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Abstract—Current distributed routing control algorithms for
dynamic networks model networks using the time evolution of
density at network edges, while the routing control algorithm
ensures edge density to converge to a Wardrop equilibrium,
which was characterized by an equal traffic density on all used
paths. We rearrange the density model to recast the problem
within the framework of mean-field games. In doing that, we
illustrate an extended state-space solution approach and we
study the stochastic case where the density evolution is driven
by a Brownian motion. Further, we investigate the case where
the density evolution is perturbed by a bounded adversarial
disturbance. For both the stochastic and the worst-case scenarios,
we provide conditions for the density to converge to a pre-
assigned set. Moreover, we analyze such conditions from two
different perspectives, repeated games with vector payoffs and
inclusion theory.

I. INTRODUCTION

S

D

Fig. 1: Pedestrian flow modelled via network flow with a
source node S and a destination node D.

In this paper we study a routing problem over a network.
The problem setup involves a population of individuals or
players traversing the edges of a network in an attempt to
reach a destination node starting from a source node (see, e.g.,
Fig. 1). From a microscopic standpoint, each player jumps
from one edge to an adjacent one according to a continuous-
time Markov model. Players select the transition rates, which
represent the control. From a macroscopic perspective, each
edge is characterized by dynamics describing the time evolu-
tion of the density of players on that edge. These dynamics
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take the form of a classical forward Kolmogorov Ordinary
Differential Equation (ODE). We then extend our analysis
to the case where the Kolmogorov equation turns into a
Stochastic Differential Equation (SDE) driven by a Brownian
motion. Finally, in the last part of this paper, we investigate the
case where the Kolmogorov Ordinary Differential Equation is
subject to adversarial inputs.

A. Related literature

Previous work considered distributed routing problems us-
ing a different setup [14], [15]. In this paper, we provide a
detailed analysis of a related problem via mean-field games
theory. The theory on mean-field games originated in the work
of M. Y. Huang, P. E. Caines and R. Malhamé [19], [20], [21]
and independently in that of J. M. Lasry and P. L. Lions [23],
[24], [25], where the now standard terminology of Mean-Field
Games (MFG) was introduced. In addition to this, the closely
related notion of Oblivious Equilibria for large population
dynamic games was introduced by G. Weintraub, C. Benkard
and B. Van Roy [34] in the framework of Markov Decision
Processes.

The problem we analyze in this paper has striking similari-
ties to the optimal planning problem [1], [9], [27], [29] which
in turn can be linked back to mean-field games. Essentially, in
optimal planning problems the idea is to drive the density of
players from a given initial configuration to a target one in a
given time by an appropriate design of the (optimal) decisions
of the agents.

Mean-field games arise in several application domains such
as economics, physics, biology, and network engineering (see
[1], [2], [18], [21], [28], [30], [33]). Finite state mean-field
games have been discussed in [16], [17]. Explicit solutions
in terms of mean-field equilibria are not common unless the
problem has a linear quadratic structure [3]. In this sense, a
variety of solution schemes have been recently proposed based
on discretization and/or numerical approximations [1]. Mean-
field games have precursors in anonymous games and ag-
gregative games building upon the notion of mass interaction
and can be seen as a stationary mean-field game in dynamic
discrete time [22]. More recently, robustness notions have been
introduced in mean-field games. Robust mean-field games aim
to achieve robust performance or stability in the presence of
unknown disturbances when there is a large number of players.
Their relationship with risk-sensitive games and risk-neutral
games has been analyzed in [31], [32].

B. Main contribution

The main contributions of this paper can be summarized as
follows. First, we provide a mean-field game formulation of
the problem. In doing this we analyze which aspects can help



turning the mean-field game into a deterministic control prob-
lem. Second, we illustrate an extended state-space solution
approach. Such a solution approach uses nonstandard mean-
field techniques and is an alternative method to classical fixed-
point methods. Third, we study the stochastic case where the
density evolution is driven by a Brownian motion. Additional
results, that make this paper different from its conference
version [8], are the following. We investigate the case where
the density evolution is perturbed by a bounded adversarial
disturbance. For this case, we provide two convergence con-
ditions that are proven to be equivalent. We also show that
convergence is guaranteed under certain assumptions that were
first established in the context of repeated games with vector
payoffs [6], [26]. On the other hand, the second condition takes
the form of set inclusion and allows us to link the results to
well-known convergence conditions in robust dynamic flow
networks already available in the literature [5], [12], [13].

C. Structure of the paper

The rest of the paper is organized as follows. In Section II
we illustrate the problem and introduce the model. In Section
III we present the main results of the paper. In Section IV we
provide numerical examples. Finally, in Section V we draw
some conclusions.

II. MODEL AND PROBLEM SET-UP

Let a graph G = (V,E) be given where V = {1, · · · , n} is
the set of vertices and E = {1, · · · ,m} the set of edges. Let
us denote by ε+(i) and ε−(i) the sets of outgoing edges from
i and incoming edges to i respectively, ∀i ∈ V . We consider
a “large population” of individuals or players of which each
one is characterized by a time-varying state X(t) ∈ E at
time t ∈ [0, T ], where [0, T ] is the time horizon window.
The routing policy is described by a vector-valued function
α(·) : R+ → [0, 1]m, t 7→ α(t) where [0, 1]m denotes the
m-dimensional column vector whose entries are within the
interval [0, 1]. Moreover, we have

∑
e∈ε+(i) αe = 1 where

∀i ∈ V and αe is the eth entry of α(t). In other words, α(t)
lives in the space ∆|ε

+(1)| × · · · × ∆|ε
+(n)| where ∆|ε

+(i)|

denotes the simplex in R|ε+(i)| and |ε+(i)| is the cardinality
of set ε+(i) (number of outgoing edges from i), ∀i ∈ V .
Let k ∈ E be the player’s state. The state evolution of a
single player is then captured by the following continuous-
time Markov stochastic process:

{X(t), t ≥ 0},

qkj(h, φk, αj) =

 αjφkh j ∈ Adj(k),
1− φkh, j = k,
0, otherwise,

(1)

where qkj(h, φk, αj) (qkj) are the infinitesimal transition
probabilities from k to j, h is the infinitesimal time inter-
val, φk ∈ R+ is the transition rate in state k ∈ E, and
Adj(k) = {j ∈ E| j ∈ ε+(i), k ∈ ε−(i)} represents the set of
adjacent edges to k. In (1), from previous definitions of the
control (the routing policy), we know that α belongs to the
polytope

U = {α ∈ [0, 1]m| {αj}j∈ε+(i) ∈ ∆|ε
+(i)|, for all i = 1, . . . , n}.

