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On the computation of λ-contractive sets

for linear constrained systems

Moritz Schulze Darup† and Mark Cannon†

Abstract. We present two theoretical results on the computation of λ-contractive sets
for linear systems with state and input constraints. First, we show that it is possible
to a priori compute a number of iterations that is sufficient to approximate the max-
imal λ-contractive set with a given precision using 1-step sets. Second, based on the
former result, we provide a procedure for choosing λ so that the associated maximal λ-
contractive set is guaranteed to approximate the maximal controlled invariant set with
a given accuracy.

Keywords. Linear systems, constrained control, λ-contractive sets, geometric methods.

Preamble. This is a preprint of an article to appear in IEEE Transactions on Automatic
control.

1. Introduction and Problem Statement

The concept of λ-contraction is widely used in control theory (see [1] for an excellent
overview). For linear discrete-time systems

x(k + 1) = Ax(k) +B u(k) (1)

with state and input constraints of the form

x(k) ∈ X and u(k) ∈ U for every k ∈ N, (2)

the construction, the application and many fundamental properties of λ-contractive sets
are well-known (see, e.g., [1, 2]). The computation of λ-contractive sets often builds on
the repeated evaluation of the mapping

Qλ
1(D) := {x ∈ X | ∃u ∈ U : Ax+Bu ∈ λD} (3)

for a given set D ⊂ Rn and a fixed λ ∈ (0, 1]. This leads to a sequence of sets defined
according to Qλ

0(D) = D and

Qλ
k+1(D) := Qλ

1 (Qλ
k(D)) (4)

for k ∈ N. Sequences of the form (4) were first addressed for the special case λ = 1 (see
[3, 4, 5, 6]). Later, the case of λ ∈ (0, 1), which is more relevant here, was considered (see,
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e.g., [2]). For the special choice D = X , it is well-known that (4) results in a sequence
of nested sets that approximate the maximal λ-contractive set Cλ

max (see Def. 1) from
outside, i.e.,

Cλ
max ⊆ Qλ

k+1(X ) ⊆ Qλ
k(X ) (5)

for every k ∈ N (see [2, Thm. 3.1]). Moreover, if Cλ
max is a C-set (see Def. 2), which is

the case if λ is such that 0 ∈ int(Cλ
max) [2, Rem. 4.1], the sequence {Qλ

k(X )} converges
to Cλ

max in the sense that, for every ǫ > 0, there exists a k ∈ N such that

Qλ
k(X ) ⊆ (1 + ǫ) Cλ

max. (6)

While this characteristic is, in principle, well-understood, there does (except for λ = 1)
not exist a method to a priori compute an upper bound for a suitable k such that (6)
holds for a given ǫ. In this paper, we derive such a bound by adapting and extending
related results on the convergence of null-controllable sets given in [4].

The presented bound on k allows the solution of another problem related to the
computation of λ-contractive sets. It is well-known that λ-contractive sets can be used
to approximate the maximal controlled invariant set C1

max arbitrarily closely (consider,
e.g., [7, Lem. 2.1 and Thm. 2.1]). However, it is not clear how to a priori choose
λ ∈ (0, 1) such that the relation

µ C1
max ⊆ Cλ

max (7)

is guaranteed to hold for a given µ ∈ (0, 1). We show how such a λ can be computed
before evaluating (or approximating) C1

max or Cλ
max.

2. Notation and Preliminaries

We begin by formalizing the notion of λ-contractive sets, controlled invariant sets, and
C-sets. As a preparation, note that the scaling µ C is understood as µ C := {µx |x ∈ C}
for any scalar µ > 0 and any set C ⊂ Rn.

Definition 1. Let λ ∈ (0, 1]. A set C ⊆ X is called λ-contractive for (1) w.r.t. (2),
if for every x ∈ C there exists u ∈ U such that Ax + B u ∈ λ C. For the special case
λ = 1, a 1-contractive set is also called controlled invariant. For a given λ, the maximal
λ-contractive set (for (1) w.r.t. (2)), i.e., the union of all λ-contractive sets for (1)
w.r.t. (2), is denoted by Cλ

max.

Definition 2. A set C ⊂ Rn is called C-set if it is convex and compact and contains the
origin as an interior point.

For two given C-sets C,D ⊂ Rn, we define the distance between the sets as in [4,
Sect. 2]. Specifically, let S := {ξ ∈ Rn | ‖ξ‖2 = 1} denote a hypersphere in Rn and let
ρ(ξ, C) := sup{µ > 0 |µ ξ ∈ C} for any ξ ∈ S. Then

d(C,D) := sup
ξ∈S

|ln (ρ(ξ, C)) − ln (ρ(ξ,D))| (8)
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provides a measure of the distance between C and D. In fact, it is straightforward to
show that d : Y × Y → R is a metric on the set Y of all C-sets in Rn. In particular, we
have d(C,D) = d(D, C) ≥ 0 and d(C,D) ≤ d(C, E)+d(D, E) for all C,D, E ∈ Y. Moreover,
d(C,D) = 0 if and only if C = D. Now, according to the following lemma (which we
prove in the appendix), evaluating the distance d(C,D) allows one to check relations of
the form (6).

Lemma 1. Let δ ≥ 0 and let C,D⊂Rn be C-sets with C ⊆D. Then

D ⊆ exp(δ) C ⇐⇒ d(C,D) ≤ δ and (9)

d(C,D) = min
µ∈R

ln(µ) s.t. D ⊆ µ C. (10)

Finally, we introduce the shorthand notation N[i,k] := {j ∈ N | i ≤ j ≤ k} and we

denote the smallest and largest singular values of a matrix Φ ∈ Rn×l by σmin(Φ) and
σmax(Φ), respectively. We further stress that most of the results presented in this paper
require the two following assumptions on the system matrices A ∈ Rn×n and B ∈ Rn×m

and the constraint sets X ⊂ Rn and U ⊂ Rm to hold.

