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Estimation with Strategic Sensors
Farhad Farokhi, André M. H. Teixeira, and Cédric Langbort

Abstract—We introduce a model of estimation in the presence
of strategic, self-interested sensors. We employ a game-theoretic
setup to model the interaction between the sensors and the re-
ceiver. The cost function of the receiver is equal to the estimation
error variance while the cost function of the sensor contains
an extra term which is determined by its private information.
We start by the single sensor case in which the receiver has
access to a noisy but honest side information in addition to
the message transmitted by a strategic sensor. We study both
static and dynamic estimation problems. For both these problems,
we characterize a family of equilibria in which the sensor
and the receiver employ simple strategies. Interestingly, for the
dynamic estimation problem, we find an equilibrium for which
the strategic sensor uses a memory-less policy. We generalize the
static estimation setup to multiple sensors with synchronous com-
munication structure (i.e., all the sensors transmit their messages
simultaneously). We prove the maybe surprising fact that, for the
constructed equilibrium in affine strategies, the estimation quality
degrades as the number of sensors increases. However, if the
sensors are herding (i.e., copying each other policies), the quality
of the receiver’s estimation improves as the number of sensors
increases. Finally, we consider the asynchronous communication
structure (i.e., the sensors transmit their messages sequentially).

I. INTRODUCTION

Over the past few years, a number of new technologies and
concerns have made it necessary to consider problems related
to estimation with self-interested and/or strategically deceitful
sensors.

One such technological concept is crowd- or participatory
sensing where participants are relied upon (and sometimes
actively recruited and incentivized) to sample and measure
their environment, or provide personal information to be
pooled and mined “for the greater common good”. Examples
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include Sensorly for generating wireless network coverage
maps [2] and Waze for traffic monitoring [3].

In this case, strategic misreporting may occur for privacy
reasons (if, e.g., a user is forced to report personal conditions
to a participatory sensing system to get medical coverage, but
does not trust the system enough to tell the truth), as a stealthy
attack on the system (e.g., a sensor might be hacked by a
strategic individual to manipulate the outcome to his/her own
favour), or because users expect direct benefits from untrue
reports (e.g., a retailer may wish to under-report local travel
times on adjacent roads so as to mislead a routing application
like Waze into diverting more traffic on a particular route, thus
increasing its exposure).

Another context where data received from sensors may be
strategically altered is when considering the cyber-security of
distributed and/or networked systems. An important class of
attacks for these systems is the so-called false data injection
attack, whereby a malicious agent intercepts the original
stream of measurements from sensors, and replaces it with
corrupt data.

While significant work has been devoted recently to charac-
terizing the effects of corrupt data flows on closed-loop stabil-
ity and devising identification procedures [4]–[10], relatively
little has been done in the way of specifically modeling the
attacker’s strategic intent and understanding how the resulting
system’s behavior differs from a mere failure mode.

In this paper, we introduce and study a simple model of
estimation in the presence of strategic, self-interested sensors.
Specifically, we employ a game-theoretic setup to model the
interaction between the sensor(s) and the receiver. The cost
function of the receiver is taken to be equal to the variance
of the estimation error of the state of nature while the cost
function of the sensor has an extra term which is captured
by its private information. As a starting point, we consider a
static estimation problem in which a single sensor transmits a
message about the state of nature in the presence of a (noisy
but honest) side channel to the receiver. For this case, we show
that there exists a family of simple equilibria (all resulting in
the same estimation error variance). At the captured equilibria,
the sensors never “flat-out lie” and the receiver hence always
benefits from listening to the transmitted message. We prove
that, for some equilibria, the sensor’s best response mapping
does not utilize the side-channel information in constructing
the message passed to the receiver (which, intuitively, makes
sense as the receiver can always extract that part of the
message since it also has access to the side-channel informa-
tion). Using these results, we solve the dynamic counterpart
of the proposed estimation problem. Interestingly, we prove
that from the set of constructed equilibria for at least one
equilibrium, the sensor employs a memory-less policy and,
hence, the receiver uses a Kalman filter for constructing the
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state estimate.
Equipped with these results, we extend the static esti-

mation problem to multiple sensors with synchronous and
asynchronous communication structures. First, we study syn-
chronous communication structure, that is, the sensors transmit
their messages simultaneously. Here, we restrict ourselves to
the set of affine policies. Although the assumption of affine
policies for the sensors is rather restrictive, it provides valuable
insight because the provided analysis gives a lower-bound on
the influence of the sensors (on the quality of the estimation),
knowing that they find more degrees of freedom for con-
structing untruthful messages (and, hence, possibly creating
a larger deviation to their benefit) with extending their set of
available strategies to also cover nonlinear mappings. Further-
more, we investigate symmetric problems in which the private
information of the sensors are independently and identically
distributed random variables. We characterize an equilibrium
of the game in this setup for which the quality of the receiver’s
estimation degrades as the number of sensors increases, which
is a rather counter-intuitive result. We also investigate another
notion of equilibrium, namely, the herding equilibrium, which
supposes a lower degree of strategic behavior on the part of
the sensors, and yields a very different scaling behavior for the
estimation error. The herding scenario models an interesting
intermediate situation where each sensor is refined enough to
recognize that others may also be strategically misreporting
but, having limited “cognitive” means or ability to predict
the specific form of this behavior, assumes that they will just
mimic its own action. Interestingly, for this equilibrium, the
quality of the receiver’s estimation improves as the number
of sensors increases. Finally, we consider a multiple-sensor
game under asynchronous communication structure, that is,
the sensors transmit their messages sequentially. This is par-
ticularly useful if the sensors do not know the number of active
participants in the estimation scheme (but they can observe, at
least, the number of the sensor that have already contributed)
as the the policy of each sensor, at the equilibrium, is only a
function of the previous transmissions.

The kind of self-interested strategic information transmis-
sion problems investigated in this paper has been considered
before in the Economics literature, under the name of ‘cheap
talk theory’. While specific assumptions (about the various
priors’ distributions and functional forms of the utility func-
tions) vary, the basic framework for these problems (originally
introduced in [11]) involves two decision makers, a sender and
a receiver, with different utility functions that both depend on
a random state of nature and on the receiver’s decision. The
sender’s utility also depends on a parameter that is known
solely to her and which is known in the literature as her
“private type”.

The sender can directly observe the state of nature and
decide which message (conditional on this observation) to
transmit to the receiver. The receiver uses the message to
modify his prior belief about the state of nature and, based
on the new belief, makes a decision which impacts both
utilities. The message itself does not directly enter either
utility, however, (it only matters to the extent that it modifies
the receiver’s belief distribution), which motivates the “cheap

talk” denomination.
A central question in the cheap talk literature is the

characterization of Nash equilibria, i.e., the determination of
stochastic kernels for the sender and receiver which are best
responses to each other. A fundamental result of [11] (for situ-
ations where the state of nature is one-dimensional, compactly
supported and uniformly distributed, and when the players’
utilities are quadratic), is that the sender’s strategy (mapping
observation to transmitted signal) must employ quantization
in every such equilibrium, with a computable upper-bound on
the number of quantization cells. This can be interpreted by
saying that strategic information transmission is parsimonious
yet inevitably introduces confusion (due the non-injectivity of
the sender’s mapping).

Similar conclusions about the qualitative structure of Nash
equilibria have since been derived in more general models
of cheap talk, such as multidimensional sources [12], noisy
channels [13], multiple senders [14], and hierarchical commu-
nication networks [15].

The model and the problem we consider in this paper differ
from the traditional cheap talk framework detailed above in
several significant ways. This brings this framework closer
to typical assumptions made in the controls literature, and is
necessary to capture the motivating examples presented at the
beginning of this introduction. This also results in drastically
different insights, since we show that, in our framework, vari-
ous equilibria exist in which senders’ and receiver’s strategies
are affine. More precisely, the differences are:
(1) We assume that the state of nature is Gaussian with zero

mean, when most of the cheap talk literature consider it
to be compactly supported. This is particularly relevant
for the data-attack example, where the role of “state of
nature” is played by the state of a dynamical system
evolving under the action of some white process noise
and, hence, takes value on the whole real line.

(2) The private type of the sender(s) is a random variable in
our model, instead of a deterministic constant bounded
away from zero. This is needed to capture situations
where sensors do not know a priori by how much they
will want to lie. This might occur, again, in the context of
data attacks when the goal of the sensor is to manipulate
reports so that the state estimated by the receiver tracks
that of another legitimate-looking one (which is itself
a stochastic process). Moreover, when considering a
scenario with multiple sensors, the random generation of
the private information ensures that we model various,
often misaligned, incentives of a large pool of strategic
sensors.

(3) Lastly but most importantly, we focus on Stackelberg
equilibria rather than Nash equilibria (see, e.g., [16] as
well as Section II below for a rigorous definition of
the former and some comparisons between the two).
Although it has received relatively little attention in the
cheap talk literature, this notion of equilibrium is more
appropriate for the participatory sensing applications of
interest to us, since the goal of the platform (which acts
as the receiver) can legitimately be assumed to be known
to the sensors (which act as senders). For example, users
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of Waze know that at least one goal of the system is
to obtain an accurate estimate of travel times along all
paths. It is thus justified to consider sensors as leaders,
who act with the benefit of knowing that the receiver tries
to minimize its estimation error, given their strategies.

The problem of signalling in cooperative environments has
attracted much attention dating back to the pioneering work of
Witsenhausen in [17]. However, those studies do not assume
any conflict of interest between the decision makers and,
hence, the signalling enters the problem because of the trade-
off between a precise communication and a perfect control
using the same medium. Note that the communication is done
through taking an action with potentially adverse effect on
the control performance. This is evidently different from the
presented framework in which the decision makers have a clear
conflict of interest.

The rest of the paper is organized as follows. First, we
consider both static and dynamic estimation problems with a
single sensor in the presence of a noisy but honest side-channel
information in Section II. In Sections III, we discuss the static
multiple-sensor case under synchronous and asynchronous
communication structures. Finally, we conclude the paper and
present avenues for future research in Section IV.

A. Notation

We shall let R, N, and Z denote the sets of real, natural,
and integer numbers, respectively. Moreover, we define N0 =
N ∪ {0}. We use the notation JNK = {n ∈ N |n ≤ N}. Fur-
thermore, Sn+ and Sn++ denote the set of positive semi-definite
and positive definite matrices in Rn×n. For any A ∈ Rn×n,
we use the notations A ≥ 0 and A > 0 to denote A ∈ Sn+
and A ∈ Sn++, respectively. For any two random variables
x and y, we use the notation Vxy = E{xy>}. Let ‖x‖2
denote the 2-norm of vector x ∈ Rn for any n ∈ N. For any
matrix A ∈ Rn×n, A† is the Moore–Penrose pseudoinverse
of A. Through out the paper, we also use the game theoretic
convention x = (xi, x−i) in which xi and x−i denote i-th
element of vector x and the rest of its elements, respectively.
Moreover, for time series, we define x[k1 : k2] = (x[k])k2

k=k1
.

For any two arbitrary sets X and Y , we define C(X ,Y) to be
the set of all Lebesgue-measurable mappings from X onto Y .

II. SINGLE SENSOR WITH SIDE INFORMATION

In this section, we discuss static and dynamic state estima-
tion with a single strategic sensor in the presence of an honest
but noisy side-channel information.

