similar to (4.2), we can get that ifθmin(t) < −α/2− η/2 then

θmin(t+ 1) ≥ θmin(t) +
η

2
. (4.4)

Combining this with (4.2) we have ifmax1≤i≤n |θi(t)| > α/2 + η/2 then

max
1≤i≤n

|θi(t+ 1)| ≤ max
1≤i≤n

|θi(t)| −
η

2
. (4.5)

Also, if max1≤i≤n |θi(t)| ≤ α/2 + η/2, by (4.1)

max
1≤i≤n

|θi(t+ 1)| ≤ α/2. (4.6)

Let t1 := ⌈2π−α
η ⌉. By (4.5), (4.6) and with the fact ofmax1≤i≤n |θi(t)| ≤ π, we can get

max
1≤i≤n

|θi(t1)| ≤ α/2. (4.7)

Combining (4.7), (4.1) and (4.2) we haveS1
α is robustly reached at timet1 from any initial state under

protocol (3.2). �
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Lemma 4.2 Suppose that (A1) holds and there exists a constantη > π
2 − π

n satisfying (2.3). Then for any
α > 0, S1

α is finite-time robustly reachable fromS∗ under protocol (3.1).

Proof Compared to the proof of Lemma 4.1, the biggest difference ofthis proof is to control the maximum
heading difference less thanπ at the beginning time. In this proof the anglea ∈ [b, c] meansa mod 2π
belongs to the set of the elements in[b, c] module2π. Computeθ̃i(0), 1 ≤ i ≤ n, and the length of the
shortest interval which can cover them must be not bigger than 2π(1− 1

n). Letθ∗ be the middle point of this

interval, theñθi(0), 1 ≤ i ≤ n, are all in[θ∗−π(1− 1
n), θ

∗ +π(1− 1
n)]. Setε1 := min{1

3 (η−
π
2 +

π
n),

π
8 }.

For1 ≤ i ≤ n, we chooseδi(0) = ε1 and

ui(0) =





−2ε1 −
n−2

2(n−1)(θ̃i(0)− θ∗)

if θ̃i(0) − θ∗ ∈ [0, π(1 − 1
n)],

2ε1 −
n−2

2(n−1)(θ̃i(0) − θ∗)

if θ̃i(0) − θ∗ ∈ [−π(1− 1
n), 0).

From this we can compute for1 ≤ i ≤ n,

ui(0) ≥ −2ε1 −
n− 2

2(n − 1)
π(1−

1

n
) = −2ε1 −

π

2
+

π

n
≥ −η + ε1,

and similarlyui(0) ≤ η− ε1, which indicates the condition ofui(0) ∈ [−η+ δi(0), η− δi(0)] in Definition
3.1 is satisfied. Also, we can get

θ̃i(0) + ui(0)− θ∗ ∈
[
min{−2ε1, 2ε1 −

π

2
},max{2ε1,−2ε1 +

π

2
}
]

=
[
2ε1 −

π

2
,−2ε1 +

π

2

]

and so with (3.1)

θi(1) − θ∗ ∈ [ε1 −
π

2
,−ε1 +

π

2
], ∀1 ≤ i ≤ n,

which indicates that

θ̃i(1)− θ∗ ∈ [ε1 −
π

2
,−ε1 +

π

2
], ∀1 ≤ i ≤ n.

Next we control all the headings of the agents to the neighborhood ofθ∗. Let ε2 := min{π
8 ,

η
4 ,

α
2 } and

sett1 := ⌈
π
2
−η+ε2
η−2ε2

⌉+ 2. For1 ≤ t < t1 and1 ≤ i ≤ n we chooseδi(t) = ε2 and

ui(t) =





−η + ε2 if θ̃i(t)− θ∗ ∈ (η − ε2,
π
2 )

θ∗ − θ̃i(t) if θ̃i(t)− θ∗ ∈ [ε2 − η, η − ε2],

η − ε2 if θ̃i(t)− θ∗ ∈ (−π
2 , ε2 − η).

With almost the same process of (4.2)-(4.7) we have

θi(t1)− θ∗ ∈ [−ε2, ε2], ∀1 ≤ i ≤ n.

Finally we control all the headings of the agents to the neighborhood of0. Without loss of generality we
assumeθ∗ ∈ [−π, 0]. For t ≥ t1 and1 ≤ i ≤ n we chooseδi(t) = ε2 and

ui(t) =

{
η − ε2 if θ̃i(t) ∈ [−π − ε2, ε2 − η)

−θ̃i(t) otherwise,

and can get thatθi(t2) ∈ [−ε2, ε2], 1 ≤ i ≤ n with t2 := ⌈ π
η−2ε2

⌉+ t1. �
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Remark 4.3 The condition ofη > π
2 − π

n in Lemma 4.2 can be satisfied for any non-degenerate Gaussian
white noise sequence. Further, we posit that Lemma 4.2 also holds for anyη > 0. Strict proof of this does
not come easily, however. In essence, protocol (3.1) without the control input and parameter uncertainty
is an isotropic system whose transition from disordered to ordered state, called “symmetry breaking” in
physics, is rather difficult to analyze compared to the anisotropic protocol (3.2)- so we add a lower bound
to the span of the control input of protocol (3.1) to break thesystem’s symmetry.

The following lemma describes a connection between the order parameter and the maximum heading
difference.

Lemma 4.4 For any ε ∈ (0, 1) and θ(t) ∈ [−π, π)n, if dθ(t) ≤ arccos(1 − ε)2 then the order function
ϕ(t) ≥ 1− ε.

Proof By the definition ofϕ(t) we have

ϕ(t) =
1

n

∥∥
(

n∑

i=1

cos θi(t),

n∑

i=1

sin θi(t)

)
∥∥
2

=
1

n

√∑

i,j

cos [θi(t)− θj(t)]

≥
√

cos (arccos(1− ε)2) ≥ 1− ε.

�

For anyε > 0, define

S2
ε :=

{
(X, θ) ∈ S∗ :

1

n

∥∥
n∑

i=1

(cos θi, sin θi
)∥∥

2
≤ ε
}
.

ThenS2
ε is a set of disordered states providingε close to0. The following lemma describes a transition from

ordered states to disordered states.

Lemma 4.5 Assume (A1) holds. Then for anyε > 0, S2
ε is finite-time robustly reachable fromS1

η under
both protocols (3.1) and (3.2).

To outline the proof of Lemma 4.5, we first divided the agents into different sets, then we controlled the
agents’ headings in different sets to have a certain amount of disparity, breaking all the communications
between different sets after a finite time. Next, we controlled the headings in each set to a designed angle so
that the order parameter of the system became very small. Fordetailed proof, see Appendix A.

