
1

Construction of Synergistic Potential Functions on
SO(3) with Application to Velocity-Free Hybrid

Attitude Stabilization
Soulaimane Berkane and Abdelhamid Tayebi

Abstract—We propose a systematic and comprehensive proce-
dure for the construction of synergistic potential functions, which
are instrumental in hybrid control design on SO(3). A new map
via angular warping on SO(3) is introduced for the construction
of such a family of potential functions allowing an explicit
determination of the critical points and the synergistic gap. Some
optimization results on the synergistic gap are also provided. The
proposed synergistic potential functions are used for the design of
a global velocity-free hybrid attitude stabilization scheme relying
solely on inertial vector measurements. Comparative simulation
results between the proposed global hybrid control scheme and
the almost global smooth control scheme have been carried out.

I. INTRODUCTION

The attitude control problem of rigid body systems has
been widely treated in the literature with many applications
related to aerospace and marine engineering (see, for instance,
[1], [2], [3] and [4]). The major challenge of this control
problem is related to the motion space SO(3) where the
angular velocity is not a straightforward derivative of the
angular position. In fact, it was shown in [5] that, due to the
inherent topology of the compact manifold SO(3), there is no
continuous time -invariant feedback that globally stabilizes the
rigid body attitude to a desired reference. The best results that
one can achieve on SO(3), or any Lie group diffeomorphic
to SO(3)×R3, with time-invariant smooth feedback laws are
almost global, where the attitude is stabilized from any initial
attitude except from a set of Lebesgue measure zero (see,
for instance, [6], [7], [8]). Most attitude control systems are
obtained using the popular modified-trace function VA(R) =
tr(A(I−R)), where tr(A)I−A is symmetric positive definite,
in the Lyapunov design and analysis. For instance, consider
the attitude kinematics Ṙ = RΩ, then the angular velocity
tensor Ω ∈ so(3) can not be designed to globally stabilize the
attitude R ∈ SO(3), at any given reference, if it is restricted
to be smooth. Nevertheless, under the continuous feedback

Ω = −RT∇VA(R) = −(AR−R>A),

one can show that the closed loop system has multiple
equilibria corresponding to the critical points of VA where
the gradient ∇VA(R) is zero. The undesired critical points
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are identified by Ra(π, E(A)) which represents the set of all
rotations of angle π and axis v ∈ E(A), with E(A) being the
set of unit eigenvectors of A. It is also shown that the manifold
Ra(π,S2) of all rotations of angle π is invariant under this
feedback [9]. The appearance of undesired critical points when
considering smooth controls on SO(3) is non-avoidable. This
is mainly due to the fact that, according to Morse theory [10],
any smooth potential function on SO(3) is guaranteed to have
at least four critical points where its gradient vanishes.

On the other hand, there have been some attempts to
design attitude control systems with global stability results by
introducing discontinuities. For instance, using a discontinuous
quaternion-based control, as done in [11], one can achieve
global stability results. However, these discontinuous attitude
control systems, in addition to the quaternion ambiguity,
suffer from non-robustness to arbitrary small measurement
disturbances as explained in [12].

The recent work in [13] focuses on the design of hybrid
feedback systems that are able to overcome the topological
obstruction to global asymptotic stability on SO(3) while,
in the same time, ensuring some robustness to measurement
noise. The hybrid algorithm is based on a family of potential
functions and a hysteresis-based switching mechanism to avoid
the undesired critical points. After each switching, the control
law derived from the minimal potential function is selected.
A sufficient condition for global asymptotic stability of the
resulting hybrid controller is the “synergism” property of this
family of potential functions. A family of potential functions
on SO(3) is synergistic if at each critical point (other than the
desired one) of a potential function in the family, there exists
another potential function in the family that has a lower value.
Moreover, if all the potential functions in the family share the
identity element I3×3 as a critical point then it is called a
centrally synergistic family. Thanks to the hysteresis gap, this
controller guarantees robustness to small measurements noise.

As a consequence of this approach, the design of hybrid
controllers on SO(3), leading to robust and global asymptotic
stability results, boils down to the search for a suitable
synergistic family of potential functions. The work in [9]
suggests the technique of “angular warping” to construct
synergistic potential functions on SO(3), although without
rigorous proof of synergism. In [14], the authors proved that
this technique could generate a synergistic family, under some
conditions, when applied to the modified trace function. The
major drawback of these approaches is related to the difficulty
of determining the synergistic gap which is required for the
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implementation of the hybrid controller. In an attempt to solve
this problem, the authors in [15] tried to relax the centrality as-
sumption by considering scaled, biased and translated modified
trace functions. However, the sufficient synergism conditions
provided therein were very conservative, difficult to satisfy
and only hand tuning of the parameters was proposed. Another
form of non-central synergistic potential functions appeared in
[16] by comparing the actual and desired directions, leading
to a simple expression of the synergistic gap.

In this paper, we consider a central family of potential func-
tions obtained via angular warping on SO(3) and derive nec-
essary and sufficient conditions guaranteeing that the family
under consideration is synergistic. We propose a new warping
angle function that allows explicit calculation of the critical
points as well as the synergistic gap. We also provide sufficient
conditions on the angular warping direction to maximize the
synergistic gap. The fact that our approach generates a central
synergistic family is advantageous. In fact, each control law,
derived from each smooth potential function in the central
family, guarantees (independently) almost global asymptotic
stabilization of the attitude. This is desirable in practice since
the control objective remains achievable even when the hybrid
switching mechanism runs into error. Moreover, the control
law derived from the presented central synergistic family is
directly expressed in terms of an arbitrary number of vector
measurements and only two potential functions are sufficient
to guarantee synergism. It is also worth pointing out that our
approach to the construction of synergistic families on SO(3)
can be adapted to other compact manifolds such as S1 and
S2 where angular warping technique has been used [17], [18],
[19].
The second contribution consists in the design of a hybrid
velocity-free attitude stabilization scheme relying solely on
inertial vector measurements. The proposed synergistic poten-
tial functions were instrumental in the design of such a hybrid
controller leading to global asymptotic stability results. The
proposed control scheme is inspired from our earlier work
[20] where almost global asymptotic stability results have
been obtained. Note that in [4] a hybrid velocity-free attitude
controller, inspired by [3], has been proposed assuming that
the attitude is available for feedback. Since there is no sensor
that provides directly a measurement of the attitude, an attitude
estimation algorithm, which usually relies on angular velocity
measurements, is required.

II. ATTITUDE REPRENTATION AND MATHEMATICAL
PRELIMINARIES

A. Notations and mathematical preliminaries

The sets of real, non-negative real and natural numbers are
denoted as R, R+ and N, respectively. Rn denotes the n-
dimensional Euclidean space and Sn denotes the unit n-sphere
embedded in Rn+1. Given two matrices A,B ∈ Rm×n, their
Euclidean inner product is defined as 〈〈A,B〉〉 = tr(A>B)
where (·)> denotes the transpose of (·). The 2-norm of a
vector x ∈ Rn is ‖x‖ =

√
x>x and the Frobenius norm of a

matrix A ∈ Rn×m is ‖A‖F =
√
〈〈A,A〉〉. For a given square

matrix A ∈ Rn×n, we denote by λAi , λ
A
min and λAmax the i-th,

minimum and maximum eigenvalue of A, respectively.
Given a manifold M , a tangent vector at x ∈ M is γ′(0) :=
dγ(τ)/dτ |τ=0 for some smooth path γ : R → M such that
γ(0) = x. The tangent space to M at x is the set of all tangent
vectors at x, denoted TxM . The disjoint union of all tangent
spaces forms the tangent bundle TM . Let M and N be two
smooth manifolds and let f : M → N be a differentiable map.
The tangent map (differential) of f at a point x ∈ M is the
map [21]

df(x) : TxM → Tf(x)N

ξ 7→ df(x) · ξ := (f ◦ γ)
′
(0),

where γ(τ) is a path in M such that γ(0) = x and γ′(0) =
ξ. The inverse image of a subset SN ⊆ N under the map
f is the subset of M defined by f−1(SN ) = {x ∈ M |
f(x) ∈ SN}. Let f : M → R be a differentiable real-valued
function. A point x ∈M is called a critical point1 of f if the
differential map df(x) · ξ is zero at x for all ξ ∈ TxM . We
denote by Ψf ⊆ M the set of all critical points of f on M .
Let 〈 , 〉x : TxM × TxM → R be a Riemannian metric on
M . The gradient of f , denoted ∇f(x) ∈ TxM , relative to the
Riemannian metric 〈 , 〉x is uniquely defined by

df(x) · ξ = 〈∇f(x), ξ〉x for all ξ ∈ TxM. (1)

B. Attitude representation and kinematics

Consider the general linear group GL(3) which represents
the set of 3× 3 invertible matrices, together with the ordinary
matrix multiplication. A square matrix R ∈ GL(3) is called a
rotation matrix if R belongs to the special orthogonal group
SO(3) ⊂ GL(3) where SO(3) := {R ∈ R3×3|det(R) =
1, RR> = I}, and I is the three-dimensional identity ma-
trix. The Lie algebra of SO(3), denoted by so(3), is the
vector space of 3-by-3 skew-symmetric matrices so(3) ={

Ω ∈ R3×3 | Ω> = −Ω
}
. The group SO(3) has a compact

manifold structure where its tangent spaces are identified by
TRSO(3) := {RΩ | Ω ∈ so(3)} . The Euclidean inner product
on R3×3, when restricted to the Lie-algebra of skew symmet-
ric matrices, defines the following left-invariant Riemannian
metric on SO(3)

〈RΩ1, RΩ2〉R := 〈〈Ω1,Ω2〉〉, (2)

for all R ∈ SO(3) and Ω1,Ω2 ∈ so(3). Let × denotes the
vector cross-product on R3 and define the map [ . ]× : R3 →
so(3); ω 7→ [ω]× such that [ω]×u = ω× u, for all ω, u ∈ R3,
where for any vector ω ∈ R3, we have

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
If a = [α1, α2, α3]> and b = [β1, β2, β3]> are vectors in R3,
represented in some orthonormal basis B = {v1, v2, v3}, then
their cross product can be written as [23]

a× b =
∑
m,n,l

εmnlαmβnvl, (3)

1For a reference, see Morse Theory 279 (VII.16), page 1049 of [22].
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where εmnl is the Levi-Cevita symbol defined by

εmnl =

 0 for m = n,m = l or n = l
+1 for (m,n, l) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 for (m,n, l) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)} .

