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1 Introduction

Reinforcement learning with function approximation has been a popular frame-
work for approximate policy evaluation and dynamic programming for Markov
decision processes (Bertsekas 2012; Gosavi 2003; Lewis and Liu 2013; Powell
2007; Szepesvari 2010). In view of the growing interest in control across com-
munication networks, there has been a growing need to consider distributed
or multi-agent versions of these schemes. While there has been some early
work in this direction, analysis of provably convergent schemes is lacking. (See,
e.g., Lauer and Riedmiller (2000), Littman and Boyan (1993), Pendrith (2000),
Weiss (1995), also Busoniu et al (2008) and Panait and Luke (2005) for surveys.
The work closest to ours in spirit is Macua et al (2012).) The present article
aims at filling up this lacuna. Specifically, we consider a distributed version
of the celebrated TD(0) algorithm implemented across a network of processors
or ‘agents’, who communicate with each other and incorporate, in addition to
their own measurements, the estimates of their neighbors. For the latter aspect,
we borrow a simple averaging scheme from gossip algorithms (Shah, 2008). We

1Research supported in part by a J. C. Bose Fellowship and a grant ‘Distributed Compu-
tation for Optimization over Large Networks and High Dimensional Data Analysis’ from the
Dept. of Science and Technology, Govt. of India.
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prove the convergence of this scheme. It may be noted that we do not prove
consensus, in fact consensus is an unreasonable expectation here. This is so
because each agent potentially has a different set of basis functions, even of a
different cardinality. We do, however, justify the proposed scheme in terms of
a certain performance measure.

Next section describes our convergence results for the infinite horizon discounted
cost problem. Section 3 extends them to the average cost problem. Section 4
comments upon the results.

2 Discounted cost

Let {Xn} denote an irreducible Markov chain on a finite state space S :=
{1, 2, · · · ,m} with transition matrix P := [[p(i, j)]]i,j∈S , and an associated ‘run-
ning’ cost function c : S × S ×R. Thus c(i, j) denotes the cost associated with
the transition from i to j. (While we have a controlled Markov chain in mind,
we are interested in estimating the cost for a fixed policy, so we do not render
explicit the policy dependence of P, c for sake of notational ease.) Consider the
problem of estimating the infinite horizon cost

J(x) := Ex

[ ∞∑
t=0

αmc(Xt, Xt+1)

]
,

α ∈ (0, 1) being the discount factor. The original TD(0) algorithm for approx-
imate evaluation of J begins with the a priori approximation J(·) ≈ φ(·)r =∑K
i=1 riφi(·). Here φ(·) = [φ1(·) : φ2(·) : · · · : φK(·)]T with φi := the ith feature

vector (these are kept fixed), and r := [r1, · · · , rK ]T are the weights that are to
be learnt. The actual algorithm for doing so is as follows (Tsitsiklis and Van
Roy, 1997):

rt+1 = rt + γtφ(Xt)[c(Xt, Xt+1) + αφ(Xt+1)T rt − φ(Xt)
T rt], (1)

where the step-sizes γt > 0 satisfy
∑
t γt =∞,

∑
t γ

2
t <∞. A convergence proof

and error estimates relative to the exact J may be found in Tsitsiklis and Van
Roy (1997). We sketch an alternative convergence proof of independent interest,
using the ‘o.d.e.’ (for ordinary differential equation) approach of Derevitskii and
Fradkov (1974) and Llung (1977). For simplicity, we rely on the exposition of
Borkar (2008). Let η denote the unique stationary probability vector for the
chain and D the diagonal matrix whose ith diagonal entry is η(i). By Corollary
8, p. 74, Borkar (2008), the ‘limiting o.d.e.’ for the above iteration is

ṙ(t) = φTDc̄+ αφTDPφr(t)− φTDφr(t) := h(r(t)) (2)

for h(x) := φTDc̄+ αφTDPφx− φTDφx, c̄ :=
∑
j p(i, j)c(i, j). Then

h∞(x) := lim
a↑∞

h(ax)

a
= αφTDPφx− φTDφx.

It is easy to see that 1
ah(ax)→ h∞(x) uniformly on RK .

2



Theorem 1: Under the above assumptions, rt → r̂ a.s., where r̂ is the unique
solution to h(r̂) = 0.