We assert through the following theorem that the order parameter will switch an infinite number of times
between very large and very small. Please note that the largeorder parameter indicates ordered states, and
the small order parameter indicates disordered states.

Theorem 4.6 Assume (A1) holds and letε ∈ (0, 1) be a constant arbitrarily given. Then for System II (or
System I withη > π

2 − π
n ), with probability1 there exists an infinite time sequencet1 < t2 < · · · such that

ϕ(ti)

{
≥ 1− ε if i is odd,
≤ ε if i is even.

Moreover, letτ0 = 0 andτi denote the stopping time as

τi =

{
min{t > τi−1 : ϕ(t) ≥ 1− ε} if i is odd
min{t > τi−1 : ϕ(t) ≤ ε} if i is even

12



for i ≥ 1, then for allk ≥ 0 andt ≥ 0,

P (τ2k+2 − τ2k > t) ≤ (1− c)⌊t/T ⌋, (4.8)

wherec ∈ (0, 1) andT > 0 are constants depending onn, rmax, η, v andρ only.

Proof First by Lemmas 4.1 (or 4.2) and 4.5 we can getS2
ε is finite-time robustly reachable from any initial

state. Also, define

Sε :=
{
(X, θ) ∈ S∗ :

1

n

∥∥
n∑

i=1

(cos θi, sin θi
)∥∥ ≥ 1− ε

}
.

By Lemmas 4.1 (or 4.2) and 4.4 we haveSε is also finite-time robustly reachable for any initial state. Using
Lemma 3.3 our results can be obtained by takingS1 = Sε andS2 = S2

ε . �

Remark 4.7 Compared to System II, the results for System I in Theorem 4.6(and also in Theorems 4.11,
4.12, 4.13, 5.3, 5.5, 5.6 and 5.7) contain a conditionη > π

2 − π
n . This difference is a direct result of the

difference between Lemmas 4.1 and 4.2. In fact, the condition η > π
2 − π

n for System I can be relaxed to
η > 0 under an assumption (Theorem 6.1). This assumption includes the assumption used by Liu and Guo
[43], who considered a consensus problem for the original Vicsek model without noise.

For anyα > 0, similar toS1
α we set

S3
α := {(X, θ) ∈ S∗ : dθ < α} .

Differing from S1
α, S3

α may not take the zero as its center angle. Without any additional condition Systems
I and II can reach a disordered state from an ordered state:

Lemma 4.8 Assume (A1) holds, then(S3
π)

c is finite-time robustly reachable fromS3
π under both protocol

(3.1) and (3.2).

The proof of this lemma is put in Appendix B.
The following theorem says for any initial sate and system parameters the disordered states are still

reached an infinite number of times:

Theorem 4.9 Assume (A1) holds. Then for System I (or II), with probability 1 there exists an infinite time
sequencet1 < t2 < · · · such thatdθ(ti) ≥ π for all i ≥ 1; moreover, letτ0 = 0 andτi+1 denote the stopping
time as

τi+1 := min{t > τi : dθ(t) ≥ π},

then for alli ≥ 1 andt ≥ 0,

P (τi − τi−1 > t) ≤ (1− c)⌊t/T ⌋, (4.9)

wherec ∈ (0, 1) andT > 0 are constants depending onn, rmax, η, v andρ only.

Proof Immediate from Corollary 3.4 and Lemma 4.8. �

The possible applications and significance of Theorems 4.6 and 4.9 are provided in Section 5 together
with the corresponding results under periodic boundary conditions.

As mentioned in the Subsection 2.3, the robust consensus hasbeen interested by many researchers [28–
33]. We also give a result for the robust consensus:
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Corollay 4.10 Assume (A1) holds, then the robust consensus cannot be achieved for both Systems I and II.

Proof Immediate from Definition 2.2 and Theorem 4.9. �

Jadbabaieet al. [18] analyzed System II without noise and found that to understand the effects of
additive noise, one must focus on how noise affects the connectivity of the associated neighbor graphs.
Later, Tahbaz-Salehi and Jadbabaie [44] investigated the original Vicsek model without noise and found
that the neighbor graphs are jointly connected over infinitely many time intervals for almost all initial states
under periodic boundary conditions. The following Theoremprovides an answer to how noise affects the
connectivity under the open boundary conditions:

Theorem 4.11 Assume (A1) holds. Then for System II (or System I withη > π
2 − π

n ), {G(t)}∞t=0 is not
uniformly jointly weakly connected with probability1.

The proof of this theorem which uses the idea appearing in theproof of Lemma 4.5 is put in Appendix C.
The colorful collective motion of animals has fascinated scientists from a wide array of fields. What

exactly are the basic laws of collective motion, and how can they be understood empirically? Furthermore,
what are the commonalities among the different factors in these laws? We established two theorems that
concern turn, vortex, bifurcation, and merging:

Theorem 4.12 Assume (A1) holds. Then for System II (or System I withη > π
2 − π

n ), the events of turn,
bifurcation and merging will happen an infinite number of times with probability1.

Theorem 4.13 Assume (A1) holds. Then for System I withη > π
2 −

π
n , with probability1 there exist vortices

whose duration can be arbitrarily long.

The proofs of Theorems 4.12 and 4.13 are put in Appendix C.
Our proposed method has favorable possible application in certain engineering systems. For example,

Yin, Wang, and Sun [45, 46] investigated some consensus algorithms for a platoon model, however there
has been no crash analysis for them to date. Using the idea of Lemma 3.3, the crash analysis for these
algorithms may be transformed to the design of cooperative controls such that the crash states are reached
in finite time. The method for the design of cooperative controls relates to the proofs of Theorems 4.12 and
4.13. Similarly, we can explore the design of collision avoidance algorithms for platoon model consensus
via the proposed method.

5 Results under Periodic Boundary Conditions

The system outlined by Vicseket al. [7] assumes that all agents move in the square[0, L)2 with periodic
boundary conditions, suggesting that if an agent hits the boundary of the square, it will enter this square from
the opposite boundary with the same velocity and heading. Inmathematics, periodic boundary conditions
contain two meanings: (i) For alli ∈ [1, n] andt ≥ 1 we restrictxi1(t) andxi2(t) to the interval[0, L) by
moduloL when they are out of this interval; (ii) For alli, j ∈ [1, n] andt ≥ 0,

‖Xi(t)−Xj(t)‖
2
2

= min{|xi1(t)− xj1(t)|, |xi1(t)− xj1(t)± L|}2

+min{|xi2(t)− xj2(t)|, |xi2(t)− xj2(t)± L|}2.

