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Abstract—Controllers with a diagonal-plus-low-rank structure consti-

tute a scalable class of controllers for multi-agent systems. Previous

research has shown that diagonal-plus-low-rank control laws appear as

the optimal solution to a class of multi-agent H 2 coordination problems,
which arise in the control of wind farms. In this paper we show that

this result extends to the case where the information exchange between

agents is subject to limitations. We also show that the computational
effort required to obtain the optimal controller is independent of the

number of agents and provide analytical expressions that quantify the

usefulness of information exchange.

Index Terms—Distributed control, time-delay systems, sampled-data

systems, dead-time compensation.

I. INTRODUCTION

Large-scale systems are characterized by the presence of numerous

subsystems (agents) having their own sensory and actuation abilities.

Control of such systems, also known as distributed control, is being

revived over the last decade due to networking and integration trends,

efficiency demands, etcetera. A major challenge in distributed control

design is to cope with constraints on information exchange between

agents. Such constraints can be due to physical limitations (e.g.,

agents might only have access to local measurements) or they can be

introduced artificially in order to reduce information processing and

improve the implementational scalability of the control law.

In general, information exchange restrictions have adverse effects

on the tractability of control design problems [1–3]. Yet these

effects can be alleviated in situations when the information exchange

topology “agrees” with the structure of the problem (the plant

and control goals) [4–6]. It is thus important to understand what

scalable information structure fits the considered application. The

best studied in this context are sparsity-based information topologies

(decentralized control), with non-zero elements corresponding to

permitted information exchange between agents, see [7, 8] and the

references therein. There are also applications, where interaction

takes place through the average behavior of agents. For instance, in

power systems generators must coordinate their power production to

balance the total load on the network [9]. Hence, the power generated

by a unit is directly coupled to the total net power imbalance.

Control structures based on aggregate (e.g., average) information

are appealing from a large scale perspective due to its implemen-

tational scalability and low communication demands. Variations of

this information structure have been studied in the context of the

control of ensembles [10], biological systems [11], broadcast control

[12], robust control [13], etcetera. Moreover, controllers with such

information exchange mechanisms are shown to be optimal in H 1
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problems over symmetrically interconnected systems [14] and in LQR

coordination problems arising in the control of wind farms [15].

The result of [15] is the starting point of the current research,

so we shall discuss it in more details. Specifically, a homogeneous

group of autonomous agents that are coupled through a constraint on

their average behavior was studied. It was shown that the optimal

(centralized) solution consists of a diagonal (i.e., fully decentralized)

term complemented by a rank-one component, which coordinates

the agents based on their weighted-average state measurements. An

additional scalability property attractive in large-scale applications

is that the computational effort required to obtain the solution is

independent of the number of agents.

In this paper we provide additional insight into the class of

diagonal-plus-low-rank control laws by expanding the class of prob-

lems for which they are optimal. A potential limitation of the solution

of [15] is that it assumes instantaneous information exchange between

the agents. This might not be feasible in applications, where commu-

nication resources are limited. To account for these limitations, we

modify the problem formulation by imposing additional constraints

on the off-diagonal elements of the controller (Section II). Such

constraints include time-delays, sampled-data processing, bandwidth

limitations, etc. In Section III, we provide an abstract solution to the

multi-agent problem in terms of the solution to a local, uniformly

constrained control problem for a stand-alone agent. The main

result is that the scalability properties, that were discussed above

for the case of perfect information exchange in [15], extend to the

case with limited information exchange as well. In particular, the

optimal control law has a diagonal-plus-rank-one structure and can

be obtained by solving a single local control problem. Based on

established results in the literature, in Section IV we provide complete

analytical solutions for two classes of communication constraints:

delayed information exchange (÷IV-A) and sampled-data information

exchange (÷IV-B). An illustrative example is presented then in

Section V and concluding remarks, justifying a direction for the

future research, are provided in Section VI.