Proof: The ‘scaled o.d.e.’ ṙ(t) = h∞(r(t)) is a linear system with the origin
as its globally asymptotically stable equilibrium, in fact V (r(t)) = ‖r(t)‖2 is a
Liapunov function, as seen from Lemma 9 of Tsitsiklis and Van Roy (1997) with
r∗ therein replaced by the zero vector. By Theorem 9, p. 75, Borkar (2008),
supt ‖rt‖ <∞ a.s. In turn, (2) has r̂ as its globally asymptotically stable equi-
librium, again V (r(t)) = ‖r(t)− r̂‖2 is a Liapunov function, as seen from Lemma
9 of Tsitsiklis and Van Roy (1997). The claim follows by Theorem 7 – Corollary
8, p. 74, Borkar (2008). 2

We now describe the distributed version of this scheme. Consider n agents
sitting on the nodes of a connected graph, each with a different set of feature
vectors. We denote by N (i) the set of neighbors of i. Let the feature vectors of
the ith agent be denoted by φi1, φ

i
2, ......φ

i
ni

, with Φi := [φi1 : φi2 : ...... : φini
]T .

Let q(i, j) denote the probability by which ith agent polls agent j ∈ N (i). The
ith agent runs the following ni-dimensional iteration:

rit+1 = rit + γtφ
i(Xt)[c(Xt, Xt+1) + αφY

i
t+1(Xt+1)T r

Y i
t+1

t − φi(Xt)
T rit]. (3)

Here Y it is a [1, 2...n] valued random variable taking value j with probability
q(i, j) . We further assume it is independent of {Xs, Y

j
s , j 6= i, s ≤ t;Y is , s < t}.

We make the following key assumptions:

• (A1) φi1, φ
i
2, ......φ

i
ni

are linearly independent for all i.

• (A2) The Markov chain {Xt} is irreducible and aperiodic.

• (A3) The stochastic matrix Q := [[q(i, j)]] is irreducible, aperiodic and
doubly stochastic.

Remark: The ith row q(i, ·) of the matrix Q indicates the ‘weights’ node i
assigns to its neighbors. Since it stands to reason that each node values its own
opinions, q(i, i) > 0, which automatically ensures aperiodicity.

Rewrite above iteration as

rit+1 = rit + γt[φ
i(Xt)c(Xt) + αφi(Xt)(

n∑
j=1

q(i, j)

m∑
s=1

p(Xt, s)φ
j(s)T rjt )

− φi(Xt)φ
i(Xt)

T rit +M i
t+1], (4)

where c(i) =
∑
j p(i, j)c(i, j), c = [c(1), c(2), ....., c(m)]T , and M i

t+1, t ≥ 0, is a
martingale difference sequence w.r.t. σ(Xn, Yn, n ≤ t), given by

M i
t+1 :=

(
c(Xt, Xt+1)φi(Xt)− c(Xt)φ

i(Xt)
)

+ α
(
φi(Xt)φ

Y i
t+1(Xt+1)T r

Y i
t+1

t

− φi(Xt)(

n∑
j=1

q(i, j)

m∑
s=1

p(Xt, s)φ
j(s)T rjt )

)
.
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We have:

m∑
l=1

d(l)φi(l)c(l) = Φi
T
Dc,

m∑
l=1

d(l)φi(l)φi(l)T rit = Φi
T
DΦirit,

n∑
j=1

q(i, j)

m∑
l=1

d(l)φi(l)

m∑
s=1

p(l, s)φj(s)T rjt = Φi
T
DP

n∑
j=1

q(i, j)Φjrjt .

By Corollary 8, p. 74, Borkar (2008), the o.d.e. corresponding to (3) is

ṙi = Φi
T
Dc+ αΦi

T
DP

n∑
j=1

q(i, j)Φjrj − Φi
T
DΦiri. (5)

Let r̄ = [r1, r2, ......., rn]T , the concatenation of all ri’s. This satisfies the o.d.e.

˙̄r = 

.

.

.

Φi
T
Dc+ αΦi

T
DP

∑n
j=1 q(i, j)Φ

jrj − Φi
T
DΦiri

.

.

.



=



.

.

.

Φi
T
Dc
.
.
.


+ α



.

.

.

Φi
T
DP

∑n
j=1 q(i, j)Φ

jrj

.

.

.


−



.

.

Φi
T
DΦiri

.

.

.



=

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD




c
.
.
c
.
.
c


−

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD


Φ1 · · · 0

...
. . .

...
0 · · · Φn




r1

.

.
ri

.

.
rn



+ α

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD




P
∑n
j=1 q(1, j)Φ

jrj

.

.
P
∑n
j=1 q(i, j)Φ

jrj

.

.
P
∑n
j=1 q(n, j)Φ

jrj


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=

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD




c
.
.
c
.
.
c



−

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD


Φ1 · · · 0

...
. . .

...
0 · · · Φn




r1

.

.
ri

.

.
rn



+ α

Φ1TD · · · 0
...

. . .
...