Assumption 1. The pair (A,B) is controllable.

Assumption 2. The sets X and U are C-sets.

3. Proof of Contraction

The following theorem provides the key to prove the statements about λ-contractive
sets mentioned in the introduction and summarized in Thms. 9 and 12 further below.
Theorem 2 states that the mapping Qλ

n(C), i.e., the set Qλ
k(C) for k equal to the state

space dimension n, is a contraction on (Y, d) for every choice λ ∈ (0, 1]. Note that
Thm. 2 is similar to but different from [4, Thm. 2.3]. The most important difference is
that [4, Thm. 2.3] only applies to the special case λ = 1. In this paper, however, we are
especially interested in cases where λ ∈ (0, 1). Moreover, [4, Thm. 2.3] requires A to be
invertible (see, for instance, [4, Eq. (2.4)], the computation of δ in the proof of [4, Thm.
2.3], or [5, Assum. 2.8]). This technical restriction is not necessary to show Thm. 2.

Theorem 2. Let λ ∈ (0, 1] and let Assums. 1 and 2 be satisfied. Then, there exists an
η ∈ [0, 1), depending only on the system matrices A and B, the constraints X and U ,
and the contraction λ, such that

d(Qλ
n(C),Qλ

n(D)) ≤ η d(C,D), (11)

for all C-sets C,D ⊂ Rn with C ⊆ D.

The proof of Thm. 2 requires some preparation. First note that ρ(ξ, ·) and d(·, ·)
are well-defined only for C-sets. Thus, the following observation is elementary to ana-
lyze (11).
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Lemma 3. Let λ ∈ (0, 1], let C ⊂ Rn be a C-set, and let Assum. 2 be satisfied. Then
Qλ

k(C) is a C-set for every k ∈ N.

The proof of Lem. 3 is well-known. See for example [2, Props. 3.1 and 3.2] and [4,
Rem. 2.2]. Moreover, it is trivial to show (by induction) that the following relation
holds.

Lemma 4. Let λ ∈ (0, 1], let C,D ⊂ Rn be C-sets with C ⊆ D, and let Assum. 2 be
satisfied. Then Qλ

k(C) ⊆ Qλ
k(D) for every k ∈ N.

Finally, it will be useful to state (necessary and sufficient) conditions for a state x ∈ Rn

to be contained in the set Qλ
k(C) (resp. Qλ

k+1(C)). This is done in the following lemma.

Lemma 5. Let λ ∈ (0, 1], k ∈ N, let C ⊂ Rn be a C-set, and let Assum. 2 be satisfied.
Then x ∈ Qλ

k+1(C) if and only if there exist u0, . . . , uk ∈ U and γ ∈ C such that

Ajx+

j−1
∑

i=0

Aj−1−iB λiui ∈ λj X ∀ j ∈ N[0,k] and (12)

Ak+1x+
k
∑

i=0

Ak−iB λiui = λk+1γ. (13)

Proof. Consider any C-set T ⊂ Rn and note that x ∈ Qλ
1(T ) if and only if (i) x ∈ X

and (ii) there exist u ∈ U and τ ∈ T such that λ τ = Ax + B u. Consequently, x ∈
Qλ

k+1(C) = Qλ
1 (Qλ

k(C)) if and only if (i) x ∈ X and (ii) there exist u0 ∈ U and qk ∈ Qλ
k(C)

such that λ qk = Ax+B u0. By the same reasoning, qk ∈ Qλ
k(C) if and only if (i) qk ∈ X

and (ii) there exist u1 ∈ U and qk−1 ∈ Qλ
k−1(C) such that λ qk−1 = Aqk +B u1. Finally,

q1 ∈ Qλ
1 (C) if and only if (i) q1 ∈ X and (ii) there exist uk ∈ U and q0 ∈ Qλ

0(C) = C such
that λ q0 = Aq1 +B uk. The conditions (12) and (13) are obtained by collecting the the
conditions (i) and (ii), and defining γ := q0. �

Lemmas 3, 4, and 5 allow to prove Thm. 2.

Proof of Thm. 2. The proof consists of three parts. In part (i), we derive a useful upper
bound for d(Qλ

n(C),Qλ
n(D)). In part (ii), we identify some special states x∗ that are

guaranteed to be contained in Qλ
n(C). These states are finally used to construct an

η ∈ [0, 1) satisfying (11) in part (iii) of the proof.
Part (i). Consider any C-sets C,D ⊂ Rn with C ⊆ D, let δ := d(C,D), and define

µ := exp(δ). Note that δ ≥ 0 and µ ≥ 1. Moreover, we have D ⊆ µ C according to
Lem. 1. Based on this, we obtain Qλ

n(C) ⊆ Qλ
n(D) ⊆ Qλ

n(µ C) according to Lem. 4 and

ρ(ξ,Qλ
n(C)) ≤ ρ(ξ,Qλ

n(D)) ≤ ρ(ξ,Qλ
n(µ C))

for every ξ ∈ S by definition of ρ(·, ·). Thus, a first upper bound for the distance
d(Qλ

n(C),Qλ
n(D)) reads

d(Qλ
n(C),Qλ

n(D)) ≤ sup
ξ∈S

ln

(

ρ(ξ,Qλ
n(µ C))

ρ(ξ,Qλ
n(C))

)

. (14)
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Part (ii). In the following, let ξ ∈ S be arbitrary but fixed. Define ̺ := ρ(ξ,Qλ
n(µ C))

and observe that ̺ > 0. Let x := ̺ ξ and note x ∈ Qλ
n(µ C). Thus, according to Lem. 5,

there exist u0, . . . , un−1 ∈ U and γ ∈ µ C such that Eqs. (12) and (13) hold for k = n.
For the case addressed here, conditions (12) and (13) can be rewritten as follows. There
exist u0, . . . , un−1 ∈ U and γ∗ ∈ C such that