Essentially, the above is equivalent to saying
∑
j∈ε+(i) αj = 1

for all i = 1, . . . , n.
Denote by ρ the vector of densities on edges, which means

that the sum of the components is equal to one. Thus we have
ρ ∈ D := {ρ̂ ∈ [0, 1]m :

∑
e∈E ρ̂e = 1}, where ρ̂e is the eth

entry of ρ̂. Let the flow function f(·) : D → Rm+ , be given
by fe(ρ) = φeρe, where fe(ρ) is the eth entry of f(ρ). The
density evolution can be described by the Kolmogorov ODE
given by {

ρ̇(t) =
(
B̃T (α)B̂ − I

)
f(ρ),

ρ(0) = ρ0
(2)

where

• the matrix-valued function B̃(·) : U → [0, 1]n×m,
α 7→ B̃(α), which relates nodes to outgoing edges, i.e.,
B̃ij(α) = αj if j ∈ ε+(i) and B̃ij(α) = 0 otherwise.
Here [0, 1]n×m denotes the n × m-dimensional matrix
whose entries are within the interval [0, 1], and B̃ij(α) is
the entry in the ith row and jth column of B̃(α).

• the matrix B̂ ∈ {0, 1}n×m relates nodes to incoming
edges, i.e., B̂ij = 1 if j ∈ ε−(i) and B̂ij = 0 otherwise.
Here {0, 1}n×m denotes the n × m-dimensional matrix
whose entries are either 0 or 1, and B̂ij is the entry in
the ith row and jth column of B̂

• ρ0 is the initial density and it is assigned.

Equation (2) establishes that the density variation on each
edge is a consequence of a discrepancy between the out-
going flow and the incoming flow on the same edge. The
former is captured by the term f(ρ) whereas the latter is
represented by B̃T (α)B̂f(ρ). Then density variation depends
on the difference B̃T (α)B̂f(ρ) − f(ρ) which gives (2).
Note that B̃T (α) is a column (left) stochastic matrix, i.e.,∑
i=1,··· ,m(B̃T (α))ij = 1 for all j = 1, · · · , n. Also note that

the relation of the state X and the density ρ is the classical
forward Kolmogorov equation in (2) for discrete state space
continuous-time Markov chains. The Kolmogorov equation
represents the macroscopic dynamics. Both α and φ appearing
in the microscopic dynamics (1) are present in the macroscopic
dynamics (2). In addition, note that ρ can be interpreted in two
ways, as a controlled state process, and as a density under
optimal control.

Assume that the graph is acyclic, and has one source node
s and one destination node d. Select a subset of paths from
s to d and call it P . Each element of P is an s − d path
{s, · · · , i, · · · , d}. Let the matrix C ∈ {0, 1}|P|×m be given
which relates paths to edges. Each row of C contains ones
or zeros depending on which edges are included in the path.
We can define the output vector-valued function y(·) : R+ →
R|P|, t 7→ y(t), which represents the collective density on
each path and can be expressed as y(t) = Cρ(t).

We assume that the time to cross an edge is proportional
to the congestion on that edge (measured by the density).
Thus the sum of densities in a path is the total time from
origin to destination using that path. Based on this, in order to
achieve a Wardrop equilibrium, i.e., uniform distribution over
all available paths, for each player, consider a running cost
g(·) : E × [0, 1]m → [0,+∞[, (x, ρ) 7→ g(x, ρ) of the form



below, whereM is the consensus set/Wardrop equilibrium set:

g(x, ρ) = dist(ρ,M), (3)
M = {ρ ∈ D : y = Cρ = 1p, for any p ∈ [0, 1]}. (4)

Here dist(ρ,M) denotes the distance from the vector ρ to the
set M, and 1 denotes the |P|-dimensional column vector of
ones. Actually, the value of the consensus density is the point
in the consensus set which is closest to the current density
vector ρ. Put differently, this point is the projection of ρ on
the consensus set M .

The problem in its generic form is then the following:
Problem 1: Design a routing policy to minimize the output

disagreement, i.e., each player solves the following problem:
infα(·) J(x, α(·), ρ[·](·)),
J(·) = E

[ ∫ T
0
g(X(τ), ρ(τ))dτ + g(X(T ), ρ(T ))

]
,

{X(t), t ≥ 0} as in (1),
X(0) = x,

(5)

where α(·) is a measurable function taking values in U for any
t ∈ [0, T ]. A challenging aspect of the above problem is that
every player minimizes a cost functional which depends on the
density function of the whole population. Thus, microscopic
and macroscopic representations of the system are strongly
intertwined which makes the problem differ from classical
optimal control or differential game theory.

Remark 1: We assume a common cost functional for all
players. This cost functional depends only on the density vec-
tor. This is typical of mean-field games with global interaction.
The presented model can be specialized to the case of local
interaction as follows. Assume x = e (pedestrian on edge
e), then the cost functional integrates the square deviation
(ρe − ye)

2 where y is the projection of ρ on M and ye is
its eth component, and ρe is the density in the eth edge where
the pedestrian lives.

Remark 2: In a practical routing model typically have dif-
ferent source and destination nodes. This will cause some
heterogeneity to the players, and can further affect the density
flow’s dynamics. To account for heterogeneity we would need
to reformulate our model as a multi-population game involving
a Kolmogorov equation for each population. Multi-population
games are a key direction for future research.

III. MAIN RESULTS

In this section we highlight a few main results. First,
we provide a mean-field game formulation of the problem.
Second, we illustrate an extended state space solution ap-
proach. Third, we study the stochastic case where the den-
sity evolution is driven by a Brownian motion. Fourth, we
investigate the case where the density evolution is perturbed
by a bounded adversarial disturbance. Here we provide two
equivalent convergence conditions: the first condition mirrors
an already established condition in repeated games with vector
payoffs, while the second condition is expressed in terms of
set inclusion.

A. Mean-field game formulation

Let us denote by v(x, t) the value of the optimization
problem (5) starting from time t at state x. The first step is
to show that the problem results in the following mean-field
game system for the unknown scalar functions v(x, t) and ρ(t)
when each player behaves according to (5):

Lemma 1: The mean-field system for the routing problem
in Problem 1 takes the form:

v̇(x, t) +H(x,∆(v), t) = 0 in E × [0, T [,
v(x, T ) = g(x, ρ(T )),∀x ∈ E,
ρ̇(t) =

(
B̃T (α∗)B̂ − I

)
f(ρ) in [0, T [,

ρ(0) = ρ0, ρ0 given,

(6)

where H(x,∆(v), t) is the Hamiltonian function given by

H(x,∆(v), t) = inf
α∈U

{∑
z∈E qxz(v(z, t)

−v(x, t)) + g(x, ρ)
}
.