A. Static Estimation

We consider the communication structure pictured in Fig-
ure 1. The receiver (denoted by R in Figure 1) wants to
estimate a random variable x ∈ Rnx . Throughout this sub-
section, we use the notation υ(·) to denote this estimation
as a function of the information available to the receiver.
The sensor (denoted by S in Figure 1) transmits a signal
z ∈ Rnz (that may or may not contain some information
about x). We assume that the sensor has access to the exact

value of x. In addition to the message initiated by the sensor,
the receiver also has access to a side channel that provides
the measurement y ∈ Rny . The timing of the game is as
follows. First, the measurement y is revealed. Then, sensor
S announces z. Finally, the receiver R computes the optimal
estimate by minimizing E{‖x − υ(y, z)‖22} over Υ denoting
the set of all Lebesgue-measurable functions from Rny ×Rnz
to Rnx . Let θ ∈ Rnx be the private information of the
sensor (i.e., it is only available to the sensor S). The sensor
transmits a signal z ∈ Rnz which is fully determined by the
conditional distribution p(·|x, y, θ). For the sake of brevity,
and with abuse of notation, we refer to this as a “stochastic
mapping” z = γ(x, y, θ) such that

P{γ(x, y, θ) ∈ Z} =

∫
z′∈Z

p(z′|x, y, θ)dz′, ∀Z ⊆ Rnz .

Let the set of all such mappings be denoted by Γ (which has
a one-to-one correspondence to the set of all the conditional
distributions that construct the sensor’s message). The goal of
the sensor is to minimize E{‖(x + θ) − υ(y, γ(x, y, θ))‖22}.
Note that, currently, we assume that the sensor can access
the side-channel information y when constructing its message
to the receiver. However, we will observe later that this
assumption is not necessary, i.e., there exists at least one
equilibrium for which the sensor does not utilize its knowledge
of the side-channel information. Hence, the receiver is trying
to obtain the best estimate of x (in the LMS sense) using the
information available to him, while the sender, knowing that
this is the goal of the receiver, chooses his message so as to
mislead the receiver in estimating x+θ, where θ is a privately
known parameter. Note that, for instance, in the case of traffic
estimation, the private information of the sensor is her desire,
and its amount, for over-estimating or under-estimating the
state of traffic on various links. This is certainly a private
information as the other sensors and the estimator do not
have access to it. The intention to miss-report the state of the
traffic can be captured by that the sensor wants x̂ = υ(y, z),
constructed by the received based the received measurements,
to become equal to x + θ and, therefore, the sensor aims at
minimizing the distance between these entities.

We need to define some useful notations before presenting
the definition of the equilibrium of the game. For any x̂ ∈
C(Γ,Υ) and any given γ ∈ Γ, x̂(γ) is a mapping in Υ. We use
the notation [x̂(γ)](y, z) to distinguish between the arguments
of x̂ and x̂(γ).

DEFINITION 2.1: (EQUILIBRIUM): A pair (x̂∗, γ∗) ∈
C(Γ,Υ)× Γ constitutes an equilibrium if

x̂∗ ∈ arg min
x̂∈C(Γ,Υ)

E{‖x− [x̂(γ∗)](y, γ∗(x, y, θ))‖22}, (1a)

γ∗ ∈ arg min
γ∈Γ

E{‖(x+ θ)− [x̂∗(γ)](y, γ(x, y, θ))‖22}. (1b)

REMARK 2.1 (STACKELBERG VS. NASH): Note that the
equilibrium in Definition 2.1 is not a Nash equilibrium but
rather a Stackelberg equilibrium. This is because, in a Nash
equilibrium, the players fix their policies; however, in this
setup, the sensor explicitly calculates its best response as-
suming that the receiver is changing her estimation policy
accordingly.
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Fig. 1. The communication structure between the strategic sensor S and the
side channel with the receiver R. We have used a dashed line to portray the
availability of the side-channel information to the sensor because, as proved in
the paper, there exists at least one equilibrium for which sensor does not use
the (realization of the) side-channel information in constructing its message.

Throughout the rest of this subsection, we make the follow-
ing assumption.

ASSUMPTION 2.1: The random variables x, y, θ are jointly
distributed Gaussian random variables with zero mean and a
covariance matrix that satisfies

E


 x
θ
y

 x
θ
y

>
 =

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

 ∈ S2nx+ny
++ .

Contrary to the cheap-talk game literature [11], we assume
that the private information of the sensor is a random variable
which, as explained in the introduction, is relevant in situations
of interest to this work.

THEOREM 2.2: There exists an equilibrium in which the
receiver uses the Least Mean Square (LMS) estimator

[x̂∗(γ)](y, z) =
[
Vxy Vxz

] [ Vyy Vyz
Vzy Vzz

]−1 [
y
z

]
, (2)

while the sensor uses the policy

γ∗(x, y, θ) = α>1 x+ α>2 θ + α>3 y + v. (3)

In the sender’s policy, we have α1

α2

α3

 =

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

−1  Vxz
Vθz
Vyz

 , (4)

and v ∈ Rnz is a Gaussian random variable with zero mean
and covariance matrices[

Vvx Vvθ Vvy
]

=
[

0 0 0
]
, (5a)

Vvv = I −

 Vxz
Vθz
Vyz

>Q
 Vxz
Vθz
Vyz

 , (5b)

where Vxz
Vθz
Vyz

 ∈ X = arg min
ξ∈R(2nx+ny)×nz

trace
(
ξ>Wξ

)
, (6a)

s.t. ξ>Qξ ≤ I, (6b)

with

W = Ξ>
[
−I −I
−I 0

]
Ξ, (7a)

Q = Ξ>

([
Vxx Vxθ
Vθx Vθθ

]
−
[
Vxy
Vθy

]
V −1
yy

[
Vxy
Vθy

]>)−1

Ξ, (7b)

Ξ =

[
I 0 −VxyV −1

yy

0 I −VθyV −1
yy

]
. (7c)

Furthermore, the sensor’s policy of the form κγ∗, for some κ ∈
R\{0}, along side the receiver’s policy x̂∗, also constitutes an
equilibrium. All these equilibria result in the same estimation
error variance at the receiver.

Proof: When the sensor uses the strategy in (3), the
receiver’s best response is the LMS estimator [18, p. 80].
We thus only need to show that, provided the receiver uses
[x̂∗(γ∗)](·) in (2), the sensor’s optimal policy is indeed linear,
and satisfies (4)–(7). Note that, once the receiver’s strategy is
fixed as above, the sensor’s cost can be written solely as a
function of Vzx, Vzy , and Vzθ. Notice that Vzx = E{zx>},
Vzy = E{zy>}, and Vzθ = E{zθ>} are not mere constants
but they are functions of the policy of the sender γ ∈ Γ.
Indeed, we can write (8), which is presented on top of the next
page. In the rest of the proof, without loss of generality, we
assume Vzz−VzyV −1

yy Vyz = I . Note that this is without loss of
generality because the optimization problem after scaling z is
feasible if and only if it is feasible before scaling z. Following
Item 1, Section 3.5.3 in [19, pp. 29-30], gives[

Vyy Vyz
Vzy Vzz

]−1

=

[
V −1
yy + V −1

yy VyzVzyV
−1
yy −V −1

yy Vyz
−VzyV −1

yy I

]
.

Substituting this identity into (8), we can observe that

E{‖(x+ θ)− x̂‖22} =

= trace

[ Vzx Vzθ Vzy
]
W

 Vxz
Vθz
Vyz

+ c,

where W is defined in (7a) and c = trace(Vxx + Vxθ +
Vθx+Vθθ−VxyV −1

yy Vyx−VθyV −1
yy Vyx−VxyV −1

yy Vyθ) does not
depend on the sensor’s strategy. Since the covariance matrix
of the vector of random variables [x> θ> y> z>]> is a positive
semi-definite matrix, it should satisfy

E



x
θ
y
z



x
θ
y
z


> =


Vxx Vxθ Vxy Vxz
Vθx Vθθ Vθy Vθz
Vyx Vyθ Vyy Vyz
Vzx Vzθ Vzy Vzz

 ≥ 0.

(9)
Note that Vzz = VzyV

−1
yy Vyz + I > 0. We use the Schur

complement to show that the condition in (9) is equivalent to Vxz
Vθz
Vyz

>

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

−1

−

 0 0 0
0 0 0
0 0 V −1

yy

 Vxz
Vθz
Vyz

 ≤ I.
Now, using Item (2) in Section 3.5.3 in [19, p. 30], we can
easily prove the identity in (10), on top of the next page, in
which

J =

([
Vxx Vxθ
Vθx Vθθ

]
−
[
Vxy
Vθy

]
V −1
yy

[
Vxy
Vθy

]>)−1

. (11)
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E{‖(x+ θ)− x̂∗(y, z)‖22} = trace

(
Vxx + Vxθ −

[
Vxy Vxz

] [ Vyy Vyz
Vzy Vzz

]−1 [
Vyx
Vzx

]
+ Vθx + Vθθ

−
[
Vθy Vθz

][ Vyy Vyz
Vzy Vzz

]−1 [
Vyx
Vzx

]
−
[
Vxy Vxz

] [ Vyy Vyz
Vzy Vzz

]−1[
Vyθ
Vzθ

])
. (8)

Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

−1

−

 0 0 0
0 0 0
0 0 V −1

yy

=

 J −J
[
Vxy
Vθy

]
V −1
yy

−V −1
yy

[
Vyx Vyθ

]
J V −1

yy

[
Vyx Vyθ

]
J

[
Vxy
Vθy

]
V −1
yy +V −1

yy

−[ 0 0
0 V −1

yy

]

=

 J −J
[
Vxy
Vθy

]
V −1
yy

−V −1
yy

[
Vyx Vyθ

]
J V −1

yy

[
Vyx Vyθ

]
J

[
Vxy
Vθy

]
V −1
yy


=

[
I 0 −VxyV −1

yy

0 I −VθyV −1
yy

]>
J

[
I 0 −VxyV −1

yy

0 I −VθyV −1
yy

]
. (10)

Therefore, the sensor’s best response can be extracted from
solving the optimization problem in (6). Now, we just need
to show that there exists an affine policy for the sensor that
results in covariance matrices Vzx, Vzθ, Vzy . Let z = α>1 x +
α>2 θ+α>3 y+v where v ∈ Rnz is a Gaussian random variable.
In this case, we can compute Vxz

Vθz
Vyz

 =

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

 α1

α2

α3

+

 Vxv
Vθv
Vyv

 ,
which results in (4) and (5a). Moreover, (5b) follows from
substituting (4) and (5a) into Vzz − VzyV −1

yy Vyz = I .
REMARK 2.2: In (2), the policy of the receiver is affine

in the realization of the messages y, z. However, overall, this
policy is not affine as Vxz, Vyz, Vzz are all functions of the
random variable z’s distribution (but not its realization). The
dependency of the gains to these covariance matrices clearly
illustrates the dependency of x̂∗ ∈ C(Γ,Υ) to γ ∈ Γ.

REMARK 2.3: Note that even when x and θ are uncorre-
lated, the sender always sends “some amount of information
about x” rather than just sending θ. This is indeed true because
if z does not contain any information about the state of nature,
the receiver will simply discard it (if y is not correlated with
θ and if there is such a correlation, the receiver uses z to
cancel out the correlation). Hence, it is always in the receiver’s
best interest to listen to any sensor, be it strategic or not.
We formalize this observation for the special case of scalar
message later in Proposition 2.5.

