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On the computation of )\-contractive sets
for linear constrained systems

Moritz Schulze Darup! and Mark Cannon'

Abstract. We present two theoretical results on the computation of A-contractive sets
for linear systems with state and input constraints. First, we show that it is possible
to a priori compute a number of iterations that is sufficient to approximate the max-
imal A-contractive set with a given precision using 1-step sets. Second, based on the
former result, we provide a procedure for choosing A so that the associated maximal -
contractive set is guaranteed to approximate the maximal controlled invariant set with
a given accuracy.
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1. Introduction and Problem Statement

The concept of A-contraction is widely used in control theory (see [I] for an excellent
overview). For linear discrete-time systems

x(k+1)=Ax(k) + Bu(k) (1)
with state and input constraints of the form
z(k) € X and u(k) ed for every k€N, (2)

the construction, the application and many fundamental properties of A-contractive sets
are well-known (see, e.g., [I, 2]). The computation of A-contractive sets often builds on
the repeated evaluation of the mapping

OND):={x € X|Fucl: Ar + Bu € \D} (3)

for a given set D C R™ and a fixed A € (0,1]. This leads to a sequence of sets defined
according to Q) (D) = D and

Qi 11(D) = Q1(Qx(D)) (4)

for k € N. Sequences of the form () were first addressed for the special case A =1 (see
[3, 14 5, 6]). Later, the case of A € (0, 1), which is more relevant here, was considered (see,
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e.g., [2]). For the special choice D = X, it is well-known that (] results in a sequence
of nested sets that approximate the maximal A-contractive set CJ,. (see Def. [l from
outside, i.e.,

Cri\lax g Qngl(X) g Q?(X) (5)

for every k € N (see [2, Thm. 3.1]). Moreover, if C),. is a C-set (see Def. B), which is
the case if A is such that 0 € int(C),,) [2 Rem. 4.1], the sequence {Q(X)} converges
to Cp)

wax D the sense that, for every e > 0, there exists a £ € N such that
(&) € (1+€) Chpas. (6)

While this characteristic is, in principle, well-understood, there does (except for A = 1)
not exist a method to a priori compute an upper bound for a suitable k such that (@)
holds for a given e. In this paper, we derive such a bound by adapting and extending
related results on the convergence of null-controllable sets given in [4].

The presented bound on k allows the solution of another problem related to the
computation of A-contractive sets. It is well-known that A-contractive sets can be used
to approximate the maximal controlled invariant set Cl . arbitrarily closely (consider,

e.g., [7 Lem. 2.1 and Thm. 2.1]). However, it is not clear how to a priori choose
A € (0,1) such that the relation

#Cinasx S Cinax (7)
is guaranteed to hold for a given p € (0,1). We show how such a A can be computed
before evaluating (or approximating) CL.. or C2...

2. Notation and Preliminaries

We begin by formalizing the notion of A-contractive sets, controlled invariant sets, and
C-sets. As a preparation, note that the scaling pC is understood as uC :={px |z € C}
for any scalar > 0 and any set C C R".

Definition 1. Let A € (0,1]. A set C C X is called \-contractive for ) w.r.t. @),
if for every x € C there exists u € U such that Ax + Bu € AC. For the special case
A =1, a 1-contractive set is also called controlled invariant. For a given X\, the maximal
A-contractive set (for [Al) w.r.t. @)), i.e., the union of all \-contractive sets for ()
w.r.t. @), is denoted by C)

max -’

Definition 2. A set C C R" is called C-set if it is convex and compact and contains the
origin as an interior point.

For two given C-sets C,D C R", we define the distance between the sets as in [4]
Sect. 2]. Specifically, let S := {£ € R™|||{]|2 = 1} denote a hypersphere in R™ and let
p(&,C) :=sup{p>0|pn&cC} for any £ € S. Then

d(C,D) := Sup I (p(&,C)) = n(p(¢, D)) (8)



provides a measure of the distance between C and D. In fact, it is straightforward to
show that d: ) x ) — R is a metric on the set Y of all C-sets in R™. In particular, we
have d(C,D) = d(D,C) > 0and d(C,D) < d(C,&)+d(D,€&) for allC,D,E € Y. Moreover,
d(C,D) = 0 if and only if C = D. Now, according to the following lemma (which we
prove in the appendix), evaluating the distance d(C, D) allows one to check relations of

the form ().

Lemma 1. Let § > 0 and let C, D CR"™ be C-sets with C CD. Then

D Cexp(d)C = d(C,D) <9 and 9)
d(C,D) = min In(p) s.t. D C ucC. (10)
peER

Finally, we introduce the shorthand notation N, = {j € N|i < j < k} and we
denote the smallest and largest singular values of a matrix ® € R™*! by o, (®) and
Omax(P), respectively. We further stress that most of the results presented in this paper
require the two following assumptions on the system matrices A € R™*" and B € R™»*™
and the constraint sets X C R™ and &4 C R™ to hold.