Aj̺ ξ +

j−1
∑

i=0

Aj−1−iB λiui ∈ λj X ∀ j ∈ N[0,n−1] and (15)

An̺ ξ +

n−1
∑

i=0

An−1−iB λiui = µλnγ∗. (16)

We now prove there also exist v0, . . . , vn−1 ∈ U and ˆ̺> 0 such that

Aj ˆ̺ξ +

j−1
∑

i=0

Aj−1−iB λivi ∈ λj X ∀ j ∈ N[0,n−1] and (17)

An ˆ̺ξ +

n−1
∑

i=0

An−1−iB λivi = 0. (18)

As a preparation, let Bn(r) denote a ball in Rn of radius r centered at the origin. Then,
since X and U are C-sets by Assum. 2, there exist rx ≥ rx > 0 and ru > 0 such that

Bn(rx) ⊆ X ⊆ Bn(rx) and Bm(ru) ⊆ U , (19)

which obviously implies supξ∈S ρ(ξ,X ) ≤ rx. In addition, let

α := max

{

1, max
j∈N[1,n]

‖Aj‖2
}

, (20)

and define
Φj := (Aj−1B, . . . , A0B) ∈ Rn×jm (21)

and ϑj := (λ0v0, . . . , λ
j−1vj−1)

T ∈ Rjm for every j ∈ N[1,n]. Note that α ≥ 1 and
σmin(Φn) > 0 by construction and since Φn has full rank as a consequence of Assum. 1.
Consequently, the choice

ˆ̺ =
λn−1

α
min







rx

1 + σmax(Φn)
σmin(Φn)

, ru σmin(Φn)







(22)

implies ˆ̺> 0. Moreover, we have

Aj ˆ̺ξ +

j−1
∑

i=0

λiAj−1−iB vi = Aj ˆ̺ξ +Φj ϑj (23)
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for every j ∈ N[1,n] by construction. We next show that, for the state x̂ := ˆ̺ξ, we
can always compute n inputs v0, . . . , vn−1 ∈ U such that (18) holds. In fact, since the
Moore-Penrose pseudoinverse Φ+

n := ΦT
n (ΦnΦ

T
n )

−1 has full rank (again due to Assum. 1),
ϑn = −Φ+

nA
n ˆ̺ξ results a suitable choice. Clearly, the associated inputs v0, . . . , vn−1

satisfy (18). Moreover, we have

‖ϑn‖2 ≤ ˆ̺‖Φ+
n ‖2 ‖An‖2 ‖ξ‖2 ≤ α ˆ̺

σmin(Φn)
(24)

and consequently

∥

∥(v0, . . . , vn−1)
T
∥

∥

2
≤ 1

λn−1
‖ϑn‖2 ≤

ˆ̺α

λn−1 σmin(Φn)
≤ ru,

where the last relation holds because of (22). Thus, we obtain vi ∈ Bm(ru) ⊆ U for
every i ∈ N[0,n−1] according to (19). To show (17), first note that, for every j ∈ N[1,n−1],
we obtain

∥

∥Aj ˆ̺ξ +Φj ϑj

∥

∥

2
≤ α ˆ̺+ ‖Φj‖2 ‖ϑj‖2 ≤ α ˆ̺+ ‖Φn‖2 ‖ϑn‖2

≤ α ˆ̺

(

1 +
σmax(Φn)

σmin(Φn)

)

≤ λn−1 rx

according to Eqs. (22)–(24) and due to ‖Φn‖2 = σmax(Φn). Thus, (17) holds for every
j ∈ N[1,n−1] since

Bn(λn−1rx) = λn−1 Bn(rx) ⊆ λn−1X ⊆ λjX
follows from (19). Clearly, (17) also holds for j = 0 since ˆ̺ξ ∈ Bn(λn−1rx) ⊆ λ0X is
ensured by (22). Now, combining the results from (15)–(16) and (17)–(18), we can show
that there exist w0, . . . , wn−1 ∈ U and ̺∗ > 0 such that

Aj̺∗ξ +
j−1
∑

i=0

Aj−1−iB λiwi ∈ λj X ∀ j ∈ N[0,n−1] and (25)

An̺∗ξ +
n−1
∑

i=0

An−1−iB λiwi = λn γ∗. (26)

In fact, the choices

wi :=
1

µ
ui +

µ− 1

µ
vi and ̺∗ :=

1

µ
̺+

µ− 1

µ
ˆ̺, (27)

which satisfy wi ∈ U and ̺∗ > 0, allow to rewrite (25) as

Aj̺ ξ +

j−1
∑

i=0

Aj−1−iB λiui + (µ − 1)
(

Aj ˆ̺ξ +

j−1
∑

i=0

Aj−1−iB λivi

)

∈ µλj X ,

which holds according to (15) and (17). Analogously, (26) can be proven using Eqs. (16),
(18), and (27). Thus, due to (25)–(26) and γ∗ ∈ C, we find x∗ := ̺∗ξ ∈ Qλ

n(C) according
to Lem. 5.
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Part (iii). Clearly, ̺∗ξ ∈ Qλ
n(C) implies ̺∗ ≤ ρ(ξ,Qλ

n(C)). Since ξ ∈ S was arbitrary,
we obtain

ρ(ξ,Qλ
n(µ C)) + (µ− 1) ˆ̺

µ
≤ ρ(ξ,Qλ

n(C)) (28)

for every ξ ∈ S according to (27) and by definition of ̺. In addition, since Qλ
n(µ C) ⊆ X

and due to (19), we have

sup
ξ∈S

ρ(ξ,Qλ
n(µ C)) ≤ sup

ξ∈S
ρ(ξ,X ) ≤ rx. (29)

We next define γ := ˆ̺
rx

and note that γ∈ (0, 0.5] since ˆ̺ ≤ rx
2 according to (22) (due to

α ≥ 1, σmax(Φn) ≥ σmin(Φn) > 0, and λ ∈ (0, 1]). Now, combining (28) and (29), we
infer

sup
ξ∈S

ln

(

ρ(ξ,Qλ
n(µ C))