Notation: The transpose of a matrix M is denoted by M 0. By

ei we refer to the i th standard basis of an Euclidean space and by

In to the n � n identity matrix (we drop the dimension subscript

when the context is clear). The lower linear fractional transformation

[16, Sec. 10.1] is denoted as Fl.�; �/. The notation ˝ is used for the

Kronecker product of matrices:

A ˝ B ´

2

6

4

a11B � � � a1mB
:::

: : :
:::

ap1B � � � apmB

3

7

5
;

where aij stands for the .i; j / entry of A. In particular, In ˝ M

is a compact notation for the block-diagonal matrix having n equal

diagonal entries, M ;
P

i .ei e
0
i /˝Mi is the block-diagonal matrix with

diagonal entries Mi ;
P

i ei ˝ Mi is the block-column matrix built of

blocks Mi with the same column dimension. The H 2-norm of a

system G is denoted kGk2. The H 2 space and its norm are well-

defined notions for both time-invariant [16, Sec. 4.3] and periodically

time-varying [17, Sec. 9.1] linear systems.
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(a) Without coordination

G´w G´u

0 �0 ˝ Im

Gxw Gxu

K

w
´

Nu

ux

(b) With coordination, via Nu D 0

Fig. 1. Aggregate standard state-feedback H 2 problems

II. PROBLEM FORMULATION

We study the problem of coordinating � uncoupled homogeneous

systems (agents), described by the following dynamics:

Pxi .t/ D Axi .t/ C Bwwi .t/ C Buui .t/ (1)

where xi .t/ 2 R
n are (measured) state vectors, ui .t/ 2 R

m are control

inputs, and wi .t/ 2 R
n are exogenous disturbances. Associated with

each agent is the local regulated variable

´i .t/ ´ C´xi .t/ C D´uui .t/; (2)

which reflects the local objectives of the agent.

Aggregating (1)–(2) for i D 1; : : : ; �, the local problems can be cast

as the standard state-feedback H 2 problem [16, ÷14.8.1] depicted in

Fig. 1(a). Here w, ´, u, and x are the aggregate disturbance, regulated

output, control input, and measured state vector, respectively (e.g.,

w ´
P�

iD1 ei ˝ wi ), and the generalized plant

�

G´w.s/ G´u.s/

Gxw.s/ Gxu.s/

�

D

2

4

I� ˝ A I� ˝ Bw I� ˝ Bu

I� ˝ C´ 0 I� ˝ D´u

I�n 0 0

3

5 :

Each sub-block of this generalized plant is block diagonal due to

decoupled dynamics and objectives of the agents. Hence, if no other

requirements were imposed, the optimal solution K would be block

diagonal as well.

Coordination among the agents is imposed by requiring that

�
X

iD1

�i ui .t/ µ Nu.t/ � 0; (3)

where �i may be viewed as a mass of the i th system. This constraint

effectively requires the “center of mass” of all agents to behave as

PNx.t/ D A Nx.t/ C Bw Nw.t/; (4)

where Nx ´
P

i �i xi and Nw ´
P

i �i wi .t/.

Complementing the setup in Fig. 1(a) with constraint (3), we end

up with the setup depicted in Fig. 1(b), where � ´
�

�1 � � � ��

�0
.

The problem of minimizing the H 2 norm of the system T´w from w

to ´, under the constraint that the system T Nuw from w to Nu is zero,

is equivalent to the problem studied in [15]. It was show that the

solution has the following scalable form

ui .t/ D F˛.xi .t/ � �i Nx.t//; (5)

where F˛ is the LQR gain associated with the local, uncoordinated,

problems. In this control law, the only information needed to

coordinate the agents is the center of mass state, Nx. This information,

however, must be accessible instantaneously, which might not be

feasible if communication resources are limited.

To account for potential communication limitations, in this paper

we propose to introduce additional constraints upon the controller.

Because inter-agent communication takes place through the off-

diagonal elements of K, we constrain them to belong to a subspace,

say Kc, of the space of causal linear systems. In other words, we

require that

Kij 2 Kc; whenever i ¤ j (6)

where the partitioning of K is compatible with that of the signals

x and u. Several commonly considered communication constraints,

such as time delays, sampling, and bandwidth limitations, may

be expressed as in (6). Delays and sampling constraints will be

addressed explicitly in Section IV.

The problem formulation considered in this paper is

minimize
stabiliz. K

kT´wk2 (7a)

subject to T Nuw D 0 (7b)

K satisfies (6) for a given subspace Kc (7c)

where T´w and T Nuw are the closed-loop transfer functions in Fig. 1(b)

from w to ´ and Nu, respectively. We implicitly assume here that the

H 2 norm is a well-defined notion for a given Kc.