Note that the optimization problem in (6) is not a convex
optimization problem as the matrix W is an indefinite matrix.
Therefore, solving it numerically is, in general, a tedious task
and it would be of interest to find an explicit solution, at
least, under some conditions. One such case is discussed in
the following corollary, which considers the case where the
sensor’s message is scalar.

COROLLARY 2.3: Let nz = 1. There exists an equilibrium
in which the receiver uses the LMS estimator in (2) while the

sensor uses the policy in (3). In the sender’s policy, α1, α2, α3

are defined using (4) and v ∈ Rnz is a Gaussian random
variable with zero mean and covariance matrices as in (5),
where Vzx, Vzθ, Vzy are determined by Vxz

Vθz
Vyz

 =

[
I 0 −VxyV −1

yy

0 I −VθyV −1
yy

]†
J−1/2π,

and π denotes the normalized eigenvector (i.e. ‖π‖2 = 1) of
the smallest eigenvalue of

E = J−1/2

[
−I −I
−I 0

]
J−1/2

with J defined as in (11). Furthermore, the sensor’s policy of
the form κγ∗, for some κ ∈ R \ {0}, along side the receiver’s
policy x̂∗, also constitutes an equilibrium.

Proof: With the change of variable

η =

[
I 0 −VxyV −1

yy

0 I −VθyV −1
yy

] Vxz
Vθz
Vyz

 ,
we can rewrite the optimization problem in (6) as

min
η∈R2nx

η>
[
−I −I
−I 0

]
η,

s.t. η>Jη ≤ 1.

(12)

Now, letting η̄ = J1/2η results in

min
η̄∈R2nx

η̄>J−1/2

[
−I −I
−I 0

]
J−1/2η̄,

s.t. η̄>η̄ ≤ 1.

(13)

Notice that the matrix E, which appears in the cost function
of (13), has, at least, one negative eigenvalue. This is because
multiplying a matrix from both sides by a symmetric and
invertible matrix does not change the sign of its eigenvalues
(see Sylvester’s law of inertia [20, p. 282]). Therefore, using
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Lemma A.1 in Appendix A, we realize that the solution to the
optimization problem in (13) is the normalized eigenvector
corresponding to the smallest eigenvalue of E.

Before moving on to the dynamic estimation problem, we
show that there exists at least one equilibrium for which the
sender’s best response does not depend on the side-channel
information. This is of special interest to us because, typically,
the side-channel information might be encrypted (and, hence,
not accessible to the sensor) or the sensor and the receiver
might not be co-located (and, hence, the sensor might not have
the opportunity to eavesdrop on this information). Intuitively,
such an equilibrium exists because the receiver can always
construct z̃ = z−Ky, for some K ∈ Rnz×ny such that z̃ and y
are uncorrelated, with the same amount of information content
because span(z, y) = span(z̃, y). This result also provides
the opportunity to extend the framework to the case where
the side channel and the strategic sensor reveal their messages
simultaneously. Note that the following corollary holds for all
nz ≥ 1.

COROLLARY 2.4: There exists an equilibrium in which γ∗

is independent of y. More precisely, the receiver uses the LMS
estimator in (2) while the sensor uses the policy

γ∗(x, y, θ) = α>1 x+ α>2 θ + v, (14)

where v ∈ Rnz is a Gaussian random variable with zero mean
and covariance matrices[

Vvx Vvθ Vvy
]

=
[

0 0 0
]
, (15a)

Vvv = I −
[
α1

α2

]>
Ξ′
[
α1

α2

]
, (15b)

in which[
α1

α2

]
∈ X ′ = arg min

ξ∈R2nx×nz
trace

(
ξ′
>
W ′ξ′

)
, (16a)

s.t. ξ′
>

Ξ′ξ′ ≤ I, (16b)

with

W ′ = Ξ′
>
[
−I −I
−I 0

]
Ξ′, (17a)

Ξ′ =

[
Vxx Vxθ
Vθx Vθθ

]
−
[
Vxy
Vθy

]
V −1
yy

[
Vxy
Vθy

]>
. (17b)

Furthermore, the sensor’s policy of the form κγ∗, for some κ ∈
R\{0}, along side the receiver’s policy x̂∗, also constitutes an
equilibrium. All these equilibria result in the same estimation
error variance at the receiver.

Proof: Let us introduce the change of variable

ξ =

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

 ξ̃.
Recalling the definition of Ξ in (7c), we get

Ξξ =

[
Vxx − VxyV −1

yy Vyx Vxθ − VxyV −1
yy Vyθ 0

Vθx − VθyV −1
yy Vyx Vθθ − VθyV −1

yy Vyθ 0

]
ξ̃

= Ξ′
[
I2nx 02nx×ny

]
ξ̃

= Ξ′ξ′,
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Fig. 2. Gains α1, α2 and their ratio at the equilibrium as a function of µ.

where ξ′ =
[
I2nx 02nx×ny

]
ξ̃. As a result,

ξ>Qξ = ξ′
>

Ξ′ξ′,

ξ>Wξ = ξ′
>

Ξ′
[
−I −I
−I 0

]
Ξ′ξ′ = ξ′

>
W ′ξ′,

Therefore, this change of variable transforms the optimization
problem in (6) to the one in (16) and, as a result, we get

 Vxx Vxθ Vxy
Vθx Vθθ Vθy
Vyx Vyθ Vyy

[ ξ′

0ny×nz

] ∣∣∣∣ξ′ ∈ X ′
 ⊆ X .

Therefore, from (4), there exists an equilibrium for which α1

α2

α3

 =

[
ξ′

0ny×nz

]
,

where ξ′ ∈ X ′. For this equilibrium, clearly, α3 = 0.
Signalling games, such as cheap-talk games, most often

admit a family of trivial equilibria, known as babbling equi-
libria [21], in which (i) the transmitted signal of the sensor
is not correlated with the to-be-estimated random variable
and (ii) the receiver completely dismisses the transmitted
signal of the sensor. In what follows, we prove that the
equilibrium captured in Corollary 2.3 is not a babbling one,
i.e., the sensor does not “flat-out lie” and the receiver hence
benefits from listening to the transmitted message. Moreover,
at the recovered equilibrium, complete honesty is never in the
sensor’s benefit.

PROPOSITION 2.5: Let nz = 1. For the equilibria captured
in Corollary 2.4, we have α1 6= 0 and α2 6= 0.

Proof: See Appendix B.
Clearly, because α1 6= 0, at the equilibrium, the sensor’s

message always carries some useful information. Moreover,
the message also partially reflects the private information of
the sensor because α2 6= 0. Notice that this result holds
irrespective of the correlation between x and θ. Let us show
this with help of a small example.

EXAMPLE 1: Let us consider the simple setup in which
Vxx = 1 and there is no side channel information available.
Further, assume that θ = µx + n where n is an independent
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Gaussian random variable with zero mean and Vnn = 1.
This way, we can capture a variety of interesting cases.
Doing so, we get Vxθ = µ and Vθθ = µ2 + 1. Figure 2
illustrates coefficients α1, α2 and their ratio, at the captured
equilibrium, as a function of the correlation between x and
θ. Interestingly, even for negative correlations, the message
contains some useful information about x. For instance, even
when µ = −1 which points to that the sensor and the receiver
have completely different objectives, the sensor’s message
contains significant information about the variable x. The same
is true for the µ = 0, pointing to the case where there is no
correlation between θ and x.

For the setup of this example, we can calculate the equilib-
rium explicitly as[

α1

α2

]
=

1√(
2µ+

√
(2µ+ 1)2 + 4 + 1

)2
+ 4

×
[√

(2µ+ 1)2 + 4 + 1
2

]
.

Further, we have

α1

α2
=

√
(2µ+ 1)2 + 4 + 1

2
.

In this case, we have

d

dµ

(
α1

α2

)
=

2µ+ 1√
(2µ+ 1)2 + 4

.

Evidently, after the threshold µ > −1/2, as we increase the
correlation, the sensor provides a more accurate measurement
of the to-be-estimated random variable x (because the ratio
α1/α2 becomes an increasing function of µ).

Now, let us extend the presented formulation to dynamic
estimation problem.

B. Dynamic Estimation

Consider an estimation problem in which the sensor and the
receiver are following the communication structure in Figure 3.
The goal of the receiver is to estimate the state vector x[k] ∈
Rnx , which is evolving according to

x[k] = Ax[k]x[k − 1] + wx[k],

where (wx[t])t∈N0
is a sequence of i.i.d Gaussian random

variables with zero mean.The timing of the game is as follows.
At each time step k ∈ N0, first, an honest but noisy side
channel reveals the measurement

y[k] = Cyx[k]x[k] + Cyθ[k]θ[k] + wy[k],

where (wy[t])t∈N0 is a sequence of i.i.d Gaussian random
variables with zero mean. Then, the strategic sensor S trans-
mits its message z[k]. Let θ[k] ∈ Rnx denote the private
information of the sensor at time step k ∈ N0. The message
that the sensor is transmitting at each time step can poten-
tially be a function of all the previous state measurements
and private signals according to the conditional distribution
p(·|x[0 : k], y[0 : k], θ[0 : k]). Similar to Subsection II-A in
order to greatly simplify the presentation, we denote this by a

RS

x[k]

θ[k]

z[k]
x̂(k)(y[0 : k], z[0 : k])

y[k]

Fig. 3. The communication structure between the strategic sensor S and
the side channel with the receiver R for the dynamic case. Similarly, we have
used a dashed edge for connecting the side-channel information to the strategic
sensor to portray the fact that, for some equilibria, the sensor does not utilize
its knowledge of the side-channel information and, hence, this assumption is
not necessary in the framework.

stochastic mapping z[k] = γ(k)(x[0 : k], y[0 : k], θ[0 : k]) such
that

P{γ(k)(x[0 : k], y[0 : k], θ[0 : k]) ∈ Z}

=

∫
z′∈Z

p(z′|x[0 : k], y[0 : k], θ[0 : k])dz′, ∀Z ⊆ Rnz .

Let the set of all such mappings be denoted by Γ(k). After
that, the receiver calculates the best estimate of the state by
minimizing E{‖x[k] − υ(k)(y[0 : k], z[0 : k])‖2} over Υ(k),
which is the set of all Lebesgue-measurable functions from∏k
t=0 Rny ×

∏k
t=0 Rnz to Rnx . Finally, the cost functions of

the receiver and the sensor for that time step are realized.
We assume that the private information of the sensor is also
evolving according to the linear update rule

θ[k] = Aθ[k]θ[k − 1] + wθ[k],

where (wθ[t])t∈N0
is a sequence of i.i.d Gaussian random

variables with zero mean. We make the following standing
assumption.

ASSUMPTION 2.2: For each k ∈ N0, the random variables
wx[k], wθ[k], and wy[k] are jointly distributed Gaussian ran-
dom variables with zero mean and a covariance matrix that
satisfies

E


 wx[k]
wθ[k]
wy[k]

 wx[k]
wθ[k]
wy[k]

>


=

 Vwx[k]wx[k] 0 0
0 Vwθ[k]wθ[k] 0
0 0 Vwy [k]wy [k]

 ∈ S2nx+ny
++ .

With these definitions in hand, we are ready to define the
equilibrium.