Assumption 1. The pair (A, B) is controllable.

Assumption 2. The sets X and U are C-sets.

3. Proof of Contraction

The following theorem provides the key to prove the statements about A-contractive
sets mentioned in the introduction and summarized in Thms. [@ and further below.
Theorem [2 states that the mapping Q) (C), i.e., the set Q3 (C) for k equal to the state
space dimension n, is a contraction on (), d) for every choice A € (0,1]. Note that
Thm. 2lis similar to but different from [4, Thm. 2.3]. The most important difference is
that [4, Thm. 2.3] only applies to the special case A = 1. In this paper, however, we are
especially interested in cases where A € (0,1). Moreover, [4, Thm. 2.3| requires A to be
invertible (see, for instance, [4, Eq. (2.4)], the computation of ¢ in the proof of [4, Thm.
2.3], or [B, Assum. 2.8]). This technical restriction is not necessary to show Thm.

Theorem 2. Let A € (0,1] and let Assums. [l and[2 be satisfied. Then, there exists an
n € [0,1), depending only on the system matrices A and B, the constraints X and U,
and the contraction A, such that

d(25(C), 23(D)) < 1d(C, D), (11)
for all C-sets C,'D C R™ with C C D.

The proof of Thm. [2] requires some preparation. First note that p(§,-) and d(-,-)
are well-defined only for C-sets. Thus, the following observation is elementary to ana-

lyze ().



Lemma 3. Let A € (0,1], let C C R™ be a C-set, and let Assum. [2 be satisfied. Then
Q)(C) is a C-set for every k € N.

The proof of Lem. Bl is well-known. See for example [2] Props. 3.1 and 3.2] and [4,
Rem. 2.2]. Moreover, it is trivial to show (by induction) that the following relation
holds.

Lemma 4. Let A € (0,1], let C,D C R™ be C-sets with C C D, and let Assum. [3 be
satisfied. Then Q3(C) C QX(D) for every k € N.

Finally, it will be useful to state (necessary and sufficient) conditions for a state z € R”
to be contained in the set Qp(C) (resp. Q;,,(C)). This is done in the following lemma.

Lemma 5. Let A € (0,1], k € N, let C C R" be a C-set, and let Assum. [D be satisfied.
Then x € Q2+1(C) if and only if there exist ug,...,u € U and v € C such that

j—1
Az 4> ATBNu; e N X VjEeNgy and (12)
1=0
k . -
ARy 4N AFI B Ny = ARy, (13)
1=0

Proof. Consider any C-set 7 C R™ and note that 2 € Q(7) if and only if (i) z € X
and (ii) there exist w € U and 7 € T such that A7 = Az + Bu. Consequently, = €
93,1(C) = 21(92(0)) if and only if (i) # € X and (ii) there exist ug € U and ¢; € Qp(C)
such that Aqr = Az + B ug. By the same reasoning, g € Qﬁ (C) if and only if (i) g, € X
and (ii) there exist u; € U and gx_1 € Qp ,(C) such that Agz_1 = Agy + Buy. Finally,
q1 € Q7(C) if and only if (i) ¢; € X and (ii) there exist u; € U and go € Q}(C) = C such
that A gy = A q1 + Buy. The conditions (I2Z) and (I3]) are obtained by collecting the the
conditions (i) and (ii), and defining v := qq. [ |

Lemmas Bl 4 and B allow to prove Thm.

Proof of Thm.[4 The proof consists of three parts. In part (i), we derive a useful upper
bound for d(Q)(C), @)(D)). In part (ii), we identify some special states x* that are
guaranteed to be contained in Q)(C). These states are finally used to construct an
n € [0, 1) satistying (1) in part (iii) of the proof.

Part (i). Consider any C-sets C,D C R™ with C C D, let § := d(C,D), and define
w := exp(d). Note that 6 > 0 and p > 1. Moreover, we have D C pC according to
Lem. [l Based on this, we obtain Q) (C) C Q)ND) C Q) (uC) according to Lem. @ and

P&, () < p(&, Q0 (D)) < pl(&, A (1C))

for every ¢ € S by definition of p(-,-). Thus, a first upper bound for the distance
d(QX(C), Q(D)) reads

A A up In p(& 9 (uC))
10301, 04 < n (5 3G ) "