ρ(ξ,Qλ
n(C))

)

≤ sup
ξ∈S

ln





µ

1 + (µ−1) ˆ̺
ρ(ξ,Qλ

n(µ C))



 ≤ ln

(

µ

1 + (µ−1) ˆ̺
rx

)

= ln(µ)− ln (1 + (µ− 1) γ) ≤ ln(µ)− ln(µγ)

= (1− γ) ln(µ), (30)

where the last inequality holds since µγ underestimates 1 + (µ − 1) γ (given that µ ≥ 1
and γ ∈ (0, 0.5]). Finally, taking ln(µ) = δ = d(C,D) and (14) into account, it is easy
to see that (30) proves (11) for the choice η := 1 − γ = 1 − ˆ̺

rx
. In fact, with regard to

relations (19)–(22), this choice of η only depends on the system matrices A and B, the
constraints X and U , and the contraction λ. Moreover, we have η ∈ [0.5, 1) ⊂ [0, 1) due
to γ ∈ (0, 0.5]. �

Theorem 2 establishes the contraction of Qλ
n(C). Using similar arguments (but omit-

ting the variations (17) and (18) which require controllability), it is easy to prove the
following weaker relation, which however holds for every k ∈ N.

Corollary 6. Let λ ∈ (0, 1] and let Assum. 2 be satisfied. Then

d(Qλ
k(C),Qλ

k(D)) ≤ d(C,D) (31)

for every k ∈ N and all C-sets C,D ⊂ Rn with C ⊆ D.

Theorem 2 and Cor. 6 lead to Lem. 8, which will be instrumental to prove Thms. 9
and 12 in the next section. As a preparation, we state the following corollary, which
summarizes the choice of a suitable contraction factor η according to the proof of Thm. 2.

Corollary 7. Let λ ∈ (0, 1] and let Assums. 1 and 2 be satisfied. Moreover, let rx, rx,
and ru with 0 < rx ≤ rx and 0 < ru be such that (19) holds, define α and Φn according
to (20) and (21), respectively, and choose ˆ̺ as in (22). Then, η = 1− ˆ̺

rx
is such that (11)

holds for all C-sets C,D ⊂ Rn with C ⊆ D.

7



Lemma 8. Let λ ∈ (0, 1] and δ > 0, let C,D ⊂ Rn be C-sets with C ⊆ D, and let
Assums. 1 and 2 be satisfied. Choose η according to Cor. 7. Then d(Qλ

k(C),Qλ
k(D)) ≤ δ

for every k ∈ N with

k ≥
{

n
⌈

ln(δ)−ln(d(C,D))
ln(η)

⌉

if d(C,D) > δ,

0 otherwise.
(32)

Proof. If d(C,D) ≤ δ, we find d(Qλ
k(C),Qλ

k(D)) ≤ δ for every k ∈ N according to Cor. 6.
It remains to address the case d(C,D) > δ. Theorem 2 implies d(Qλ

jn(C),Qλ
jn(D)) ≤

ηjd(C,D) for every j ∈ N. Clearly, ηjd(C,D) ≤ δ if

j ≥ ln(δ) − ln(d(C,D)

ln(η)
.

Taking j ∈ N into account leads to (32). �

4. Implications

In this section, we provide formal proofs for the new results on λ-contractive sets stated
in the introduction and summarized in Thms. 9 and 12.

Theorem 9. Let λ ∈ (0, 1] and ǫ > 0, let Assums. 1 and 2 be satisfied, and let C be any
λ-contractive C-set. Set D = X and δ = ln(1 + ǫ), choose η according to Cor. 7, and let
k be such that (32) holds. Then

Qλ
k(X ) ⊆ (1 + ǫ)Qλ

k(C) ⊆ (1 + ǫ) Cλ
max. (33)

Proof. Since C is λ-contractive, it is easy to show that Qλ
k(C) is λ-contractive for every

k ∈ N. Thus, we have Qλ
k(C) ⊆ Cλ

max for every k ∈ N, which proves the second relation
in (33). For a k satisfying (32), we obtain d(Qλ

k(C),Qλ
k(X )) ≤ δ according to Lem. 8.

Hence, the first relation in (33) holds according to Lem. 1 and due to the choice of δ. �

Remark 1. As mentioned in the introduction, existence of a k ∈ N satisfying (6) for
given λ and ǫ requires Cλ

max to be a C-set. A necessary and sufficient condition for
Cλ
max to be a C-set is the existence of some λ-contractive C-set C. Clearly, the explicit

knowledge of such a set C, as required in Thm. 9, is more restrictive than the fundamental
assumption that Cλ

max is a C-set. However, there exist a number of procedures to identify
(small) λ-contractive C-sets. Assume, for example, there exist K ∈ Rm×n and a positive
definite matrix P ∈ Rn×n such that (A+BK)TP (A+BK) � λ2P and such that A+BK
is Schur stable. Now choose any β > 0 such that C = {x ∈ Rn |xTPx ≤ β} ⊆ {x ∈
X |K x ∈ U}. Then, C is a λ-contractive ellipsoid and thus a λ-contractive C-set (cf.
[2, Rem. 4.1]). Similar procedures exist to compute λ-contractive polytopes (see, e.g.,
[8, Sect. V]).

Theorem 12 further below addresses the suitable choice of λ ∈ (0, 1) to guarantee (7)
for a given µ ∈ (0, 1). As a preparation, we provide the following two lemmas.
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Lemma 10. Let λ ∈ (0, 1], let D ⊂ Rn be a C-set, and let Assum. 2 be satisfied. Then
λk Q1

k(D) ⊆ Qλ
k(D) for every k ∈ N.