Similar to Section 4, throughout this section we use the following assumption:
(A2) Assume that the population sizen ≥ 2, the parametersη > 0, v > 0, ri ≥ 0, 1 ≤ i ≤ n, and the

initial positionsX(0) ∈ [0, L)2n and headingsθ(0) ∈ [−π, π)n are arbitrarily given. Also, assume all the
agents move in[0, L)2 with periodic boundary conditions.
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With the same proofs we can get that Lemmas 4.1 and 4.2 still hold under periodic boundary conditions.
Define

rmax := max
1≤i≤n

ri.

For Lemmas 4.5 and 4.8, the corresponding versions under periodic boundary conditions are provided as
follows:

Lemma 5.1 Assume (A2) is satisfied and letε > 0 be a constant arbitrarily given. For both protocols (3.1)
and (3.2), if

L >





2rmax + 2v
∑⌊ π

2η
− 1

2
⌋

k=0 sin(η2 + kη)
if n is even orε > 1

n ,

3rmax + 2v
∑⌊ π

2η
+ 1

η
arcsin 1

n−1
− 1

2
⌋

k=0 sin(η2 + kη)
otherwise,

(5.1)

thenS2
ε is finite-time robustly reachable fromS1

η .

Lemma 5.2 Assume (A2) holds. For both protocols (3.1) and (3.2), if

L > 2rmax + 2v

⌊ π
2η

− 1

2
⌋∑

k=0

sin(
η

2
+ kη), (5.2)

then(S3
π)

c is finite-time robustly reachable fromS3
π.

The proofs of Lemmas 5.1 and 5.2 are put in Appendices D and E respectively.
Similar to Theorems 4.6 and 4.9 we give the following Theorems 5.3 and 5.4:

Theorem 5.3 Assume (A2) and (5.1) hold, then all the results of Theorem 4.6 still hold with c andT de-
pending onL additionally.

Proof With the same proofs we can get that Lemmas 4.1 and 4.2 still hold under periodic boundary condi-
tions. With the same proof as Theorem 4.6 but using Lemma 5.1 instead of Lemma 4.5 yields our result.

�

Theorem 5.4 Assume (A2) and (5.2) hold, then all the results of Theorem 4.9 still hold with c andT de-
pending onL additionally.

Proof Immediate from Corollary 3.4 and Lemma 5.2. �

In the traditional sense, the order parameter of the SPP system has a phase transition with respect to
noise and population density [7, 38]; this requires an assumption that these systems will maintain order after
a certain time, provided the noise is small and the population density is high. We would like to point out,
however, that Theorems 4.9 and 5.4 hold for anyη > 0 (providing (5.2) holds under periodic boundary
conditions), andn ≥ 2, so for any noise intensity and population density, the order of the SPP system can
be broken after a sufficient amount of time. Additionally, according to Theorems 4.6, 5.3, and the following
Theorem 6.1, the SPP system will switch between ordered and disordered states an infinite number of times
for any noise amplitude and population density. Thus, our results indicate that the order parameter does not
exhibit the simple phase transition described in the literature [7, 38]. Combining the results of our previous
work [21], this allows us to deduce that the time interval between ordered and disordered states may exhibit
a phase transition concerning noise and population density. Our results also provide mathematical proof of
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the observation that randomness can make non-equilibrium systems exhibit anomalously large fluctuations,
which is true of many real-world systems such as glassy systems, granular packings, and active colloids
[4, 37].

Similar to Theorem 4.11, we provide a theorem on how noise affects the connectivity under periodic
boundary conditions.

Theorem 5.5 Assume (A2) holds. For System II (or System I withη > π
2 −

π
n ), if L > 2rmax then{G(t)}∞t=0

is not uniformly jointly weakly connected with probability1.

The proof of this Theorem is put in Appendix F.
By applying Theorem 5.5 to the homogeneous case, it becomes clear that{G(t)}∞t=0 is not uniformly

jointly connected with Probability1. Corollary 4.10 asserts that robust consensus cannot be reached under
open boundary conditions, however, for the periodic boundaries, it remains unclear whether robust consen-
sus can be reached. For systems whose network topologies areundirected and do not couple with their
states, the uniformly joint connectivity of the network topologies is a necessary and sufficient condition for
robust consensus [28]. This condition is not applicable to our model, however.

Finally we give the corresponding results of Theorems 4.12 and 4.13 for periodic boundary conditions.

Theorem 5.6 Assume (A2) holds. Then for System II (or System I withη > π
2 − π

n ), with probability1 the
event of turn will happen an infinite number of times for anyL > 0. Additionally, if (5.2) is satisfied, the
events of bifurcation and merging will also happen an infinite number of times with probability1.

Theorem 5.7 Assume (A2) holds. Ifη > π
2 − π

n andL > 0, then with probability1 System I will product
vortices whose duration can be arbitrarily long.

The proofs of Theorems 5.6 and 5.7 are put in Appendix F.
Buhl et al. [12] used a one-dimensional version of the Vicsek model to investigate the collective behavior

of locusts. By simulation, they found that the system exhibited large fluctuations of the order parameter and
repeated changes in group’s moving direction when the density of the individuals was low or average, but
that the system became highly ordered after a short time whendensity was high. They also identified
similarities between their simulations and real-world locust behavior. Because the homogeneous versions
of Systems I and II have rules and features similar to the model in [12], to some degree, Theorems 5.3, 5.6,
5.7 and 6.1 can explain the repeated switches of the group’s moving direction and the large fluctuations of
the order parameter for low and medium densities - further, they allow us to predict that these behaviors still
exist for high densities when the time step is sufficiently large.

6 Results under An Assumption

Naturally, the original Vicsek model can evolve from disordered to ordered states; this has been verified
through simulation [7], however, we can only prove it for thecase ofη > π

2 − π
n (which should also hold

for anyη > 0). If its proof for η > 0 became possible, Theorems 4.6, 4.11, 4.12, 4.13, 5.3, 5.5, 5.6, and 5.7
would still hold in System I after relaxing the conditionη > π

2 −
π
n to η > 0. This fact can be formulated as

the following theorem:

Theorem 6.1 For System I, assume that (A1) (or (A2)) holds and there exists a finite timeT > 0 depending
on the system parameters only such that with a positive probability min1≤t≤T dθ(t) < π. Then the results
about System I in Theorems 4.6, 4.11, 4.12, 4.13 (or 5.3, 5.5,5.6 and 5.7) also hold whenη > π

2 − π
n is

replaced byη > 0.