(7)

In the expression above, ∆(v) denotes the difference of the
value function computed in two successive states and qxz is
the transition rate given in (1). Successive states are the future
edges touched by the player along his path from source to
destination. The optimal time-varying control α∗(x, t) is given
by

α∗(x, t) ∈ arg min
α∈U

{∑
z∈E qxz(v(z, t)

−v(x, t)) + g(x, ρ)
}
.

(8)

Proof: Let us start by noting that the third and fourth
equations of (6) are the forward Kolmogorov equation and the
corresponding boundary condition on the initial distribution
law. To prove the first equation of (6), we know that from
dynamic programming the following holds:

v̇(x, t) + inf
α∈U

{∑
z∈E qxz(v(z, t)− v(x, t))

+g(x, ρ)
}

= 0 in E × [0, T [.

By introducing the Hamiltonian H(x,∆(v), t) given in (7), we
obtain the first equation. Note that the transition rates depend
on the routing policy/control α. This is then obtained as the
minimizer in the computation of the Hamiltonian as expressed
by (8). For the first part of the proof, note that the second
equation is the boundary condition on the terminal penalty.

The mean-field game, system (6), appears in the form of
two coupled ODEs intertwined in a forward-backward way.
The first equation in (6) is the Hamilton-Jacobi-Bellman (HJB)
equation with variable v(x, t) and parametrized in ρ(·). Given
the boundary condition on final state (second equation in (6)),
and assuming a given population behavior captured by ρ(·),
the HJB equation is solved backwards and returns the value
function and best-response behavior of the players given by
(8). The HJB equation is coupled with a second ODE, which is
the Fokker-Planck-Kolmogorov (FPK) (third equation in (6)),
defined on variable ρ(·) and parametrized in α∗(x, t). Given
the boundary condition on initial distribution ρ(0) = ρ0 (fourth
equation in (6)), and assuming a given individual behavior
described by α∗, the FPK equation is solved forward and
returns the population behavior time evolution ρ(t).



B. State space extension

To solve Problem 1 and the related mean-field game (6),
each player needs to predict the evolution of the density over
the horizon. Our solution approach to (6) involves extending
the state space including ρ as an additional state variable as
done in [7]. This method is alternative to classical fixed-point
methods. The resulting problem is of the form

infα(·) J(x, α(·), ρ[·](·))
= E

[ ∫ T
0
g(X(τ), ρ(τ))dτ + g(X(T ), ρ(T ))

]
,

subject to {X(t), t ≥ 0} as in (1),

ρ̇(t) =
(
B̃T (α)B̂ − I

)
f(ρ).

Then, we look for a new value function V (x, ρ, t) which
depends not only on x but also on the density vector ρ. Put
differently, v and V live in different domains. Function v lives
in the state space of each single particle (the pedestrian), and
is parametrized in the common state ρ, thus we denote it by
v(x, t). Function V lives in the extended state space involving
the state of the particle and the common state ρ, thus we denote
it by V (x, ρ, t).

With the above reasoning in mind, the mean-field system
of the problem at hand can be rewritten as follows.

Lemma 2: The mean-field system for the routing problem
in Problem 1 in extended form appears as:

∂tV (x, ρ, t) + H̃(x, ρ,∆(v), ∂ρV, t) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )),∀(x, ρ) ∈ E × [0, 1]m,

(9)

where

H̃(x, ρ,∆(v), ∂ρV, t)

= inf
α∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[(
B̃T (α)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
,

(10)

and the optimal time-varying control α∗(x, ρ, t) is given by

α∗(x, ρ, t)

∈ arg min
α∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)
[(
B̃T (α)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
.

(11)

Proof: From dynamic programming we obtain

∂tV (x, ρ, t) + inf
α∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[ (
B̃T (α)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
= 0

in E × [0, 1]m × [0, T [.

By introducing the Hamiltonian H̃(x, ρ,∆(v), ∂ρV, t) given in
(10), the first equation is proven. To prove (11), observe that
the optimal control is the minimizer in the computation of
the extended Hamiltonian. It remains to note that the second
equation in (9) is the boundary condition on the terminal
penalty.

Assumption 1: Let M be given by (4), r > 0 and U =
{ρ ∈ Rm : dist(ρ,M) < r}. For all ρ ∈ U \M there exists
y ∈ ΠM(ρ), where ΠM(ρ) is the projection of ρ on the set

M, such that the value val[λ] is negative for every λ = ρ−y,
i.e.,

val[λ] = inf
α

{
λT ρ̇

}
= inf
α∈U
{
∑
z∈E ρ̇zλz} < 0,∀λ = ρ− y.

(12)

ρ

ρ̇

M
y

Fig. 2: Geometric illustration of the attainability condition.

This assumption ensures that for a given feasible target set,
there always exists a routing policy α(t) that drives the edge
density ρ towards the set (λ can be viewed as the vector
connecting the current density projection point on the target
set and the current density point, with the direction pointing
out from the target set). This is illustrated in Fig. 2. We can
then establish the following result.

Lemma 3: Let Assumption 1 hold true. Then the mean-field
game for the routing problem in Problem 1 is given by

∂tV (x, ρ, t) + val[∂ρV (x, ρ, t)] + g(x, ρ) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )),∀(x, ρ) ∈ E × [0, 1]m.

(13)

Furthermore, the optimal control is:

α∗(x, ρ, t) = arg min
α∈U

{
∂ρV (x, ρ, t)T

·
[(
B̃T (α)B̂ − I

)
f(ρ)

]}
.

(14)

Proof: From (12) we have

val[∂ρV (x, ρ, t)] = inf
α∈U

{
∂ρV (x, ρ, t)T ρ̇

}
= inf
α∈U

{
∂ρV (x, ρ, t)T

[ (
B̃T (α)B̂ − I

)
f(ρ)

]}
= H̃(x, ρ,∆(v), ∂ρV, t)− g(x, ρ).

Invoking Lemma 2, and the first equation in (9), we obtain the
first equation in (13). The second equation in (13) is again the
boundary condition on the terminal penalty. It remains to note
that the optimal control is the minimizer in the computation
of the extended Hamiltonian and thus is obtained from (14).

A slight modification of Assumption 1 which leads to
exponential convergence is as follows.

Assumption 2: Let M be given as in (4), r > 0 and U =
{ρ ∈ Rm : dist(ρ,M) < r}. For all ρ ∈ U \M there exists
y ∈ ΠM(ρ) such that the value val[λ], is negative for every
λ = ρ− y, i.e.,

val[λ] = inf
α∈U

{
λT ρ̇

}
= inf
α∈U
{
∑
z∈E ρ̇zλz} < −κλTλ,∀λ = ρ− y

(15)

for a positive scalar κ.