Proof. The relation holds with equality for k = 0. We prove the relation for k > 0 by
induction. First note that, for any C-set T ⊂ Rn, Qλ

1 (T ) can be written as

Qλ
1(T ) = λ {x̃ ∈ λ−1X | ∃ũ ∈ λ−1 U : Ax̃+Bũ ∈ T }. (34)

Since λ ≤ 1 implies λ−1X ⊇ X and λ−1 U ⊇ U , we obtain λQ1
1(T ) ⊆ Qλ

1(T ). To show
that λk Q1

k(D) ⊆ Qλ
k(D) implies λk+1Q1

k+1(D) ⊆ Qλ
k+1(D), first note that

Qλ
k+1(D)=Qλ

1 (Qλ
k(D))⊇Qλ

1 (λ
k Q1

k(D))⊇λQ1
1(λ

k Q1
k(D)). (35)

Now, rewriting Q1
1(µ T ) in the style of (34) for some µ ∈ (0, 1], it is easy to show that

µQ1
1(T ) ⊆ Q1

1(µ T ). We consequently find λk Q1
1(T ) ⊆ Q1

1(λ
k T ). Taking (35) into

account, we finally infer

Qλ
k+1(D) ⊇ λk+1Q1

1(Q1
k(D)) = λk+1Q1

k+1(D),

which completes the proof. �

Lemma 11. Let µ ∈ (0, 1) and λ∗ ∈ (0, 1), let Assums. 1 and 2 be satisfied, let C be
a λ∗-contractive C-set, and set ǫ = 1−µ

2µ . Then, there exist λ ∈ [λ∗, 1) and k ∈ N such
that (33) holds and such that

1 + µ ≤ 2λk. (36)

Proof. Set λ = λ∗, D = X , and δ = ln(1 + ǫ) and let rx, rx, ru, α and Φn be as in
Cor. 7. Choose ˆ̺ as in (22), set η = 1− ˆ̺

rx
, and pick any k ∈ N that satisfies (32). Then,

relation (33) holds according to Thm. 9. However, we either have (i) 1 + µ ≤ 2 (λ∗)k or
(ii) 1 + µ > 2 (λ∗)k. Case (i) immediately finishes the proof.

In contrast, if case (ii) applies, first note that we have k > 0 (since 1+µ > 2(λ∗)0 = 2
contradicts µ < 1). Now, compute

λ = exp

(

ln(1 + µ)− ln(2)

k

)

(37)

and note that 2λk = 1 + µ and λ ∈ (λ∗, 1). Clearly, since λ > λ∗, the set C is also
λ-contractive. Now, recompute ˆ̺ according to (22) for the new value of λ given by (37).
Note that the new ˆ̺ is larger than the one that was obtained above with λ = λ∗.
Consequently, the recalculation of η = 1− ˆ̺

rx
results in a smaller value than above. Thus,

it is easy to see that k as chosen above still satisfies (32). This completes the proof, since
(33) again holds according to Thm. 9 and since (36) is satisfied by construction. �

Theorem 12. Let µ ∈ (0, 1) and λ∗ ∈ (0, 1), let Assums. 1 and 2 be satisfied, let C be a
λ∗-contractive C-set, and set ǫ = 1−µ

2µ . Assume λ ∈ [λ∗, 1) and k ∈N are such that (33)
and (36) hold. Then

µ C1
max ⊆ Qλ

k(C) ⊆ Cλ
max. (38)
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Proof. We have C1
max ⊆ Q1

k(X ) and λkQ1
k(X ) ⊆ Qλ

k(X ) according to Eq. (5) and Lem. 10,
respectively. Combining both relations and taking Eq. (33) into account, yields

λk C1
max ⊆ λk Q1

k(X ) ⊆ Qλ
k(X ) ⊆ (1 + ǫ)Qλ

k(C) ⊆ (1 + ǫ) Cλ
max.

This proves (38) since we have

µ C1
max ⊆ 2λk

1 + µ
µ C1

max =
λk

1 + ǫ
C1
max

due to (36) and by definition of ǫ, respectively. �

Remark 2. For the interpretation of Lem. 11 and Thm. 12, it is important to note that,
for a given µ ∈ (0, 1), suitable λ ∈ [λ∗, 1) and k ∈ N satisfying (33) and (36) can be
computed without evaluating the sets Qλ

k(X ), Qλ
k(C), or Cλ

max in (33). In fact, we only
require the computation of (i) a λ∗-contractive C-set C, (ii) the distance d(C,X ) (e.g.,
according to (10)), and (iii) η as in Cor. 7. Then, suitable λ and k can be calculated
according to the proof of Lem. 11.

Remark 3. For practical applications, having the guarantee that (38) holds without
actually knowing (an approximation of) Cλ

max is usually useless. Fortunately, Thm. 12
implicitly provides two methods to compute λ-contractive sets that approximate the max-
imal controlled invariant set C1

max with a given accuracy µ ∈ (0, 1), presupposing that a
λ∗-contractive set C is known. To see this, first note that any λ ∈ [λ∗, 1) and k ∈ N
satisfying (33) and (36) for ǫ = 1−µ

2µ result in a λ-contractive set T = Qλ
k(C) satisfying

µ C1
max ⊆ T . Now, a suitable set T can be computed using two strategies. First, we can

compute λ and k according to the proof of Lem. 11 and simply evaluate Qλ
k(C) according

to (4). This, however, might be numerically expensive since the computed k is usually
quite conservative. Second, for λ as above, we can compute Qλ

j (C) and Qλ
j (X ) for in-

creasing j ∈ N until Qλ
j (X ) ⊆ (1 + ǫ)Qλ

j (C) is observed for j = k∗. We obviously have

k∗ ≤ k by construction and thus 1 + µ ≤ 2λk ≤ 2λk∗ . Consequently, (33) and (36)
hold and T = Qλ

k∗(C) approximates C1
max accurately. The second strategy is numerically

attractive, since k∗ is usually significantly smaller than k from the proof of Lem. 11 (see
the example in Sect. 5.2).