Let vex : so(3) → R3 denotes the inverse isomorphism of
the map [ . ]×, such that vex([ω]×) = ω, for all ω ∈ R3 and
[vex(Ω)]× = Ω, for all Ω ∈ so(3). By defining Pa : R3×3 →
so(3) as the projection map on the Lie algebra so(3) such that
Pa(A) := (A − A>)/2, one can extend the definition of vex
to R3×3 by taking the composition map ψ := vex ◦ Pa such
that, for a 3-by-3 matrix A := [aij ]i,j=1,2,3, one has

ψ(A) := vex (Pa(A)) =
1

2

 a32 − a23

a13 − a31

a21 − a12

 . (4)

The following identity is used throughout this paper:

〈〈A, [u]×〉〉 = 2ψ(A)>u, (5)

where A ∈ R3×3 and u ∈ R3. Alternatively, an element R ∈
SO(3) can be represented as a rotation of angle θ ∈ R around
a unit vector axis u ∈ S2. This is commonly known as the
angle-axis parametrization of SO(3) and it is given by the
map Ra : R× S2 → SO(3):

Ra(θ, u) := eθ[u]× = I+ sin(θ)[u]×+ (1− cos(θ))[u]2×, (6)

where eA denotes the matrix exponential of A. Equation (6) is
known as Rodriguez formula. In addition, the mapRa satisfies
the following property

Ra(θ1, u)Ra(θ2, u) = Ra(θ1+θ2, u), ∀θ1.θ2 ∈ R, ∀u ∈ S2.
(7)

In this work, we may also use the unit quaternion representa-
tion2 of a rotation matrix R ∈ SO(3). A unit quaternion Q =
(η, ε) ∈ Q, consists of a scalar part η and three-dimensional
vector ε, such that Q := {Q = (η, ε) ∈ R4 | η2 + ε>ε = 1}.
The relation between the quaternion representation and the
angle-axis representation is given by η = cos (θ/2) and
ε = sin (θ/2)u. Therefore, a unit quaternion represents a
rotation matrix through the map RQ : Q→ SO(3) defined as

RQ(Q) = I + 2[ε]2× + 2η[ε]×. (8)

The set Q forms a group with the quaternion product, denoted
by �, being the group operation and quaternion inverse defined
by Q−1 = (η,−ε) as well as the identity-quaternion Q =
(1, 03×1), where 03×1 ∈ R3 is a column vector of zeros. Given
Q1, Q2 ∈ Q where Q1 = (η1, ε1) and Q2 = (η2, ε2) the
quaternion product is defined by

Q1 �Q2 =
(
η1η2 − ε>1 ε2, η1ε2 + η2ε1 + [ε1]×ε2

)
, (9)

and satisfying

RQ(Q1)RQ(Q2) = RQ(Q1 �Q2). (10)

2For more details on the unit-quaternion (in addition to other forms of
attitude representation) the reader is referred to [24], [25], and [26].

C. Hybrid Systems Framework

In this paper, we make use of the recent framework for
dynamical hybrid systems found in [27], [28]. A subset E ⊂
R≥0 × N is a hybrid time domain, if it is a union of finitely
or infinitely many intervals of the form [tj , tj+1]×{j} where
0 = t0 ≤ t1 ≤ t2 ≤ ..., with the last interval being possibly
of the form [tj , tj+1] × {j} or [tj ,∞) × {j}. Let ⇒ denote
a set-valued mapping. A general model of a hybrid system H
takes the form:

H
{

ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D (11)

where the flow map, F : Rn ⇒ Rn governs continuous flow of
x ∈ Rn, the flow set C ⊂ Rn dictates where the continuous
flow could occur. The jump map, G : Rn ⇒ Rn, governs
discrete jumps of the state x, and the jump set D ⊂ Rn defines
where the discrete jumps are permitted. Note that the state
x ∈ Rn could possibly include both continuous and discrete
components. A hybrid arc is a function x : dom x → Rn,
where dom x is a hybrid time domain and, for each fixed j,
t 7→ x(t, j) is a locally absolutely continuous function on the
interval Ij = {t : (t, j) ∈ dom x}.

III. SYNERGISTIC FAMILIES OF POTENTIAL FUNCTIONS ON
SO(3)

Given a finite index set Q ⊂ N, we let C1
(
SO(3)×Q,R+

)
denote the set of positive-valued continuously differentiable
functions U : SO(3)×Q → R+, that is to say, for each q ∈ Q,
the map R 7→ U(R, q) is continuous and differentiable on
SO(3). Additionally, for all (R, q) ∈ SO(3)×Q, ∇U(R, q) ∈
TRSO(3) denotes the gradient of U , with respect to R,
relative to the Riemannian metric (2). Let ΨU ⊂ SO(3)×Q
denote the set of critical points of U where its gradient
vanishes∇U(R, q) = 0. A function U ∈ C1

(
SO(3)×Q,R+

)
is said to be a potential function with respect to the set
A ⊆ SO(3) × Q if U(R, q) > 0 for all (R, q) /∈ A, and
U(R, q) = 0, for all (R, q) ∈ A. The set of all potential
functions on SO(3)×Q with respect to A is denoted as P(A),
where a function U(R, q) ∈ P(A) can be seen as a family of
potential functions on SO(3) encoded into a single function
indexed by the variable q.

Definition 1. [15] For a given finite index set Q ⊂ N, we let
A = {I}×Q and U ∈ P(A). The potential function U is said
to be centrally synergistic if and only if there exist a constant
δ > 0 such that

δ̄ := min
(R,q)∈ΨU\A

[
U(R, q)−min

p∈Q
U(R, p)

]
> δ, (12)

where ΨU defines the set of all critical points of U . The scalar
δ̄ is referred to as the synergistic gap of U .

The adjective “centrally” refers to the fact that all the
potential functions R 7→ U(R, q) share the identity element
I as a critical point (non-centrally synergistic families were
also proposed in [15], [16]). We may drop the adjective where
not needed. Condition (12) implies that at any given undesired
critical point (R, q) of U ∈ P(A) there exists another point
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(R, p) ∈ SO(3)×Q such that U(R, p) has a lower value than
U(R, q). In the remainder of this paper, we let

A := {I} × Q.

It the recent literature, it was shown that once a synergistic
family of potential functions on SO(3) is obtained, a hybrid
feedback controller that achieves global asymptotic stability
results immediately follows [9], [13], [15], [16]. The idea in
[9] consists of stretching and compressing SO(3) by applying
the following transformation on SO(3)×Q

Γ(R, q) = Ra(kqP (R), u)R, (13)

where u ∈ S2 is a constant unit vector, kq ∈ R is an indexed
scalar gain, P is a smooth positive definite function on SO(3)
with respect to I . By composing the map Γ with an existing
potential function, one can relocate the critical points while
leaving the identity element a fixed point for all q ∈ Q.
Despite the originality of this approach, it was abandoned
mainly due to the difficulty in finding an explicit expression
of the synergistic gap.
In this section, we build up from the ideas in [9] towards more
generic constructions of central synergistic potential functions
on SO(3) via “angular warping”, while providing a thorough
analysis of the synergism properties. Let u ∈ S2 be a fixed
unit vector. Let us consider the map Γ : SO(3)×Q → SO(3)
such that

Γ(R, q) := RRa(θq(R), u), (14)

where θq : SO(3) → R is a real-valued function which is
injective with respect to the index q. Note that the map in
(13) uses a left multiplication of R by the additional rotation
Ra(kqP (R), u). In this work, however, we chose a right
multiplication of R by Ra(θq(R), u) where the map θq is
to be designed later. This choice will allow us to express the
control input directly in terms of vector measurements as done
in Section IV.