DEFINITION 2.6: (EQUILIBRIUM): A tuple ((x̂(k)∗)k∈N0 ,
(γ(k)∗)k∈N0

) ∈
∏
k∈N0

C(Γ(k),Υ(k))×
∏
k∈N0

Γ(k) constitutes
an equilibrium for the repeated game if for all k ∈ N0,
condition (18), on top of the next page, holds with z[t] =
γ(t)∗(x[0 : t], y[0 : t], θ[0 : t]) for all t ∈ N0.

REMARK 2.4: Note that this definition implies that the
receiver and the sensor care about their immediate cost at
each time step and are, hence, myopic decision makers at
each time step. This definition differs from that of a subgame
perfect equilibrium (see [22]) in a dynamic game in which the
decision makers optimize their cost-to-go, e.g., a discounted
summation of their cost over the rest of the horizon. These
equilibria, referred to as myopic Nash equilibria or period-
by-period Nash equilibria, have been used in the economics
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x̂(k)∗ ∈ arg min
x̂(k)∈C(Γ(k),Υ(k))

E{‖x[k]− [x̂(k)(γ(k)∗)](y[0 : k], z[0 : k])‖2}, (18a)

γ(k)∗ ∈ arg min
γ(k)∈Γ(k)

E{‖(x[k] + θ[k])− [x̂(k)∗(γ(k))](y[0 : k], z[0 : k − 1], γ(k)(x[0 : k], y[0 : k], θ[0 : k]))‖2}, (18b)

literature to model various competitive scenarios [23]. Our
interest in this equilibrium concept is motivated by two main
factors:

(i) In estimation theory, the optimal least mean squares filter
for dynamic problems (i.e., Kalman filters) are designed
so as to minimize the estimation error variance in each
time step individually [18];

(ii) In cyber-security problems, a malicious agent might inject
false data so that the state estimated by the receiver tracks
that of another legitimate-looking one (while the agent
is pursuing its agenda through manipulating the actual
state of the system in an stealth manner) [6]. Hence, the
agent might wish to minimize the distance between the
estimate and the state of another system at each iteration
separately.

THEOREM 2.7: There exists at least one equilibrium in
which the receiver uses the LMS estimator

[x̂(k)∗(γ(k))](y[0 : k], z[0 : k]) =
[
Vx[k]ψ[k] Vx[k]z[k]

]
×
[
Vψ[k]ψ[k] Vψ[k]z[k]

Vz[k]ψ[k] Vz[k]z[k]

]−1 [
ψ[k]
z[k]

]
, (19)

where

ψ[k] =
[
y[0]> · · · y[k]> z[0]> · · · z[k − 1]>

]>
,

and the sensor uses the policy

γ(k)∗(x[0 : k], y[0 : k], θ[0 : k])

= Czx[k]x[k] + Czψ[k]ψ[k] + Czθ[k]θ[k] + v[k]. (20)

In the sensor’s policy, we have[
Czx[k] Czθ[k] Czψ[k]

]
=

 Vx[k]z[k]

Vθ[k]z[k]

Vψ[k]z[k]

>  Vx[k]x[k] Vx[k]θ[k] Vx[k]ψ[k]

Vθ[k]x[k] Vθ[k]θ[k] Vθ[k]ψ[k]

Vψ[k]x[k] Vψ[k]θ[k] Vψ[k]ψ[k]

−1

,

and {v[t]}t∈N0 is a sequence of i.i.d Gaussian random vari-
ables with zero mean and covariance matrices[

Vv[k]x[k] Vv[k]ψ[k] Vv[k]θ[k]

]
=
[

0 0 0
]
,

Vv[k]v[k] = I −

 Vx[k]z[k]

Vθ[k]z[k]

Vψ[k]z[k]

>Q[k]

 Vx[k]z[k]

Vθ[k]z[k]

Vψ[k]z[k]

 ,
where Vx[k]z[k]

Vθ[k]z[k]

Vψ[k]z[k]

 ∈ arg min
ξ∈R(2nx+dim(ψ[k]))×nz

trace(ξ>W [k]ξ)

s.t. ξ>Q[k]ξ ≤ I,

with

W [k] = Ξ[k]>
[

I −I
−I 0

]
Ξ[k],

Q[k] = Ξ[k]>
([

Vx[k]x[k] Vx[k]θ[k]

Vθ[k]x[k] Vθ[k]θ[k]

]
−
[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]
V −1
ψ[k]ψ[k]

[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]>)−1

Ξ[k],

Ξ[k] =

[
I 0 −Vx[k]ψ[k]V

−1
ψ[k]ψ[k]

0 I −Vθ[k]ψ[k]V
−1
ψ[k]ψ[k]

]
.

Furthermore, the sensor’s policy of the form (κkγ
(k)∗)k∈N0

,
for κk ∈ R \ {0},∀k ∈ N0, along side the receiver’s
policy (x̂(k)∗)k∈N0

, also constitutes an equilibrium. All these
equilibria result in the same estimation error variance at the
receiver.

Proof: The proof follows from applying the results of
Theorem 2.2 in each time step and treating all the accumulated
information at this time y[0], . . . , y[k], z[0], . . . , z[k−1] as the
side-channel information.

The strategies of the receiver and the sensor in the portrayed
equilibria in Theorem 2.7 can potentially require an infinite
amount of memory because the size ψ[k] grows with k.
However, similar to the previous subsection, we would like
to find an equilibrium for which Czψ[k] = 0 and, hence, the
sensor does require an infinite memory to keep track of all
the previously transmitted signals. This is discussed in the
following corollary.

COROLLARY 2.8: There exists at least one equilibrium in
which γ(k)∗ is a memory-less function for all k ∈ N0. More
precisely, the receiver uses the LMS estimator in

[x̂(k)∗(γ(k))](y[0:k], z[0:k]) = E{x[k] | y[0:k], z[0:k]}, (21)

and the sensor uses the policy

γ(k)∗(x[0 : k],y[0 : k], θ[0 : k])

= Czx[k]x[k] + Czθ[k]θ[k] + v[k],

where {v[t]}t∈N0
is a sequence of i.i.d Gaussian random

variables with zero mean and covariance matrices[
Vv[k]x[k] Vv[k]ψ[k] Vv[k]θ[k]

]
=
[

0 0 0
]
,

Vv[k]v[k] = I −
[
Czx[k] Czθ[k]

]
Ξ′[k]

[
Czx[k]>

Czθ[k]>

]
,

in which[
Czx[k]>

Czθ[k]>

]
∈ arg min
ξ′∈R2nx×nz

trace(ξ
′>W ′[k]ξ′)

s.t. ξ
′>Ξ′[k]ξ′ ≤ I,
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with

W ′[k] =Ξ′[k]>
[
−I −I
−I 0

]
Ξ′[k],

Ξ′[k] =

[
Vx[k]x[k] Vx[k]θ[k]

Vθ[k]x[k] Vθ[k]θ[k]

]
−
[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]
V −1
ψ[k]ψ[k]

[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]>
.

Furthermore, the sensor’s policy of the form (κkγ
(k)∗)k∈N0

,
for κk ∈ R \ {0},∀k ∈ N0, along side the receiver’s
policy (x̂(k)∗)k∈N0

, also constitutes an equilibrium. All these
equilibria result in the same estimation error variance at the
receiver.

Proof: The proof follows from applying the results of
Corollary 2.4 at each time step.

Now that we have showed that there is at least one equi-
librium in which the measurement z[k] is constructed using
an affine memory-less mapping, we can generate a recursive
filter for constructing the best estimate in (21). The following
remark is devoted to this construction.

REMARK 2.5: The receiver needs to implement a Kalman
filter (e.g., see [18]) for the equilibrium in Corollary 2.8. To
do so, first, with slight abuse of notation, let us introduce[

x̂[k]

θ̂[k]

]
=

[
E{x[k]|y[0 : k], z[0 : k]}
E{θ[k]|y[0 : k], z[0 : k]}

]
,∀k ∈ N0.

Hence, clearly, x̂(k)∗(y[0 : k], z[0 : k]) = x̂[k]. Now, we may
also define the error covariance matrix

P [k] = E

{[
x[k]− x̂[k]

θ[k]− θ̂[k]

] [
x[k]− x̂[k]

θ[k]− θ̂[k]

]>}
,∀k ∈ N0.

Transitioning from time step k−1 to time step k, the first stage
of the Kalman filter is the prediction phase, which results in
the estimate[

x̃[k]

θ̃[k]

]
=

[
E{x[k]|y[0 : k − 1], z[0 : k − 1]}
E{θ[k]|y[0 : k − 1], z[0 : k − 1]}

]
=

[
Ax[k] 0

0 Aθ[k]

] [
x̂[k − 1]

θ̂[k − 1]

]
,

and the error covariance update

P̃ [k] = E

{[
x[k]− x̃[k]

θ[k]− θ̃[k]

] [
x[k]− x̃[k]

θ[k]− θ̃[k]

]>}

=

[
Ax[k] 0

0 Aθ[k]

]
P [k − 1]

[
Ax[k] 0

0 Aθ[k]

]>
+

[
Vwx[k]wx[k] 0

0 Vwθ[k]wθ[k]

]
.

After receiving the measurement y[k], i.e., the information
shared by the side channel, we may update the estimate to[

x̀[k]

θ̀[k]

]
=

[
E{x[k]|y[0 : k], z[0 : k − 1]}
E{θ[k]|y[0 : k], z[0 : k − 1]}

]
=

[
x̃[k]

θ̃[k]

]
+ K̀[k]

(
y[k]− Cy[k]

[
x̃[k]

θ̃[k]

])
,

R

S1

S2

...
SN

x
θ1

θ2

θN

x̂((yi)i∈JNK)

y1
y2

yn

Fig. 4. The communication structure between the sensors (Si)i∈JNK and
the receiver R.

where

K̀[k] = P̃ [k]Cy[k]>(Cy[k]P̃ [k]Cy[k]> + Vwy [k]wy [k])
−1,

with Cy[k] =
[
Cyx[k] Cyθ[k]

]
. This update improves the

error covariance matrix according to

P̀ [k] = E

{[
x[k]− x̀[k]

θ[k]− θ̀[k]

] [
x[k]− x̀[k]

θ[k]− θ̀[k]

]>}
= (I − K̀[k]Cy[k])P̃ [k].

Finally, after receiving the measurement z[k], i.e., the infor-
mation transmitted by the strategic sensor, we may update the
estimate to[

x̂[k]

θ̂[k]

]
=

[
x̀[k]

θ̀[k]

]
+K[k]

(
z[k]− C∗z [k]

[
x̀[k]

θ̀[k]

])
,

where

K[k] = P̀ [k]Cz[k]>(Cz[k]P̀ [k]Cz[k]> + Vwz [k]wz [k])
−1,

with Cz[k] =
[
Czx[k] Czθ[k]

]
. This update results in the

error covariance update rule

P [k] = (I −K[k]Cz[k])P̀ [k].

Therefore, we have a recursive scheme for constructing the
estimates of the receiver. Moreover, calculating Ξ′[k] is also
straightforward using the parameters of the introduced Kalman
filter as

Ξ′[k] =

[
Vx[k]x[k] Vx[k]θ[k]

Vθ[k]x[k] Vθ[k]θ[k]

]
−
[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]
V −1
ψ[k]ψ[k]

[
Vx[k]ψ[k]

Vθ[k]ψ[k]

]>
=E

{[
x[k]− x̀[k]

θ[k]− θ̀[k]

] [
x[k]− x̀[k]

θ[k]− θ̀[k]

]>}
= P̀ [k].