5. Illustrative examples

We analyze three examples to discuss the uses and limitations of Thms. 9 and 12 as
well as Thm. 2. In particular, we show how to compute suitable k and λ such that (6)
and (7) hold without evaluatingQλ

k(X ), Cλ
max, or C1

max. These numbers are then compared
to the optimal (i.e., smallest possible) choices of k and λ. It is easy to see that the
optimal choices require the knowledge of the sets Qλ

k(X ), Cλ
max, or C1

max. Since explicit
descriptions of these sets are usually not available for complex systems, we consider
relatively simple examples in the following. We stress, however, that the techniques in
Thms. 9 and 12 can be applied to more complex systems provided the requirements in
Rem. 2 can be satisfied.

10



5.1. Discussion of Theorem 9

Theorem 9 makes it possible to compute an iteration bound k such that (33) holds. In
the following, we compare the provided bound with the smallest k satisfying (33) for a
simple example.

Consider system (1) with A = 1.1 In and B = In and constraints X = [−10, 10]n

and U = [−1, 1]n for an arbitrary n ∈ N with n > 0, where In denotes the identity
matrix in Rn×n. Obviously, the system can be resolved into n independent systems of
dimension one. Nevertheless, the conglomerated system is useful to analyze Thm. 9. In
this context, first note that the set C = [−2, 2]n is λ-contractive for every λ ∈ [0.6, 1].
Moreover, it is easy to show that the maximal λ-contractive set is given by

Cλ
max = [−cλmax, c

λ
max]

n with cλmax :=
1

1.1 − λ
(39)

for this example. We obviously have Cλ
max = C for λ = 0.6 and Cλ

max = X for λ = 1.
Now, according to Thm. 9, for every λ ∈ [0.6, 1] and every ǫ > 0, there exists a k ∈ N
such that (33) holds. Following Thm. 9, such a k can be found by setting D = X and
δ = ln(1 + ǫ), selecting η as in Cor. 7, and choosing k such that (32) holds. To this end,
first note that rx = 10, rx = 10

√
n, and ru = 1 are such that (19) holds. Moreover,

α = 1.1n satisfies (20) and it is straightforward to show that

σmax(Φn) = σmin(Φn) =
√

∑n−1
i=0 1.12i =

√

1.21n−1
0.21 .

Thus, according to (22), ˆ̺ evaluates to

ˆ̺ =
λn−1

1.1n
min

{

5,

√

1.21n − 1

0.21

}

.

Consequently, a suitable choice for η is

η = 1− ˆ̺

rx
= 1− λn−1

10
√
n 1.1n

min

{

5,

√

1.21n − 1

0.21

}

. (40)

It remains to choose k satisfying (32). Evaluating the distance between C and X accord-
ing to (10) results in d(C,X ) = ln(5). Thus, the smallest k that satisfies (32) for any
ǫ ∈ (0, 4) can be computed according to

k = n

⌈

ln(ln(1 + ǫ))− ln(ln(5))

ln(η)

⌉

(41)

with η as in (40). Numerical values for n ∈ {1, 2}, λ ∈ {0.6, 0.8, 1.0}, and ǫ ∈
{0.01, 0.05, 0.1} are listed in Tab. 1.(a).

We next compare the results in Tab. 1.(a) with the smallest k such that (33) holds.
For this simple example, Qλ

k(C) and Qλ
k(X ) can be stated explicitly as

Qλ
k(C) = [−cλk , c

λ
k ]

n with cλk := 2

(

λ

1.1

)k

+
1−

(

λ
1.1

)k

1.1− λ
(42)
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and

Qλ
k(X ) = [−xλk , x

λ
k ]

n with xλk := 10

(

λ

1.1

)k

+
1−

(

λ
1.1

)k

1.1 − λ
(43)

for every k ∈ N and any λ ∈ [0.6, 1]. Now, condition (33) obviously holds for a given
k ∈ N if (and only if)

xλk ≤ (1 + ǫ) cλk . (44)

Clearly, (44) does not depend on n. In other words, the smallest k such that (33) holds
does not change with n for this example. Apparently, this observation is not echoed in
Tab. 1.(a) (or Eq. (41)), where we clearly have a dependence on n. Now, based on (43)
and (42), it is easy to prove that the smallest k satisfying (44) reads

k =

⌈

ln
(

(1.1− λ)
(

8
ǫ
− 2
)

+ 1
)

ln(1.1) − ln(λ)

⌉

(45)

for a given λ ∈ [0.6, 1] and ǫ ∈ (0, 4]. In Tab. 1.(b) numerical values for k as in (45)
are listed for λ and ǫ as above. Comparing the entries in Tabs. 1.(a) and 1.(b), it turns
out that the values for k computed according to Thm. 9 are valid but conservative. In
fact, the smallest overestimation, which is by a factor of 54

47 ≈ 1.1489, occurs for n = 1,
λ = 1.0, and ǫ = 0.01.

Table 1: Numerical values for k as in (41) and (45), respectively,
as a function of n, λ, and ǫ.