The condition in Assumption 1 guarantees that a pre-
assigned set M is attainable. However, any set can be attain-
able under a stronger condition which we copy and readapt
from [6], [26].

Assumption 3: The value val[λ], is negative for every λ ∈
Rm, i.e.,

val[λ] = inf
α∈U

{
λT ρ̇

}
= inf
α∈U
{
∑
z∈E ρ̇zλz} < 0,∀λ ∈ Rm.

(16)

In the following, Assumptions 1-3 are reviewed both in
a stochastic and a worst-case framework. Such conditions
are proven to be sufficient conditions for different types of
convergence (exponential, almost surely).

C. Stochastic case

In this section, we analyze the case where the density
evolves according to a stochastic differential equation driven
by a Brownian motion. The Kolmogorov equation is then
replaced by a geometric Brownian motion dynamics as illus-
trated below:

dρ(t) =
(
B̃T (α)B̂ − I

)
f(ρ)dt+ σdist(ρ,M)dB(t). (17)

Note that now ρ is in Rm and not in D as the conservation
of mass is no longer preserved. This means that we can have
births or deaths in the population. Extending the state space as
in the earlier case, and introducing the extended Hamiltonian
for the stochastic case as

H̃(x, ρ,∆(v), ∂ρV, t)

= inf
α∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[(
B̃T (α)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
,

(18)

the mean-field system turns into the system of equations below
in the value function V (x, ρ, t) in E × Rm × [0, T [:

∂tV (x, ρ, t) + H̃(x, ρ,∆(v), ∂ρV, t)

+σ2

2 dist
2(ρ,M)Tr

(
∂2ρρV (x, ρ, t)

)
= 0

in E × Rm × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )),∀(x, ρ) ∈ E × Rm,

(19)

where the optimal time-varying control α∗(x, ρ, t) is obtained
as

α∗(x, ρ, t) ∈ arg min
α∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))+

∂ρV (x, ρ, t)T
[(
B̃T (α)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
.

Assumption 4: (Attainability condition) Let M be given
as in (4), r > 0 and U = {ρ ∈ Rm : dist(ρ,M) < r}. For
all ρ ∈ U \ M there exists y ∈ ΠM(ρ) such that the value
expval[λ] is negative for every λ = ρ− y, i.e.,

expval[λ]

= inf
α∈U

{
λT
[(
B̃T (α)B̂ − I

)
f(ρ)

]}
= inf
α∈U

{∑
z∈E

[(
B̃T (α)B̂ − I

)
f(ρ)

]
z
λz

}
< −σ2mdist2(ρ,M), ∀λ = ρ− y,

(20)

where
[(
B̃T (α)B̂ − I

)
f(ρ)

]
z

denotes the zth component of

vector
(
B̃T (α)B̂ − I

)
f(ρ).

We can then establish the following result.
Lemma 4: Let Assumpion 4 hold true. Then, the mean-field

game for the routing problem in Problem 1 in the stochastic
case is given by

∂tV (x, ρ, t) + expval[∂ρV (x, ρ, t)] + g(x, ρ)

+σ2

2 dist
2(ρ,M)Tr

(
∂2ρρV (x, ρ, t)

)
= 0

in E × Rm × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )),∀(x, ρ) ∈ E × Rm.

(21)

Furthermore, the optimal control is:

α∗(x, ρ, t) = arg min
α∈U

{
∂ρV (x, ρ, t)T

·
[(
B̃T (α)B̂ − I

)
f(ρ)

]}
.

(22)

Proof: Let us observe that from (20) we have

expval[∂ρV (x, ρ, t)] = inf
α∈U

{
∂ρV (x, ρ, t)T dρ

}
= inf
α∈U

{
∂ρV (x, ρ, t)T

[ (
B̃T (α)B̂ − I

)
f(ρ)

]}
= H̃(x, ρ,∆(v), ∂ρV, t)− g(x, ρ).

From the above equation and invoking the first equation in
(19), we obtain the first equation in (21). The second equation
in (21) represents the boundary condition on the terminal
penalty. To conclude our proof we notice that the optimal
control is the minimizer in the computation of the extended
Hamiltonian and thus is obtained from (22).

Let us now take T → ∞, and consider the corresponding
infinite horizon problem. The value function is now rewritten
as V (ρ(t)) as it is no longer explicitly dependent on time
(dependence on time is only through the vector ρ(t)). In
addition to this, in the proof of the next result, the value
function is reviewed as a Lyapunov function. We are in the
position to establish the next result, regarding the stability
almost surely of the stochastic process at hand.

Theorem 1: (Stability almost surely) Let Assumption 4
hold true. Then, dynamics (17) converges exponentially toM
almost surely, namely

dist(ρ(t),M) = e−tdist(ρ(0),M), with probability 1.

Proof: Let ρ be a solution of dynamics (17) with initial
value ρ(0) ∈ U \ M. Set τ = {inf t > 0| ρ(t) ∈ M} ≤ ∞
and let V (ρ(t)) = dist(ρ(t),M). For all t ∈ [0, τ ] and y ∈
ΠM(ρ(t))

V (ρ(t+ dt))− V (ρ(t)) = ‖ρ(t+ dt)− y‖ − ‖ρ(t)− y‖
= ‖ρ(t) + dρ(t)− y‖ − ‖ρ(t)− y‖
= 1
‖ρ(t)+dρ(t)−y‖‖ρ(t) + dρ(t)− y‖2 − 1

‖ρ(t)−y‖‖ρ(t)− y‖2.



From the definition of infinitesimal generator

LV (ρ(t)) = limdt→0
V (ρ(t+dt))−V (ρ(t))

dt

= limdt→0
1
dt

[
1

‖ρ(t)+dρ(t)−y‖‖ρ(t) + dρ(t)− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2

]
= limdt→0

1
dt

[
1

‖ρ(t)−y‖+O(
√
dt)
‖ρ(t) + dρ(t)− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2

]
= 1
‖ρ(t)−y‖ limdt→0

1
dt

[
‖ρ(t) + dρ(t)− y‖2

−‖ρ(t)− y‖2
]

= 1
‖ρ(t)−y‖L‖ρ(t)− y‖2

≤ 2
‖ρ(t)−y‖

[
infα

{
(ρ(t)− y)T

(
B̃T (α)B̂ − I

)
f(ρ)

}
+σ2

2 dist
2(ρ,M)Tr

(
∂2ρρ‖ρ(t)− y‖2

)]
≤ 2
‖ρ(t)−y‖

[
expval[ρ(t)− y] + σ2mdist2(ρ,M)

]
.