Part (ii). In the following, let £ € S be arbitrary but fixed. Define ¢ := p(&, Q) (11 C))
and observe that ¢ > 0. Let z := 0& and note 2 € Q)\(1C). Thus, according to Lem. [5,
there exist ug,...,u,—1 € U and vy € pC such that Eqs. (I2) and ([I3) hold for £ = n.
For the case addressed here, conditions (I2)) and ([I3]) can be rewritten as follows. There
exist ug,...,up—1 € U and v* € C such that

j—1

A&+ > ATV IBNu, e N X VjeNyg, ;) and (15)
i=0
n—1

AT &+ ATTITIB Ny = p A"y (16)
i=0

We now prove there also exist vg,...,v,_1 € U and 9 > 0 such that

j—1

Ape+> ATTIBNy e VXV jENg,_q and (17)
i=0
n—1 ' '

woe S AN = a8
i=0

As a preparation, let B™(r) denote a ball in R™ of radius r centered at the origin. Then,
since X and U are C-sets by Assum. [2], there exist 7, > r, > 0 and r,, > 0 such that

B"(r,) CX C B"(Fy) and B"(r,) CU, (19)

which obviously implies supgcs p(§, &) < 7. In addition, let

o= max{l, max HAng} , (20)
JEN[1,n)
and define ' .
¢ = (A71B,...,A°B) e R™I™ (21)

and ¥; = (ono,...,)\jflvj_l)T € RI™ for every j € Njj - Note that @ > 1 and
Omin(Py) > 0 by construction and since ®,, has full rank as a consequence of Assum. [Tl
Consequently, the choice

An—t r
@ = min gix(cp)’ T_uamin(q)n) (22)
a 1 + max n
Umin(cbn)
implies 0 > 0. Moreover, we have
j—1
Ape+ > NAT By = AlgE + @50, (23)
1=0



for every j € N, by construction. We next show that, for the state z := o0&, we

can always compute n inputs vy,...,v,—1 € U such that ([I8) holds. In fact, since the
Moore-Penrose pseudoinverse ®;F := &1 (®,, ®1)~! has full rank (again due to Assum.[T),
U = =P A" € results a suitable choice. Clearly, the associated inputs v, ..., vn_1

satisfy (I8]). Moreover, we have

a0

Dnlly < 6@ |2 ]| A™ S 30 2
[9nlly < 2l1%wlla 4"]2 l1ll> < — 20
and consequently
1 oa
T
[0 on0)lly < g Wl < s < s

where the last relation holds because of ([22). Thus, we obtain v; € B™(r,) C U for
every i € Ny, according to (I8)). To show (IT), first note that, for every j € Ny ,,_q,
we obtain

[ A70&+ @0, < ad+124ll2 [0l < ad+ [ @all2 [9nll,

“ O'max(q)n) -1
< 1+ ———= <\
=0 ( - Umin((bn)> _)\ Lo
according to Eqgs. [22)—-(24]) and due to ||®,||2 = omax(Py). Thus, ([I7) holds for every
J € N1 1) since
Bn()\n—lﬁz) _ )\n—l Bn(fz) - )\n—lX - )\jX

follows from ([d). Clearly, (I7) also holds for j = 0 since 6¢ € B*(A\"'r,) C \OX is
ensured by (22]). Now, combining the results from ([I3)—(I6]) and (I7)—(I8]), we can show
that there exist wo,...,w,—1 € U and p* > 0 such that

j—1

Agre+> AT IBNw; e N XV j €N,y and (25)
=0
n—1 ' '

AT+ ATTITIB Ny = A" (26)
=0

In fact, the choices

p—1.

1 —1 1
P and o= —o+ 52—, (27)
1 I

w; = — U; +
H H

which satisfy w; € U and p* > 0, allow to rewrite (25) as

j—1 Jj—1
Alog 4+ AR X+ (= 1) (4706 + > ATTITIB Y ) € uN X,
i=0 =0

which holds according to (I5]) and (7). Analogously, (28] can be proven using Eqs. (IG),
(X)), and @7). Thus, due to @5)-@8) and v* € C, we find 2* := ¢*¢ € Q) (C) according
to Lem. Bl



Part (iii). Clearly, o*¢ € Q)(C) implies o* < p(&, Q) (C)). Since &€ € S was arbitrary,

we obtain
A T

for every ¢ € S according to (Z7) and by definition of ¢. In addition, since Q) (1 C) C X
and due to (I9), we have

sup p(&, Qp (1 C)) < sup p(§, X) < 7. (29)
§es ces
_; and note that v € (0,0.5] since ¢ < % according to ([22) (due to

We next define v:=
n) > Omin(®y) > 0, and A € (0,1]). Now, comblmng 28) and 29), we

a>1, Umax(
infer

¢es P\S, n £es 1+ (6,02 (1 0)) L+ Ty

=In(p) —In (14 (= 1)7) < In(p) — In(p”)
= (1 —7) In(w), (30)

where the last inequality holds since p” underestimates 1 + (u — 1)~ (given that p > 1
and v € (0,0.5]). Finally, taking In(u) = 6 = d(C,D) and (I4]) into account, it is easy
to see that ([B0Q) proves () for the choice n:==1—v=1-— %. In fact, with regard to
relations (I9)—(22), this choice of 1 only depends on the system matrices A and B, the
constraints X and U, and the contraction A\. Moreover, we have n € [0.5,1) C [0,1) due
to v € (0,0.5]. n

Theorem [ establishes the contraction of Q)(C). Using similar arguments (but omit-
ting the variations (I7)) and (I8) which require controllability), it is easy to prove the
following weaker relation, which however holds for every k € N.