III. MULTIPLE SENSORS

We now consider static estimation with multiple strategic
sensors for both synchronous and asynchronous communica-
tion.
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A. Static Estimation with Synchronous Independent Sensors

In this section, we assume that the sensors and the receiver
are connected to each other using the communication network
presented in Figure 4. For each i ∈ JNK, sensor Si transmits
the message yi ∈ Rnyi to the receiver R. All these signals are
transmitted at exactly the same time through parallel secure
communication channels to the receiver (see Figure 4). Hence,
the sensors do not have access to each other messages and
cannot use this information for constructing their signals. Note
that the parameters of the policies of other sensors may be
available but the signal realization itself is off limit. Again, as
in the last section, each sensor Si has access to the exact value
of the state x ∈ Rnx (which the receiver wants to estimate)
and its private parameter θi ∈ Rnx . We also assume that x and
θi, i ∈ JNK, are jointly distributed Gaussian random variables
with zero mean.

Motivated by the results of the previous section, which
showed that there exists an equilibrium in which the sensor
uses an affine policy, we now restrict ourselves to affine sensor
policies in the multi-sensor case. More precisely, we assume
that sensor i’s policy γi is of the form

yi = γi(x, θi)

= a>i x+ b>i θi + vi,

where ai, bi ∈ Rnx×nyi are deterministic values and vi ∈ Rnyi
is a zero mean Gaussian random variable. The set of all
such policies is denoted by Γi. In these policies, without
loss of generality, we can assume that for any i ∈ JNK,
vi is statistically independent of x and θi. Note that two
jointly distributed Gaussian random variables are statistically
independent if and only if they are uncorrelated [24, p.108].
To show that this assumption is without loss of generality,
suppose that vi is not statistically independent of x and/or θi,
that is, Vvix 6= 0 and/or Vviθi 6= 0. In such case, we can clearly
rewrite the output vector as

yi = a′i
>
x+ b′i

>
θi + v′i,

where

a′i = ai +

([
Vvix
Vviθi

] [
Vxx Vxθi
Vθix Vθiθi

]−1 [
I
0

])>
,

b′i = bi +

([
Vvix
Vviθi

] [
Vxx Vxθi
Vθix Vθiθi

]−1 [
0
I

])>
,

and

v′i = vi −
[
Vvix
Vviθi

] [
Vxx Vxθi
Vθix Vθiθi

]−1 [
x
θi

]
.

For this new representation, it follows from simple algebraic
manipulations that Vv′ix = 0 and Vv′iθi = 0, i.e., that v′i is
independent of x and θi (again, since all these variables are
jointly distributed Gaussian random variables).

Each γi ∈ Γi can be equivalently represented using the tuple
(ai, bi, Vvivi) and, therefore, the set of feasible policies Γi is
isomorphic to the product space Rnx×nyi ×Rnx×nyi ×Snyi+ .
Taking advantage of this bijection, we will sometimes abuse
notation and refer to this tuple directly as γi.

Following the transmission of messages y = (yi)i∈JNK, the
receiver computes υ(y) =E{x | y1, . . . , yN} so as to minimize
E{‖x− x′‖22} over the set of random variables x′ measurable
with respect to y1, . . . , yN .

Similar to the problem formulation of the last section, the
ultimate goal of each sensor Si, i ∈ JNK, is to make sure
υ(y) is a good estimate of x plus its private information θi.
Therefore, the cost function that sensor i, i ∈ JNK, is trying
to minimize is

E{‖(x+ θi)− υ(γi(x, θi), (γj(x, θj))j 6=i)‖22}.

This naturally leads us to the following definition.
DEFINITION 3.1: (EQUILIBRIUM IN AFFINE STRATE-

GIES): Let Υ denote the set of all Lebesgue-measurable
functions from

∏
i∈JNK Rnyi to Rnx . A tuple (x̂∗,(γ∗i )i∈JNK)

∈ C(
∏
i∈JNK Γi,Υ)×

∏
i∈JNK Γi constitutes an equilibrium in

affine strategies if

x̂∗ ∈ arg min
x̂∈C(

∏
i∈JNK Γi,Υ)

E{‖x− [x̂((γ∗j )j∈JNK)]((γ
∗
j (x, θj))j∈JNK)‖22},

(22a)
γ∗i ∈ arg min

γi∈Γi

E{‖(x+ θi)− [x̂∗(γi, (γ
∗
j )j 6=i)]

(γi(x, θi), (γ
∗
j (x, θj))j 6=i)‖22}, (22b)

for all i ∈ JNK.
REMARK 3.1: Note that the qualifier “in affine strategies”

in the definition above means that the equilibrium in question
is a best response only when the sensors’ strategy space is
the set of all affine policies Γi. This analysis gives a lower-
bound on the influence of the sensors (on the quality of
the estimation) since they find more degrees of freedom for
constructing untruthful messages (and, hence, create a larger
error to their benefit) by extending their set of strategies to
also cover nonlinear mappings.

We are interested in situations where the sensors population
is large and homogeneous, at least as perceived by the receiver.
In this case, it is natural to model the private parameters θi,
i ∈ JNK, as i.i.d random variables. Keeping in mind that we as-
sumed these are jointly distributed Gaussian random variables
with zero mean, their distribution is fully characterized by their
covariance matrices Vxθi = Vxθ for all i ∈ JNK. Furthermore,
let Vθiθj = Vθθ if i = j and Vθiθj = Uθθ otherwise. In this
homogeneous context, the receiver should expect all sensors to
use the same policy, and the most compelling characterization
of the population’s behavior is thus provided by symmetric
equilibria. In the remainder of this subsection, we show that
such a symmetic equilibrium in affine strategies indeed exists.
To do so, we first need to prove the following lemma.

LEMMA 3.2: If γi = (a, b, Vvv) for all i ∈ JNK, then
E{x|y1, . . . , yN} = E{x|(y1 + · · ·+ yN )/N}.

Proof: See Appendix C.
We are now in a position to prove the main result of

this part regarding the existence of symmetric equilibria in
affine strategies. In order to derive explicit expressions, we
henceforth assume that dim(yi) = 1 for all i ∈ JNK, i.e., that
all sensors use scalar messages.
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THEOREM 3.3: Assume that nyi = 1 for all i ∈ JNK,
Vxθ = 0, and Uθθ = 0. There exists a symmetric equi-
librium in affine strategies in which the receiver follows
[x̂∗((γi)i∈JNK)](y) = E{x|(y1 + · · · + yN )/N} and sensor
Si, i ∈ JNK, employs the linear policy γ∗ = (a∗, b∗, 0) where[

b∗

a∗

]
=

√
1

1 + (N − 1)ξ>1 ξ1

[
NV

−1/2
θθ 0

0 V
−1/2
xx

]
ξ

and ξ =
[
ξ>1 ξ>2

]>
is the normalized eigenvector (i.e.,

‖ξ‖2 = 1) corresponding to the smallest eigenvalue of the
matrix [

0 −V 1/2
θθ V

1/2
xx

−V 1/2
xx V

1/2
θθ −Vxx

]
.

Furthermore, the sensors’ policy of the form κγ∗, for some
κ ∈ R\{0}, along side the receiver’s policy x̂∗, also constitutes
a symmetric equilibrium in affine strategies.

Proof: Let ȳ = N−1
∑N
i=1 yi, ā = N−1

∑N
i=1 ai,

and v̄ = N−1
∑N
i=1 vi. For the sake of the simplicity of

the presentation, in this proof, we write x̂∗(y) instead of
[x̂∗((γi)i∈JNK)](y). For calculating x̂∗(y) = VxȳV

−1
ȳȳ ȳ, first,

we need to compute the following quantities

Vxȳ = E
{
xȳ>

}
= E

x
[
ā>x+

1

N

N∑
i=1

b>i θi + v̄

]>
= Vxxā, (23)

and

Vȳȳ=E
{
ȳȳ>

}
=E

{[
ā>x+

1

N

N∑
i=1

b>i θi+v̄

][
ā>x+

1

N

N∑
i=1

b>i θi+v̄

]>}

=ā>Vxxā+
1

N2

N∑
i=1

b>i Vθθbi +
1

N2

N∑
i=1

Vvivi . (24)

We can also expand the cost of each agent as

E{‖(x+ θi)− x̂∗(y)‖22}
= trace(Vxx + Vθθ − E{(x+ θi)x̂

∗(y)>}
− E{x̂∗(y)(x+ θi)

>}+ E{x̂∗(y)x̂∗(y)>}). (25)

Now, notice that the identity in (26) holds. Substituting (26)
into (25) results in

E{‖(x+ θi)− x̂∗(y)‖22}
= trace(Vxx+Vθθ)+trace

(
−N−1VθθbiV

−1
ȳȳ Vȳx

− VxȳV −1
ȳȳ N

−1b>i V
>
θθ − VxȳV −1

ȳȳ Vȳx
)
. (27)

The receiver, without incurring any information loss, can scale
up or down the received measurements to make sure Vȳȳ = 1
(note that dim(ȳ) = 1). Let us show that this assumption
is without loss of generality. To do so, notice that by fixing
strategies of sensors j 6= i, we can calculate the best response
of sensor i through solving

min
ai,bi,Vvivi

E{‖(x+ θi)− VxȳV −1
ȳȳ ȳ‖22},

because x̂∗(y) = (Vxȳ/Vȳȳ)ȳ (recall that dim(ȳ) = 1). Notice
that ȳ is implicitly a function of (ai, bi, Vvivi). Now, let us de-
fine ỹ = ȳ/

√
Vȳȳ . Evidently, Vỹỹ = 1 and Vxỹ = Vxȳ/

√
Vȳȳ .

Therefore, x̂∗(y) = Vxỹ ỹ (following simple algebraic manip-
ulations). This indeed shows that we can calculate the best
response of sensor i by solving

min
ãi,b̃i,Ṽvivi

E{‖(x+ θi)− Vxỹ ỹ‖22},

s.t. Vỹỹ = 1,

in which ãi = ai/
√
Vȳȳ , b̃i = bi/

√
Vȳȳ , and Ṽvivi =

Vvivi/Vȳȳ . Therefore, these two optimization problems are
equivalent and, hence, the assumption that Vȳȳ = 1 is without
loss of generality. Now, by substituting (23) into (27), we get

E{‖(x+θi)− x̂∗(y)‖22}
= trace(Vxx + Vθθ) + trace(−N−1VθθbiVȳx

− VxȳN−1b>i V
>
θθ − VxȳVȳx)

= trace(Vxx + Vθθ) + trace
(
−N−1Vθθbiā

>Vxx

− VxxāN−1b>i V
>
θθ − Vxxāā>Vxx

)
= trace(Vxx + Vθθ) + trace

(
−N−1ā>VxxVθθbi

−N−1b>i VθθVxxā− ā>VxxVxxā
)

= trace(Vxx + Vθθ) +

[
bi
ā

]>
G

[
bi
ā

]
,

where

G =

[
0 − 1

N VθθVxx
− 1
N VxxVθθ −VxxVxx

]
.

Let βi :
∏
j 6=i Γj → Γi denote the best response of player i.