Remark 2.1: The coordination constraint (3) can be replaced by

the more general requirement Nu D NF Nx, where NF can be viewed as a

“gain” shaping the “A” matrix of the center of mass in (4). However,

this requirement can be reduced to (3) by a mere shift of the control

variables as ui D vi C NF xi . We therefore can consider the simpler

version, (3), without any loss of generality. O

III. ABSTRACT SOLUTION

In this section we solve (7) in a general form, without specifying a

particular form of the constraint set Kc. The only information about

Kc that is required to formulate the solution is the assumption that

it is a linear subspace. We also need to assume that

A1: A is Hurwitz,

A2: Bw is square and nonsingular,

A3: �0� D 1 and none of the entries of � is zero.

Assumption A1 is necessary for the stabilizability of the overall

system because the dynamics of the center of mass (4) are not affected

by the control signal. A2 effectively says that the null space of Gxw

is trivial. It is made to avoid technical issues related to uniqueness

of the corresponding optimal H 2 solution (see [16, ÷14.8.1]). The

normalization part in A3 is introduced to simplify the exposition and

can be relaxed. Finally, if �i D 0, then the i th system is not a part

of the coordination problem and can therefore be excluded from the

analysis.

The solution of (7) is based on the solution to the H 2 state-

feedback problem associated with the generalized plant

G˛.s/ D
�

G˛11.s/ G˛12.s/

G˛21.s/ G˛22.s/

�

D

2

4

A Bw Bu

C´ 0 D´u

I 0 0

3

5

and a controller K˛ . The problem is formulated as follows:

minimize
stabiliz. K˛

kFl.G˛ ; K˛/k2 (8a)

subject to K˛ 2 Kc (8b)

For various Kc of interest, problem (8) can be solved by available

techniques (see Section IV for two particular cases). Meanwhile, we

do not elaborate on these solutions. What we need is to assume that

A4: problem (8) is well posed,

in the sense that its optimal solution K˛;opt exists and is unique. The

resulting optimal performance is ˛ ´ kFl.G˛; K˛;opt/k2. We also

need the quantity

0 ´ kG˛11k2 D
p

tr.B 0
w

NXBw/ � ˛ ;
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where NX � 0 is the solution to the Lyapunov equation

A0 NX C NXA C C 0
´C´ D 0:

The solution to (7), which is the main result of the paper, is given

in the following theorem, whose proof is presented in ÷III-A:

Theorem 3.1: Let A1–4 hold true. Then the optimal achievable

kT´wk2
2 D .� � 1/2

˛ C 2
0 (9)

and it is attained by the control law

ui D K˛;opt.xi � �i Nx/; (10)

where Nx D
P

i �i xi . O

A noteworthy outcome of Theorem 3.1 is that the two scalability

properties of the solution of [15], which studied a version of (7)

without communication constraints (7b), extend to the case when

these constraints are added. First, we only need to solve the

local uncoordinated problem (8) to form the optimal control law in

Theorem 3.1. In other words, the computational effort is independent

of the number of agents �. Second, although the optimal control

law (15) is not decentralized (due to the presence of Nx), the only

global computation needed to form it is a single (scaled) averaging

operation, exactly as in (5).

A. Proof of Theorem 3.1

We start with a technical result, which reduces the (unorthodox)

constraint (6) on the off-diagonal parts of the controller to a uniform

constraint on the whole K.

Lemma 3.2: Let A2,3 hold. Then (7c) is satisfied together with

(7b) only if the whole K 2 Kc.

Proof: A2 implies that Gxw.s/ D I ˝ ..sI �A/�1Bw/ is square

and nonsingular. Because Gxu is strictly causal, the loop in Fig. 1(b)

is well posed and we have that

T Nuw D .�0 ˝ I /K.I � GxuK/�1Gxw D 0 () .�0 ˝ I /K D 0;

which involves only the controller. Thus, (7b) holds iff

�
X

iD1

�i Kij D 0 () Kjj D �
X

i¤j

�i

�j
Kij ;

for all j D 1; : : : ; �. Because Kc is a subspace, the latter equality

combined with (6) implies that Kjj 2 Kc as well.

Remark 3.1: Assumption A2 can in principle be relaxed here.