Corollary 6. Let A € (0,1] and let Assum. [2 be satisfied. Then
d(Qx(C), Qr(D)) < d(C, D) (31)
for every k € N and all C-sets C,D C R™ with C C D.

Theorem 2] and Cor. [l lead to Lem. [ which will be instrumental to prove Thms.
and in the next section. As a preparation, we state the following corollary, which
summarizes the choice of a suitable contraction factor n according to the proof of Thm.[2l

Corollary 7. Let A € (0,1] and let Assums. [l and[2 be satisfied. Moreover, let r,, Ts,
and r,, with 0 <r, <7, and 0 < r, be such that (I9) holds, define o and ®,, according
to 20) and ([2I0), respectively, and choose ¢ as in [22]). Then, n = 1—% is such that (III)
holds for all C-sets C,D C R™ with C C D.



Lemma 8. Let A € (0,1] and § > 0, let C,D C R"™ be C-sets with C C D, and let
Assums. [ and[@ be satisfied. Choose 1 according to Cor. [} Then d(Qp(C ) 2( ) <
for every k € N with

In(n)
0 otherwise.

kz{ n { ] if d(C,D) > 4, (3

Proof. 1f d(C,D) < §, we find d(Q}(C), Q) (D)) < § for every k € N according to Cor. Bl
It remains to address the case d(C,D) > 0. Theorem [2 implies d(Q?n(C), Qj‘n(D)) <
d(C,D) for every j € N. Clearly, n/d(C,D) < ¢ if
In(0) — In(d(C, D)

In(7) '

Taking j € N into account leads to (B2]). |

J=z

4. Implications

In this section, we provide formal proofs for the new results on A-contractive sets stated
in the introduction and summarized in Thms. @ and

Theorem 9. Let A € (0,1] and € > 0, let Assums. [0l and[3 be satisfied, and let C be any
A-contractive C-set. Set D = X and § = 1In(1 +€), choose n according to Cor.[7, and let
k be such that B2) holds. Then

QR(X) € (1+6) QR(C) € (1+€) Clrax- (33)

Proof. Since C is A-contractive, it is easy to show that Q}(C) is A-contractive for every
k € N. Thus, we have Qé( ) € C),, for every k € N, which proves the second relation

in (33). For a k satisfying (B2)), we obtain d(Q}(C), Q3 (X)) < § according to Lem. B
Hence, the first relation in (B3] holds according to Lem.[IJand due to the choice of . W

Remark 1. As mentioned in the introduction, existence of a k € N satisfying (@) for
given X and € requires C,. to be a C-set. A necessary and sufficient condition for
C) .. to be a C-set is the existence of some A-contractive C-set C. Clearly, the explicit
knowledge of such a set C, as required in Thm.[d, is more restrictive than the fundamental
assumption that C)\,. is a C-set. However, there exist a number of procedures to identify
(small) A-contractive C-sets. Assume, for example, there exist K € R™*™ and a positive
definite matriz P € R™" such that (A+BK)TP(A+ BK) < A?P and such that A+ BK
is Schur stable. Now choose any > 0 such that C = {z € R* |27 Px < B} C {z €
X|Kx € U}. Then, C is a A\-contractive ellipsoid and thus a A-contractive C-set (cf.

[2, Rem. 4.1]). Similar procedures exist to compute \-contractive polytopes (see, e.g.,

[8, Sect. V]).

Theorem [[2] further below addresses the suitable choice of A € (0,1) to guarantee ()
for a given p € (0,1). As a preparation, we provide the following two lemmas.



Lemma 10. Let A € (0,1], let D C R"™ be a C-set, and let Assum. [Q be satisfied. Then
M QL(D) C QN(D) for every k € N.

Proof. The relation holds with equality for £k = 0. We prove the relation for £ > 0 by
induction. First note that, for any C-set 7 C R”, Q}(T) can be written as

ONT)=XMEeA'X|Zane ' U: Az+BuecT) (34)

Since A < 1 implies A™'X D X and A™'U D U, we obtain A Q1(T) € Q}(T). To show
that A¥ Q}(D) C Qx(D) implies A Qp (D) C Oy, (D), first note that

Qii1(D)= 91 (Qr (D)) 2 Q1 (A" Qi(D)) 21 Q1 (A" Q4(D)). (35)

Now, rewriting Q1(u7T) in the style of [34]) for some u € (0 ,1], it is easy to show that
pQI(T) € Ql(uT). We consequently find \* QH(T) € QI(A\* 7). Taking (B5) into
account, we finally infer