This mapping is defined as βi(γ−i) = (a∗i , b
∗
i , V

∗
vivi) where

V ∗vivi = 1− 1

N2

∑
j 6=i

Vvjvj − ā∗>Vxxā∗ −
1

N2

∑
j 6=i

b>j Vθθbj

− 1

N2
b∗>i Vθθb

∗
i ,

and a∗i = Nā∗ −
∑
j 6=i aj with

(ā∗, b∗i ) ∈ arg min
ā,bi

[
bi
ā

]>
G

[
bi
ā

]
, (28a)

s.t. ā>Vxxā+
1

N2

N∑
j=1

b>j Vθθbj

≤ 1− 1

N2

∑
j 6=i

Vvjvj , (28b)

where the constraint (28b) is motivated by

Vvivi = 1− ā>Vxxā−
1

N2

N∑
j=1

b>j Vθθbj −
1

N2

∑
j 6=i

Vvjvj ≥ 0,

which can be extracted through rearranging the terms in (24)
while setting Vȳȳ = 1. Note that Vvivi ≥ 0 because the
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E{(x+ θi)x̂
∗(y)>} = E

{
(x+ θi)

[( 1

N

N∑
i=1

ai

)>
x+

1

N

N∑
i=1

b>i θi +
1

N

N∑
i=1

vi

]>
V −1
ȳȳ Vȳx

}
=

(
Vxȳ +

1

N
Vθθbi

)
V −1
ȳȳ Vȳx. (26)

variance of any random variable, by definition, must be non-
negative. Now, we can rewrite (28) as

min
ā,bi

[
bi
ā

]>
G

[
bi
ā

]
, (29a)

s.t.

[
bi
ā

]> [ 1
N2Vθθ 0

0 Vxx

] [
bi
ā

]
≤ 1− 1

N2

∑
j 6=i

b>j Vθθbj −
1

N2

∑
j 6=i

Vvjvj . (29b)

If 1
N2

∑
j 6=i b

>
j Vθθbj + 1

N2

∑
j 6=i Vvjvj = 1, we know that

b∗i = 0 and ā∗ = 0. Thus, we focus on the case where
1
N2

∑
j 6=i b

>
j Vθθbj + 1

N2

∑
j 6=i Vvjvj < 1. With change of

variable[
b′i
ā′

]
=

1√
1− 1

N2

∑
j 6=i b

>
j Vθθbj − 1

N2

∑
j 6=i Vvjvj

[
bi
ā

]
,

we can rewrite (29) as

min
ā,bi

%

[
b′i
ā′

]>
G

[
b′i
ā′

]
,

s.t.

[
b′i
ā′

]> [ 1
N2Vθθ 0

0 Vxx

] [
b′i
ā′

]
≤ 1,

where % = 1− 1
N2

∑
j 6=i b

>
j Vθθbj− 1

N2

∑
j 6=i Vvjvj . Following

Lemma A.1 in Appendix A, we know that the solution of this
problem is indeed equal to[

b′∗i
ā′∗

]
=

[
NV

−1/2
θθ 0

0 V
−1/2
xx

]
ξ,

where ξ is the normalized eigenvector (i.e., ‖ξ‖2 = 1)
corresponding to the smallest eigenvalue of the matrix[

NV
−1/2
θθ 0

0 V
−1/2
xx

]
G

[
NV

−1/2
θθ 0

0 V
−1/2
xx

]

=

[
0 −V 1/2

θθ V
1/2
xx

−V 1/2
xx V

1/2
θθ −Vxx

]
.

This is indeed true because the above matrix always has at
least one negative eigenvalue because its trace is equal to
trace(−Vxx) which is negative (otherwise, the sensor would
be better off by selecting ai = 0 and bi = 0). This solution
implies that βi(γ−i) = (a∗i , b

∗
i , 0) where[

b∗i
a∗i

]
=

√
1− 1

N2

∑
j 6=i

b>j Vθθbj −
1

N2

∑
j 6=i

Vvjvj

×

[
NV

−1/2
θθ 0

0 NV
−1/2
xx

]
ξ−
[

0∑
j 6=i aj

]
.

Now, one can check that the γ∗ = (a∗, b∗, 0) with a∗ and b∗

defined as in the statement of the theorem is a fixed point of
the best response mapping, that is, γ∗ = βi((γ

∗)j 6=i), ∀i.

Because for the presented equilibrium in Theorem 3.3, ξ1
is independent of N , the estimation quality in the receiver
degrades with increasing N . This is because ai and bi are,
respectively, decreasing and increasing functions of N , which
means that each sensor puts more emphasis on its private
information rather than the state of the system as N grows.
More precisely, we can show the following corollary.

COROLLARY 3.4: Assume that nyi = 1 for all i ∈
JNK, Vxθ = 0, and Uθθ = 0. Let (x̂∗, (γ∗)i∈JNK) be the
equilibrium in affine strategies introduced in Theorem 3.3.
Then, E{‖x − [x̂∗((γ∗)i∈JNK)]((γ

∗(x, θi))i∈JNK)‖22} is an
increasing function of N , specifically, limN→∞ E{‖x −
[x̂∗((γ∗)i∈JNK)]((γ

∗(x, θi))i∈JNK)‖22} = trace(Vxx).
Proof: See Appendix D.

Corollary 3.4 states a rather counter-intuitive result as it
shows that, for the extracted affine equilibrium, the per-
formance of the receiver (i.e., the quality of the estimate)
degrades by summoning more sensors. This behavior can
become even worse by expanding the policies of the sensors
to also contain nonlinear mappings (see Remark 3.1). By
considering a slightly different model in the next section, we
show that this result crucially depends on each sensor’s belief
about the others’ strategic intention in equilibrium.

EXAMPLE 2: (TRAFFIC ESTIMATION): Consider an ex-
ample in which the receiver is interested in estimating the
travel time on a single road. Note that this setup can be
easily generalized to a neighborhood or a city by separately
estimating the traffic on each road. In addition, considering
the traffic flow conservation (i.e., the total inflow and outflow
traffic are equal to each other in each junction), we can
use the measurements from adjacent roads as side-channel
information. The travel time is a scalar variable denoting the
time that it takes to go from one end of the street to the
other end, which varies according to the congestion level.
At any given time of the day, using the historical data, we
have a fairly accurate measurement of the average travel time.
Therefore, the task at hand is to measure the innovation
(i.e., the travel time minus its average) which is denoted by
x. Although, in transportation literature, the travel times are
assumed to follow a log-normal distribution for highways and
urban areas, assuming a Gaussian distribution is also fairly
common [25] (note that, with a Gaussian distribution, the
travel time may become negative with a nonzero probability,
however, this probability will be negligible if the variance is
small). The vehicles that drive along the road have an accurate
measurement of x by timing their trips. Now, imagine we have
distributed a mobile application for crowd-sourcing estimation
that asks the vehicles to register their message yi, i ∈ JNK,
and, in return, it provides the community of its user with
time-optimal trip planning. The application, as many of the
available traffic applications, does not reveal the messages of
the other vehicles (since it is rather useless for most users
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Fig. 5. Estimation error E{‖x − x̂(y)‖22} as a function of the number of
sensors N for different sensing scenarios.

who simply wish to plan their trip). Clearly, in this example,
we have nx = 1 and nyi = 1 for all i ∈ JNK. Furthermore,
using an appropriate change of variable, we can always set
Vxx = 1. Let us assume that Vxθ = 0, which implies that the
sensors preference does not depend on the actual state of the
traffic (i.e., they under- or over-state the traffic irrespective
of what is going on the road). Finally, let Vθθ = 1. A key
assumption is that the number of the participants N needs
to be fixed in advance and, more restrictively, to be known
globally. In some cases, this quantity might be known a priori
as commercial crowd-sourcing applications tend to publicly
advertise the number of the consented participants; however,
a viable direction for future research could be to introduce
individual beliefs on the number of participants for each sensor
in order to avoid the dependency of the equilibrium to N .

Following Theorem 3.3, under the described circumstances,
we can calculate the sensors’ signal

yi =
0.8506√

0.7236 + 0.2763N
x+

0.5257N√
0.7236 + 0.2763N

θi.

We also know that x̂∗(y) = E{x|(y1 + · · ·+ yN )/N}, which
allows us to calculate the estimation error as a function of the
number of sensors according to

e1(N) = E{‖x− x̂∗(y)‖22} =
0.2763N

0.7236 + 0.2763N
.

Clearly, as N grows, the quality of the estimation degrades.
Figure 5 illustrates the estimation error variance e1(N) as a
function of the number of sensors N with a blue solid curve.
As we can see, for large values of N , the crowd-sourcing
technique does not provide any insight in the travel time.

B. Static Estimation with Synchronous Herding Sensors

In this subsection, we consider “herding” equilibria in which
sensors imitate each other. The herding scenario models an
interesting intermediate situation where each sensor is refined
enough to recognize that others may also be strategically

misreporting but, having limited cognitive abilities, assumes
that they simply copy its own policy.

Note that, because of the symmetry assumptions, Γi = Γj
for all i, j ∈ JNK and, hence, we use Γ to denote these sets.

DEFINITION 3.5: (HERDING EQUILIBRIUM IN AFFINE
STRATEGIES): A pair (x̂∗, γ∗) ∈ C(Γ,Υ) × Γ constitutes a
herding equilibrium in affine strategies if

x̂∗ ∈ arg min
x̂∈C(Γ,Υ)

E{‖x− [x̂(γ∗)]((γ∗(x, θj))j∈JNK)‖22}, (30a)

γ∗ ∈ arg min
γ∈Γ

E{‖(x+ θi)− [x̂∗(γ)]((γ(x, θj))j∈JNK)‖22},

(30b)

for all i ∈ JNK.
In this definition, all the sensors must deviate at the same

time whereas, in Definition 3.1, the sensors could deviate uni-
laterally. Therefore, a herding equilibrium does not constitute
an equilibrium in the sense of Definition 3.1 since one of the
sensors might benefit from breaking away from the herd; i.e.,
by not employing the same strategy as the other sensors.

LEMMA 3.6: If γi = (a, b, Vvv) for all i ∈ JNK, then

E{‖(x+ θi)− E{x|y}‖22} = E{‖(x+ θ̄)− E{x|y}‖22}

+
N − 1

N
trace (Vθθ − Uθθ)

where θ̄ = (θ1 + · · ·+ θN )/N .
Proof: See Appendix E.

Lemma 3.6 shows that when the sensors herd, we can
replace them with a single sensor with private information
(θ1 + · · · + θN )/N . Now, intuitively, because of the Law of
Large Numbers, one might expect that, as N grows, the agents’
contributions cancel each other and, eventually, the receiver
may have access to the perfect estimation. We show this in
the rest of the subsection.

THEOREM 3.7: Assume that nyi = 1 for all i ∈ JNK,
Vxθ = 0, and Uθθ = 0. There exists a herding equilibrium
in affine strategies in which the receiver follows [x̂∗(γ)](y) =
E{x|(y1 + · · ·+yN )/N} and sensor Si, i ∈ JNK, employs the
linear policy γ∗ = (a∗, b∗, 0) where[

b∗

a∗

]
=

[ √
NV

−1/2
θθ 0

0 V
−1/2
xx

]
ζ,

and ζ is the normalized eigenvector (i.e., ‖ζ‖2 = 1) corre-
sponding to the smallest eigenvalue of the matrix[

0 − 1√
N
V

1/2
θθ V

1/2
xx

− 1√
N
V

1/2
xx V

1/2
θθ −Vxx

]
.

Furthermore, the sensors’ policy of the form κγ∗, for some
κ ∈ R\{0}, along side the receiver’s policy x̂∗, also constitutes
a herding equilibrium in affine strategies.