(a) values for k as in (41)

n λ ǫ

0.01 0.05 0.1

2 0.6 192 132 106
2 0.8 142 98 80
2 1.0 112 78 64

1 any 54 37 30

(b) values for k as in (45)

λ ǫ

(anyn) 0.01 0.05 0.1

0.6 10 8 7
0.8 18 13 11
1.0 47 30 23

Another observation is also interesting. In Tab. 1.(b), for fixed ǫ, the values of k
increase with increasing λ. In contrast, for n = 2 and fixed ǫ, the values of k in Tab. 1.(a)
decrease with increasing λ. In general, for some λ∗ ≤ λ and D ⊆ X , we have Cλ∗

max ⊆ Cλ
max

and Qλ∗

k (D) ⊆ Qλ
k(D) for every k ∈ N. In other words, larger values of λ imply a larger

set Cλ
max, slower contraction of {Qλ

k(X )}, and faster expansion of {Qλ
k(C)}. Clearly, this

observation does not allow a general statement about the dependence of the smallest
k, such that (33) holds, on λ. In fact, depending on the example, we may observe a
behavior similar or opposite to Tab. 1.(b) (i.e., k increases or decreases with λ). In
contrast, the iteration bound k considered in Thm. 9 will always decrease with λ (as
apparent from Tab. 1.(a)). This behavior can be explained with regard to Cor. 7 and
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Lem. 8. Clearly, for larger λ, ˆ̺ as in (22) will be larger, which results in smaller η = 1− ˆ̺
rx

and finally smaller k satisfying (32). While this behavior may be conservative (as it is for
this example), it is required to prove Thm. 12 and the underlying Lem. 11. Indeed, the
strategy to handle case (ii) in the proof of Lem. 11 builds on the fact that the computed
η for some λ ∈ (λ∗, 1] is smaller than the one for λ = λ∗.

5.2. Discussion of Theorem 12

Theorem 12 allows λ to be chosen such that (7) is guaranteed to hold for a given µ. In
the following, we compare the smallest value of λ such that (7) holds with the value that
is obtained using Lem. 11 for the example from Sect. 5.1 and n = 1.

Assume we want to satisfy (7) for µ = 5
6 . Before applying Thm. 12 (and Lem. 11),

first note that the maximal controlled invariant set is C1
max = [−10, 10] (according to (39)

with λ = 1). Obviously, µ C1
max ⊆ Cλ

max requires

10µ =
50

6
≤ 1

1.1− λ
or, equivalently,

49

50
≤ λ. (46)

Thus, λ∗ = 0.98 is the smallest choice for λ such that (7) holds.
The computation of a suitable λ according to Thm. 12 (and Lem. 11) involves finding

λ and k such that (33) and (36) hold for the choice

ǫ =
1− µ

2µ
=

1

10
= 0.1.

In this context, Thm. 12 and Lem. 11 require the knowledge of a λ∗-contractive set C.
We again consider the set C = [−2, 2] from Sect. 5.1, which is λ-contractive for every
λ ∈ [0.6, 1]. We use λ∗ = 0.98 from above as an initial guess for the computation
of a suitable λ corresponding to the proof of Lem. 11. In other words, we first analyze
whether the presented procedure is capable of identifying whether λ∗ is suitable. Clearly,
the smallest k satisfying (32) for D = X and δ = ln(1+ ǫ) can be computed analogously
to Sect. 5.1. Hence, evaluating (41) for n = 1, ǫ = 0.1, and η from (40) yields k = 30
(as itemized in Tab. 1.(a)). We obtain

1 + µ ≈ 1.8333 > 1.0910 ≈ 2 · 0.9830 = 2 (λ∗)k,

i.e., (36) does not hold for the choice λ = λ∗ and we have to address case (ii) in the proof
of Lem. 11. Consequently, updating λ according to (37) yields λ ≈ 0.9971. Following
the argumentation in the proof of Lem. 11, the updated λ and k = 30 are such that (33)
and (36) hold. Thus, according to Thm. 12, the updated λ is such that (7) holds. The
computed λ is conservative in the sense that

λ− λ∗

1− λ∗ = 0.8552 = 85.52%

of the “suitable interval” [0.98, 1) is not identified as being suitable. However, the result
can also be interpreted in a different way. To this end, we compute λ-contractive sets T
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that accurately approximate C1
max according to the two strategies in Rem. 3. Using the

first strategy, we obtain T = Qλ
30(C) based on the iteration bound k = 30. The second

strategy leads to an earlier termination after k∗ = 23 iterations (according to (45)).
This observation is interesting, since any choice λ ∈ [0.98, 0.9971] requires at least 21
iterations to satisfy (33) with ǫ = 0.1. In other words, the conservatism in the choice of
λ only slightly influences the earliest satisfaction of (33).

5.3. Discussion of Theorem 2

Theorems 9 and 12 both build on the contraction property in Thm. 2. It thus makes
sense to discuss Thm. 2 in more detail.

First, it is important to note that the contraction property in Thm. 2 only applies to
the mapping Qλ

n(C), where n refers to the state space dimension. Initially, this seems
counter-intuitive and one would expect a contraction after every step k. In fact, the
example discussed in Sect. 5.1 (and Sect. 5.2) shows such a behavior. There exist,
however, situations where a contraction indeed only appears every n steps. In this
context, consider system (1) with

A =

(

+0 1
−1 0

)

and B =

(

0
1

)

and constraints X = [−5, 5]2 and U = [−1, 1] (which is taken from [9, Sect. IV-B]). We
will show that, for the choice C = [−1, 1]× [−1, 1] and D = [−2, 2]× [1, 1], we obtain

d(Qλ
2j+1(C),Qλ

2j+1(D)) = d(Qλ
2j(C),Qλ

2j(D))

= ln

(

λ2j

∑j
i=0 λ

2i
+ 1

)

(47)

for every λ ∈ (0, 1] and every j ∈ N[0,3] (for j > 3, i.e., k > 7, the state constraints X
may, depending of the choice of λ, affect the shapes of Qλ

k(C) and Qλ
k(D) so that (47)

may no longer hold). Now, according to (47) for j = 0, we find

d(Qλ
1 (C),Qλ

1 (D)) = d(Qλ
0 (C),Qλ

0 (D)) = d(C,D) = ln(2).

In other words, (31) holds for k = 1 < n with equality (in agreement with Cor. 6) but
there is no contraction in terms of the distance between the sets after one iteration. For
k = n = 2, relation (11) can, however, be easily satisfied for the choice η = 1 − λ√

50
.