Qp1(D) 2 N Q1(Q)(D)) = N1 Q) (D),
which completes the proof. |

Lemma 11. Let p € (0,1) and X* € (0,1), let Assums. [l and [@ be satisfied, let C be
a N*-contractive C-set, and set € = 17_5 Then, there exist X\ € [\*,1) and k € N such
that B3) holds and such that

14+ p <28 (36)

Proof. Set A = X\*, D = X, and 0 = In(1 + ¢€) and let r,, 7, r,, @ and ®,, be as in
Cor.[ll Choose ¢ as in [22),set n =1— %, and pick any k € N that satisfies ([82]). Then,
relation (B3] holds according to Thm. @ However, we either have (i) 14 p < 2 (\*)*
(ii) 1+ p > 2(\*)k. Case (i) immediately finishes the proof.

In contrast, if case (ii) applies, first note that we have k > 0 (since 14 > 2(A\*)? = 2
contradicts p < 1). Now, compute

A:wPCMLHg_m@» -

and note that 2)\¥ = 1 + g and X\ € (A\*,1). Clearly, since A > \*, the set C is also
A-contractive. Now, recompute ¢ according to (22)) for the new value of A given by (1.
Note that the new g is larger than the one that was obtained above with A = A"

Consequently, the recalculation of 7 = 1— £ results in a smaller value than above. Thus,
it is easy to see that k as chosen above btlll satisfies [B2). This completes the proof, since
[B3) again holds according to Thm. [0l and since (B6) is satisfied by construction. |

Theorem 12. Let € (0,1) and \* € (0,1), let Assums. Dl and[2 be satisfied, let C be a
A -contractive C-set, and set € = TH Assume X € [A*,1) and k €N are such that ([B3))
and BA) hold. Then

HCmax € Q(C) < Chrax (38)



Proof. We have Cl,, C O}(X) and \*QL(X) C Q) X) according to Eq. (B) and Lem. [T,

max

respectively. Combining both relations and taking Eq. (33]) into account, yields
A Clnaxe € M Q) € Q(X) C (14€) QR(C) € (1 +6) Chraee
This proves (38]) since we have
k )\k

2\
:u'crlnax - 1 +M Mcrlnax = 1—_{_Ecr1nax

due to ([B8) and by definition of €, respectively. |

Remark 2. For the interpretation of Lem. [Tl and Thm.[I3, it is important to note that,
for a given p € (0,1), suitable A € [A\*,1) and k € N satisfying B3) and BL) can be
computed without evaluating the sets QNX), ON(C), or Caay in @B3). In fact, we only
require the computation of (i) a X*-contractive C-set C, (ii) the distance d(C,X) (e.g.,
according to ([I0)), and (iii) n as in Cor.[]. Then, suitable X and k can be calculated

according to the proof of Lem. L.

Remark 3. For practical applications, having the guarantee that [B8]) holds without
actually knowing (an approzimation of) Ci.. is usually useless. Fortunately, Thm. 12
implicitly provides two methods to compute A-contractive sets that approximate the maz-
imal controlled invariant set CL.. with a given accuracy pu € (0,1), presupposing that a
N -contractive set C is known. To see this, first note that any A € [A\*,1) and k € N
satisfying B3) and BE) for e = 12_—;‘ result in a A\-contractive set T = Qp(C) satisfying
uCL.. € T. Now, a suitable set T can be computed using two strategies. First, we can
compute \ and k according to the proof of Lem. [Tl and simply evaluate Qﬁ (C) according
to @). This, however, might be numerically expensive since the computed k is usually

quite conservative. Second, for A as above, we can compute Q;‘(C) and Q;‘(X) for in-
creasing j € N until Q;‘(X) C(1+e Q?(C) is observed for j = k*. We obviously have
k* < k by construction and thus 1 + p < 2X\* < 2M\¥". Consequently, B3) and B0)
hold and T = Q3. (C) approzimates C. .. accurately. The second strategy is numerically

attractive, since k* is usually significantly smaller than k from the proof of Lem. [Tl (see
the example in Sect. [2.2).

5. lllustrative examples

We analyze three examples to discuss the uses and limitations of Thms. [@ and [12] as
well as Thm. 2l In particular, we show how to compute suitable k& and A such that (@)
and (7)) hold without evaluating Q3 (X), Ca\axs OF Clhiax- These numbers are then compared
to the optimal (i.e., smallest possible) choices of k and A. It is easy to see that the
optimal choices require the knowledge of the sets ON(X), Cpaxs OF Cly. Since explicit
descriptions of these sets are usually not available for complex systems, we consider
relatively simple examples in the following. We stress, however, that the techniques in
Thms. @ and [[2] can be applied to more complex systems provided the requirements in

Rem. 2] can be satisfied.
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5.1. Discussion of Theorem

Theorem [@ makes it possible to compute an iteration bound £ such that (33]) holds. In
the following, we compare the provided bound with the smallest k satisfying (33]) for a
simple example.