0 · · · ΦnTD


q(1, 1)P · · · q(1, n)P

...
. . .

...
q(n, 1)P · · · q(n, n)P




Φ1r1

.

.
Φiri

.

.
Φnrn


.

Thus we get the following equation:

˙̄r =

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D




c
.
.
c
.
.
c


+

α

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D


q(1, 1)P · · · q(1, n)P

...
. . .

...
q(n, 1)P · · · q(n, n)P



×

Φ1 · · · 0
...

. . .
...

0 · · · Φn




r1

.

.
ri

.

.
rn



−

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D


Φ1 · · · 0

...
. . .

...
0 · · · Φn




r1

.

.
ri

.

.
rn


5



Consider an augmented state space S′ := {1, 2, ..n} × S. Order it as

{(1, 1), (1, 2), ...(1,m), (2, 1), ...(2,m), ....., (n, 1), ...., (n,m)}.

Define

p̃((i, x), (j, y)) := q(i, j)× p(x, y),

c̃((i, x), (j, y)) := c(x, y),

ψjk((i, x)) := Φik(x) if j = i, else 0,

Ψ := [ψ11, ψ12, ...ψ1n1 , ......ψn1, ψn2, ....ψnnn ]

ρ :=
[[
P̃ ((i, x), (j, y))

]]
=

q(1, 1)P · · · q(1, n)P
...

. . .
...

q(n, 1)P · · · q(n, n)P

 ,

Ψ :=

Φ1 · · · 0
...

. . .
...

0 · · · Φn

 ,

ΨT :=

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT

 ,

ν :=
1

n

D · · · 0
...

. . .
...

0 · · · D

 ,

c̃ :=



.

.

.
E[c̃((i, x), (j, y))|(i, x)]

.

.

.


=



c
.
.
c
.
.
c


.

Then the ODE for r(·) is

ṙ = n
(
ΨT νc̃+ αΨT νρΨr −ΨT νΨr

)
. (6)

Lemma 1: Ψ is a full rank matrix.

Proof: This is immediate from (A1). 2

Lemma 2: ρ is irreducible (hence positively recurrent) and aperiodic under
(A2)-(A3).

Proof: Let p(n)(i, j), q(n)(k, `), p̃(n)((k, i), (`, j)) denote the n-step probabilities
of going from i to j, k to `, (k, i) to (`, j) resp. for n ≥ 1. Since P,Q are

6



irreducible aperiodic, there exist n0, n
′
0 such that p(n)(i, j) > 0, q(n′)(k, `) > 0

for n ≥ n0, n
′ ≥ n′0 resp. So for n ≥ n0 ∨ n′0, p̃(n)((k, i), (`, j)) > 0. The claim

follows. 2

Let (Zt, Xt), t ≥ 0, denote the augmented Markov chain with transition matrix
ρ. Note that the diagonal entries of ν are > 0 and are the stationary proba-
bilities under ρ, i.e., letting η denote the ordered vector thereof, η is a unique
stationary distribution under ν.

Theorem 2 As t ↑ ∞, rt, t ≥ 0, a.s. converges to an r∗ given as the unique
solution to

ΨT νc̃+ αΨT νρΨr∗ −ΨT νΨr∗ = 0.

Proof: The scalar n on the right hand side of (6) does not affect its asymptotic
behavior, so can be ignored. But then (6) is exactly of the same form as (2)
with the same assumptions being satisfied. Hence the same analysis applies. 2

Remark: As in Tsitsiklis and Van Roy (1997), this can be extended to a pos-
itive recurrent Markov chain {Xt} on a countably infinite state space under
additional square-integrability assumptions on {c(Xt, Xt+1), φi(Xt)}.

3 Average cost

Consider the problem of estimating average cost and a differential cost function
on a finite, irreducible and aperiodic Markov chain. The average cost µ∗ is
given by Es[c(Xt, Xt+1)], where Es[ · ] denotes the stationary distribution. Let
1̄ denote a vector with all components equal to 1. A differential cost function
is any function J : S → R that satisfies the Poisson equation, which takes the
form

J = c̄− µ∗1̄ + PJ.