It can be shown that if it does not hold, the admissible diagonal

elements of K that are not in Kc do not affect T´w anyway. But the

solution is not unique then. O

Having reduced (7) to a problem with uniformly constrained K,

we may apply the technique used in [15] to decouple the coordination

constraint (7b). Namely, let U 2 R
��� be a unitary matrix such that

U� D e1, i.e. U 0 comprises the left singular vectors of �. Define

new state vector Qx ´ .U ˝ In/x, control input Qu ´ .U ˝ Im/u,

exogenous input Qw ´ .U ˝ In/w, and regulated signal Q́ ´ .U ˝
Ip/´. The relation between these “tilded” signals is the same as

the relation between their originals, which can be verified using the

equality .U ˝ In1
/.I� ˝ M/ D .I� ˝ M/.U ˝ In2

/ holding for every

M 2 R
n1�n2 . For example, the transfer function from Qw to Q́ is

G Q́ Qw.s/ D .U ˝ Ip/G´w.s/.U 0 ˝ In/

D .U ˝ Ip/
�

I� ˝ .C´.sI � A/�1Bw/
�

.U 0 ˝ In/

D .U U 0/ ˝ .C´.sI � A/�1Bw/ D G´w.s/:

Taking into account that .�0˝I /u D .e0
1˝I / Qu, the system in Fig. 1(b)

can then be equivalently presented as shown in Fig. 2, where

QK ´ .U ˝ Im/ K .U 0 ˝ In/:

G´w G´u

0 e0

1
˝ Im

Gxw Gxu

QK

Qw
Q́

Nu

QuQx

Fig. 2. Decoupled problem in transformed coordinates

Because QK is a linear invertible function of K and Kc is a subspace,

K 2 Kc iff QK 2 Kc and because U is unitary, kT Q́ Qw k2 D kT´wk2

for every K. Thus, (7) can be solved via solving the H 2 problem

associated with the system in Fig. 2.

The advantage of the latter is that it is decoupled. Indeed, the

coordination constraint in terms of Qu reads Nu D Qu1, so that (7b)

prespecifies the first component of Qu and has no effect on the

others. Therefore, the H 2 problem for the setup in Fig. 2 splits into

� independent problems, the first of which is solved by the zero

controller and the others are � � 1 copies of (8). Consequently, the

optimal QKopt D .I� � e1e0
1/ ˝ K˛;opt, from which

Kopt D .I� � ��0/ ˝ K˛;opt: (11)

This controller produces the control law (10). The optimal cost is

then in the form (9) and this completes the proof.

B. Cost distribution among agents

In this subsection we study how the overall optimal performance

is distributed among the agents and how different components of w

affect local regulated variables ´i . To this end, consider the closed-

loop systems T´i wj
from the j th exogenous input wj to ´i under the

optimal controller (11). It is readily verified that

Kopt.I � GxuKopt/
�1 D .I � ��0/ ˝

�

K˛;opt.I � G˛22K˛;opt/
�1

�

;

from which

T´w D I ˝ G˛11 C .I ˝ G˛12/Kopt

�

I � GxuKopt/
�1.I ˝ G˛21/

�

D I ˝ T˛;opt C .��0/ ˝ .G˛11 � T˛;opt/;

where T˛;opt ´ Fl.G˛; K˛;opt/. Hence, T´i wj
D .e0

i ˝I /T´w.ej ˝I /

can be expressed as

T´i wj
D

(

T˛;opt C �2
i .G˛11 � T˛;opt/ if j D i

�i �j .G˛11 � T˛;opt/ otherwise

The following result says that under a mild technical assumption the

H 2 norm of T´i wj
is a function of 0 D kG˛11k2 and the optimal

performance ˛ of (8):

Proposition 3.3: Let K˛;optG˛22K˛;opt 2 Kc. Then

kT´i wj
k2

2 D 2
˛ ıij C �2

i �2
j .2

0 � 2
˛ /;

where ıij is the Kronecker delta.

Proof: Let T˛ ´ Fl.G˛ ; K˛/. Differentiating it with respect to

to K˛ yields

dT˛ D G˛12.I � K˛G˛22/�1dK˛.I � G˛22K˛/�1G˛21:

It follows from A4 that T˛;opt ? S , where

S ´ G˛12.I � K˛;optG˛22/�1
Kc.I � G˛22K˛;opt/

�1G˛21:

To see this, split T˛;opt D TS C TS? , where TS and TS? are the

orthogonal projections of T˛;opt on S and its orthogonal complement,

respectively. In particular, TS D G˛12.I � K˛;optG˛22/�1KS .I �
G˛22K˛;opt/

�1G˛21 for some KS 2 Kc . Let d� be an infinitesimal
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positive step. Then, the choice K˛ D K˛;opt � KSd� results in T˛ D
T˛;opt �TSd�, so that kT˛k2 D .1�d�/2kTSk2 CkTS? k2 � kT˛;optk2

with the equality attainable iff TS D 0.