Consider system (Il) with A = 1.1, and B = I,, and constraints X = [—10,10]"
and U = [—1,1]" for an arbitrary n € N with n > 0, where I,, denotes the identity
matrix in R™*". Obviously, the system can be resolved into n independent systems of
dimension one. Nevertheless, the conglomerated system is useful to analyze Thm. @l In
this context, first note that the set C = [—2,2]" is A-contractive for every A € [0.6,1].
Moreover, it is easy to show that the maximal A-contractive set is given by
=[] with ) !

max? “max max = 1 1 _ A

for this example. We obviously have C),, = C for A = 0.6 and CJ,, = X for A = 1.

Now, according to Thm. [ for every A\ € [0.6,1] and every e > 0, there exists a k € N
such that ([33]) holds. Following Thm. [@ such a k can be found by setting D = X and
d = In(1 +¢), selecting 7 as in Cor. [ and choosing k such that ([B2) holds. To this end,
first note that r, = 10, 7, = 10y/n, and r, = 1 are such that (I9) holds. Moreover,
a = 1.1" satisfies (20) and it is straightforward to show that

O’max(q)n) = Umin(q)n) = \/Z?;Ol 1‘12i = \/1201;;1

Thus, according to ([22]), ¢ evaluates to

D . 1.21" — 1
= min s — .
o= 9 V021

Consequently, a suitable choice for 7 is

0 An—t , 1.217 — 1
I L — 5y e b 40
K T 10v/n 117 mm{ "V 021 (40)

It remains to choose k satisfying (32)). Evaluating the distance between C and X" accord-
ing to (0) results in d(C,X) = In(5). Thus, the smallest k that satisfies ([B2]) for any
e € (0,4) can be computed according to

k—n lrln(ln(l +¢€)) — ln(ln(5))-‘ (41)
In(n)
with n as in (@0). Numerical values for n € {1,2}, A € {0.6,0.8,1.0}, and e €
{0.01,0.05,0.1} are listed in Tab. [dl(a).
We next compare the results in Tab. [[l(a) with the smallest k& such that (33) holds.
For this simple example, Qﬁ (C) and Qﬁ()\,’ ) can be stated explicitly as

A
Cmax

(39)

k (A k
QC) = [}, )] with ¢ =2 (%) + # (42)
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and

A A A A A g _ (A)k
[ n : R 1.1

for every k € N and any A € [0.6,1]. Now, condition ([B3]) obviously holds for a given
k € N if (and only if)
p < (1+6)cp. (44)

Clearly, ([4]) does not depend on n. In other words, the smallest k such that (B3] holds
does not change with n for this example. Apparently, this observation is not echoed in
Tab. [l (a) (or Eq. (1)), where we clearly have a dependence on n. Now, based on (43
and ([A2), it is easy to prove that the smallest k satisfying (@) reads

(1= N(E-2)+1)
= In(1.1) — In(\) (45)

for a given A\ € [0.6,1] and € € (0,4]. In Tab. [l(b) numerical values for k as in (45])
are listed for A and € as above. Comparing the entries in Tabs. [l (a) and [ (b), it turns
out that the values for k& computed according to Thm. [0 are valid but conservative. In
fact, the smallest overestimation, which is by a factor of % ~ 1.1489, occurs for n = 1,
A= 1.0, and € = 0.01.

Table 1: Numerical values for k as in (4I]) and ({5, respectively,
as a function of n, A\, and e.

(a) values for k as in (@) (b) values for k as in (45])
noA € A €

0.01 0.05 0.1 (anyn) 0.01 0.05 0.1
2 06 192 132 106 0.6 10 8 7
2 08 142 98 80 0.8 18 13 11
2 1.0 112 78 64 1.0 47 30 23
1 any 54 37 30

Another observation is also interesting. In Tab. [l(b), for fixed €, the values of k
increase with increasing . In contrast, for n = 2 and fixed ¢, the values of k in Tab.[Il(a)
decrease with increasing A. In general, for some A* < A and D C X, we have C,. C Co..
and Q3 (D) C Q)(D) for every k € N. In other words, larger values of A imply a larger
set Cp oy slower contraction of {Q7(X)}, and faster expansion of {Q3(C)}. Clearly, this
observation does not allow a general statement about the dependence of the smallest
k, such that [B3) holds, on A\. In fact, depending on the example, we may observe a
behavior similar or opposite to Tab. [l(b) (i.e., k increases or decreases with A). In
contrast, the iteration bound k considered in Thm. 0 will always decrease with A (as

apparent from Tab. [[l(a)). This behavior can be explained with regard to Cor. [ and

12



Lem.[8 Clearly, for larger A, ¢ as in ([22]) will be larger, which results in smaller n = 1— £
and finally smaller k satisfying (82]). While this behavior may be conservative (as it is for
this example), it is required to prove Thm. [[2] and the underlying Lem. 1l Indeed, the
strategy to handle case (ii) in the proof of Lem. [Tl builds on the fact that the computed
n for some A € (A*, 1] is smaller than the one for A = A\*.