Proof: Following the result of Lemma 3.2, we know that
the receiver cannot improve its estimation error by following
different strategy. Following Lemma 3.6, all the sensors would
have the same cost which is equal to the cost function an
aggregate sensor with private information θ̄ = (θ1 + · · · +
θN )/N (up to a constant term). Therefore, in this scenario,
we can replace all the sensors with a single sensor. Doing
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so, we can use Theorem 2.2 to calculate the equilibrium for
the case that the side channel information is ignored. In this
case, we can see that the best response of the sensor can be
extracted from optimization problem

(V ∗xz, V
∗
θ̄z) ∈ arg min

Vxz,Vθ̄z

[
Vxz
Vθ̄z

]>[ −I −I
−I 0

][
Vxz
Vθ̄z

]
,

s.t.

[
Vxz
Vθ̄z

]>[
V −1
xx 0
0 V −1

θ̄θ̄

][
Vxz
Vθ̄z

]
≤1.

Again, using Lemma A.1, we can deduce that[
V ∗xz
V ∗
θ̄z

]
=

[
V

1/2
xx 0

0 V
1/2

θ̄θ̄

]
ζ,

where ζ is the normalized eigenvector (i.e., ‖ζ‖2 = 1) of the
smallest eigenvalue of[

V
1/2
xx 0

0 V
1/2

θ̄θ̄

] [
−I −I
−I 0

][
V

1/2
xx 0

0 V
1/2

θ̄θ̄

]

=

[
−Vxx − 1√

N
V

1/2
xx V

1/2
θθ

1√
N
V

1/2
θθ V

1/2
xx 0

]
,

where the second equality is a direct consequence of the fact
that Vθ̄θ̄ = N−1Vθθ. Now, following the same argument as in
the proof of Theorem 2.2, we can extract the explicit solution
presented in the statement of the theorem.

REMARK 3.2: Note that the results of Theorem 3.7 holds
for general mappings and not the set of affine policies. This is
because, in the proof of this theorem, we refer to the results
of Theorem 2.2 which holds for more general policies.

COROLLARY 3.8: Assume that nyi = 1 for all i ∈
JNK, Vxθ = 0, Uθθ = 0, Vxx = ηxI , and
Vθθ = ηθI . Let (x̂∗, (γ∗)i∈JNK) be the herding equi-
librium in affine strategies introduced in Theorem 3.7.
Then, E{‖x − [x̂∗(γ∗)]((γ∗(x, θi))i∈JNK)‖22} is a de-
creasing function of N . Furthermore, limN→∞ E{‖x −
[x̂∗(γ∗)]((γ∗(x, θi))i∈JNK)‖22} = 0.

Proof: See Appendix F.
EXAMPLE 2: (TRAFFIC ESTIMATION, CONT’D): Follow-

ing Theorem 3.7, we can calculate the sensors’ signal in the
herding equilibrium as

yi =

√
2√

N−
√
N(N + 4) + 4

x+

√
2N(

√
N(N + 4)−N)√

N−
√
N(N + 4) + 4

θi

Furthermore, we can calculate the estimation error in the
receiver as

e2(N) = 1− 2

N + 4−
√
N(N + 4)

.

In this case, it is evident that the quality of the estimation
improves as the number of sensors grows which demonstrates
why herding between strategic sensors is a virtue.

Now, let us consider a rival scenario in which the sensors
are not strategic, however, they have access to the noisy state
measurements. Therefore, they transmit y′i = x + ui where
(ui)i∈JNK are i.i.d Gaussian random variables so that E{ui} =
0 and E{u2

i } = σ for all i ∈ JNK. We also assume that

E{uix} = 0 for all i ∈ JNK. The estimation error is e3(N) =
σ/(σ +N).

Figure 5 illustrates the estimation error variances e2(N) and
e3(N) as a function of the number of sensors N to visually
compare the estimation error of different scenarios with each
other. Here, we have set σ = 0.3820 so that all the schemes
have equal error at N = 1. Interestingly, we can note that

lim
N→∞

e2(N)

e3(N)
=

1

σ
.

Hence, if σ > 1, employing many strategic but accurate
sensors that herd is better than employing many honest but
noisy sensors.

C. Static Estimation with Asynchronous Independent Sensors

In many crowd-sensing applications, the users enter their
data sequentially (and not simultaneously). This is the case,
firstly, because they do not coordinate their actions and,
secondly, because they are not measuring the state of nature
at the same time. This creates an interest for investigating
estimation in the presence of strategic sensor with asyn-
chronous communication structure, which is the topic of this
subsection. We still assume that the sensors and the receiver
are connected to each other using the communication network
presented in Figure 4; however, the sensors transmit their
signals sequentially and the receiver computes an estimate
after each transmission. At time step i ∈ JNK, only sensor
Si transmits the message yi ∈ Rnyi to the receiver R. Note
that the definition of “time step”, in this subsection, is not
the same as in Subsection II-B. Here, the evolution of “time”
merely points out the order of the sensors and the underlying
estimation problem is still static. We assume that the sensors
have access to all the previously transmitted messages (and
may consider them as side-channel information), however, as
we will see later, at the equilibria, the sensor do not use this
information. Similar to the previous subsections, each sensor
Si has access to the exact measurement of the state x ∈ Rnx
and its own private parameter θi ∈ Rnx .

At time step i ∈ JNK, the receiver R computes the
optimal estimate by minimizing E{‖x− υi((yk)ik=1)‖22} over
Υi denoting the set of all Lebesgue-measurable functions from∏i
k=1 R

nyk to Rnx . The goal of the sensor Si, i ∈ JNK, is
to minimize E{‖(x+ θ)− υi((yk)i−1

k=1, γi(x, (yk)i−1
k=1, θi))‖22}

over Γi, which is the set of appropriate stochastic mappings
defined in the same fashion as in Subsections II-A and II-B.
Unlike the previous subsections, we do not restrict ourselves
to affine policies.

DEFINITION 3.9: (EQUILIBRIUM WITH ASYN-
CHRONOUS COMMUNICATION): A tuple ((x̂∗i )i∈JNK,
(γ∗i )i∈JNK) ∈

∏
i∈JNK C(Γi,Υi) ×

∏
i∈JNK Γi constitutes

an equilibrium with asynchronous communication if for all
i ∈ JNK,

x̂∗i ∈ arg min
x̂i∈C(Γi,Υi)

E{‖x− [x̂i(γ
∗
i )]((y∗k)ik=1)‖22}, (31a)

γ∗i ∈ arg min
γi∈Γi

E{‖(x+ θ)− [x̂∗i (γi)]

((y∗k)i−1
k=1, γi(x, (y

∗
k)i−1
k=1, θi))‖

2
2}, (31b)
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where y∗k = γ∗k(x, (y∗k′)
k−1
k′=1, θk) for all k ∈ JNK.

REMARK 3.3: Here, the sensor are myopic, i.e.,
the cost of each sensor is only a function of
[x̂∗i (γi)]((y

∗
k)i−1
k=1, γi(x, (y

∗
k)i−1
k=1, θi)), which is the estimate

after its transmission and not the estimate at the end (after all
the transmissions). This is a particularly useful concept if the
sensors do not know the number of active participants in the
estimation scheme (but they can observe, at least, the number
of the sensor that have already contributed).

THEOREM 3.10: There exists an equilibrium in which, at
step i ∈ JNK, the receiver uses the LMS estimator

[x̂∗i (γi)]((y
∗
k)ik=1) = E{x|y∗1 , . . . , y∗i }, (32)

while the sensor Si, i ∈ JNK, uses the policy

y∗i = γ∗i (x, (y∗k)i−1
k=1, θ)

= α>1 x+ α>2 θ + vi. (33)

In the sensor’s policy, v ∈ Rnyi is a Gaussian random variable
with zero mean and covariance matrices[

Vvx Vvθ Vvy
]

=
[

0 0 0
]
,

Vvv = I −
[
α1

α2

]>
Ψi

[
α1

α2

]
,

in which[
α1

α2

]
∈ arg min
ξ∈R2nx×nyi

trace

(
ξ′
>

Ψi

[
−I −I
−I 0

]
Ψiξ
′
)
,

s.t. ξ′
>

Ψiξ
′ ≤ I,

with

Ψi =

[
Vxx Vxθ
Vθx Vθθ

]
−
[
Vxψi
Vθψi

]
V −1
ψiψi

[
Vxψi
Vθψi

]>
,

ψi =
[
y∗>1 · · · y∗>i−1

]>
.

Furthermore, the sensor’s policy of the form (κiγ
∗
i )i∈JNK, for

some κi ∈ R \ {0},∀i ∈ JNK, along side the receiver’s policy
(x̂∗i )i∈JNK, also constitutes an equilibrium. All these equilibria
result in the same estimation error variance at the receiver.

Proof: The proof follows from utilizing Theorem 2.2
sequentially and treating all accumulated information at this
time y∗1 , . . . , y

∗
i−1 as the side-channel information.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated static and dynamic estimation
with strategic self-interested sensors using a game theoretic
viewpoint. We first calculated an equilibrium for the single
sensor case in the presence of an honest but noisy side-channel
information for both static and dynamic estimation problems.
Interestingly, the sensor’s policy turned out to be memory-less
in the dynamic case for the characterized equilibrium. Then,
we extended the setup to study static estimation with multiple
sensors when (i) the sensors are strategic but restricted to
using affine policies and when (ii) they herd (i.e., they imitate
each others’ policies). We showed that when the sensors are
herding, the receiver can indeed estimate the state of the
system with a large number of sensors which does not seem

to be possible in the other case. Finally, we partly extended
the results to the case in which the sensors communicate
sequentially. An avenue for future research is to remove
the i.i.d. assumption from the underlying random variables.
Further future work can focus on using mechanism design
theory to appropriately incentivize the sensors to communicate
truthfully, which would allow us to better understand the price
of information in networked estimation.
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APPENDIX A

LEMMA A.1: For any n ∈ N, let X ∈ Rn×n be a symmet-
ric matrix with at least one negative eigenvalue. Moreover, let
ξ ∈ Rn denote the normalized eigenvector corresponding to
the smallest eigenvalue of X . Then

ξ ∈ arg min
x∈Rn

x>Xx,

s.t. x>x ≤ 1.

Proof: To prove this lemma, we first show that the
inequality constraint x>x ≤ 1 can be replaced by the equality
constraint x>x = 1 without changing the optimal solution
(i.e., the constraint is active for all the optimal solutions).
Then, the rest of the proof automatically follows from the
Courant–Fischer–Weyl min-max principle [26, p. 58]. To prove
this, note that the optimization problem admits, at least, one
solution because the feasible set is a compact set (i.e., it
is closed and bounded subset of Rn) and the cost function
is continuous. Pick any optimal solution x̄. We show that
x̄>x̄ = 1. Assume that this not the case, that is, x̄>x̄ = δ < 1.
Let ζ ∈ Rn be the normalized eigenvector corresponding to
the negative eigenvalue in the statement of the lemma. Now,
we define x̃ = (1/

√
δ)x̄. By definition, x̃>x̃ = x̄>x̄/δ = 1.

Therefore, we get x̃>Xx̃ = 1
δ x̄
>Xx̄ < x̄>Xx̄, where the

strict inequality follows from that δ < 1 and x̄>Xx̄ ≤
ζ>Xζ < 0. This is in contradiction with x̄ being an optimal
solution.