Now, from Assumption 4 we have that for all ρ ∈ U \M
there exists y ∈ ΠM(ρ) such that

expval[ρ(t)− y] + σ2mdist2(ρ,M) < 0,

which implies LV (ρ(t)) < 0, for all ρ(t) ∈ U \M and this
concludes our proof.

Similar convergence results can be established in the case
where the density evolution is subject to a bounded adversarial
disturbance.

D. Adversarial disturbance

In the presence of an adversarial disturbance the density
evolution expressed by dynamics (2) takes the form

ρ̇(t) =
(
B̃T (α, ω)B̂ − I

)
f(ρ), (23)

where ω is the disturbance. We assume that the disturbance ω
is bounded and belongs to polytope

W = {ω ∈ [−1, 1]m| {ωj}j∈ε+(i) ∈ ∆
|ε+(i)|
0 ,

for all i = 1, . . . , n,}

where ∆
|ε+(i)|
0 is the simplex translated to the origin in

R|ε+(i)|. In other words, the above corresponds to the con-
straint

∑
j∈ε+(i) ωj = 0 for all i = 1, . . . , n.

The robust version of Problem 1, involving the adversarial
disturbance as described is then the following:

Problem 2: Design a routing policy to minimize the output
disagreement, i.e., each player solves the following problem:

infα(·) supω(·) J(x, α(·), ρ[·](·)),
J(·) = E

[ ∫ T
0
g(X(τ), ρ(τ))dτ + g(X(T ), ρ(T ))

]
,

{X(t), t ≥ 0} as in (1),

ρ̇(t) =
(
B̃T (α, ω)B̂ − I

)
f(ρ),

(24)
where α(·) and ω(·) are measurable functions taking values
in U and W . In the above problem, every player minimizes
a cost functional which depends on the density function of
the whole population. The density in turn depends on both
the control α(·) and the disturbance ω(·). Let us denote by

v(x, t) the value of the optimization problem starting from
time t at state x. Similarly to the case of Lemma 1, we can
derive the following mean-field system:

Theorem 2: The mean-field system for the routing problem
in Problem 2 takes on the form:

v̇(x, t) +H(x,∆(v), t) = 0 in E × [0, T [,

v(x, T ) = g(x, ρ(T )),∀x ∈ E,

ρ̇(t) =
(
B̃T (α∗, ω∗)B̂ − I

)
f(ρ) in [0, T [,

ρ(0) = ρ0, ρ0 given,

(25)

H(x,∆(v), t) is the robust Hamiltonian function given by

H(x,∆(v), t) =

inf
α∈U

sup
ω∈W

{∑
z∈E qxz(v(z, t)− v(x, t)) + g(x, ρ)

}
. (26)

In the expression above, ∆(v) denotes the difference of the
value function computed in two successive states, qxz is the
transition rate given in (1). The optimal time-varying control
α∗(x, t) is given by

α∗(x, t) ∈ arg min
α∈U

{∑
z∈E qxz(v(z, t)− v(x, t))

+g(x, ρ)
}
,

ω∗(x, t) ∈ arg max
ω∈W

{∑
z∈E qxz(v(z, t)− v(x, t))

+g(x, ρ)
}
.

(27)

Proof: Let us start by noting that the third and fourth
equations of (25) are the forward Kolmogorov equation and the
corresponding boundary condition on the initial distribution
law. To prove the first equation of (25), we know that from
dynamic programming it holds:

v̇(x, t) + inf
α∈U

sup
ω∈W

{∑
z∈E qxz(v(z, t)− v(x, t))

+g(x, ρ)
}

= 0 in E × [0, T [.

By introducing the robust Hamiltonian H(x,∆(v), t) given in
(26), we obtain the first equation. Note that the transition rates
depend on the routing policy/control α. This is then obtained
as the minimizer in the computation of the Hamiltonian as
expressed by (27). For the first part of the proof, please note
that the second equation is the boundary condition on the
terminal penalty.

Extending the state space and introducing the robust Hamil-
tonian in the extended space we obtain

H̃(x, ρ,∆(v), ∂ρV, t)

= infα∈U supω∈W

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[ (
B̃T (α, ω)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
.

Then the mean-field system turns into the system of equations
below in the value function V (x, ρ, t) in E × [0, 1]m× [0, T [,

∂tV (x, ρ, t) + H̃(x, ρ,∆(v), ∂ρV, t) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )) ∀ (x, ρ) ∈ E × [0, 1]m,

(28)



where the optimal time-varying state-feedback controls
α∗(x, t) is obtained as

α∗(x, t) ∈ arg minα∈U

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[(
B̃T (α, ω∗)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
,

and the worst-case adversarial disturbance is given by

ω∗(x, t) ∈ arg supω∈W

{∑
z∈E qxz(V (z, ρ, t)− V (x, ρ, t))

+∂ρV (x, ρ, t)T
[(
B̃T (α∗, ω)B̂ − I

)
f(ρ)

]
+ g(x, ρ)

}
.

Let us denote by Ext{U} and Ext{W} the set of the
indices of all the vertices of U and W respectively. Let
us denote the generic vertex of U and W by a(k) and
w(k), respectively. Also, let us assume that |Ext{U}| = p
and |Ext{W}| = q, where |Ext{U}| and |Ext{W}| are
the cardinality of Ext{U} and Ext{W}, respectively. Then
U = hull{a(k), k ∈ Ext{U}}, and W = hull{w(k), k ∈
Ext{W}} where hull stands for the convex hull.

From the Caratheodory theorem we know that any point
in the polytope can be expressed as convex combination of a
subset of vertices, namely

α =
∑

k∈Ext{U}

aka
(k),

∑
k∈Ext{U}

ak = 1

ω =
∑

k∈Ext{W}

wkw
(k),

∑
k∈Ext{W}

wk = 1.

In other words, ak is the weight of the convex combination∑
k∈Ext{U} aka

(k) and similarly wk is the weight of the
convex combination

∑
k∈Ext{W} wkw

(k).
This is useful, as we can now review α and ω as mixed

strategies of the two-player game with vector payoffs dis-
played in Table I.

The density at time t is now obtained as the cumulative
payoff up to time t, namely{

ρ(t) =
∫ t
0
ρ̇(τ)dτ =

∫ t
0

(
B̃T (α, ω)B̂ − I

)
f(ρ)dτ,

ρ(0) = ρ0.
(29)

Convergence conditions on the cumulative payoffs are con-
nected to the value of the projected game. The projected game,
which is displayed in Table II, is obtained by premultiplying
each entry by a given vector λ ∈ Rm.

The above is a classical two-player game with scalar payoffs
and therefore it admits a value given by

val[λ] := inf
α

sup
ω

{
λT
(
B̃T (α, ω)B̂ − I

)
f(ρ)

}
.