Next, set K˛ D K˛;opt � K˛;optG˛22K˛;opt. Then K˛ 2 Kc , and

T˛;opt ? G˛12.I � K˛;optG˛22/�1K˛.I � G˛22K˛;opt/
�1G˛21

? G˛12K˛;opt.I � G˛22K˛;opt/
�1G˛21 D T˛;opt � G˛11;

and consequently, by the Pythagorean theorem,

kG˛11 � T˛;optk2
2 D kG˛11k2

2 � kT˛;optk2
2 D 2

0 � 2
˛ ;

from which the result follows immediately.

Remark 3.2: The assumption in Proposition 3.3 can be expected

to hold whenever Kc is a uniform constraint in (8). In particular, this

is true for the two examples considered in Section IV. In general,

the assumption is weaker than the quadratic invariance condition [5],

which requires K˛G˛22K˛ 2 Kc for all K˛ 2 Kc. O

The overall cost of the i th agent, which is the H 2 norm of T´i w ´
�

T´i w1
� � � T´i w�

�

, is an immediate corollary of Proposition 3.3:

Corollary 3.4: If the condition of Proposition 3.3 holds, then

kT´i w k2
2 D �2

i 2
0 C .1 � �2

i /2
˛ :

This cost can be interpreted from two points of view. First, the

quantity 0 can be thought of as the optimal cost of (7) in the absence

of information exchange between subsystems. Indeed, in this case

(7b) must be satisfied by each agent, resulting in the optimal law

ui D 0. From this viewpoint, the quantity

BoC ´ 2
0 � kT´i wk2

2 D .1 � �2
i /.2

0 � 2
˛ / � 0

characterizes the benefit of cooperation for the i th agent. If the

number of agents increases, the (normalized) �i ’s normally decrease

[15, ÷III-C.3] and coordination becomes more beneficial per agent.

Another way to look at kT´i w k2 in Corollary 3.4 is to compare

it with the performance of the i th agent attainable via solving (7a)

without the coordination constraint (7b). No coordination is required

in this case, so that the optimal controller is block-diagonal and the

coordination constraint (6) is void. The optimal performance of each

agent is then opt D
p

tr.B 0
wX˛Bw/ � ˛ , where X˛ is the stabilizing

solution of the corresponding Riccati equation (in fact, of (12) defined

in the next section). The addition of the coordination requirement

(7b) naturally leads to a performance deterioration. The quantity

CoC ´ kT´i w k2
2 � 2

opt D �2
i .2

0 � 2
opt/ C .1 � �2

i /.2
˛ � 2

opt/

can then be interpreted as the cost of satisfying the coordination

constraint (7b). The first term in the right-hand side of this expression

is exactly the cost of coordination in the absence of communication

constraints (6), see [15, Prop. 3.2]. This term normally vanishes as the

number of agents � ! 1. The second term in the expression for CoC

quantifies the deterioration of the local cost due to communication

constraints. This term actually grows with the decrease of �i . Since

CoC D �2
i .2

0 � 2
˛ / C .2

˛ � 2
opt/, it decreases with the increase of

the number of coordinating agent, although does not vanish as in the

case when no communication constraints are imposed.

IV. PARTICULAR CASES OF COMMUNICATION CONSTRAINTS

A. Delayed information exchange

Communication limitations can be accounted for by artificially

introducing a sufficiently large time-delay, say h > 0, into the

communication channels. In terms of (6), this corresponds to

Kc D Kdel ´
˚

K W K.s/ D e�shKh.s/ for a causal Kh

	

for some h > 0, which is a linear subspace and is quadratically

invariant with respect to any causal linear plant.

xi

e
�sh�i Nx�i

ui

F˛

˘.s/

e
Ah

e
�sh

–

Fig. 3. A realization of the optimal controller for the i th system

Problem (8) in this case is a well-understood H 2 problem with

single loop delay, which can be solved by available methods1 [18, 19].