APPENDIX B
PROOF OF PROPOSITION 2.5

Notice that we can rewrite Ξ′ as Ω>Ω where

Ω =

[
Ω11 Ω12

0 Ω22

]
=

[
Ṽ

1/2
xx Ṽ

−1/2
xx Ṽxθ

0 (Ṽθθ − ṼθxṼ −1
xx Ṽxθ)

1/2

]
with Ṽxx = Vxx − VxyV

−1
yy Vyx, Ṽxθ = Vxθ − VxyV

−1
yy Vyθ,

and Ṽθθ = Vθθ − VθyV −1
yy Vyθ. Using Schur complement on

Ξ′ > 0, we can see that Ṽxx > 0 and Ṽθθ − ṼθxṼ −1
xx Ṽxθ > 0.

Now, by introducing the change of variable η = Ωξ′, we may
transform (16) into

min
η∈R2nx

η>Ω

[
−I −I
−I 0

]
Ω>η,

s.t. η>η ≤ 1.

(34)

Following the same line of reasoning as in the proof of
Corollary 2.3, we can see that the solution of (34), denoted by
η∗, is the normalized eigenvector corresponding to the smallest
eigenvalue of

Ω

[
−I −I
−I 0

]
Ω>

=

[
−Ω11Ω>11 − Ω11Ω>12 − Ω12Ω>11 −Ω11Ω>22

−Ω22Ω>11 0

]
.

We show that, for this solution, α1 6= 0 by reductio ad
absurdum. To do so, assume that α1 = 0. Therefore,

η∗ = Ω

[
0
α2

]
=

[
Ω12

Ω22

]
α2

Hence, there should exists λ < 0 (by same argument as in the
proof of Corollary 2.3) such that[
−Ω11Ω>11 − Ω11Ω>12 − Ω12Ω>11 −Ω11Ω>22

−Ω22Ω>11 0

] [
Ω12

Ω22

]
α2

=

[
−Ṽ 1/2

xx Ṽxθ − Ṽ 1/2
xx Ṽθθ − Ω12Vxθ

−Ω22Vxθ

]
α2 = λ

[
Ω12

Ω22

]
α2.

Noting that Ω22 > 0, we get

(−Ṽ 1/2
xx Ṽxθ − Ṽ 1/2

xx Ṽθθ − Ω12Vxθ)α2 = λΩ12α2, (35a)
−Vxθα2 = λα2. (35b)

Substituting (35b) into (35a) while noting that Ṽ 1/2
xx > 0 gives

(−Ṽxθ − Ṽθθ)α2 = 0,

or, equivalently,

Ṽθθα2 = −Ṽxθα2 = λα2,

which is in contradiction with the fact that Ṽθθ > 0. This
proves that α1 6= 0. The proof of that α2 6= 0 follows a
similar argument.

APPENDIX C
PROOF OF LEMMA 3.2

Let us define the random variables ȳ = (y1 + · · ·+ yN )/N
and ỹi = yi − ȳ for i ∈ JNK. Moreover, let y = (yi)i∈JNK. It
is evident that no piece of information is lost with this change
of variable because span((yi)i∈JNK) = span((ỹi)i∈JNK) ⊕
span(ȳ). Therefore, we have x̂(y) = E{x|y1, . . . , yN} =
E{x|ȳ, ỹ1, . . . , ỹN}, and as a result,

E{x|y} =
[
Vxȳ Vxỹ1

· · · VxỹN
]

×


Vȳȳ Vȳỹ1

· · · VȳỹN
Vỹ1ȳ Vỹ1ỹ1 · · · Vỹ1ỹN

...
...

. . .
...

VỹN ȳ VỹN ỹ1
· · · VỹN ỹN


−1

ȳ
ỹ1

...
ỹN

. (36)

Now, we can easily show that

Vỹiȳ = E
{(
b>θi + vi −

1

N

N∑
j=1

(b>θj + vj)
)

×
(
a>x+

1

N

N∑
j=1

(b>θj + vj)
)>}

= b>Vθxa+
1

N
b>Vθθb+

N − 1

N
b>Uθθb

− 1

N

N∑
j=1

b>Vθxa−
1

N2

N∑
j=1

N∑
k=1

b>E{θjθ>k }b

+
1

N
Vvv −

1

N2

N∑
j=1

Vvv = 0,

and

Vxỹi = E
{
x
(
b>θi + vi −

1

N

N∑
j=1

(b>θj + vj)
)>}

= Vxθb−
1

N

N∑
j=1

Vxθb = 0.
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Substituting these identities inside (36) results in

E{x|y} =
[
Vxȳ 0 · · · 0

]
×


Vȳȳ 0 · · · 0
0 Vỹ1ỹ1

· · · Vỹ1ỹN
...

...
. . .

...
0 VỹN ỹ1

· · · VỹN ỹN


−1 

ȳ
ỹ1

...
ỹN


= VxȳV

−1
ȳȳ ȳ

= E{x | ȳ}.

This concludes the proof.

APPENDIX D
PROOF OF COROLLARY 3.4

First, note that

E{‖x−[x̂∗((γ∗)i∈JNK)]((γ
∗(x, θi))i∈JNK)‖22}

= E{‖x− E{x|ȳ}‖22}
= trace(Vxx − VxȳV −1

ȳȳ Vȳx)

= trace(Vxx − Vxxa∗a∗>Vxx)

= trace(Vxx)− trace(V
1/2
xx ξ2ξ

>
2 V

1/2
xx )

1 + (N − 1)ξ>1 ξ1
.

Now, we prove that ξ1 6= 0 using reductio ad absurdum. To
do so, assume that ξ1 = 0. Clearly, ξ2 6= 0 in that case (since
ξ is an eigenvector). We have[

0 −V 1/2
θθ V

1/2
xx

−V 1/2
xx V

1/2
θθ −Vxx

] [
0
ξ2

]
=

[
−V 1/2

θθ V
1/2
xx ξ2

−Vxxξ2

]
,

which is valid (because ξ is an eigenvector) only if
−V 1/2

θθ V
1/2
xx ξ2 = 0. This leads to a contradiction since ξ2 6= 0.

Following the same line of reasoning, we can also prove that
ξ2 6= 0. Now, notice that ξ1, ξ2 do not depend on N (because
the matrix for which they serve as an eigenvector is not a
function of N ). This concludes the proof.

APPENDIX E
PROOF OF LEMMA 3.6

First, notice that

E{‖(x+θi)− E{x|y}‖22}
= trace(E{(θi + x)(θi + x)> − (x+ θi)E{x|y}>

− E{x|y}(θi + x)> + E{x|y}E{x|y}>}). (37)

Following Lemma 3.2, we know that the optimal estimate
E{x|y} is of the following form

E{x|y} = Kȳ

= Ka>x+Kb>θ̄ +Kv̄,

for some appropriately selected constant K ∈ Rnx . Here, ȳ =
N−1

∑
j 6=i yj , θ̄ = N−1

∑N
j=1 θj , and v̄ = N−1

∑N
j=1 vj .

Therefore, we can prove the identity in (38) in which the fourth
equality is direct consequence of

1

N

N∑
j=1

E{θiθ>j } =
1

N
Vθθ +

N − 1

N
Uθθ

=
1

N2

N∑
j=1

N∑
t=1

E{θtθ>j }.

Substituting (38) into (37) results in

E{‖(x+θi)− E{x|y}‖22}
= trace(E{(x+ θi)(x+ θi)

> − (x+ θ̄)E{x|y}>

− E{x|y}(x+ θ̄)> + E{x|y}E{x|y}>})
= E

{
‖(x+ θ̄)− E{x|y}‖22

}
+ trace

(
E{(x+ θi)(x+ θi)

>}
− E{(x+ θ̄)(x+ θ̄)>}

)
= E

{
‖(x+ θ̄)− E{x|y}‖22

}
+ trace (Vθθ − Uθθ) (N − 1)/N,

where the last equality holds due to the fact that

E{θiθ>i } − E{θ̄θ̄>} = Vθθ −
1

N2

N∑
j=1

N∑
t=1

E{θjθ>t }

= Vθθ −
1

N2
(NVθθ + (N2 −N)Uθθ)

=
N − 1

N
(Vθθ − Uθθ).

This concludes the proof.

APPENDIX F
PROOF OF COROLLARY 3.8

Using Item (6) in Section 4.2.2 [19, p. 50], we have

det

([
λI 1√

Nηxηθ
I

1√
Nηxηθ

(λ+ ηx)I

])

= det(λI) det

((
λ+ ηx −

1

Nηxηθλ

)
I

)
=

(
λ2 + ηxλ−

1

Nηxηθ

)nx
,

and, as a result, the smallest eigenvalue of the matrix is equal
to

λ =
−ηx −

√
η2
x + 4/(Nηxηθ)

2
.

For this eigenvalue, we have[
λI 1√

Nηxηθ
I

1√
Nηxηθ

(λ+ ηx)I

] [
ζ1
ζ2

]
= 0,

and, therefore,

ζ1 = − 1

λ
√
Nηxηθ

ζ2.
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E{(x+ θi)E{x|y}>} = E
{

(x+ θi)x
>aK> +

1

N

N∑
j=1

xθ>j bK
> +

1

N

N∑
j=1

θiθ
>
j bK

> +
1

N

N∑
j=1

(x+ θi)v
>
j K

>
}

= E
{(
x+ θ̄

)
x>aK> +

1

N

N∑
j=1

xθ>j bK
> +

1

N2

N∑
j=1

N∑
t=1

θtθ
>
j bK

> +
1

N

N∑
j=1

(
x+ θ̄

)
v>j K

>
}

= E
{(
x+ θ̄

) [
Ka>x+Kb>θ̄ +Kv̄

]>}
= E

{(
x+ θ̄

)
E{x|y}>

}
, (38)

On the other hand, we know that ζ>1 ζ1 + ζ>2 ζ2 = 1, which
results in

ζ2 =
1√

1 + 1/(λ2ηxηθN)
ζ ′

=

√
Nηθη3

x +Nηθη2
x

√
η2
x + 4/(Nηθηx) + 4

2Nηθη3
x + 8

ζ ′,

for any ζ ′ ∈ Rnx such that ζ ′>ζ ′ = 1. Hence,

E{‖x−[x̂∗(γ∗)]((γ∗(x, θi))i∈JNK)‖22}
= E{‖x− E{x|ȳ}‖22}
= trace(Vxx − VxȳV −1

ȳȳ Vȳx)

= trace(Vxx − Vxxa∗a∗>Vxx)

= trace(Vxx)− ς(N) trace(V 1/2
xx ζ ′ζ ′

>
V 1/2
xx ),

where

ς(N) =
Nηθη

3
x +Nηθη

2
x

√
η2
x + 4/(Nηθηx) + 4

2Nηθη3
x + 8

.

Evidently, ς(N) is an increasing function of N because

dς(N)

dN
=

1

N2ηθ(η2
x + 4/(Nηxηθ))3/2)

≥ 0.

Thus, E{‖x − [x̂∗(γ∗)]((γ∗(x, θi))i∈JNK)‖22} becomes a de-
creasing function of N . In addition, we have

lim
N→∞

E{‖x− [x̂∗(γ∗)]((γ∗(x, θi))i∈JNK)‖22}

= (ηx − lim
N→∞

ς(N)ηx)nx = 0.

This concludes the proof.
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