It is known that for an irreducible Markov chain, differential cost functions exist
and the set of all differential cost functions takes the form {J∗ + c1̄|c ∈ R}, for
some J∗ satisfying ηTJ∗ = 0. Such a J∗ is referred to as the basic differential
cost function. The original TD(0) algorithm for approximate evaluation of J

begins with the a priori approximation J(·) ≈ φ(·)r =
∑K
i=1 riφi(·). Here

φ(Xt) = [φ1(Xt), φ2(Xt), .....φK(Xt)]
T ,

with φi := the ith feature vector (these are kept fixed), and r := [r1, · · · , rK ]T

are the weights that are to be learnt. The actual algorithm for doing so is as
follows Tsitsiklis and Van Roy (1999):

rt+1 = rt + γtφ(Xt)[c(Xt, Xt+1)− µt + φ(Xt+1)T rt − φ(Xt)
T rt],

µt+1 = µt + kγt(c(Xt, Xt+1)− µt),

where k is any arbitrary positive constant. A convergence proof and error
estimates relative to the exact J may be found in Tsitsiklis and Van Roy (1999).

7



As before, we sketch an alternative argument using the ‘o.d.e.’ approach. Once
again, by Corollary 8, p. 74, Borkar (2008), the limiting o.d.e for the above
iteration is

ṙ = ΦTDc̄− µΦT 1̄ + ΦTDPΦr − ΦTDΦr,

µ̇ = k(µ∗ − µ).

Let wt = [µt, rt]
T . In matrix notation, the o.d.e. can be written as

ẇ =

[
µ̇
ṙ

]
=

[
−k 0 · · · 0

−ΦTD1̄ ΦTDPΦ− ΦTDΦ

] [
µ
r

]
+

[
kµ∗

ΦTDc̄

]
=: h(w)

for h(w) :=

[
−k 0 · · · 0

−ΦTD1̄ ΦTDPΦ− ΦTDΦ

]
w +

[
kµ∗

ΦTDc̄

]
. Then

h∞(w) := lim
a↑∞

h(aw)

a
=

[
−k 0 · · · 0

−ΦTD1̄ ΦTDPΦ− ΦTDΦ

]
w.

It is easy to see that 1
ah(aw)→ h∞(w) uniformly on RK+1.

Let

A :=

[
−k 0 · · · 0

−ΦTD1̄ ΦTDPΦ− ΦTDΦ

]
and

b :=

[
kµ∗

ΦTDc̄

]
.

Suppose we assume Φ has linearly independent columns and Φr 6= e for any
r ∈ RK

Theorem 3: Under the above assumptions, wt → ŵ a.s., where ŵ is the unique
solution to h(w) = 0.

Proof: For sufficiently large k, the matrix A is negative definite as seen from
Lemma 7 of Tsitsiklis and Van Roy (1999) ( k corresponds to their l). Hence the
‘scaled o.d.e.’ ẇ(t) = h∞(w(t)) is a linear system with the origin as its globally
asymptotically stable equilibrium, in fact V (w(t)) = ‖w(t)‖2 is a Liapunov
function. By Theorem 9, p. 75, Borkar (2008), supt ‖wt‖ < ∞ a.s. In turn,
(2) has ŵ as its globally asymptotically stable equilibrium, again V (w(t)) =
‖w(t)− ŵ‖2 is a Liapunov function. This can be seen as follows

dV (w(t))

dt
= (w(t)− ŵ)T (Aw(t) + b)

= (w(t)− ŵ)T (Aw(t) + b−Aŵ − b)
= (w(t)− ŵ)TA(w(t)− ŵ)

≤ 0.

with equality iff w(t) = ŵ . The claim follows by Theorem 2, p. 15, Borkar
(2008). 2
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Consider a similar setting as section 2. The ith agent thus runs the following
ni dimensional iteration

rit+1 = rit + γtφ(Xt)[c(Xt, Xt+1)− µt + φY
i
t+1(Xt+1)T rY

i
t+1 − φi(Xt)

T rit],

µt+1 = µt + kγt[c(Xt, Xt+1)− µt],

where k is an arbitrary positive constant. We show convergence of the combined
iterates [r1

t , r
2
t , ...., r

n
t , µt].

Rewrite the above iteration as

rit+1 = rit + γt[φ(Xt)c(Xt)− φ(Xt)µt + φ(Xt)

n∑
j=1

q(i, j)

m∑
s=1

p(Xt, s)φ
j(s)T rj

− φ(Xt)φ
i(Xt)

T rit +M i
t+1],

µt+1 = µt + kγt[c(Xt)− µt +Mt+1].

Here M i
t+1 and Mt+1 are martingale difference sequences given by resp.,φi(Xt)φ

Y i
t+1(Xt+1)T r

Y i
t+1

t − φi(Xt)(

n∑
j=1

q(i, j)

m∑
s=1

p(Xt, s)φ
j(s)T rjt )


+ c(Xt, Xt+1)φi(Xt)− c(Xt)φ

i(Xt).

and
k[c(Xt, Xt+1)− c(Xt)].