Lemma 1. Let u ∈ S2 and Q ⊂ N. If the map θq(R) :
SO(3) → R is differentiable then the following properties
hold:

1) The time derivative of Γ(R, q) along the trajectories of
Ṙ = R[ω]× is given by

d

dt
Γ(R, q) = Γ(R, q)[Θ(R, q)ω]×, (15)

where Θ(R, q) = Ra(θq(R), u)> + 2uψ(R>∇θq(R))>.
2) If det(Θ(R, q)) 6= 0 for all (R, q) ∈ SO(3) × Q,

then the map R 7→ Γ(R, q) is everywhere a local
diffeomorphism. Moreover, if V : SO(3) → R+ is a
smooth positive definite function on SO(3) with respect
to I and Γ−1({I}) = {I} × Q then U = V ◦ Γ ∈ P(A)
with A = {I} × Q and the set of critical points of U is
given by ΨU = Γ−1(ΨV ).

Lemma 1 shows that, under some conditions on the trans-
formation Γ, one can construct a new family of potential
functions on SO(3) by considering the composition of a basic
potential function on SO(3) and the map Γ. In particular, it
would be interesting to consider the modified trace function

VA(R) = tr(A(I −R)) as the basic potential function due to
its nice properties. The following technical lemma gives some
of the useful properties of the potential function VA.

Lemma 2. Let A = A> and VA(R) = tr(A(I − R)), such
that W := tr(A)I − A is symmetric positive definite. Let
{v1, v2, v3} be an orthonormal eigenbasis, where vi is a unit
eigenvector associated to the eigenvalue λAi . Then, for all
R ∈ SO(3), the following properties hold:

∇VA(R) = RPa(AR) ∈ TRSO(3), (16)
ΨVA = {I} ∪ Ra(π, E(A)), (17)

where E(A) denotes the set of (real) unit eigenvectors of A.
Moreover, for all (θ, u) ∈ R× S2, one has

VA(Ra(θ, u)) = 2 sin2(θ/2)u>Wu, (18)

VA (Ra(π, v)Ra(θ, u)) = 2λW − 2 sin2(θ/2)∆(v, u), (19)

where λW denotes the eigenvalue of W associated to the
eigenvector v ∈ E(W ) ≡ E(A) and ∆(v, u) is computed as
follows.

1) If A = λI3
(
λAi = λ, i = 1, 2, 3

)
, then E(A) ≡ S2 and

∆(v, u) = λW cos2(φ), φ = ∠(u, v)

2) If A has two distinct eigenvalues λA1 = λA2 6= λA3 , then
E(A) = {v12, v3}, v12 ∈ span{v1, v2} ∩ S2, and

∆(v12, u) = (1− (u>v3)2)[λW2 − λW3 sin2(φ)],

∆(v3, u) =
(
λW3 − λW2 (1− (u>v3)2)

)
,

such that φ = ∠(v12, u
⊥) and u⊥ is the projection of u

on the plane span{v1, v2}.
3) If A has three distinct eigenvalues 0 < λA1 < λA2 < λA3 ,

then E(A) = {v1, v2, v3} and

∆(v1, u) = λW1 − (u>v2)2λW3 − (u>v3)2λW2 ,

∆(v2, u) = λW2 − (u>v3)2λW1 − (u>v1)2λW3 ,

∆(v3, u) = λW3 − (u>v1)2λW2 − (u>v2)2λW1 .

In [14], using the transformation Γ defined in (13), the
authors derived sufficient and necessary conditions such that
the potential function VA◦Γ is synergistic in the case where A
has distinct eigenvalues. In the following theorem we provide
sufficient and necessary conditions, using our transformation
Γ defined in (14), such that the potential function VA ◦ Γ is
synergistic for an arbitrary spectrum of A and a general angle
function θq(·).

Theorem 1. Let A = A> such that tr(A)I−A is a symmetric
positive definite matrix. Let Q ⊂ N be an index set of finite
cardinality greater than or equal to 2. Consider the transfor-
mation Γ defined in (14) and assume that det(Θ(R, q)) 6= 0
for all (R, q) ∈ SO(3) × Q and Γ−1({I}) = {I} × Q. The
potential function

U(R, q) := VA(Γ(R, q)) = tr (A(I − Γ(R, q))) ,

is synergistic if and only if

∆(v, u) > 0, for all v ∈ E(A), (20)

where ∆(v, u) is given in Lemma 2.
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Theorem 1 provides necessary and sufficient conditions of
synergism for the family of perturbed modified trace functions
VA(Γ(R, q)). The condition ∆(v, u) > 0, ∀v ∈ E(A),
imposes a constraint on the choice of the direction u of the
angular warping and the spectrum of the weighting matrix
A. The following proposition discusses the feasibility of the
synergy conditions of Theorem 1.

Proposition 1. Let A = A> such that tr(A)I−A is a symmet-
ric positive definite matrix. Let %ij = (λAi +(−1)jλA1 )/(λA3 +
λA2 ). Then, the synergy condition (20) is
• not satisfied if A = λI3

(
λAi = λ, i = 1, 2, 3

)
for all

u ∈ S2.
• satisfied if A has two identical eigenvalues 0 < λA1 =
λA2 < λA3 and

0 < %33 < (u>v3)2 < 1.

• satisfied if A has distinct eigenvalues 0 < λA1 < λA2 < λA3
and

−%33(u>v1)2+%23 < (u>v2)2 < −%32(u>v1)2+%22,

where vi is the unit eigenvector of A corresponding to the
eigenvalue λAi .

Proposition 1 suggests that a necessary condition for syner-
gism of VA(Γ(R, q)) is that the weighting matrix A must have
at least two distinct eigenvalues. Furthermore, the direction
u of the angular warping should be carefully chosen with
respect to the eigenvectors of A in order for the potential
function VA(Γ(R, q)) to be synergistic. Later in Proposition
2, we will provide an optimal choice of the unit vector u ∈ S2

that satisfies the feasibility conditions of Proposition 1 while
maximizing the synergistic gap.

When the synergism condition (20) is verified, it is im-
portant to explicitly compute the value of the synergistic
gap required for the implementation of a synergistic hybrid
controller. To do so, one needs to calculate the undesired
critical points of VA(Γ(R, q)) to evaluate the expression of the
synergistic gap in (12). These undesired critical points are ob-
tained by solving equation (46) for the unknown R ∈ SO(3).
Equation (46), along with the result of Lemma 2, yields

VA(R) = 2λW−2 sin2 (θq(R)/2) ∆(v, u), (R, q) ∈ ΨU \A.
(21)

In [9], the warping angle was chosen as θq(R) = kqVA(R),
thus the above equation leads to the following nonlinear
algebraic equation for the unknown VA(R),

VA(R) = 2λW − 2 sin2 (kqVA(R)/2) ∆(v, u).

The above equation can be solved numerically but an explicit
solution is hard to obtain. Instead, we propose the following
choice of the warping angle θq : SO(3)→ (−π, π),

θq(R) = 2 arcsin (kqVA(R)) , kq 6= 0, (22)

that leads, in view of (21), to a quadratic equation in VA(R)
which can be solved to obtain

VA(R) =
−1 +

√
1 + 16λW k2

q∆(u, v)

4k2
q∆(u, v)

, (R, q) ∈ ΨU \ A.

(23)

Once the value of VA(R) is obtained at the undesired critical
points of U = VA(Γ(R, q)), one can compute these undesired
rotations as follows

R = Ra(π, v)Ra(θq(R), u)>,

θq(R) = 2 arcsin (kqVA(R)) , (R, q) ∈ ΨU \ A. (24)

Note that the scalar gain kq needs to be selected to ensure that
θq(·) is well defined for all R ∈ SO(3). Also, one must make
sure that the conditions of Lemma 1 are verified to guarantee
that VA(Γ(R, q)) is a suitable potential function on SO(3)×
Q with respect to {I} × Q. This is the purpose of the next
proposition.

Lemma 3. Let u ∈ S2 be a unit vector and A = A> such
that W = tr(A)I −A is a symmetric positive definite matrix.
Consider the transformation Γ as defined in (14) where θq(·)
is given by (22). If the scalar gain kq satisfies the inequality

|kq| < k̄ =
1

2λWmax

√
6−max{1, 4ξ2}

, (25)

where ξ = λWmin/λ
W
max. Then Γ−1({I}) = {I} × Q and

det (Θ(R, q)) 6= 0, for all R ∈ SO(3) and q ∈ Q.
Furthermore, the gradient of the angle warping function θq
is given by

∇θq(R) =
2kqRPa(AR)√
1− k2

qV
2
A(R)

. (26)

As a consequence of Lemma 3, if the scalars kq satisfies
(25) then, by Lemma 1, the composite function U = VA ◦ Γ
is a suitable potential function on SO(3) × Q with respect
to A = {I} × Q. Once the set of critical points for the
potential function U = VA(Γ(R, q)) is determined from (24),
the synergistic gap defined in (12) can be evaluated. In the
following theorem, we explicitly provide the expression of the
synergistic gap of U in the case of Q = {1, 2}. Note that,
one of the features of the angular warping approach is that a
synergistic family can be generated using only two potential
functions on SO(3).

Theorem 2. Let u ∈ S2 and A = A> such that W = tr(A)I−
A is a symmetric positive definite matrix. Let Q := {1, 2} and
let k1 = −k2 = k, with k satisfying condition (25). Consider
the transformation Γ as defined in (14), where θq(·) is given
by (22). Assume that ∆(u, v) > 0 is satisfied for all v ∈ E(A),
then U = VA(Γ(R, q)) is synergistic with a gap δ̄ given by

δ̄ = min
v∈E(A)

σ(k, λW ,∆(v, u)) ≥ σ(k, λ,∆) (27)

such that

σ(k, λW ,∆(v, u)) = 8k2V̄ 2(1− k2V̄ 2)∆(v, u) (28)

V̄ =
−1 +

√
1 + 16λW k2∆(v, u)

4k2∆(v, u)
(29)

where λ = min
v∈E(A)

λW and ∆ = min
v∈E(A)

∆(v, u).