Assumption 5: (Attainability of set M) Let M be given
as in (4), r > 0 and U = {ρ ∈ Rm : dist(ρ,M) < r}. For all

ρ ∈ U \M there exists y ∈ ΠM(ρ) such that the value of the
projected game, val[λ], is negative for every λ = ρ− y, i.e.,

val[λ] := infα supω

{
(ρ− y)T

·
(
B̃T (α, ω)B̂ − I

)
f(ρ)

}
< 0, ∀λ = ρ− y.

(30)

Condition (30) in Assumption 5 is as in [6], [26]. Figure 3
provides a geometric description of it.

ρ

ρ̇

M
y

Fig. 3: Geometric illustration of the attainability condition.

This assumption ensures that for a given feasible target set,
there always exists a routing policy α(t) that drives the edge
density ρ towards the set whatever the disturbance does. Again,
λ can be taken as the vector connecting the current density
projection point on the target set and the current density point,
with the direction pointing out from the target set. Note that
checking this condition requires solving a sequence of linear
or quadratic programs (find projection, construct hyperplane,
and check inequality). We can then establish the following
result.

Theorem 3: Let Assumption 5 hold true. Then the mean-
field game for the routing problem in Problem 2 is given by

∂tV (x, ρ, t) + val[∂ρV (x, ρ, t)] + g(x, ρ) = 0
in E × [0, 1]m × [0, T [,

V (x, ρ, T ) = g(x, ρ(T )),∀(x, ρ) ∈ E × [0, 1]m.

(31)

Furthermore, the optimal control and worst-case disturbance
are:

α∗(x, ρ, t) = arg min
α

{
∂ρV (x, ρ, t)T

·
[(
B̃T (α, ω∗)B̂ − I

)
f(ρ)

]}
,

ω∗(x, ρ, t) = arg min
α

{
∂ρV (x, ρ, t)T

·
[(
B̃T (α∗, ω)B̂ − I

)
f(ρ)

]}
.

(32)

Proof: From (30) we have

val[∂ρV (x, ρ, t)] = inf
α∈U

sup
ω∈W

{
∂ρV (x, ρ, t)T ρ̇

}
= inf
α∈U

sup
ω∈W

{
∂ρV (x, ρ, t)T

[ (
B̃T (α, ω)B̂ − I

)
f(ρ)

]}
= H̃(x, ρ,∆(v), ∂ρV, t)− g(x, ρ).

u(i)/w(j) w(1) . . . w(q)

a(1)
(
B̃T (a(1), w(1))B̂ − I

)
f(ρ) . . .

(
B̃T (a(1), w(q))B̂ − I

)
f(ρ)

...
...

...
a(p)

TABLE I: Two-player game with vector payoffs.



u(i)/w(j) w(1) . . . w(q)

a(1) λT
(
B̃T (a(1), w(1))B̂ − I

)
f(ρ) . . . λT

(
B̃T (a(1), w(q))B̂ − I

)
f(ρ)

...
...

...
a(p)

TABLE II: Two-player projected game.

Invoking (28), we obtain the first equation in (31). The
second equation in (31) is again the boundary condition on
the terminal penalty. It remains to notice that the optimal
control is the minimizer in the computation of the extended
Hamiltonian and thus is obtained from (32). Analogously, the
worst-case disturbance is the maximizer in the computation
of the extended Hamiltonian and thus is obtained from the
second equation in (32).

As for the stochastic case in the previous section, we now
take T → ∞, and consider the relevant infinite horizon
problem. In the proof of the next theorem, the value function is
now interpreted as a Lyapunov function, and as it is stationary,
it is rewritten as V (ρ(t)).

Theorem 4: Let Assumption 5 hold true. Then, dynamics
(23) converges asymptotically to M, namely

lim
t→∞

dist(ρ(t),M) = 0.

Proof: Let ρ be a solution of dynamics (23) with initial
value ρ(0) ∈ U \ M. Set τ = {inf t > 0| ρ(t) ∈ M} ≤ ∞
and let V (ρ(t)) = dist(ρ(t),M). For all t ∈ [0, τ ] and y ∈
ΠM(ρ(t))

V (ρ(t+ dt))− V (ρ(t)) = ‖ρ(t+ dt)− y‖ − ‖ρ(t)− y‖
= ‖ρ(t) + ρ̇(t)dt− y‖ − ‖ρ(t)− y‖+ |dt|ε(dt)
= 1
‖ρ(t)+ρ̇(t)dt−y‖‖ρ(t) + ρ̇(t)dt− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2 + |dt|ε(dt)

where limdt→0 ε(dt) = 0. Hence

V̇ (ρ(t)) = limdt→0
1
dt

(
1

‖ρ(t)+ρ̇(t)dt−y‖‖ρ(t) + ρ̇(t)dt− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2 + |dt|ε(dt)

)
= limdt→0

1
dt

(
1

‖ρ(t)−y‖+O(
√
dt)
‖ρ(t) + ρ̇(t)dt− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2 + |dt|ε(dt)

)
= 1
‖ρ(t)−y‖ limdt→0

1
dt

(
‖ρ(t) + ρ̇(t)dt− y‖2 − ‖ρ(t)− y‖2

)
= 1
‖ρ(t)−y‖

d
dt

(
‖ρ(t)− y‖2

)
≤ 2
‖ρ(t)−y‖ (ρ(t)− y)T ρ̇(t).

Now, as M is a compact set, from Assumption 5 we have
that for all ρ ∈ U \M there exists y ∈ ΠM(ρ) such that the
affine hyperplane orthogonal to [ρ(t), y] at y separates ρ(t)−y
from ρ̇(t), namely

val[ρ(t)− y] := infα supω

{
(ρ− y)T(

B̃T (α, ω)B̂ − I
)
f(ρ)

}
= infα supω

{
(ρ− y)T ρ̇(t)

}
< 0

(33)

from which we have

V̇ (ρ(t)) ≤ 2

‖ρ(t)− y‖
(ρ(t)− y)T ρ̇(t) < 0,

and this concludes our proof.
The condition in Assumption 5 guarantees that a specific set

M is attainable. However, any set can be attainable under a
stronger condition which we copy and readapt from [6], [26].

Assumption 6: (General attainability) The value of the
projected game, val[λ], is negative for every λ ∈ Rm, i.e.,

val[λ] := infα supω

{
λT

·
(
B̃T (α, ω)B̂ − I

)
f(ρ)

}
< 0,∀λ ∈ Rm.