5.2. Discussion of Theorem

Theorem [[2] allows A to be chosen such that () is guaranteed to hold for a given p. In
the following, we compare the smallest value of A such that (7)) holds with the value that
is obtained using Lem. [[1] for the example from Sect. EIland n = 1.

Assume we want to satisfy (@) for p = %. Before applying Thm. (and Lem. [ITI),
first note that the maximal controlled invariant set is C —10,10] (according to (B9)

max_[

with A = 1). Obviously, uCL .. C C).. requires
50 1 49
10p = 5 < 1 o equivalently, =0 <A\ (46)

Thus, \* = 0.98 is the smallest choice for A such that () holds.

The computation of a suitable A according to Thm. [I2] (and Lem. [[T)) involves finding
A and k such that (33]) and (B6]) hold for the choice

e—tlr_L1 g
2 10

In this context, Thm. [[2] and Lem. [[T require the knowledge of a A*-contractive set C.
We again consider the set C = [—2,2] from Sect. Bl which is A-contractive for every
A € [0.6,1]. We use A* = 0.98 from above as an initial guess for the computation
of a suitable A corresponding to the proof of Lem. [l In other words, we first analyze
whether the presented procedure is capable of identifying whether A* is suitable. Clearly,
the smallest k satisfying ([B2]) for D = X and 0 = In(1 4 €) can be computed analogously
to Sect. .l Hence, evaluating [Il) for n = 1, e = 0.1, and n from {@Q) yields & = 30
(as itemized in Tab. [l (a)). We obtain

14 1~ 1.8333 > 1.0910 ~ 2 - 0.98%0 = 2 (\*)*,

i.e., (36]) does not hold for the choice A = A\* and we have to address case (ii) in the proof
of Lem. [[Il Consequently, updating A according to (B1) yields A ~ 0.9971. Following
the argumentation in the proof of Lem. [[1] the updated A and k& = 30 are such that (B3]
and ([B6) hold. Thus, according to Thm. 2 the updated A is such that (7)) holds. The
computed A is conservative in the sense that

A=A

= 0.8552 = 85.52
11— %

of the “suitable interval” [0.98,1) is not identified as being suitable. However, the result
can also be interpreted in a different way. To this end, we compute A-contractive sets T
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that accurately approximate Cl . according to the two strategies in Rem. B Using the

first strategy, we obtain 7 = Q3,(C) based on the iteration bound k = 30. The second
strategy leads to an earlier termination after k* = 23 iterations (according to (43])).
This observation is interesting, since any choice A\ € [0.98,0.9971] requires at least 21
iterations to satisfy ([B3]) with e = 0.1. In other words, the conservatism in the choice of
A only slightly influences the earliest satisfaction of (B3)).

5.3. Discussion of Theorem

Theorems [@ and [I2] both build on the contraction property in Thm. Bl It thus makes
sense to discuss Thm. 2] in more detail.

First, it is important to note that the contraction property in Thm. 2] only applies to
the mapping Qi‘L(C), where n refers to the state space dimension. Initially, this seems
counter-intuitive and one would expect a contraction after every step k. In fact, the
example discussed in Sect. (1] (and Sect. £.2) shows such a behavior. There exist,
however, situations where a contraction indeed only appears every n steps. In this
context, consider system ([I]) with

(2 ()

and constraints X = [—5,5]? and U = [—1,1] (which is taken from [9, Sect. IV-B]). We
will show that, for the choice C = [—1,1] x [—1,1] and D = [—2,2] x [1, 1], we obtain

d(Qé\j+1(C)a Qé\j+1(D)) = d(Q%j (C), Q%‘j(D))

A%
=0 A

for every A € (0,1] and every j € Nio,3) (for j > 3, i.e., kK > 7, the state constraints X
may, depending of the choice of A, affect the shapes of Q}(C) and Q)(D) so that (4T
may no longer hold). Now, according to [{@1) for j = 0, we find

d(Q1(C), Q1(D)) = d(Q4(C), Q3(D)) = d(C, D) = In(2).

In other words, ([BI) holds for £k = 1 < n with equality (in agreement with Cor. [f) but

there is no contraction in terms of the distance between the sets after one iteration. For

k = n = 2, relation ([l can, however, be easily satisfied for the choice n = 1 — A

V50
This follows from Cor. [ with r, =5, 7, = V50, r, =1, a =1, &, = I5, omax(Pn)
Omin(Pyn) = 1, and ¢ = )\min{%‘, r_u} = \. To prove ([@T), finally note that Q7 (T)
evaluates to

ONT) =[-Am — LA + 1] x [=A 71, A 7] (48)

for any set T = [—71, 71| X [=T2, 2] with 71 € (0,5] and 75 € (0,4]. Equation [@8) allows
to compute Qp(C) = Q}(Q7 ,(C)) and Q)N(D) = QN Qp (D)) for every k € N 7 (for
k > 7, the conditions on 71 and 75 may be violated for T = Q,_1(C) or T = Qj_1(D)).
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Afterwards, () can be used to evaluate the distances d(Qp(C), Op(D)). Identifying
relation (7)) is then straightforward.