The proof of this theorem is put in Appendix F.
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7 Simulations

To illustrate the relation between order parameters and population density or noise intensity, this section
provides simulations of Systems I and II under periodic boundary conditions. All the following simulations
assume the agents’ speed isv = 0.01, and that their initial headings and positions are independently and
uniformly distributed in[−π, π) and[0, 5)2, respectively. For1 ≤ i, j ≤ n andt ≥ 0 we set the interaction
weight

fij(t) =

{
1 if ‖Xi(t)−Xj(t)‖2 ≤ ri,
0 else.

Here we recall thatri is the interaction radius of agenti.
First, let’s look at the order parameters of homogeneous Systems I and II under different population

densities. In these simulations, we assumed the interaction radii of all agents are equal to1, and that noises
{ξi(t)}1≤i≤n,t≥0 are independently and uniformly distributed in[−0.6, 0.6]. The maximum time step was
set to106. Figures 1 and 2 show the values of the order functionϕ(t) of Systems I and II withn = 10, 25,
and40, which represent low, medium, and high densities, respectively. As shown, from low to high density,
Systems I and II exhibit ordered state at some moments and disordered state at other moments when the
time grows large; this observation conforms entirely to ourtheoretical results for System II (Theorem 5.3),
and implies that the conditionη > π

2 − π
n for System I can be relaxed.
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Figure 1: The order parameterϕ(t) of
homogeneous System I (original Vicsek model)

with n = 10, 25, 40.
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Figure 2: The order parameterϕ(t) of
homogeneous System II withn = 10, 25, 40.

We also simulated a heterogeneous System I by assuming that the interaction radius of each agent is
independently and uniformly distributed in[0, 2]. With the same noise assumption shown in Figure 1,
Figure 3 shows the value of the order parameter of heterogeneous System I withn = 40, 55, and80. By
comparing Figure 1 to Figure 3 with the same population size (n = 40), it seems that homogeneity benefits
the order of the system rather than heterogeneity. In addition, Figures 1-3 show that for both Systems I and
II, higher population density reduces order parameter fluctuation.

Finally, we simulated a homogenous System I by assuming{ξi(t)}1≤i≤n,t≥0 to an i.i.d. zero-mean
Gaussian noise sequence. To investigate the influence of different noise intensities on the order parameter,
we set the varianceδ of the noise to be0.06, 0.12, or 0.18 (Figure 4). We found that larger noise intensity
increases order parameter fluctuation.
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Figure 3: The order parameterϕ(t) of
heterogeneous System I withn = 40, 55, 80.
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Figure 4: The order parameterϕ(t) of
homogeneous System I under Gaussian noise

with varianceδ = 0.06, 0.12, 0.18.

8 Conclusion

Self-organized systems characterized by deterministic laws and randomness commonly exist in real-
world natural, engineering, social, and economic systems.Accurate analysis of the local rules of these
systems as they affect their global behavior is a common (andquite challenging) problem in many fields. In
this paper, we proposed an innovative, general approach to this problem that transforms it to the design of
cooperative control algorithms. Using our method, we revealed the manner in which noise affects the order
and connectivity of heterogeneous SPP systems, and also showed that these systems can spontaneously
produce turn, vortex, bifurcation, and flock merging phenomena.

An interesting problem inherent to the SPP system is minimizing the effects of noise to keep the system
in order. A possible method of doing so is to adopt the distributed stochastic approximation, under which
each agent uses a decreasing gain function acting on its neighbors’ information to reduce measurement or
communication noise [15, 40, 45, 47].

Unfortunately, as many researchers have pointed out, the Vicsek model is very basic but probably not
particularly descriptive of actual biological clusters. In the future, we plan to use our proposed method
to analyze more practical systems. Of course, the design of control algorithms remains challenging in
terms of complex, real-world systems. Another attractive future research direction is the development of
corresponding theories for designing these types of algorithms.
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Appendices

Appendix A Proof of Lemma 4.5

We first consider the protocol (3.2). Without loss of generality we assumeε ∈ (0, 1). Define the constant
β := min{η

2 , 2 arcsin
ε
2}. we will prove our result for the following two cases respectively:

Case I: n is even. We separate then agents into two disjoint setsA1 andA2 with |A1| = |A2| =
n
2 , and

xi2(0) ≥ xj2(0) for any agenti ∈ A1, j ∈ A2. Here we recall thatxi2(0) denotes the second coordinate of
Xi(0). Let

t1 :=
⌊ rmax

2v sin(η/4)

⌋
+ 1. (A.1)

For0 ≤ t < t1, we choose

δi(t) =
η

8
, ∀1 ≤ i ≤ n, (A.2)

and set

ui(t) =

{
3η
8 − θ̃i(t) if i ∈ A1,

−3η
8 − θ̃i(t) if i ∈ A2.

(A.3)
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From this we can get for allt ∈ [0, t1),

θi(t+ 1) ∈

{
[η/4, η/2] if i ∈ A1,
[−η/2,−η/4] if i ∈ A2.

(A.4)

From this for anyi ∈ A1 andj ∈ A2, we have

xi2(t1)− xj2(t1)

= xi2(0) +
∑

0<t≤t1

v sin θi(t)− xj2(0)−
∑

0<t≤t1

v sin θj(t)

≥ v
∑

0<t≤t1

2 sin
η

4
= 2vt1 sin

η

4
> rmax. (A.5)

which indicates that there exists no edge betweenA1 andA2 at time t1. Also, by (A.3), (A.4) and the
condition ofmax1≤i≤n |θi(0)| ≤

η
2 we have

ui(t) ∈

[
−
7η

8
,
7η

8

]
= [−η + δi(t), η − δi(t)] (A.6)

for any1 ≤ i ≤ n and0 ≤ t < t1.
Next we will give a control algorithm to minimize the value ofthe order function. Set

t2 := max

{
t1 +

⌈π − 2β

η
−

1

2

⌉
, t1 + 1

}
.

For t ∈ [t1, t2), we choose

(δi(t), ui(t)) =

{ (η
4 ,

3η
4

)
if θ̃i(t) < π/2 + β − η(

β, π2 − θ̃i(t)
)

otherwise
(A.7)

for i ∈ A1, and choose

(δi(t), ui(t)) =

{ (η
4 ,−

3η
4

)
if θ̃i(t) > −π/2− β + η(

β,−π
2 − θ̃i(t)

)
otherwise

(A.8)

for i ∈ A2. From (A.4), (A.7) and (A.8) it can be computed that

ui(t) ∈ [−η + δi(t), η − δi(t)], ∀1 ≤ i ≤ n, t1 ≤ t < t2. (A.9)

If the setsA1 andA2 are disconnected at timet, then with the similar methods to (4.2) and (4.4) we can get

min
i∈A1

θi(t+ 1)





∈
[
π
2 − β, π2 + β

]
if min

i∈A1

θi(t) ≥
π
2 − β − η

2 ,

≥ η
2 + min

i∈A1

θi(t) otherwise,

and

max
i∈A2

θi(t+ 1)