In this case A4 can be replaced with

A5:

�

A � j!I Bu

C´ D´u

�

has full column rank 8! 2 R,

A6: D0
´uD´u D I .

Indeed, given A1, assumption A5 is necessary for the well-posedness

of the unconstrained local problems. The normalization assumption

A6 is introduced to simplify the exposition and can be relaxed to

D0
´uD´u > 0. If A1,5,6 hold true, then the algebraic Riccati equation

A0X˛ CX˛ACC 0
´C´ �.X˛BuCC 0

´D´u/.B 0
uX˛ CD0

´uC´/ D 0; (12)

has a unique stabilizing solution 0 � X˛ � NX and the solution to (8)

is

K˛;opt.s/ D
�

I C F˛˘.s/
��1

F˛ eAh e�sh; (13)

where F˛ ´ �.B 0
uX˛ C D0

´uC´/ and

˘.s/ ´
Z h

0

e�.sI�A/� d�Bu (14a)

D .sI � A/�1.Bu � eAhBu e�sh/ (14b)

is a stable FIR (finite impulse response) dead-time compensator. The

optimal attainable H 2 performance with this controller is

2
˛ D tr

�

B 0
w

�

eA0hX˛ eAh C
Z h

0

eA0t C 0
´C´ eAt d�

�

Bw

�

D tr.B 0
w

NXBw/ � tr
�

B 0
w eA0h. NX � X˛/eAhBw

�

:

Theorem 3.1 yields then that the optimal controller solving (7a) is

in the form presented in Fig. 3. This control law can be also described

by the following equation in the time domain:

ui .t/ D F˛ Oxi .t/ � �i F˛ eAh Nx.t � h/; (15)

where

Oxi .t/ ´ eAhxi .t � h/ C
Z t

t�h

eA.t��/Buui .�/d� (16)

is the mean-squared prediction of xi .t/ in (1) based on xi .�/, � �
t � h, cf. [20, Lesson 16].

Remark 4.1: Although distributed-delay systems, like ˘ in (14a),

can be safely implemented, see [21] and the references therein, their

implementation might be numerically involved. The implementation

in our case, however, is simplified because the matrix A is Hurwitz

(by A1). Indeed, in this case ˘ can be implemented in the equivalent

form (14b), whose singularities at the eigenvalues of A are removable.

This transfer function can be implemented as

P�i .t/ D A�i .t/ C Buui .t/ � eAhBuui .t � h/; (17)

which is a combination of a (stable) finite-dimensional system and a

pure delay element, whose implementations are standard. Although

this implementation involves pole-zero cancellations of all eigenval-

ues of A, the cancellations are stable. Hence, the implementation via

(17) is internally stable and thus admissible. O

1Although these references study output-feedback versions of the problem,
their adjustment to the “state feedback” case is fairly straightforward.
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B. Sampled-data information exchange

Another possibility to reduce the burden of communication, apart

from using delays, is to exchange information only at some sampling

instances. This leads to the following set:

Kc D Ksd ´
˚

K W K D HhKdSh for a discrete causal Kd

	

;

where Sh and Hh are sampling (A/D) and hold (D/A) devices,

respectively, which are assumed to be synchronized and with a

sampling period h > 0. Hereafter, we assume that Sh is the ideal

sampler transforming analog signals to discrete sequences as

xd D Shx () xdŒk� D x.kh/; 8k 2 Z;

and Hh is the zero-order hold transforming discrete sequences to

piecewise constant analog signals as

u D Hhud () u.kh C �/ D udŒk� 8k 2 Z; � 2 .0; h�:

The set Ksd is a subspace and quadratically invariant with respect to

any causal system.

The sampled-data version of (8) can be viewed as a particular case

(state feedback) of the standard sampled-data H 2 problem extensively

studied in the literature, see [22] and the references therein. The well-

posedness assumption A4 can be replaced by

A7:

�

A Bu

C´ D´u

�

has full column rank,

which, together with A1, guarantees that the sampled-data problem

associated with (1) and (2) is non-singular [22, Cor. 5.2 (ii)]. If these

two conditions hold, the discrete ARE

OX˛ D OA0 OX˛
OA C OQ

� . OA0 OX˛
OBu C OS/. OB 0

u
OX˛

OBu C OR/�1. OB 0
u

OX˛
OA C OS 0/: (18)

has a stabilizing solution OX˛ � 0, where

� OA OBu

�

´
�

eAh
R h

0 eAt dtBu

�

D
�

I 0
�

exp

��

A Bu

0 0

�

h

�

and

� OQ OS
OS 0 OR

�

´
Z h

0

exp

��

A0 0

B 0
u 0

�

t

� �

C 0
´

D0
´u

�

�
�

C´ D´u

�

exp

��

A Bu

0 0

�

t

�

dt:

The optimal performance level in (8) is then

2
˛ D 1

h
tr

�

B 0
w

Z h

0

�Z t

0

eA0� C 0
´C´ eA� d� C eA0t OX˛ eAt

�

dtBw

�

D 1

h
tr

�

B 0
w

Z h

0

� NX � eA0t NX eAt C eA0t OX˛ eAt
�

dtBw

�

D tr.B 0
w

NXBw/ � 1

h
tr

�

B 0
w

Z h

0

eA0t . NX � OX˛/eAt dtBw

�

and it is attained by the static control law

K˛;opt D Hh
OF˛Sh:

where
OF˛ ´ �. OB 0

u
OX˛

OBu C OR/�1. OB 0
u

OX˛
OA C OS 0/:

Theorem 3.1 yields the control law

ui .kh C �/ D OF˛

�

xi .kh/ � �i Nx.kh/
�

(19)

at every k D 0; 1; : : : and � 2 .0; h�.

Remark 4.2: One may think of several alterations of the subspace

Ksd. For example, the waveform of the control signal, i.e., the D/A

part of the controller, may be considered a part of the design. Because

the D/A part is implemented only locally, this alterations does not

affect the inter-agent communication. A version of (8) in which the

hold device is a part of the design was solved in [23]. The solution

assumes A5,6 to guarantee that assumption A4 holds and results in

the control law

ui .kh C �/ D F˛ e.ACBuF˛/�
�

xi .kh/ � �i Nx.kh/
�

; (20)

where F˛ is the continuous-time state feedback gain, the same as

that appearing in (13), and the optimal performance level

2
˛ D tr.B 0

w
NXBw/ � 1

h
tr

�

B 0
w

Z h

0

eA0t . NX � X˛/eAt dtBw

�

;

where X˛ is the stabilizing solution of (12). Performance of (20) is

better than that of (19), while communication demands are the same.

Another potential modification of Ksd is to combine sampled-data

and delay constraints. Problem (8) can then be solved by the approach

of [24], both in the case of the zero-order and the optimal holds. O

V. ILLUSTRATIVE EXAMPLE

Consider a formation of homogeneous vehicles described by

pi D 1

s2
.�i C wi /; (21)

where, pi is the position of the i th vehicles, �i is its thrust, and wi

is a disturbance. The objectives are twofold:

1) the formation center of mass, defined as Np ´ 1
�

P�
iD1 pi , follows

a reference trajectory Nr.t/ with bounded two first derivatives,

2) each vehicle tracks a fixed position relative to the center of mass,

ri ´ Np C ıi for given constants ıi ¤ ıj and such that
P

i ıi D 0.

We assume that each vehicle has perfect measurements of pi and

Ppi and that it knows ıi and Nr and its first two derivatives, but

that communication between vehicles is subject to sampled data

constraints with the sampling period h, as described in ÷IV-B.

We start with the first objective. It is readily seen that the center of

mass verifies Np D . N� C Nw/=s2 with N� ´ 1
�

P

i �i and Nw ´ 1
�

P

i wi .

The 2DOF state-feedback control law for this system,

N� D s2 Nr � .�1s C �0/N� (22)

with N� ´ Np � Nr , renders the closed-loop error system

N� D 1

s2 C �1s C �0
Nw; (23)

independent of Nr . By an appropriate choice of the gains �0 > 0 and

�1 > 0 we can affect the disturbance sensitivity of the error behavior.