(34)

It is worth noting that, denoting the set of all possible
payoffs for a fixed mixed action α of player 1 (and fixed
ρ) by D1(α) =

{(
B̃T (α, ω)B̂ − I

)
f(ρ) : ω ∈ W

}
, then the

attainability condition (34) implies that for every λ ∈ Rm
there always exists a α such that D1(α) is contained in the
open half space H := {x ∈ Rm|λTx < 0} in Rm [26].

The next result provides an equivalent convergence con-
dition in terms of set inclusion. In preparation to this, let
us isolate the contribution of the control and disturbance by
superposition and rewrite

B̃T (α, ω) = A(α) +Q(ω).

Substituting in (23) we have

ρ̇(t) =
[(
A(α) +Q(ω)

)
B̂ − I

]
f(ρ). (35)

Let us denote by

A = {A(α)|α ∈ U}

Q = {Q(ω)|ω ∈ W}

and consider the following set inclusion condition,

AB̂f(ρ) ⊃ −QB̂f(ρ) + f(ρ). (36)

Theorem 5: The set inclusion (36) is equivalent to the
attainability condition (34) in Assumption 6, namely

AB̂f(ρ) ⊃ −QB̂f(ρ) + f(ρ) ⇔ val[λ] < 0,∀λ ∈ Rm.

Proof: If condition (36) holds, then for all λ ∈ Rm,

∃α ∈ U | λTA(α)B̂f(ρ) < min
ω∈W

λT
(
−Q(ω)B̂f(ρ)+f(ρ)

)
.

Recalling that any point in a convex set can be expressed as a
convex combination of its vertices, we have α =

∑p
i=1 aka

(k)

and similarly ω =
∑q
k=1 wkw

(k). The above condition then



corresponds to saying that for all λ ∈ Rm there exists α ∈ U
such that

λTA(
∑p
i=1 aka

(k))B̂f(ρ)

< minω∈W λT
(
−Q(

∑q
k=1 wkw

(k))B̂f(ρ) + f(ρ)
)
.

From the above condition, we can derive equivalently that for
all λ ∈ Rm there exists α ∈ U such that for all w ∈ W

λT
(
A(

p∑
i=1

aka
(k))B̂f(ρ)+Q(

q∑
k=1

wkw
(k))B̂f(ρ)−f(ρ)

)
< 0.

The above condition can be rewritten as, for all λ ∈ Rm

∃α ∈ U | λT
(
B̃T (α, ω)B̂ − I

)
f(ρ) < 0, ∀ω ∈ W.

Recalling the definition D1(α) ={(
B̃T (α, ω)B̂ − I

)
f(ρ) : ω ∈ W

}
, the above condition

implies that

∃α ∈ U | D1(α) ⊆ H = {ρ̂ ∈ Rm|λT ρ̂ < 0}.

We conclude our proof by taking λ = ρ−y where y ∈ ΠM(ρ)
and observing that this coincides with the attainability condi-
tion (34).

So far, we cannot say much about the speed of conver-
gence of the density vector to the pre-assigned set. Under
stronger conditions, we can have exponential convergence as
established next.

Assumption 7: (Exponential attainability of set M) Let
M be given as in (4), r > 0 and U = {ρ ∈ Rm :
dist(ρ,M) < r}. For all ρ ∈ U \M there exists y ∈ ΠM(ρ)
such that the value of the projected game, val[λ], is upper
bounded by −λTλ, for every λ = ρ− y, i.e.,

val[λ] := infα supω

{
λT

·
(
B̃T (α, ω)B̂ − I

)
f(ρ)

}
< −λTλ, ∀λ = ρ− y.

Theorem 6: Let Assumption 7 hold true. Then, dynamics
(23) converges exponentially to M, namely

dist(ρ(t),M) = e−tdist(ρ(0),M).

Proof: Let ρ be a solution of dynamics (23) with initial
value ρ(0) ∈ U \ M. Set τ = {inf t > 0| ρ(t) ∈ M} ≤ ∞
and let V (ρ(t)) = dist(ρ(t),M). For all t ∈ [0, τ ] and y ∈
ΠM(ρ(t))

V (ρ(t+ dt))− V (ρ(t)) = ‖ρ(t+ dt)− y‖ − ‖ρ(t)− y‖
= ‖ρ(t) + ρ̇(t)dt− y‖ − ‖ρ(t)− y‖+ |dt|ε(dt)
=

1

‖ρ(t) + ρ̇(t)dt− y‖
‖ρ(t) + ρ̇(t)dt− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2 + |dt|ε(dt)

where limdt→0 ε(dt) = 0. Hence

V̇ (ρ(t)) = limdt→0
1
dt

(
1

‖ρ(t)+ρ̇(t)dt−y‖‖ρ(t) + ρ̇(t)dt− y‖2

− 1
‖ρ(t)−y‖‖ρ(t)− y‖2 + |dt|ε(dt)|

)
= 1
‖ρ(t)−y‖ limdt→0

1
dt

(
‖ρ(t) + ρ̇(t)dt− y‖2

−‖ρ(t)− y‖2
)

= 1
‖ρ(t)−y‖

d
dt

(
‖ρ(t)− y‖2

)
≤ 2
‖ρ(t)−y‖ (ρ(t)− y)T ρ̇(t).

Now, as M is a compact set, from Assumption 7 we have
that for all ρ ∈ U \M there exists y ∈ ΠM(ρ) such that the
affine hyperplane orthogonal to [ρ(t), y] at y separates ρ(t)−y
from ρ̇(t), namely

val[ρ(t)− y] := infα supω

{
(ρ(t)− y)T

·
(
B̃T (α, ω)B̂ − I

)
f(ρ)

}
= infα supω

{
(ρ(t)− y)T ρ̇(t)

}
< −(ρ(t)− y)T (ρ(t)− y)

from which we have

V̇ (ρ(t)) ≤ 2
‖ρ(t)−y‖ (ρ(t)− y)T ρ̇(t)

= −2V (ρ(t)) + 2
‖ρ(t)−y‖ (ρ(t)− y)T (ρ(t)− y + ρ̇(t)),

and this concludes our proof.
The above result is in the same spirit of convergence

conditions in set inclusion theory discussed in [10], [11].

IV. NUMERICAL EXAMPLE

Consider the following example, consisting of 4 vertices and
5 edges, as shown in Fig. 4 (vertex ‘S’ stands for the source
and vertex ‘D’ stands for the destination, edge e is marked
with fe, the incoming flow f0 is equal to the outgoing flow
f6 = f4 + f5).

Fig. 4: Network system.