∈
[
− π

2 − β,−π
2 + β

]

if max
i∈A2

θi(t) ≤ −π
2 + β + η

2 ,

≤ −η
2 +max

i∈A2

θi(t) otherwise.
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So by (A.5) and induction we can getA1 andA2 are always disconnected in the time[t1, t2]. Then, similar
to (4.7) we have

θi(t2) ∈

{
[π/2 − β, π/2 + β] if i ∈ A1,
[−π/2 − β,−π/2 + β] if i ∈ A2,

(A.10)

which is followed by

ϕ(t2) =
1

n

∥∥ ∑

i∈A1∪A2

(
cos θi(t2), sin θi(t2)

)∥∥

=
1

n

∥∥ ∑

i∈A1

(
cos θi(t2), sin θi(t2)− 1

)
+
∑

i∈A2

(
cos θi(t2), sin θi(t2) + 1

)∥∥

≤
∥∥( cos

(π
2
− β

)
, sin

(π
2
− β

)
− 1
)∥∥

=
√
2− 2 cos β = 2 sin

β

2
≤ ε.

(A.11)

Together this with (A.6) and (A.9) we haveS2
ε is robustly reachable at timet2.

Case II: n is odd. We separate then agents into three disjoint setsA1, A2 andA3 which satisfy that
|A1| = |A2| =

n−1
2 , |A3| = 1, andxi2(0) ≥ xj2(0) ≥ xk2(0) for any agenti ∈ A1, j ∈ A3 andk ∈ A2.

Let
t3 :=

⌊ rmax

v(sin η
4 − sin η

8 )

⌋
+ 1.

For0 ≤ t < t3, we chooseδi(t) =
η
8 , 1 ≤ i ≤ n, and set

ui(t) =





3η
8 − θ̃i(t) if i ∈ A1,

−3η
8 − θ̃i(t) if i ∈ A2,

−θ̃i(t) if i ∈ A3.

(A.12)

Similar to (A.4) and (A.6), we can get for allt ∈ [0, t3),

θi(t+ 1) ∈





[η/4, η/2] if i ∈ A1,
[−η/2,−η/4] if i ∈ A2,
[−η/8, η/8] if i ∈ A3,

and

ui(t) ∈ [−η + δi(t), η − δi(t)], ∀1 ≤ i ≤ n. (A.13)

Also, similar to (A.5) we can get the setsA1, A2 andA3 are mutually disconnected at timet3.
Let cn := π

2 + arcsin 1
n−1 and set

t4 := max

{
t3 +

⌈2cn − 2β

η
−

1

2

⌉
, t3 + 1

}
.

For all t ∈ [t3, t4), similar to (A.7) and (A.8) we choose

(δi(t), ui(t)) =

{ (η
4 ,

3η
4

)
if θ̃i(t) < cn + β − η(

β, cn − θ̃i(t)
)

otherwise
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for i ∈ A1, and choose

(δi(t), ui(t)) =

{ (η
4 ,−

3η
4

)
if θ̃i(t) > −cn − β + η(

β,−cn − θ̃i(t)
)

otherwise

for i ∈ A2. Also, for i ∈ A3, setδi(t) = β andui(t) = −θ̃i(t). Similar to (A.9) we can get

ui(t) ∈ [−η + δi(t), η − δi(t)], ∀1 ≤ i ≤ n, t3 ≤ t < t4. (A.14)

Also, similar to Case I we haveA1, A2 andA3 are always mutually disconnected in the time[t3, t4]. Thus,
similar to (A.10) we can get

θi(t4) ∈





[cn − β, cn + β] if i ∈ A1

[−cn − β,−cn + β] if i ∈ A2

[−β, β] if i ∈ A3

, (A.15)

which indicates that

ϕ(t4) =
1

n

∥∥ ∑

i∈A1

(
cos θi(t4)− cos cn, sin θi(t4)− sin cn

)

+
∑

i∈A2

(
cos θi(t4)− cos cn, sin θi(t4) + sin cn

)

+
∑

i∈A3

(
cos θi(t4)− 1, sin θi(t4)

)∥∥

≤
√

2− 2 cos β = 2 sin
β

2
≤ ε.

(A.16)

Together this with (A.13) and (A.14) we haveS2
ε is robustly reachable at timet4.

For protocol (3.1), ifη < π/2 we can get our result with the similar method as protocol (3.2). Otherwise,
by Lemma 4.2 we can control the state of the system toS1

η′ with η′ < π/2, then with the similar method as
protocol (3.2) yields our result.

Appendix B Proof of Lemma 4.8

We will discuss protocol (3.1) first. Because the System I hasthe isotropic property under open boundary
conditions, without loss of generality we assume the initial headingsθi(0), 1 ≤ i ≤ n are distributed in the
interval [−π/2, π/2). Thus we can get

θmin(0) ≤ θ̃i(0) ≤ θmax(0), ∀1 ≤ i ≤ n. (B.1)

For t ≥ 0 and1 ≤ i ≤ n, we choose(δi(t), ui(t)) as same as (4.1) but usingη instead ofα. With almost
the same process of (4.2)-(4.7) we have

max
1≤i≤n

|θi(t
′
1)| ≤ η/2, (B.2)

wheret′1 := ⌈πη ⌉-1.
Similar to the case II of the proof of Lemma 4.5, we separate then agents into three non-empty disjoint

setsA1, A2 andA3 with xi2(t
′
1) ≥ xj2(t

′
1) ≥ xk2(t

′
1) for any agenti ∈ A1, j ∈ A3 andk ∈ A2. Let

t′3 := t′1 +
⌊ rmax

v(sin η
4 − sin η

8 )

⌋
+ 1.
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For t′1 ≤ t < t′3, we chooseδi(t) =
η
8 , 1 ≤ i ≤ n, and setui(t) as same as (A.12). With the similar discus-

sion to the case II of the proof of Lemma 4.5 we have the setsA1, A2 andA3 are mutually disconnected at
time t′3.

Let t′4 := t′3 + ⌈6π5η ⌉ − 1. For all t ∈ [t′3, t
′
4) we setδi(t) = η/8, and choose

ui(t) =

{
3η
4 if θ̃i(t) < 3π

4 − 3η
4

3π
4 − θ̃i(t) otherwise

for i ∈ A1,

ui(t) =

{
−3η

4 if θ̃i(t) > −3π
4 + 3η

4

−3π
4 − θ̃i(t) otherwise

for i ∈ A2, ui(t) = −θ̃i(t) for i ∈ A3. Similar to (A.15) we can get

θi(t
′
4) ∈





[3π4 − η
8 ,

3π
4 + η

8 ] if i ∈ A1

[−3π
4 − η

8 ,−
3π
4 + η

8 ] if i ∈ A2

[−η
8 ,

η
8 ] if i ∈ A3

. (B.3)

With the fact ofη ∈ (0, π) we havedθ(t′
4
) > π.