It is interesting to figure out the optimal vector u ∈ S2 such
that the synergistic gap given in (27) is maximized while the
condition of synergism min

v∈E(A)
∆(v, u) > 0 is verified. Since
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σ(k, λW ,∆(v, u)) is a strictly increasing function of ∆(v, u)
as shown in the proof of Theorem 2, we perform the following
maximization with respect to u ∈ S2.

max
u∈S2

∆ = max
u∈S2

(
min
v∈E(A)

∆(v, u)

)
. (30)

Proposition 2. The unit vector u ∈ S2, solution of the
maximization (30), satisfies the following:
• if A has two distinct eigenvalues 0 < λA1 = λA2 < λA3 ,

(u>v3)2 = 1− λA2
λA3

.

• if A has three distinct eigenvalues 0 < λA1 < λA2 < λA3 ,

u>v1 = 0, (u>v2)2 =
λA2

λA2 + λA3
, (u>v3)2 =

λA3
λA2 + λA3

,

if λA2 ≥ λA1 λ
A
3 /(λ

A
3 − λA1 ). Otherwise, the optimal

solution is

(u>vi)
2 = 1− 4

∏
j 6=i λ

A
j∑

j 6=k λ
A
j λ

A
k

, i ∈ {1, 2, 3}.

Proposition 2 gives an optimal choice of the angular warping
direction u ∈ S2 that maximizes the synergistic gap. Moreover,
it is straightforward to verify that this choice of u satisfies
the feasibility conditions of Proposition 1. Consequently, a
complete construction of a synergistic potential function via
angular warping with an explicit maximized synergistic gap
has been achieved.

IV. HYBRID VELOCITY-FREE ATTITUDE STABILIZATION
USING VECTOR MEASUREMENTS

We assume that the rigid body is equipped with sensors that
provide measurements in the body-attached frame, denoted by
bi ∈ R3 of constant and known inertial vectors ri ∈ R3, i =
1, 2, ..., n ≥ 2, satisfying the following assumption:

Assumption 1. At least three vectors, among the n inertial
vectors, are not collinear.

It should be noted that this Assumption 1 is needed in our
analysis and does not exclude the case where measurements
of only two non-collinear inertial vectors are available, say b1
and b2 corresponding to the non-collinear inertial vectors r1

and r2. In this case, one can always construct a third vector
b3 = b1 × b2 which corresponds to the measurement of r3 =
r1 × r2. The rigid body rotational dynamics are governed by

Ṙ = R[ω]×, (31)
Jω̇ = [Jω]×ω + τ, (32)

where R ∈ SO(3) represents the attitude, ω ∈ R3 being
the angular velocity of the rigid body expressed in the body-
attached frame and J ∈ R3×3 is the constant inertia matrix
of the rigid body. The control torque, expressed in the body
frame, is denoted by τ ∈ R3.
Our objective is to design a hybrid control input torque τ ,
using only vector measurements, guaranteeing robust global
asymptotic stabilization of the attitude R ∈ SO(3) to a desired

constant reference Rd ∈ SO(3).
Let us define the following auxiliary dynamic system

˙̂
R = R̂[β]×, (33)

with an arbitrary initial condition R̂(0) ∈ SO(3) and a design
variable β ∈ R3 to be defined later. Let Xh = RY >h ,
h ∈ {1, 2}, with Y1 = R̂ and Y2 = Rd. The rotation
matrix X1 describes the discrepancy between the actual rigid
body orientation and the orientation provided by the auxiliary
system (33), and the rotation matrix X2 describes the dis-
crepancy between the actual rigid body orientation and the
desired orientation. Let Q ⊂ N be an index set of finite
cardinality and let our state variables be X = (X1, X2) ∈
DX := SO(3) × SO(3), and q = (q1, q2) ∈ Dq := Q × Q.

For h ∈ {1, 2}, let us define Ah =

n∑
i=1

ρihrir
>
i , where

ρih > 0 are some positive scalars . Assumption 1 ensures
that Ah, h = 1, 2, are positive definite matrices. For some
arbitrary unit vectors uh ∈ S2, h = 1, 2, and a set of arbitrary
scalars khq satisfying the conditions

|khq| <
1

2λWh
max

√
6−max{1, 4ξ2

h}
, h = 1, 2, q ∈ Q,

with ξh = λWh

min/λ
Wh
max and Wh := tr(Ah)I − Ah, h = 1, 2.

We define the following maps Γh : SO(3)×Q → SO(3) such
that

Γh(R, q) = RRa(θhq(R), uh),

θhq(R) = 2 arcsin(khqVAh(R)),

VAh(R) = tr (Ah(I −R)) ,

for h = 1, 2. According to Section III, and in view of the
above definition of the maps Γh, h = 1, 2, one ensures that

Uh(R, q) := VAh ◦ Γh(R, q),

are both two potential functions on SO(3) × Q with respect
to {I} × Q. We propose the following hybrid switching law
for the control input τ and the input β of the auxiliary system
(33)

τ = −2

2∑
h=1

Y >h Θh(Xh, qh)>ψ(AhΓh(Xh, qh)),

β = Y >1 Θ1(X1, q1)>ψ(A1Γ1(X1, q1))
q̇ = 0︸ ︷︷ ︸

(X,q)∈C
τ+ = τ
β+ = β
q+ = g(X)︸ ︷︷ ︸

(X,q)∈D

(34)

where Θh(R, q) = Ra(θhq(R), uh)>+
4khquhψ(AhR)>√

1− k2
hqV

2
Ah

(R)
and

g(X) =

{
(q1, q2) ∈ Q×Q : qh = argmin

p∈Q
Uh(Xh, p),

h = 1, 2} ,
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and the sets C,D ⊂ DX ×Dq are given by

C := {(X, q) ∈ DX ×Dq : µ1(X1, q1) ≤ δ1 and

µ2(X2, q2) ≤ δ2}

D := {(X, q) ∈ DX ×Dq : µ1(X1, q1) ≥ δ1 or

µ2(X2, q2) ≥ δ2}

such that µh(Xh, qh) = Uh(Xh, qh)−min
p∈Q
Uh(Xh, p), h =

1, 2. The hybrid controller (34) results in the closed-loop
system

Ẋ1 = X1

[
Y1ω −Θ1(X1, q1)>ψ(A1Γ1(X1, q1))

]
×

:= X1[ω1]×,

Ẋ2 = X2[Y2ω]× := X2[ω2]×,

Jω̇ = [Jω]×ω − 2

2∑
h=1

Y >h Θh(Xh, qh)>ψ(AhΓh(Xh, qh)),

q̇ = 0︸ ︷︷ ︸
(X,q)∈C

X+ = X
ω+ = ω
q+ = g(X)︸ ︷︷ ︸

(X,q)∈D
(35)

Since Y1 = X>1 X2Y2 and Y2 is constant, it is clear that the
closed loop dynamics (35) are autonomous. The goal of this
hybrid controller is to ensure global asymptotic stability of the
set

Ā = {(X,ω, q) ∈ DX × R3 ×Dq : X1 = X2 = I, ω = 0}.

Theorem 3. Consider system (31)-(32) and the auxiliary
system (33) under the hybrid control law given in (34). Assume
that n vector measurements bi, corresponding to the inertial
vectors ri, i = 1, · · · , n ≥ 2 are available, and Assumption
1 holds. If the potential function U1, respectively U2, is
synergistic with gap exceeding δ1, respectively δ2, then the set
Ā is globally asymptotically stable for the closed-loop system
(35).

In practice, it is useful to explicitly express the control
inputs in terms of the available vector measurements. Such
measurements can be obtained, for instance, from an In-
ertial Measurement Unit (IMU) that typically includes an
accelerometer and a magnetometer providing, respectively,
measurements of the gravitational field and Earth’s magnetic
field expressed in the body frame. The following Lemma
shows that the terms involved in our hybrid control scheme can
be directly expressed in terms of the available inertial vector
measurement.

Proposition 3. The following relations hold:

VAh(Xh) =
1

2

n∑
i=1

ρih
∣∣∣∣bi − Y >h ri∣∣∣∣2 , (36)

ψ (AhXh) =
1

2
Yh

n∑
i=1

ρih(bi × Y >h ri), (37)

for h = 1, 2. Furthermore, for q ∈ Q let

θhq(Xh) = 2 arcsin(khqVAh(Xh)),

and b̂ih(q) = Y >h Ra(θhq(Xh), uh)ri, for h = 1, 2, then

Uh(Xh, q) =
1

2

n∑
i=1

ρih

∣∣∣∣∣∣bi − b̂ih(q)
∣∣∣∣∣∣2 , (38)

ψ (AhΓh(Xh, q)) =
1

2
Ra(θhq(Xh), uh)>Yh

n∑
i=1

ρih(bi × b̂ih(q)).

(39)

We devote the next section to prove all the Lemmas,
Propositions and Theorems presented throughout the paper.