The matrices introduced in the sections above are

B̃T (α) =


α1 0 0
0 α2 0
α3 0 0
0 α4 0
0 0 α5


B̂ =

 0 0 0 1 1
1 0 0 0 0
0 1 1 0 0


The density evolution expressed by (2) takes on the form,
where we use fe(ρe(t)) = φρe(t):

ρ̇1(t) = α1(t)(φρ4(t) + φρ5(t))− φρ1(t)
ρ̇2(t) = α2(t)φρ1(t)− φρ2(t)
ρ̇3(t) = α3(t)(φρ4(t) + φρ5(t))− φρ3(t)
ρ̇4(t) = α4(t)φρ1(t)− φρ4(t)
ρ̇5(t) = α5(t)(φρ2(t) + φρ3(t))− φρ5(t)

(37)

and  α1(t) + α3(t) = 1
α2(t) + α4(t) = 1
α5(t) = 1

(38)



Parameter Value Variable Initial Value
φ 0.8 ρ(t) (0.3, 0.5, 0.2, 0, 0)

Time step h 0.01 α(t) (0.6, 0.5, 0.4, 0.5, 1)
Time span T 20

TABLE III: Parameters of the overall system.

Algorithm

Input: Set of parameters as in Table III.
Output: Density ρ(t), policy α(t) and dist(ρ(t),M)

1 : Initialize: Set of initial values as in Table III.
2 : for time t = 0, h, 2h, . . . , T − h do
3 : compute projected point of ρ(t) on M
4 : compute the optimal control α∗(t) using

Lemma 3, and the distance dist(ρ(t),M)
5 : set β(0) = α(t)

for k = 0, 1, . . . , 100 do
compute
β(k + 1) = β(k) + h

100 (α∗(t)− β(k))
end for

set α(t) = (β1(101), β2(101), 1− β1(101),
1− β2(101), 1)

6 : compute ρ(t+ h)
7 : end for
8 : STOP

Let us consider the paths {1, 4}, {1, 2, 5} and {3, 5}. In
other words, P =

{
{1, 4}, {1, 2, 5}, {3, 5}

}
which corre-

sponds to defining an output

 y1(t)
y2(t)
y3(t)

 =

 1 0 0 1 0
1 1 0 0 1
0 0 1 0 1


︸ ︷︷ ︸

C


ρ1(t)
ρ2(t)
ρ3(t)
ρ4(t)
ρ5(t)



A. Deterministic case

We first consider the deterministic case. Table III shows the
parameters of the overall system. According to Lemma 3, we
have the following Algorithm to solve the distributed routing
problem. The simulations are carried out with MATLAB on an
Inter(R) Xeon(R) CPU E31245 at 3.30GHz and 8 GB of RAM,
and the results are illustrated in Figures 5-7. The run time of
the simulation is around 25 seconds. Since

∑
e ρ̇e(t) = 0 (i.e.,

conservation law holds),
∑
e ρe(t) =

∑
e ρe(0) = 1 always

holds, which is shown in Fig. 5. When achieving consensus,
ρ2(t) = 0 holds, indicating that all players choose either
leaving the source vertex through edge 1 and returning it
through edge 4, or leaving through edge 3 and going back
through edge 5. Moreover, the players choose these two routes
almost equiprobably, i.e., α1 ≈ α3 ≈ 0.5, as illustrated in Fig.
6. The distance from the consensus set converges to zero, as il-
lustrated in Fig. 7. Note that in order to avoid chirping in α(t),
we have introduced lowpass dynamics β̇(t) = α∗(t) − β(t)
(the relevant transfer function is β(s) = 1

s+1α
∗(s) which is
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Fig. 5: Simulation results of the deterministic case: density.
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Fig. 6: Simulation results of the deterministic case: routing
policy (α5(t) = 1 holds all the time).
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Fig. 7: Simulation results of the deterministic case: distance
to the consensus set.

actually a lowpass filter for α(t)), corresponding to Step 5 in
the Algorithm.
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Fig. 8: Simulation results of the stochastic case: average
density.
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Fig. 9: Simulation results of the stochastic case: average
routing policy (α5(t) = 1 holds all the time).

B. Stochastic case

We now consider the stochastic case. In this case, the
dynamics of the network (37) change to

ρ̇1(t) = α1(t)(φρ4(t) + φρ5(t))− φρ1(t) + w1(t)
ρ̇2(t) = α2(t)φρ1(t)− φρ2(t) + w2(t)
ρ̇3(t) = α3(t)(φρ4(t) + φρ5(t))− φρ3(t) + w3(t)
ρ̇4(t) = α4(t)φρ1(t)− φρ4(t) + w4(t)
ρ̇5(t) = α5(t)(φρ2(t) + φρ3(t))− φρ5(t) + w5(t)

where we(t) represents the Gaussian noise whose mean is
0 and variance is 1

2σ
2dist2(ρ(t),M). The above algorithm

can still solve the distributed routing problem. We continue
to use the parameters in Table III, set σ = 1, run 50
different Monte Carlo trajectories, and compute the average
value of these trajectories (see Figures 8-10). We can see that
the average trajectories are almost the same as those in the
deterministic case. Moreover, the average trajectory of α(t) is
now much more smooth. The sampled average distance from
the consensus set converges to zero.
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Fig. 10: Simulation results of the stochastic case: average
distance to the consensus set.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have provided a mean-field game for-
mulation of a distributed routing problem, which intersects
recent research on optimal planning and transportation. The
problem setup has been motivated by an idea in [14], [15]
that develops a dynamical model for the density at network
edges in a locally responsive traffic network. This paper
has provided several contributions. Beyond the mean-field
game formulation, we have illustrated an extended state space
solution approach applied to both stochastic and worst-case
scenarios. In both cases, the study has analyzed convergence
conditions of the density to a pre-assigned set. Connections
with repeated games with vector payoffs and set inclusion
theory have been highlighted.

We wish to extend the study in at least three different
directions. Still within the realm of robust networks, alternative
models of adversarial disturbances can be imported in the
problem at hand, as for instance energy bounded disturbances
in the spirit of H∞ optimal control. Regarding the network
topology, our conjecture is that more can be said in terms of
speed of convergence and properties of the underlying graph
such as graph connectivity, degree of nodes, eigenvalues of
graph Laplacian matrices. In this context, special attention
will be given to specific graph structures. A third direction
involves the analysis of non-conservative flows. Actually, the
present analysis assumes that the population does not grow
or diminishes over time. A more complex scenario would
consider the case where the number of players changes with
time, perhaps dependently on the level of congestion in the
network. These topics are left for future research.
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tic Dynamic Games: Closed Loop Kean-Vlasov Systems and the Nash
Certainty Equivalence Principle”, Communications in Information and
Systems, vol. 6, no. 3, 2006, pp. 221–252.

[21] M.Y. Huang, P.E. Caines, and R.P. Malhamé, “Large population cost-
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