For protocol (3.2), with the same process as (B.1)-(B.3) ourresult follows.

Appendix C Proofs of Theorems 4.11,4.12 and 4.13

Proof of Theorem 4.11We first consider the System II. For anyt ≥ 0, if max1≤i≤n |θi(t)| ≤
η
2 , similar

to the proof of Lemma 4.5 we separate then agents into two disjoint setsA1 andA2 with |A1| = ⌈n2 ⌉,
|A2| = ⌊n2 ⌋, andxi2(0) ≥ xj2(0) for any agenti ∈ A1, j ∈ A2. Let T1 :=

⌊
rmax

2v sin(η/4)

⌋
+ 1 andT be an

arbitrary large integer. Under protocol (3.2), fort′ ∈ [t, t+ T1 + T ), we chooseδi(t′) andui(t′) as same as
(A.2) and (A.3) respectively. Then by (A.4) and (A.5) we can get that there is always no edge betweenS1

andS2 in the time[t+ T1, t+ T1 + T ]. With this and the method of (3.4) we have for System II,

P




t+T1+T⋃

t′=t+T1

G(t′) is not weakly connected
∣∣∀(X(t), θ(t)) ∈ S1

η


 ≥

1

8n(T1+T )
. (C.1)

Also, for any initial state, anyt ≥ 0 andwt−1 ∈ Ωt−1, together the proof process of Lemma 4.1 and the
method of (3.4) we can get for System II,

P
(
(X(t + T2), θ(t+ T2)) ∈ S1

η |wt−1

)
≥

1

4nT2
, (C.2)

whereT2 := ⌈2(π−η/4)
η ⌉ = ⌈2πη − 1

4⌉. By (C.1), (C.2) and Bayes’ theorem we have

P




t+T1+T2+T⋃

t′=t+T1+T2

G(t′) is not weakly connected
∣∣wt−1




≥ P
(
(X(t+ T2), θ(t+ T2)) ∈ S1

η |wt−1

)

· P




t+T1+T2+T⋃

t′=t+T1+T2

G(t′) is not weakly connected
∣∣(X(t+ T2), θ(t+ T2)) ∈ S1

η , wt−1




≥
1

4nT28n(T1+T )
.

25



Similar to (3.8) with probability1 there is a timet∗ > 0 such that
⋃t∗+T1+T2+T

t′=t∗+T1+T2
G(t′) is not weakly con-

nected.
For System I, with the same process as above but using Lemma 4.2 instead of Lemma 4.1 we can get

our result. �

Proof of Theorem 4.12For anyt ≥ 0, if max1≤i≤n |θi(t)| ≤
ε
2 with ε being a small positive constant, then

we setT := ⌈ (π−ε)K+η
2(K−1)η ⌉ with K being a large integer, and chooseδi(t

′) = η
2K and

ui(t
′) =

{
η − η

2K if θ̃i(t′) < π
2 + η

2K − η
π
2 − θ̃i(t

′) otherwise

for t′ ∈ [t, t + T ) andi = 1, . . . , n. For System II (or I), under this process we can get thatθi(t + T ) ∈
[π2 − η

2K , π2 + η
2K ] for 1 ≤ i ≤ n, and during the time[t, t+ T ) all the agents keep almost synchronization,

which indicate the event of turn has happened. Using Lemmas 3.3 and 4.1 (or 4.2) we can get for System II
(or I with η > π

2 − π
n ), the event of turn will happen an infinite number of times with probability1.

Similarly, combing (A.10), Lemmas 3.3 and 4.1 (or 4.2) we canget for System II (or I withη > π
2 −

π
n ),

the events of bifurcation and merging will happen an infinitenumber of times with probability1. �

Proof of Theorem 4.13Because System I has the property of isotropy, we can get it exists vortices with
arbitrarily long duration by adding the turning angles in the proof of the turn event of Theorems 4.12.�

Appendix D Proof of Lemma 5.1

We consider protocol (3.2) first. This proof partly takes theideas of the proof of Lemma 4.5. Given
a large integerK > 0, throughout this proof we chooseδi(t) = η

2K for i = 1, . . . , n and t ≥ 0. Set
t0 := ⌈ L

2v sin η
K

⌉. For i = 1, . . . , n andt ∈ [0, t0), we choose

ui(t) =

{
− 3η

2K − θ̃i(t) if xi2(t) ∈
[
L
2 , L

)
,

3η
2K − θ̃i(t) if xi2(t) ∈

[
0, L2

)
.

(D.1)

Under protocol (3.2), fort ∈ [0, t0), in the case ofxi2(t) ≥ L/2, we haveθi(t+1) ∈ [−2η/K,−η/K] and

xi2(t+ 1) = xi2(t) + v sin θi(t+ 1) ∈ [xi2(t)− v sin
2η

K
, xi2(t)− v sin

η

K
],

and in the case ofxi2(t) < L/2, we haveθi(t+ 1) ∈ [η/K, 2η/K] and

xi2(t+ 1) ∈ [xi2(t) + v sin
η

K
, xi2(t) + v sin

2η

K
].

From these and with the conditionmax1≤i≤n |θi(0)| ≤ η/2 we have

ui(t) ∈ [−η + δi(t), η − δi(t)], ∀1 ≤ i ≤ n, 0 ≤ t < t0, (D.2)

and can compute that

max
1≤i≤n

|θi(t0)| ≤
2η

K
and max

1≤i≤n

∣∣xi2(t0)−
L

2

∣∣ ≤ v sin
2η

K
. (D.3)

Next we proceed with the proof for the following two cases respectively:
Case I:n is even orε > 1/n. We separate then agents into two disjoint setsA1 andA2 with |A1| = ⌈n2 ⌉,
|A2| = ⌊n2 ⌋, andxi2(t) ≥ xj2(t) for any agenti ∈ A1, j ∈ A2. Let

t1 := t0 +
⌊ rmax

2v sin(η2 − η
K )

⌋
+ 1.
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For t0 ≤ t < t1, we choose

ui(t) =

{
η
2 − η

2K − θ̃i(t) if i ∈ A1,

−η
2 + η

2K − θ̃i(t) if i ∈ A2.
(D.4)

From this and the protocol (3.2) we can get

θi(t+ 1) ∈

{
[η2 − η

K , η2 ] if i ∈ A1,
[−η

2 ,−
η
2 + η

K ] if i ∈ A2.
(D.5)

Thus, similar to (A.5) we have

xi2(t1)− xj2(t1) > rmax, ∀i ∈ A1, j ∈ A2, (D.6)

and together (D.3) and (D.5) we can compute

∣∣xi2(t1)−
L

2

∣∣ ≤ v sin
2η

K
+ v(t1 − t0) sin

η

2
,∀1 ≤ i ≤ n. (D.7)

Also, combining (D.4), (D.5) and the first inequality of (D.3) we have

ui(t) ∈ [−η + δi(t), η − δi(t)] ,∀1 ≤ i ≤ n, t0 ≤ t < t1. (D.8)

Next we will give the control algorithm to minimize the valueof the order function. Set

t2 := max

{
t1 +

⌈(π − η)K + η

2(K − 1)η

⌉
, t1 + 1

}
.