V. PROOFS

A. Proof of Lemma 1

First, using the product rule and the fact that R[v]×R
> =

[Rv]× for all R ∈ SO(3) and v ∈ R3, it is straightforward to
show that if Ṙs = Rs[ωs]×, s = 1, 2, then

d

dt
(R1R2) = R1R2

[
R>2 ω1 + ω2

]
× . (40)

On the other hand, using (2) and (5), one has

θ̇q(R) = dθq(R) · Ṙ = 〈∇θq(R), R[ω]×〉R = 2 ψ(R>∇θq(R))>ω,

which, using the fact that
d

dt
eθ(t)A = eθ(t)Aθ̇(t)A, yields

d

dt
Ra(θq(R), u) = Ra(θq(R), u)θ̇q(R)[u]×

= Ra(θq(R), u)
[
2u ψ(R>∇θq(R))>ω

]
× .

(41)

Since Γ(R, q) = RRa(θq(R), u) then, in view of (40) and
(41), one obtains Γ̇(R, q) = Γ(R, q) [Θ(R, q)ω]× where
Θ(R, q) = Ra(θq(R), u)> + 2u vex(R>∇θq(R))>.

For some q ∈ Q, let us define the mapping Tq(R) =
Γ(R, q). The time-derivative of the map Tq is nothing but the
differential of Tq in the tangent direction ξ = Ṙ = R[ω]×.
Replacing ω = vex(R>ξ) in equation (15) shows that

dTq(R) · ξ = Tq(R)[Θ(R, q)vex(R>ξ)]×, ξ ∈ TRSO(3).

It is clear that when the inverse of the matrix Θ(R, q) exists
for all R ∈ SO(3) the map d
mathcalTq(R) · ξ is an isomorphism (bijective). In fact, for
all y := dTq(R) · ξ ∈ TTq(R)SO(3), the inverse is explicitly
given by

ξ = R
[
(Θ(R, q))

−1
vex

(
Tq(R)>y

)]
×
∈ TRSO(3).

Consequently, the inverse function theorem [29] guarantees
that Tq(R) is a local diffeomorphism for all R ∈ SO(3).
Furthermore, when Γ is everywhere a local diffeomorphism
on SO(3) and V : SO(3)× R+ is a smooth positive definite
function, the composite function U = V ◦Γ is a differentiable
positive function on SO(3). If in addition Γ−1({I}) = A
then U(R, q) = 0 if and only if (R, q) ∈ A which shows that
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U ∈ P(A). In this case, the time-derivative of U = V ◦Γ can
be computed as follows

U̇(R, q) = dV (Γ(R, q)) · Γ̇(R, q)

= 〈∇V (Γ(R, q)), Γ̇(R, q)〉Γ(R,q)

= 2 ψ
(

Γ(R, q)>∇V (Γ(R, q))
)>

ψ
(

Γ(R, q)>Γ̇(R, q)
)

= 2 ψ
(

Γ(R, q)>∇V (Γ(R, q))
)>

Θ(R, q)ω,

(42)

where (2) and (15) have been used. Consequently, since the
matrix Θ(R, q) is full rank, the set of critical points of U is

ΨU =
{

(R, q) ∈ SO(3)×Q : ψ
(

Γ(R, q)>∇V (Γ(R, q))
)

= 0
}
.

Also, the set of critical points of V (R) is given by ΨV :=
{R ∈ SO(3) : ψ(R>∇V (R)) = 0}. This shows that R ∈
ΨU if and only if Γ(R, q) ∈ ΨV , which proves that ΨU =
Γ−1(ΨV ).

B. Proof of Lemma 2

Recall from Section II-A that the gradient ∇VA(R) can
be computed using the differential of VA(R) in an arbitrary
tangential direction ξ = RΩ ∈ TRSO(3), such that

DVA(R) · ξ = 〈∇VA(R), RΩ〉R = 〈〈R>∇VA(R),Ω〉〉.
(43)

On the other hand, one can compute DVA(R) · ξ by direct
differentiation pf VA(R) = tr(A(I −R)) as follows

DVA(R) · ξ = −tr(Aξ) = −tr(ARΩ) = 〈〈AR,Ω〉〉.

Thus, one has DVA(R) · ξ = 〈〈Pa(AR),Ω〉〉 since Ω is skew
symmetric. Therefore, in view of (43), yields (16). The proof
of (17) is given in [[9], Lemma 2]. Now, let Q = (η, ε) ∈ Q
and (θ, u) ∈ R × S2 be the quaternion and the angle-axis
representation of the attitude matrix R, respectively. Using the
Rodrigues formula (8) one obtains

VA(R) = tr(A(−2[ε]2× − 2η[ε]×)) = −2tr(A[ε]2×),

where we used tr(A[ε]×) = 〈〈A, [ε]×〉〉 = 0 since A is
symmetric. Also, using [ε]2× = −‖ε‖2I + εε> and ε>Aε =
tr(Aεε>), one obtains

VA(R) = 2tr(ε>εA−Aεε>) = 2ε>Wε,

which yields (18) by noting that ε = sin(θ/2)u.
Let Qv = (ηv, εv) be the quaternion representation of the

attitude Pv := Ra(π, v)Ra(θ, u) such that Pv = RQ(Qv),
for some θ ∈ R and u, v ∈ S2. Making use of the
quaternion multiplication rule (9) and (10), and the fact that
Ra(π, v) and Ra (θ, u) correspond to the quaternion (0, v)
and (cos(θ/2), sin(θ/2)u), respectively, the quaternion vector
part of Pv is given by

εv = cos(θ/2)v + sin(θ/2)(v × u). (44)

We let αi := u>vi denotes the coordinates of u in the
eigenbasis {vi}i∈{1,2,3}.
1) A = λI3
In this case, using the fact that v>(v×u) = 0 and ‖v×u‖2 =

sin2(φ) = 1 − cos2(φ) where φ = ∠(u, v), one can compute
the value of VA(Pv) from equation (18) and (44) to obtain

VA(Pv) = 2λW ε>v εv

= 2λW
[
cos2(θ/2) + sin2(θ/2)‖v × u‖2

]
= 2λW − 2 sin2(θ/2)∆(v, u),

where ∆(v, u) = λW cos2(φ).
2) A has two distinct eigenvalues λA1 = λA2 6= λA3
Since {v1v2, v3} is an orthonormal basis, one can decompose
R3 = E3 ⊕ E⊥3 , where E3 := span{v3} and E⊥3 :=
span{v1, v2}. Therefore, each vector v ∈ R3 is uniquely
decomposed as v = v‖+v⊥ such that v‖ ∈ E3 and v⊥ ∈ E⊥3 .
Consequently, W (v3 × u) = W (v3 × u⊥) = λW2 (v3 × u⊥)
which, in view of (44), yields

Wεv3
= W (cos(θ/2)v3 + sin(θ/2)(v3 × u))

= λW3 cos(θ/2)v3 + λW2 sin(θ/2)(v3 × u⊥).
(45)

Now, making use of (45) and the fact that v>3 (v3 × u⊥) = 0
and ‖v3 × u⊥‖2 = ‖u⊥‖2 = α2

1 + α2
2, equation (18) yields

VA(Pv3
) = 2ε>v3

Wεv3

= 2λW3 cos2(θ/2) + 2λW2 sin2(θ/2)(α2
1 + α2

2)

= 2λW3 − 2 sin2(θ/2)∆(v3, u).

Let v12 ∈ E⊥3 ∩S2, and φ = ∠(v12, u
⊥). In view of (44), and

using the fact that u = u‖ + u⊥, the quaternion vector εv12
is

decomposed as εv12
= ε‖v12

+ ε⊥v12
where

ε‖v12
= sin(θ/2)(v12 × u⊥) ∈ E3,

ε⊥v12
= cos(θ/2)v12 + sin(θ/2)(v12 × u‖) ∈ E⊥3 .

Making use of the identity ‖u×v‖2 = ‖u‖2‖v‖2 sin2(φ), such
that φ = ∠(u, v), the norms of ε‖v12

and ε⊥v12
can be computed

as follows

‖ε‖v12
‖2 = sin2(θ/2)‖v12 × u⊥‖2

= sin2(θ/2)‖v12‖2‖u⊥‖2 sin2(φ)

= sin2(θ/2)(α2
1 + α2

2) sin2(φ),

and

‖ε⊥v12
‖2 = cos2(θ/2)‖v12‖2 + sin2(θ/2)‖v12‖2‖u‖‖2

= 1− sin2(θ/2)
(
1− α2

3

)
.

where the fact that ‖v12‖ = 1 has been used. Therefore, since
Wεv12

= λW3 ε‖v12
+ λW2 ε⊥v12

, one obtains

VA(Pv12
) = 2ε>v12

Wεv12

= 2λW3 ‖ε‖v12
‖2 + 2λW2 ‖ε⊥v12

‖2

= 2λW2 − 2 sin2 (θ/2) (α2
1 + α2

2)[λW2 − λW3 sin2(φ)]

= 2λW2 − 2 sin2 (θ/2) ∆(v12, u).