Because � is the average of the local thrusts �i , the implementation

of (22) requires coordination between the vehicles. It is readily seen

that all �i that realize (22) can be parametrized as

�i D .s2 C �1s C �0/Nr � .�1s C �0/pi C �0ıi C ui ; (24)

where ui is an arbitrary signal satisfying
P

i ui D 0 (remember the

assumption
P

i ıi D 0). The term �0ıi is added to (24) to render

ui D 0 in the case when the perfect tracking conditions Np D Nr and

pi D ri are met. Substituting �i from (24) into (21), we end up with

stable agents, in terms of deviation variables, of the form

yi ´ pi � Nr � ıi D 1

s2 C �1s C �0
.ui C wi /: (25)

These systems correspond to (1) with

xi D
�

yi

Pyi

�

and
�

A Bw Bu

�

D
�

0 1 0 0

��0 ��1 1 1

�

although Bw above does not satisfy A2, the optimal solution to the

corresponding H 2 problem is still unique, see [16, Prop. 14.9]).
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Having set the average dynamics of the platoon, we use the

remaining degrees of freedom to minimize the H 2 cost function based

on the regulated signals

Q́ i D

2

4

p
q1.pi � ri /p
q2. Ppi � Pri /

�i � RNr

3

5 D

2

4

p
q1.yi � N�/p
q2. Pyi � PN�/

ui � �1 Pyi � �0yi

3

5

for some weights q1 � 0 and q2 � 0. The term �i � RNr penalizes

the deviation of �i from the “ideal” thrust, which meets both our

objectives under zero disturbances. As in any realistic situation RNr D 0

in steady state, this term can be regarded as a penalty on the i th thrust.

Define now the unit vector � ´
P

i ei=
p

� and the aggregate

output y ´
P

i ei yi . It can be verified that

N� D 1

�

X

i

yi D 1p
�

�0y H)
X

i

ei .yi � N�/ D .I� � ��0/y

Because .I� � ��0/2 D I� � ��0, we have that
X

i

.yi � N�/2 D y0.I� � ��0/y D
X

i

y2
i � � N�2:

The last term here, N�2, does not depend on ui as long as (3) holds.

Hence, the optimization problem with the regulated outputs Q́ i is

equivalent, modulo a shift in the attainable performance, to that with

the regulated variable

´i D

2

4

p
q1yip
q2 Pyi

ui � �1 Pyi � �0yi

3

5 D

2

4

p
q1 0

0
p

q2

��0 ��1

3

5 xi C

2

4

0

0

1

3

5 ui ;

which is in form (2). In other words, the second objective can be

cast as problem (7) with Kc D Ksd. This will result in ui acting as

(19) for some calculated OF˛ D
�

f˛1 f˛2

�

. The control law (24)

then reads (using the fact that yi � �i Ny D pi � Np � ıi )

�i .t/ D RNr.t/ C .�0 � f˛1/ıi � �0

�

pi .t/ � Nr.t/
�

� �1

�

Ppi .t/ � PNr.t/
�

C f˛1

�

pi .kh/ � Np.kh/
�

C f˛2

�

Ppi .kh/ � PNp.kh/
�

(26)

for t 2 Œkh; .k C 1/h/, which uses sampled global and analog local

measurements indeed. By an appropriate choice of the weights q1

and q2 we may then tune the behavior of the individual cars, say to

strike a trade-off between maintaining a rigid formation and reducing

the energy consumption. Our main point in this section, however, is

to show how a more sophisticated problem can be handled within the

proposed framework, so simulation results are not presented here.

VI. CONCLUDING REMARKS

We have studied a large-scale state-feedback H 2 problem, in which

a homogeneous group of autonomous agents is coupled through

a constraint on their average behavior and where the information

exchange between the agents is limited. It has been shown that for

a range of communication restrictions, which includes time-delays,

sampled-data processing, and bandwidth limitations, the problem can

be reduced to an H 2 problem of the same dimension as that of

a single agent. Moreover, the optimal controller for the original

large-scale problem is composed of a diagonal (decentralized) term

complemented by a rank-one coordination component. This structure,

as well as the computational scalability of the solution, are the same

as in the case without communication restrictions studied in [15].

A key step in proving our main result was to show that the

communication limitations in combination with the hard constraint on

the agents to coordinate their behavior, prevent each agent from using

its full set of available information. This property sets a fundamental

limitation on the achievable performance. In particular, unlike the

case with perfect information exchange, the cost of coordination

per agent does not vanish as the number of agents grows. A

natural question is how this performance limitation changes when

the coordination constraint is replaced with a coordination incentive

(soft constraints). It is also of interest to understand if the diagonal-

plus-rank-one structure and the computational scalability carry over

to this case.
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[3] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Sta-
bilization and Optimization under Information Constraints. Basel:
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