For t1 ≤ t < t2, we choose

ui(t) =

{
η − η

2K if θ̃i(t) < π
2 + η

2K − η
π
2 − θ̃i(t) otherwise

for i ∈ A1, and

ui(t) =

{
−η + η

2K if θ̃i(t) > −π
2 − η

2K + η

−π
2 − θ̃i(t) otherwise

for i ∈ A2. From these and the fact ofmax1≤i≤n |θi(t1)| ≤
η
2 it can be obtained that

ui(t) ∈ [−η + δi(t), η − δi(t)] ,∀1 ≤ i ≤ n, t1 ≤ t < t2. (D.9)

Also, if the setsA1 andA2 are disconnected at timet, with the similar methods to (4.2) and (4.4) we can
get

min
i∈A1

θi(t+ 1)





∈
[
π
2 − η

2K , π2 + η
2K

]
if min

i∈A1

θi(t) ≥
π
2 + η

2K − η,

≥ (K−1)η
K + min

i∈A1

θi(t) otherwise,

and

max
i∈A2

θi(t+ 1





∈
[
− π

2 − η
2K , η

2K − π
2

]
if max

i∈A2

θi(t) ≤ η − η
2K − π

2 ,

≤ − (K−1)η
K +max

i∈A2

θi(t) otherwise.
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Therefore, for anyt1 < t < t2, if there exists no edge betweenA1 andA2 at every time in[t1, t) we can get
that: for alli ∈ A1, together (D.5), (D.10) and the fact ofui(t) + bi(t) ≤ η we have

η

2
−

η

K
+ (t− t1)(1−

1

K
)η ≤ θi(t) ≤

η

2
+ (t− t1)η,

so we can getxi2(t) ≥ xi2(t1) and

xi2(t) = xi2(t1) +
∑

t1<k≤t

v sin θi(k)

≤
L

2
+ v sin

2η

K
+ v(t1 − t0) sin

η

2

+ v

t2−1∑

k=t1+1

max
α∈[− η

K
+(t−t1)(1−

1

K
)η,(t−t1)η]

sin
(η
2
+ α

)

≤
L

2
+

rmax

2
+ v

⌊ π
2η

− 1

2
⌋∑

k=0

sin
(η
2
+ kη

)
asK → ∞,

where the first inequality uses (D.7); symmetrically, forj ∈ A2 we can getxj2(t) ≤ xj2(t1) and

xj2(t) ≥
L

2
−

rmax

2
− v

⌊ π
2η

− 1

2
⌋∑

k=0

sin
(η
2
+ kη

)
asK → ∞.

Thus, together these with (D.6) and the condition

L > 2rmax + 2v

⌊ π
2η

− 1

2
⌋∑

k=0

sin
(η
2
+ kη

)
,

by induction we can getA1 andA2 are always disconnected during the time interval[t1, t2) for largeK.
Using this and the similar method to (A.11) we haveϕ(t2) ≤ ε for largeK. Combining (D.2), (D.8), (D.9)
this yields our result.
Case II: n is odd andε ≤ 1

n . We separate then agents into three disjoint setsA1, A2 andA3 which satisfy
that |A1| = |A2| =

n−1
2 , |A3| = 1, and[Xi(t)]2 ≥ [Xj(t)]2 ≥ [Xk(t)]2 for any agenti ∈ A1, j ∈ A3 and

k ∈ A2. Let
t3 := t0 +

⌊ rmax

v(sin(η2 − η
K )− sin η

2K )

⌋
+ 1.

For t0 ≤ t < t3, we chooseui(t) to be the same values as (D.4) wheni ∈ A1 ∪ A2, and to be−θ̃i(t) when
i ∈ A3, which indicates that

θi(t+ 1) ∈





[η2 − η
K , η2 ] if i ∈ A1,

[−η
2 ,−

η
2 + η

K ] if i ∈ A2,
[− η

2K , η
2K ] if i ∈ A3.

Then with the similar argument to (A.5) we can get the setsA1, A2 andA3 are mutually disconnected at
time t3.

Let cn := π
2 + arcsin 1

n−1 and set

t4 := max

{
t3 +

⌈(cn − η
2 )K + η

2

(K − 1)η

⌉
, t3 + 1

}
.
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For t3 ≤ t < t4, we choose

ui(t) =

{
η − η

2K if θ̃i(t) < cn + η
2K − η

cn − θ̃i(t)
)

otherwise

for i ∈ A1, and

ui(t) =

{
−η + η

2K if θ̃i(t) > −cn − η
2K + η

−cn − θ̃i(t) otherwise

for i ∈ A2, andui(t) = −θ̃i(t) for i ∈ A3. With the similar argument to Case I and using the condition of

L > 2rmax + 2v

⌊ cn
η
− 1

2
⌋∑

k=0

sin
(η
2
+ kη

)

we can getA1, A2 andA3 are mutually disconnected at every time fromt3 to t4, and soϕ(t4) ≤ ε by the
similar method of (A.16). Also, similar to Case I we can get

ui(t) ∈ [−η + δi(t), η − δi(t)] , ∀1 ≤ i ≤ n, t0 ≤ t < t4.

Together these with (D.2) our result is obtained.
For the protocol (3.1), ifη < π/2 we can get our result with the similar method as protocol (3.2).

Otherwise, by Lemma 4.2 we can control the state of the systemto S1
η′ with η′ < π/2, then with the similar

method as protocol (3.2) yields our result.

Appendix E Proof of Lemma 5.2

We consider protocol (3.1) first. Letb be the middle value of the minimal interval contains all the initial
headings of the agents. Without loss of generality we assumeb ∈ [0, π/4). Let t0 := ⌈πη ⌉-1. Fort ∈ [0, t0)
and1 ≤ i ≤ n, we choose

(δi(t), ui(t)) =





(η/4,−3η/4) if θ̃i(t) > b+ η/2,

(η/2, b − θ̃i(t)) if θ̃i(t) ∈ [b− η/2, b + η/2],

(η/4, 3η/4) if θ̃i(t) < b− η/2.