3) A has three distinct eigenvalues 0 < λA1 < λA2 < λA3
Using (3) one has vm × u =

∑
n,l

εmnlαnvl, which allows to

write
Wεvm = W (cos(θ/2)vm + sin(θ/2)(vm × u))

= cos(θ/2)λWm vm + sin(θ/2)
∑
n,l

εmnlαnλ
W
l vl,
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where the fact that Wvm = λWm vm for all m ∈ {1, 2, 3} has
been used to obtain the last equality. Now, in view of (18) and
using the fact that v>mvl = 0 for m 6= l, one gets

VA(Pvm) = 2ε>vmWεvm

= 2 cos2 (θ/2)λWm + 2 sin2 (θ/2)
∑
n,l

ε2
mnlα

2
nλ

W
l

= 2λWm − 2 sin2(θ/2)

λWm −∑
n,l

ε2
mnlα

2
nλ

W
l


= 2λWm − 2 sin2(θ/2)∆(vm, u).

C. Proof of Theorem 1

According to Definition 1, the potential function U is
synergistic if

U(R, q)−min
p∈Q
U(R, p) > 0, ∀(R, q) ∈ ΨU \ A.

According to Lemma 2, the set of critical points for the
function VA is ΨVA = {I} ∪ Ra(π, v), v ∈ E(A). Invoking
Lemma 1, the set of critical points for U = VA ◦ Γ is given
by

ΨU = A ∪v∈E(A) Γ−1(Ra(π, v)).

Let v ∈ E(A) and let (R, q) = Γ−1(Ra(π, v)). Thus,
Γ(R, q) = Ra(π, v), which in view of (14), yields

R = Ra(π, v)Ra(θq(R), u)>. (46)

Therefore, for a given p ∈ Q, one has

Γ(R, p) = RRa(θp(R), u)

= Ra(π, v)Ra(θq(R), u)>Ra(θp(R), u)

= Ra(π, v)Ra
(
θ̃pq(R), u

)
,

where θ̃pq(R) = θp(R)−θq(R) and identity (7) has been used.
Consequently, invoking Lemma 2, one obtains

U(R, p) = VA (Γ(R, p)) = 2λW−2 sin2
(
θ̃pq(R)/2

)
∆(v, u).

On the other hand, one has U(R, q) = VA ◦ Γ(R, q) =
VA(Ra(π, v)) = 2v>Wv = 2λW . Therefore, at any undesired
critical point (R, q) ∈ ΨU \ A, one has

U(R, q)−min
p∈Q
U(R, p) = 2 max

p∈Q
sin2

(
θ̃pq(R)/2

)
∆(v, u).

(47)

Since θq(·) is injective with respect to q, one has p 6= q
implies that θ̃pq(R) 6= 0. Consequently, in view of (47), the
necessary and sufficient condition for U to be synergistic is
that ∆(v, u) > 0 for all possible v ∈ E(A).

D. Proof of Proposition 1

Since A is a symmetric matrix, it follows that the eigenvec-
tors of A can be chosen to form an orthonormal basis of R3×3,
denoted {v1, v2, v3}. We let αi := u>vi define the coordinates
of u in the eigenbasis of A. We have three possible cases:

1) A = λI3
(
λAi = λ, i = 1, 2, 3

)
In this case, the set of unit eigenvectors of A is E(A) ≡

S2 and according to Lemma 2, one has ∆(v, u) =
λW cos2(φ), where φ = ∠(u, v) for all v ∈ E(A).
However, for any chosen u ∈ S2 there exists v ∈ E(A)
such that ∠(u, v) = π/2, or equivalently ∆(v, u) = 0.
Therefore, the synergy condition of Theorem 1 can not
be verified in this case.

2) A has two distinct eigenvalues λA1 = λA2 6= λA3
In this case, the set of unit eigenvectors of A is E(A) =
{v12, v3}, where v12 ∈ span{v1, v2} ∩ S2. Thus, accord-
ing to Lemma 2, the synergy condition of Theorem 1 is
written as

∆(v3, u) =
(
λW3 − λW2 (α2

1 + α2
2)
)
> 0

∆(v12, u) = (α2
1 + α2

2)[λW2 − λW3 sin2(φ)] > 0,

for all φ = ∠(v12, u
⊥) such that u⊥ represents the pro-

jection of u on the plane span{v1, v2}. Since sin2(φ) ≤ 1
and α2

1+α2
2 = 1−α2

3, the above conditions are equivalent
to 0 < λW2 (1− α2

3) < λW3 < λW2 which leads to

0 <

(
1− λW3

λW2

)
< α2

3 < 1. (48)

3) A has three distinct eigenvalues 0 < λA1 < λA2 < λA3
In this case, the set of unit eigenvectors of A is E(A) =
{v1, v2, v3} and, according to Lemma 2, the synergy
condition of Theorem 1 is written as

∆(vm, u) = λWm−
∑
n,l

ε2
mnlα

2
nλ

W
l > 0, ∀m ∈ {1, 2, 3}.

Using the definition of the Levi-Cevita symbol given in
section (II-B), it is straightforward to verify that ∆(vm, u)
can explicitly be written as

∆(v1, u) = λW1 − α2
2λ
W
3 − α2

3λ
W
2 ,

∆(v2, u) = λW2 − α2
1λ
W
3 − α2

3λ
W
1 ,

∆(v3, u) = λW3 − α2
2λ
W
1 − α2

1λ
W
2 .

(49)

Since u is a unit vector it verifies the unit constraint α2
3 =

1− α2
1 − α2

2. Thus, equations (49) are rewritten as

∆(v1, u) = (λW1 − λW2 ) + α2
2(λW2 − λW3 ) + α2

1λ
W
2

∆(v2, u) = (λW1 − λW3 )α2
1 + λW1 α2

2 − (λW1 − λW2 )

∆(v3, u) = −λW2 α2
1 − λW1 α2

2 + λW3 .

Note that, since the eigenvalues of the matrix W =
tr(A)I − A are given by λWi = tr(A) − λAi , it is
obvious that λW1 > λW2 > λW3 > 0 which implies that
∆(v1, u) > 0. The conditions ∆(v2, u),∆(v3, u) > 0 are
equivalent to χ(α2

1) < α2
2 < χ̄(α2

1) where

χ(α2
1) = − (λW1 − λW3 )

λW1
α2

1 +
(λW1 − λW2 )

λW1

χ̄(α2
1) = −λ

W
2

λW1
α2

1 +
λW3
λW1

.

Now, since λW2 + λW3 − λW1 = 2λA1 > 0, it is
easy to verify that λW3 /λW1 > (λW1 − λW2 )/λW1 and
λW3 /λW2 > (λW1 − λW2 )/(λW1 − λW3 ). A sketch of the
feasible region is given in Figure 1 which shows that there
always exist α2

1 and α2
2 such ∆(v2, u),∆(v3, u) > 0.
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Replacing λWi = tr(A)−λAi in the above inequality leads
to the item 3 of Proposition 1. Finally, one can conclude
that in the case where the matrix A has arbitrary distinct
eigenvalues, one can always find a unit vector u ∈ S2

such that a synergistic family of potential functions (via
angular warping) is constructed.

α2
1

α2
2

λW3

λW1

λW1 − λW2
λW1

λW3

λW2

λW1 − λW2
λW1 − λW3

α 2
2 =

χ̄(α 2
1 )

α 2
2 =

χ(α 2
1 )

1

1

Fig. 1: The feasible region of the synergy condition (20)
in the case where A has distinct eigenvalues.

E. Proof of Lemma 3

In view of (18) one has VA(R) ≤ 2λWmax which, in view
of (25), implies that |kqVA(R)| < 1. Therefore the function
θq in (22) is well defined. Let (R, q) ∈ SO(3)×Q such that
Γ(R, q) = I . This implies that R = Ra(θq(R), u)> which,
using (18) and the fact that sin(θq(R)/2) = kqVA(R), yields

VA(R) = 2 sin2(θq(R)/2)u>Wu = 2k2
qV

2
A(R)u>Wu,

or equivalently (1 − 2k2
qVA(R)u>Wu)VA(R) = 0. How-

ever, since u ∈ S2 and |kq| satisfies (25), one has
2k2
qVA(R)u>Wu ≤ 4k2

q(λWmax)2 < 1/2. Therefore, we must
have VA(R) = 0 and thus R = I since VA is positive definite
on SO(3). This shows that Γ−1({I}) = {I} × Q. Using the
fact that the differentiability interval of arcsin is (−1, 1), and
the fact that |kqVA(R)| < 1, it is clear, by composition rule,
that the function θq(R) = 2 arcsin(kqVA(R)) is differentiable
on SO(3). The gradient of θq(R) is computed using the chain
rule and is given by

∇θq(R) =
2kq∇VA(R)√

1− (kqVA(R))2
=

2kqRPa(AR)√
1− k2

qV
2
A(R)

,

where (16) has been used. Now, we prove the following
inequality

‖ψ(AR)‖ ≤ λWmax min{1,
√

5− 4ξ2/2}, (50)

where ξ = λWmin/λ
W
max. Let (η, ε) ∈ Q be the quaternion

representation of the attitude R. In view of (8) and identity

[ε]2× = −‖ε‖2I + εε>, one has

Pa(AR) =
1

2
(AR−R>A)

= Aεε> − εε>A+ ηA[ε]× + η[ε]×A

= [ε×Aε]× + η[Wε]×,

where equalities yx> − xy> = [x × y]× and A>[x]× +
A[x]× + [Ax]× = tr(A)[x]×, for all x, y ∈ R3, have been
used. Consequently, one obtains

ψ(AR) = ε×Aε+ ηWε = (ηI − [ε]×)Wε.