Another important limitation of Thm. [2]is that the pair (A, B) has to be controllable
(see Assum. [I). Clearly, it would be desirable to extend the contraction property to
systems that are “only” stabilizable. However, a simple extension is not possible as the
following example shows. Consider system ([I]) with system matrices A = 0.8 and B =0
and constraints X = [-5,5] and U = [—1,1]. Note that the pair (A4, B) is stabilizable
but not controllable. We show in the following that, for the choice C = [—1,1] and
D = [-2,2], we obtain

4(Q)(C), Q}(D)) = d(C, D) = 1 (49)

for every k € N4 and every A € (0,1]. Obviously, since {#9) applies for k = n = 1,
relation (II)) cannot hold with n < 1 for some stabilizable systems. In other words,
Thm. 2 can in this form not be extended to those systems. Corollary [6] which does not
require controllability of (A, B), is however consistent with (9). To show (@J), note
that Q7(T) evaluates to Q}(7) = [—2%, %] for any set T = [—7,7] with 7 € (0,4].
Computing Q}(C) and Q}(D)) accordingly and evaluating d(Q7(C), Q) (D) as in (I0)
leads to ([@9). We finally note that (49) holds for every k& € N in case of A € (0,0.8].
For X € (0.8, 1], however, Q}(C) and Qp(D) converge to the state constraints X', which

eventually results in violation of (49]).

6. Conclusion

The paper presented two interesting results related to the computation of A-contractive
sets for linear constrained systems. First, we showed that it is possible to a priori com-
pute a number of iterations k that is sufficient to approximate the largest A-contractive
set Cé‘]ax with a given precision € using the sequence (). Formally, this result is sum-
marized in Thm. @ Second, we showed in Thm. how to compute a suitable A\ such
that the associated maximal A-contractive set is guaranteed to approximate the maximal
controlled invariant set CL__ with a given accuracy. The statements in Thms. [ and
were illustrated with an example. As one might expect, we found that the computed
iteration bound k and the provided choice for A are valid but conservative. Nevertheless,
the procedure for a suitable choice of A guaranteeing ([7]) might be useful for practical
computations of A-contractive sets since the conservatism in A only slightly influences
the termination of step-set based approximations of C}\,, (see the example in Sect. 5.2).

Theorems [ and 2] both build on the contraction property summarized in Thm.
and the iteration bound introduced in Lem. 8 The statements in Thm. 2l and Lem.
require the pair (A, B) to be controllable (see Assum. [I]) and this restriction is passed
on to Thms. [ and Clearly, it would be desirable to extend all statements to sys-
tems that are “only” stabilizable. It was, however, shown that there exist stabilizable
systems for which the statement in Thm. [2] does not apply (see the latter example in
Sect. B.3]). Nevertheless, there is no fundamental argument against the extension of
Thms. [@ and [[2] to stabilizable systems. Consequently, future work has to address these

non-trivial extensions in order to complete the theory.
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A. Additional proof

Proof of Lem. [1. The proof consists of three parts addressing (i) “="in (@), (ii) “<="
in (@), and (iii) relation (I0). As a preparation, note that p(§,C) < p(§,D) for every
£eSduetoC CD.

Part (i). Having D C exp(d)C implies p(§,D) < p(§,exp(d)C) for every £ € S. We
further obtain p(&, exp(0) C) = exp(0) p(&,C) for every £ € S by definition of p(-,-). Thus

d(C,D) =sup In <p(£,D)> < In(exp(d)) = 4.

£eS p(é,C)
Part (ii). Assume d(C,D) < 6 but D ¢ exp(§)C. Then, there exists an x # 0
such that = € D but x ¢ exp(d)C. Define £* := o and note & € S. Clearly,

p(&*, D) > p(&*,exp(0)C) = exp(d) p(¢*,C). This, however, contradicts d(C,D) < o

since o€ D) B
n <p(§*,C) > > In(exp(d)) = 0.

Part (iii). Let p* := argmin,In(p) s.t. D C pC and define 6* := In(p*). Then,
we have D C exp(0*)C and consequently d(C,D) < 6* according to part (i) of the
proof. Now, assume d(C,D) = § < 0*. Then, D C exp(d)C according to part (ii).
This, however, contradicts p* being the optimizer of (0] since p=exp(d) < p*. Thus,
d(C,D)=¢" in accordance with (I0). [ |
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