Similar to (B.2) we can get

max
1≤i≤n

|θi(t0)− b| ≤
η

2
.

Sett1 := t0 + ⌈ π
2η ⌉-1. Fort ∈ [t0, t1) and1 ≤ i ≤ n, we choose

(δi(t), ui(t)) =

{
(η/4,−3η/4) if θ̃i(t) > η/2,

(η/2,−θ̃i(t)) if θ̃i(t) ∈ [−η/2, η/2].

With the similar method to (B.2) again we have

max
1≤i≤n

|θi(t1)| ≤
η

2
. (E.1)
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Sett2 := t1 + ⌈ L
2v sin η

K

⌉. For i = 1, . . . , n and t ∈ [t1, t2), we chooseδi(t) = η
2K andui(t) as (D.1).

Similar to (D.3) we have

max
1≤i≤n

|θi(t2)| ≤
2η

K
and max

1≤i≤n

∣∣xi2(t2)−
L

2

∣∣ ≤ v sin
2η

K
.

Next we separate then agents into four disjoint nonempty setsAi, i = 1, 2, 3, 4, which satisfy that
[Xi(t)]2 ≥ [Xj(t)]2 ≥ [Xk(t)]2 ≥ [Xk(t)]2 for any agenti ∈ A1, j ∈ A2, k ∈ A3 andl ∈ A4. Let

t3 := t2 +
⌊ rmax

2v sin(η2 − η
K )

⌋
+ 1.

For t2 ≤ t < t3, we choose

ui(t) =

{
η
2 − η

2K − θ̃i(t) if i ∈ A1 ∪A2,

−η
2 + η

2K − θ̃i(t) if i ∈ A3 ∪ A4.

Set

t4 := max

{
t3 +

⌈(π − η)K + 2η

2(K − 1)η

⌉
, t3 + 1

}
.

In the timet ∈ [t3, t4), we choose

ui(t) =

{
η − η

2K if θ̃i(t) < π
2 + η

K − η
π
2 + η

2K − θ̃i(t) otherwise

for i ∈ A1, and

ui(t) =

{
η − η

2K if θ̃i(t) < π
2 − η

π
2 − η

2K − θ̃i(t) otherwise

for i ∈ A2, and

ui(t) =

{
−η + η

2K if θ̃i(t) > −π
2 + η

−π
2 + η

2K − θ̃i(t) otherwise

for i ∈ A3, and

ui(t) =

{
−η + η

2K if θ̃i(t) > −π
2 − η

K + η

−π
2 − η

2K − θ̃i(t) otherwise

for i ∈ A4. With the similar discuss as the Case I of the proof of Lemma 5.1 we can getdθ(t4) ≥ π under
condition (5.2).

For protocol (3.2), combining (D.3) and the process of the above paragraph our result follows.

Appendix F Proofs of Theorems 5.5, 5.6, 5.7 and 6.1

Proof of Theorem 5.5Given t > 0, supposemax1≤i≤n |θi(t)| ≤
η
2 . We separate then agents into two

disjoint setsA1 andA2 with |A1| = ⌈n2 ⌉, |A2| = ⌊n2 ⌋, andxi2(t) ≥ xj2(t) for any agenti ∈ A1, j ∈ A2.
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SetT1 :=
⌊

rmax

2v sin(η/4)

⌋
+1, whereK is an integer not smaller than4, and setT be an arbitrary large integer.

Under protocol (3.2) (or (3.1)), fort′ ∈ [t, t+ T1 + T ) we chooseδi(t′) =
η
2K for 1 ≤ i ≤ n,

ui(t
′) =

{
− 3η

2K − θ̃i(t
′) if xi2(t′) ≥ 3L

4
3η
2K − θ̃i(t

′) if xi2(t′) < 3L
4 ,

for i ∈ A1, and

ui(t
′) =

{
− 3η

2K − θ̃i(t
′) if xi2(t′) ≥ L/4

3η
2K − θ̃i(t

′) if xi2(t′) < L/4

for i ∈ A2. Similar to (D.3), for allt′ ∈ [t+ T1, t+ T1 + T ] we can get,

max
i∈A1

∣∣xi2(t′)−
3L

4

∣∣ ≤ v sin
2η

K

and

max
i∈A2

∣∣xi2(t′)−
L

2

∣∣ ≤ v sin
2η

K
,

which indicates that ifL > 2rmax then∪t0+T
t′=t0

G(t′) is not weakly connected for largeK. Under protocol
(2.4) (or (2.4)), similar to (C.1) we have

P




t+T1+T⋃

t′=t+T1

G(t′) is not weakly connected
∣∣∀(X(t), θ(t)) ∈ S1

η


 ≥ (2K)−n(T1+T ).

Because for protocol (3.2) (or (3.1) withη > π
2 −

π
n ) S1

η is also finite-time robustly reachable fromS∗ under
the periodic boundary conditions, with the similar processfrom (C.2) to the end of the proof of Theorem
4.11 we can get our result. �

Proof of Theorem 5.6With the same discussion to the first paragraph of the proof ofTheorem 4.12 we can
get the event of turn will happen an infinite number of times with probability1.

Given a timet1, supposemax1≤i≤n |θi(t1)| ≤
ε
2 for a small constantε > 0. Under the similar process

from (E.1) to the end of the proof of Lemma 5.1 we can get the event of bifurcation happens in the time
[t1, t4), wheret4 is the same constant in the proof of Lemma 5.1. Also, with the similar process to the proof
of Lemma 4.1 (or 4.2) we can get there exist a timet5 > t4 such that the event of merging happens in
the time[t4, t5). Using Lemmas 3.3 and 4.1 (or 4.2) we can get the events of bifurcation and merging will
happen an infinite number of times with probability1. �

Proof of Theorem 5.7This proof is as same as the proof of Theorem 4.13 but using Theorem 5.6 instead of
Theorem 4.12. �

Proof of Theorem 6.1By our assumptions we can getΩ3
π is finite-time robustly reachable fromΩ∗ under

protocol (3.1). Also, for anyα > 0, by (B.2) we can getΩ1
α is finite-time robustly reachable fromΩ3

π under
protocol (3.1). Thus, similar to Lemma 4.1 we haveΩ1

α is finite-time robustly reachable fromΩ∗ under
protocol (3.1). With the same proofs of Theorems 4.6, 4.11, 4.12, 4.13, 5.3, 5.5, 5.6 and 5.7 but using this
instead of Lemma 4.2 our results can be obtained. �
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