Therefore,

‖ψ(AR)‖2 = ε>W (ηI + [ε]×)(ηI − [ε]×)Wε

= ε>W (η2I − [ε]2×)Wε

= ε>W (I − εε>)Wε

≤ (λWmax)2‖ε‖2 − (λWmin)2‖ε‖4,

(51)

which yields the fact that ‖ψ(AR)‖2 ≤ (λWmax)2 and also

‖ψ(AR)‖2 ≤ (λWmax)2‖ε‖2
(
1− ‖ε‖2 + ‖ε‖2 − ξ2‖ε‖2

)
≤ (λWmax)2‖ε‖2(1− ‖ε‖2) + (λWmax)2‖ε‖4(1− ξ2)

≤ (λWmax)2/4 + (λWmax)2(1− ξ2),

where we used the fact that x2(1−x2) ≤ 1/4 for any x ∈ [01].
We just proved (50). Consequently,

‖ψ(R>∇θq(R))‖ =
2kq‖ψ(AR)‖√
1− k2

qV
2
A(R)

<
2λWmaxk̄min{1,

√
5− 4ξ2/2}√

1− 4k̄2(λWmax)2

=
min{1,

√
5− 4ξ2/2}√

5−max{1, 4ξ2}
=

1

2
,

(52)

where inequalities (50) and (25) have been used along with
VA(R) ≤ 2λWmax. Now, making use of the matrix determinant
lemma det(I + xy>) = 1 + x>y, for all x, y ∈ R3, one can
compute the determinant of Θ(R, q) as follows:

det (Θ(R, q)) = det
(
Ra(θq(R), u)> [I+

2uψ(R>∇θq(R))>
])

= 1 + 2u>ψ(R>∇θq(R)),

where Ra(θq(R), u)>u = u, det(AB) = det(A)det(B) and
det(R) = 1 for all R ∈ SO(3) have been used. Since u
is a unit vector and in view of (52), it is obvious that the
term

∣∣2u>ψ(R>∇θq(R))
∣∣ is strictly less than 1. Therefore

det (Θ(R, q)) 6= 0 for all R ∈ SO(3).

F. Proof of Theorem 2

If ∆(u, v) > 0 is satisfied for all v ∈ E(A), then
by Theorem 1, the potential function U = VA(Γ(R, q)) is
synergistic. In order to compute the synergistic gap of U , one
needs to evaluate the expression in (47). Making use of the
following trigonometric identity

arcsin(x)− arcsin(y) = arcsin
(
x
√

1− y2 − y
√

1− x2
)
,



11

it is clear that, for all R ∈ SO(3), one has

θ̃pq(R)/2 = θp(R)/2− θq(R)/2

= arcsin(kpVA(R))− arcsin(kqVA(R))

= arcsin
(
kpVA(R)

√
1− k2

qV
2
A(R)−

kqVA(R)
√

1− k2
pV

2
A(R)

)
.

Therefore, since kp = −kq for p 6= q, one obtains

sin2
(
θ̃pq(R)/2

)
= 4k2V 2

A(R)
(
1− k2V 2

A(R)
)2
. (53)

At any undesired critical point (R, q) ∈ ΨU \ A, in view of
(47) and (53), one has

δ̄ : = min
(R,q)∈ΨU\A

[
U(R, q)−min

p∈Q
U(R, p)

]
= 2 min

(R,q)∈ΨU\A

[
max
p∈Q

sin2
(
θ̃pq(R)/2

)
∆(v, u)

]
= 8k2V̄ 2(1− k2V̄ 2)∆(v, u),

where we used the fact that VA(R) = V̄ at (R, q) ∈ ΨU \
A (see equation (23)). By direct differentiation of (27) with
respect to ∆(v, u), one obtains

∂σ

∂∆
=

8k2V̄ 2

1 + 4k2∆V̄

{
1− k2V̄ 2 +

V̄

2∆

(
1 + 8λW k2∆

−
√

1 + 16λW k2∆
)}

.

Now, using the fact that 1 + x ≥
√

1 + 2x for all x ≥ 0 and
|kV̄ | < 1/

√
2, one concludes that ∂σ/∂∆ > 0. Also, one can

verify that

∂σ

∂λW
=

16k2∆V̄

1 + 4k2∆V̄
(1− 2k2V̄ 2) > 0.

Consequently, one has δ̄ ≥ σ (k, λ,∆) , such that λ =
min
v∈E(A)

λW and ∆ = min
v∈E(A)

∆(v, u).

G. Proof of Proposition 2

The term ∆(v, u) depends explicitly on the square of the
coefficients αi = u>vi, coordinates of u in the eigenbasis
{v1, v2, v3}. Therefore, the maximization (30) can be per-
formed with respect to α2

i subject to the unit constraint
α2

1 + α2
2 + α2

3 = 1. Depending on the spectrum of A and
excluding the case where A = λI (since no synergistic family
can be constructed), we have two possible cases.

1) A has two distinct eigenvalues λA1 = λA2 6= λA3
According to (48), our maximization problem is trans-
formed into finding (1− λW3 /λW2 ) < α2

3 < 1 such that

min
v∈E(A)

∆(v, u) = min
{(
λW3 − λW2 (1− α2

3)
)
,(

(λW2 − λW3 )(1− α2
3)
)}
,

is maximized. Figure (2) gives a plot of min
v∈E(A)

∆(v, u)

with respect to α2
3 (green line). It is obvious that the

maximum (top vertex of the green triangle) is attained at

α2
3

λ
W
2 − λW3

λ
W
3 − λW2

1 −
λW3

λW2

min
v∈E(A)

∆(v, u)

1

Fig. 2

the intersection λW3 −λW2 (1−α2
3) = (λW2 −λW3 )(1−α2

3),
which leads to

α2
1 =

2(λW2 − λW3 )

2λW2 − λW3
= 1− λA2

λA3
.

2) A has three distinct eigenvalues 0 < λA1 < λA2 < λA3
In this case, the maximization problem is formulated as

max
α2
i

∆ = max
α2
i

 min
m∈{1,2,3}

λWm −∑
n,l

ε2
mnlα

2
nλ

W
l

 .

(54)

subject to
3∑
i=1

α2
i = 1 and ∆ > 0. The above optimization

problem can be formulated as a standard linear program-
ming problem as follows:

maximize x4

subject to x4 + x2λ
W
3 + x3λ

W
2 − λW1 ≤ 0,

x4 + x3λ
W
1 + x1λ

W
3 − λW2 ≤ 0,

x4 + x1λ
W
2 + x2λ

W
1 − λW3 ≤ 0,

x1 + x2 + x3 = 1,
x1, x2, x3 ≥ 0,

x4 > 0.

where the variables xj = α2
j for j ∈ {1, 2, 3}. Conse-

quently, one can use the simplex algorithm [30] to solve
this optimization problem, leading to the following result:
If the condition

λA2 ≥
λA1 λ

A
3

λA3 − λA1
(55)

is satisfied, then the optimal solution to the maximization
in (54) is given by

α2
1 = 0, α2

2 =
λA2

λA2 + λA3
, α2

3 =
λA3

λA2 + λA3

and the maximum is max
α2
j

∆ = λA1 . Otherwise, the

optimal solution is

α2
i = 1− 4

∏
j 6=i λ

A
j∑

j 6=k λ
A
j λ

A
k

, i ∈ {1, 2, 3}



12

with the maximum being max
α2
j

∆ = 4

∏3
j=1 λ

A
j∑

j 6=k λ
A
j λ

A
k

H. Proof of Theorem 3
Let us define the following sets:

A1 := {(X, q) ∈ DX ×Dq : X1 = I},
A2 := {(X, q) ∈ DX ×Dq : X2 = I},
X1 := {(X, q) ∈ DX ×Dq : (X1, q1) ∈ ΨU1

},
X2 := {(X, q) ∈ DX ×Dq : (X2, q2) ∈ ΨU2

},
C1 := {(X, q) ∈ DX ×Dq : µ1(X1, q1) ≤ δ1} ,
C2 := {(X, q) ∈ DX ×Dq : µ2(X2, q2) ≤ δ2} .

Assume that Uh is synergistic with gap exceeding δh, for h =
1, 2. Then, in view of (12), one has

0 < δh < min
(Xh,qh)∈ΨUh\A

µh(Xh, qh).

Therefore for each pair (X, q) ∈ Xh \ Ah, one obtains
µh(Xh, qh) > δh, which implies, in view of the definition
of the set Ch, that one has

Ch ∩ Xh = Ah, (56)

where we used the fact that Ah is entirely contained in Ch.
Consider the Lyapunov function candidate

V(X,ω, q) =

2∑
h=1

Uh(Xh, qh) +
1

2
ω>Jω.