This follows from Cor. 7 with rx = 5, rx =
√
50, ru = 1, α = 1, Φn = I2, σmax(Φn) =

σmin(Φn) = 1, and ˆ̺ = λmin
{ rx

2 , ru
}

= λ. To prove (47), finally note that Qλ
1(T )

evaluates to
Qλ

1(T ) = [−λ τ2 − 1, λ τ2 + 1]× [−λ τ1, λ τ1] (48)

for any set T = [−τ1, τ1]× [−τ2, τ2] with τ1 ∈ (0, 5] and τ2 ∈ (0, 4]. Equation (48) allows
to compute Qλ

k(C) = Qλ
1(Qλ

k−1(C)) and Qλ
k(D) = Qλ

1(Qλ
k−1(D)) for every k ∈ N[1,7] (for

k > 7, the conditions on τ1 and τ2 may be violated for T = Qk−1(C) or T = Qk−1(D)).

14



Afterwards, (10) can be used to evaluate the distances d(Qλ
k(C),Qλ

k(D)). Identifying
relation (47) is then straightforward.

Another important limitation of Thm. 2 is that the pair (A,B) has to be controllable
(see Assum. 1). Clearly, it would be desirable to extend the contraction property to
systems that are “only” stabilizable. However, a simple extension is not possible as the
following example shows. Consider system (1) with system matrices A = 0.8 and B = 0
and constraints X = [−5, 5] and U = [−1, 1]. Note that the pair (A,B) is stabilizable
but not controllable. We show in the following that, for the choice C = [−1, 1] and
D = [−2, 2], we obtain

d(Qλ
k(C),Qλ

k(D)) = d(C,D) = 1 (49)

for every k ∈ N[0,4] and every λ ∈ (0, 1]. Obviously, since (49) applies for k = n = 1,
relation (11) cannot hold with η < 1 for some stabilizable systems. In other words,
Thm. 2 can in this form not be extended to those systems. Corollary 6, which does not
require controllability of (A,B), is however consistent with (49). To show (49), note
that Qλ

1 (T ) evaluates to Qλ
1 (T ) = [−λ τ

0.8 ,
λ τ
0.8 ] for any set T = [−τ, τ ] with τ ∈ (0, 4].

Computing Qλ
k(C) and Qλ

k(D)) accordingly and evaluating d(Qλ
k(C),Qλ

k(D) as in (10)
leads to (49). We finally note that (49) holds for every k ∈ N in case of λ ∈ (0, 0.8].
For λ ∈ (0.8, 1], however, Qλ

k(C) and Qλ
k(D) converge to the state constraints X , which

eventually results in violation of (49).

6. Conclusion

The paper presented two interesting results related to the computation of λ-contractive
sets for linear constrained systems. First, we showed that it is possible to a priori com-
pute a number of iterations k that is sufficient to approximate the largest λ-contractive
set Cλ

max with a given precision ǫ using the sequence (4). Formally, this result is sum-
marized in Thm. 9. Second, we showed in Thm. 12 how to compute a suitable λ such
that the associated maximal λ-contractive set is guaranteed to approximate the maximal
controlled invariant set C1

max with a given accuracy. The statements in Thms. 9 and 12
were illustrated with an example. As one might expect, we found that the computed
iteration bound k and the provided choice for λ are valid but conservative. Nevertheless,
the procedure for a suitable choice of λ guaranteeing (7) might be useful for practical
computations of λ-contractive sets since the conservatism in λ only slightly influences
the termination of step-set based approximations of Cλ

max (see the example in Sect. 5.2).
Theorems 9 and 12 both build on the contraction property summarized in Thm. 2

and the iteration bound introduced in Lem. 8. The statements in Thm. 2 and Lem. 8
require the pair (A,B) to be controllable (see Assum. 1) and this restriction is passed
on to Thms. 9 and 12. Clearly, it would be desirable to extend all statements to sys-
tems that are “only” stabilizable. It was, however, shown that there exist stabilizable
systems for which the statement in Thm. 2 does not apply (see the latter example in
Sect. 5.3). Nevertheless, there is no fundamental argument against the extension of
Thms. 9 and 12 to stabilizable systems. Consequently, future work has to address these
non-trivial extensions in order to complete the theory.
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A. Additional proof

Proof of Lem. 1. The proof consists of three parts addressing (i) “=⇒” in (9), (ii) “⇐=”
in (9), and (iii) relation (10). As a preparation, note that ρ(ξ, C) ≤ ρ(ξ,D) for every
ξ ∈ S due to C ⊆ D.

Part (i). Having D ⊆ exp(δ) C implies ρ(ξ,D) ≤ ρ(ξ, exp(δ) C) for every ξ ∈ S. We
further obtain ρ(ξ, exp(δ) C) = exp(δ) ρ(ξ, C) for every ξ ∈ S by definition of ρ(·, ·). Thus

d(C,D) = sup
ξ∈S

ln

(

ρ(ξ,D)

ρ(ξ, C)

)

≤ ln(exp(δ)) = δ.

Part (ii). Assume d(C,D) ≤ δ but D * exp(δ) C. Then, there exists an x 6= 0
such that x ∈ D but x /∈ exp(δ) C. Define ξ∗ := x

‖x‖2 and note ξ∗ ∈ S. Clearly,

ρ(ξ∗,D) > ρ(ξ∗, exp(δ) C) = exp(δ) ρ(ξ∗, C). This, however, contradicts d(C,D) ≤ δ
since

ln

(

ρ(ξ∗,D)

ρ(ξ∗, C)

)

> ln(exp(δ)) = δ.

Part (iii). Let µ∗ := argminµ ln(µ) s.t. D ⊆ µ C and define δ∗ := ln(µ∗). Then,
we have D ⊆ exp(δ∗) C and consequently d(C,D) ≤ δ∗ according to part (i) of the
proof. Now, assume d(C,D) = δ < δ∗. Then, D ⊆ exp(δ) C according to part (ii).
This, however, contradicts µ∗ being the optimizer of (10) since µ=exp(δ)<µ∗. Thus,
d(C,D)=δ∗ in accordance with (10). �
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