Since Uh are two potential functions on SO(3) × Q with
respect to {I} × Q and J is positive definite, it follows that
V is positive definite on DX × R3 × Dq with respect to Ā.
In view of (42), the time derivative of Uh(Xh, qh) along the
trajectory Ẋh = Xh[ωh]× is given by

U̇h(Xh, qh) = 2 ψ
(
Γh(Xh, qh)>∇VAh(Γh(Xh, qh))

)>
Θh(Xh, qh)ωh

= 2ψ (AhΓh(Xh, qh))
>

Θh(Xh, qh)ωh,
(57)

where we used ∇VA(R) = RPa(AR) for all R ∈ SO(3).
Therefore, making use of the above result and (35), the change
in V along the continuous flows of C is given by

V̇(X,ω, q) = 2

2∑
h=1

ω>h Θh(Xh, qh)>ψ(AhΓh(Xh, qh))+

ω>

(
[Jω]×ω − 2

2∑
h=1

Y >h Θh(Xh, qh)>ψ(AhΓh(Xh, qh))

)
= −2‖Θ1(X1, q1)>ψ(A1Γ1(X1, q1))‖2 ≤ 0.

Thus V is non-increasing along the flows of (35). Moreover,
for any (X, q) ∈ D and s ∈ g(X), one has

V(X,ω, q)− V(X,ω, s) =

2∑
h=1

[
Uh(Xh, qh)−min

p∈Q
Uh(Xh, p)

]

=

2∑
h=1

µh(Xh, qh)

≥ min{δ1, δ2} > 0,

which shows that V is strictly decreasing over the jumps of
(35). Using [[31], Theorem 7.6], it follows that Ā is stable.
Moreover, applying the invariance principle for hybrid systems
given in [[31], Theorem 4.7], one can conclude that any
solution must converge to the largest invariant set contained
in

I =
{

(X,ω, q) ∈ DX × R3 ×Dq : (X, q) ∈ C,
Θ1(X1, q1)>ψ(A1Γ1(X1, q1)) = 0

}
.

It follows, in view of (57), that for all (X,ω, q) ∈ I, one has
(X1, q1) ∈ ΨU1

. Consequently, the set I can be rewritten as

I =
{

(X,ω, q) ∈ DX × R3 ×Dq : (X, q) ∈ C ∩ X1

}
.

Moreover, from (56), one has C1 ∩ X1 = A1 and hence C ∩
X1 = (C1∩C2)∩X1 = C2∩A1, where we used the fact that
C = C1 ∩ C2. Since the solutions converge to C2 ∩ A1, it is
clear that X1 → I which leads to Ẋ1 → 0. Hence, one can
conclude from (35) that ω → 0. Since ω ≡ 0, it follows from
(32) that τ must converge to 0. Using this last fact, together
with the fact that β ≡ 0, one can conclude from (34) that

Θ2(X2, q2)>ψ(A2Γ2(X2, q2)) = 0.

Again using (57), one has (X2, q2) ∈ ΨU2
. Therefore, the

solutions must converge to C2 ∩ A1 ∩ X2 = A1 ∩ A2 = Ā,
where the fact that C2 ∩X2 = A2 has been used. Finally, the
set Ā is globally attractive and stable which shows that Ā is
globally asymptotically stable.

I. Proof of Proposition 3

Let us define the attitude error P̃ := RP>, for some P ∈
SO(3). For h ∈ {1, 2}, making use of the identity u>Au =
tr(uu>A), one obtains

1

2

n∑
i=1

ρih‖bi − P>ri‖2 =
1

2

n∑
i=1

ρihr
>
i (I − P̃>)(I − P̃ )ri

=

n∑
i=1

ρihtr(rir
>
i (I − P̃ )) = VAh(P̃ ).

Consequently, equation (36), respectively (38), is obtained by
substituting P for Yh, respectively P for R>a (θhq(Xh), uh)Yh.
Furthermore, one has

Pa(AhP̃ ) =
1

2

n∑
i=1

ρih

[
rir
>
i P̃ − P̃>rir>i

]
=

1

2

n∑
i=1

ρihP
[
P>rir

>
i R−R>rir>i P

]
P>

=
1

2

n∑
i=1

ρih
[
P (bi × P>ri)

]
× ,

(58)

where we used the following property (see [24]):

R[yx> − xy>]R> = R[x× y]×R
> = [R(x× y)]×.

Taking the vex operator on both sides of (58) and substituting
P for Yh, respectively P for R>a (θhq(Xh), uh)Yh, yields
equation (37), respectively equation (39).
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VI. SIMULATION RESULTS

In this section we illustrate the procedure to follow for
the implementation of the hybrid scheme derived in Section
IV. We, then, compare between the smooth feedback law,
proposed in [20], and the hybrid feedback of Section IV. Let
Q = {1, 2} and let the scalars kh1 = −kh2 = kh, for h = 1, 2
where kh has a specific value to be tuned later. Let also
A1 = diag([1, 3, 5]) and A2 = diag([0.1, 0.3, 0.5]). The value
of kh is chosen to verify inequality (25). We picked k1 = 0.03
and k2 = 0.3. Moreover, with this choice of matrices A1

and A2, one can see that condition (55) is verified for both
matrices. Therefore, the optimal choice of the rotation vectors
u1 and u2 is given by

u>1 = [0,
√

3/8,
√

5/8], u>2 = [0,
√

3/8,
√

5/8].

The maximum values of the hysteresis gaps δ̄1 and δ̄2 can
be computed, using the result of Theorem 2. Therefore, it is
sufficient to pick δ1 = 0.5 < δ̄1 and δ2 = 0.05 < δ̄2 to
implement the switching conditions of the set C and the set
D. Once all the parameters have been designed, the hybrid
controller (34) can be implemented. We recall the following
smooth feedback law proposed in the paper [20]

τ = −
2∑

h=1

n∑
i=1

ρih(bi × Y >h ri),

β =

n∑
i=1

ρi1(bi × Y >1 ri).

(59)

Both controllers, hybrid and smooth, were implemented in
Simulink. The desired rotation as well as the initial condition
R̂(0) for the auxiliary system were both chosen equal to the
identity matrix, i.e., Rd = R̂(0) = I3×3. The inertia matrix
has been taken as J = diag ([1, 1, 2]) and the inertial vectors
as ri = ei, for i = 1, 2, 3. The performance of the controllers
was evaluated by means of the normilized error3

e(Xh) :=
1√
8
‖I −Xh‖F .

To simulate the worst case for the smooth controller, the
initial conditions for the rotational dynamics are taken as
follows: ω(0) = [0, 0, 0]> and R(0) = Ra (π + ε, cos(ε/2)e1)
for some ε � 1. Thus, under the smooth feedback (59), the
closed-loop system starts sufficiently close to the undesired
equilibria X1 = X2 = R(π, e1). Figure 3 shows the evolution
of the error e(X2) with respect to time. At early times,
the convergence is slower for closer initial conditions to the
undesired equilibria (smaller choice of ε). This phenomenon
is the main drawback of the smooth controller. On the other
hand, for ε = 0, Figure 4 depicts how the hybrid controller
reacts immediately to correct its offset rotation, whereas the
smooth controller does not react at all, being seemingly unable
to correct its rotation.

3This error can be shown to be equal to e(Xh) = ‖εh‖2 where εh is the
quaternion vector part corresponding to the orientation described by Xh ∈
SO(3).

Fig. 3: Error between the current state and the desired
reference for different initial conditions close to the
undesired equilibria Ra(π, e1)-Smooth controller-

Fig. 4: Comparison between smooth and hybrid feedback
responses with the initial condition X2(0) = Ra(π, e1)

Fig. 5: Comparison between smooth and hybrid feedback
responses with the initial condition
X2(0) = Ra(π, e1)Ra (ϑ1, u1)

>
.

For a second comparison, we changed the initial rotation
matrix to

R(0) = Ra(π, e1)Ra (ϑ1, u1)
>
,

where ϑ1 = 2 arcsin

−1 +
√

1 + 16λW1
1 (k11)2∆(v1, u1)

4k11∆(v1, u1)

,

thus ϑ1 ' 0.47, so as to start from one of the critical points
of the potential function U1(X1, q1) (see equation (24)).
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Fig. 6: Plot of the torque applied by the hybrid feedback
with the initial condition X2(0) = Ra(π, e1).

Figure 5 depicts the performance of the proposed hybrid
feedback law. Starting from an initial configuration q(0) =
(1, 1), the system immediately jumps to the configuration q =
(2, 2) since the initial condition (X(0), q(0)) lies inside the
jump set D. It is shown in Figure 5 that the hybrid controller
still achieves better performance than the continuous controller
for this particular initial condition.

In Figure 6, we give the plot of the torque (control input)
applied by the hybrid controller in the first case of X2(0) =
Ra(π, e1). We observe that the torque is “quasi-smooth” with
only three discontinuities which occur during the first few
seconds of the control in order to avoid the critical points.
The second jump (red) affects only the second component of
the torque vector.

VII. CONCLUSION

Synergistic potential functions are instrumental in the design
of hybrid control systems on SO(3) that achieve global
asymptotic stability results. This paper presented a systematic
approach to generate synergistic potential functions on SO(3)
via angular warping. By introducing a new warping angle
function, the synergistic gap-necessary for the implementation
of the hybrid controller- was explicitly computed. The feasi-
bility of the synergism conditions and the maximization of the
synergy gap are discussed. We also proposed a hybrid attitude
stabilization control scheme without velocity measurements
relying only on inertial vector measurements. The proposed
control scheme leads to global asymptotic stability results. We
presented some simulation results that illustrate the advantage
of the hybrid control scheme over the standard continuous
feedback strategies.
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