Using similar matrix notation from section 2 and using the fact that
∑m
l=1 d(l)c(l) =

µ∗, the o.d.e. corresponding to (4) is

˙̄ri = Φi
T
Dc− µΦi

T
D1̄ + Φi

T
DP

n∑
j=1

q(i, j)Φj r̄j − Φi
T
DΦir̄i,

µ̇ = k(µ∗ − µ).

Let r = [r̄1, r̄2, ....., r̄n], the concatentation of all r̄i’s. It satisfies the o.d.e.

ṙ =

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D




c
.
.
c
.
.
c


−

µ

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D




1̄
.
.
1̄
.
.
1̄


+
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Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D


q(1, 1)P · · · q(1, n)P

...
. . .

...
q(n, 1)P · · · q(n, n)P



×

Φ1 · · · 0
...

. . .
...

0 · · · Φn




r̄1

.

.
r̄i

.

.
r̄n


.

−

Φ1T · · · 0
...

. . .
...

0 · · · ΦnT


D · · · 0

...
. . .

...
0 · · · D


Φ1 · · · 0

...
. . .

...
0 · · · Φn




r̄1

.

.
r̄i

.

.
r̄n


.

Consider the augmented Markov chain as in section 2 and analogous definitions
for Ψ,ν,ρ and c̃ . Then the ODE for r(·) and µ is ,

ṙ = n
(
ΨT νc̃− µΨT νe+ ΨT νρΨr −ΨT νΨr

)
.

µ̇ = k(µ∗ − µ). (7)

We assume A1, A2, A3 and A5 here as well. Hence Lemma 1, Lemma 2 hold
in this case also. In addition we make the following key assumption.

• (A6) Ψr 6= e for any r ∈ Rn1+n2+...+nn .

Theorem 4 µ̄t, t ≥ 0 a.s. converges to µ∗. r̄t, t ≥ 0, a.s. converges to an r∗ ,
given as the unique solution to

ΨT νc̃− µ∗ΨT νe+ ΨT νρΨr −ΨT νΨr = 0.

Proof: The scalar n on the right hand side of (7) does not affect its trajectory,
so can be ignored. But then (7) is exactly of the same form as (7) with the same
assumptions being satisfied. Hence the same analysis applies. 2

4 Discussion

1. Performance comparison for Discounted Problem:

10



Define Πi to be the projection onto the range of φi w.r.t. the weighted
norm ‖ · ‖, where the weights are the values of the stationary probability
distribtuion η. Let T denote the Bellman operator defined by

(Tx)(i) := c̄(i) + α
∑
j

p(i, j)x(j) ∀i.

Recall from Tsitsiklis and Van Roy (1997) that this is a contraction w.r.t.
the weighted norm above. Furthermore, by triangle inequality and con-
vexity we have

‖J∗ −
n∑
j=1

q(i, j)xj‖2 ≤
n∑
j=1

q(i, j)‖J∗ − xj‖2.

Let,

e∗i := ‖J∗ −ΠiJ
∗‖

ei := ‖J∗ − φir∗i‖
e∗ := [e∗1, ..., e

∗
i , ..., e

∗
n]T

e∗(2) := [e∗21, ..., e
∗2
i , ..., e

∗2
n]T

e := [e1, ..., ei, ..., en]T

e(2) := [e2
1, ..., e

2
i , ..., e

2
n]T

Our analysis borrows ideas from Tsitsiklis and Van Roy (1997,1999).

‖J∗ − φir∗i‖2 = ‖J∗ −ΠiJ
∗‖2 + ‖ΠiJ

∗ − φir∗i‖2

= ‖J∗ −ΠiJ
∗‖2 + ‖ΠiTJ

∗ −ΠiT (

n∑
j=1

q(i, j)φjr∗j)‖2

≤ ‖J∗ −ΠiJ
∗‖2 + ‖TJ∗ − T (

n∑
j=1

q(i, j)φjr∗j)‖2

≤ ‖J∗ −ΠiJ
∗‖2 + α2‖J∗ −

n∑
j=1

q(i, j)φjr∗j‖2

≤ ‖J∗ −ΠiJ
∗‖2 + α2

n∑
j=1

q(i, j)‖J∗ − φjr∗j‖2,

The first equality follows from Pythagoras theorem. The first and second
inequalities follows from non-expansivity of Πi and contraction property
of T , respectively. Thus we have

e2
i ≤ e∗2i + α2

∑
j

q(i, j)e2
j

⇒ e(2) ≤ e∗(2) + α2Qe(2)

⇒ e(2) ≤ (I − α2Q)−1e∗(2)

= (

∞∑
k=0

α2kQk)e∗(2).

11



This is justified because the last expression shows that (I − α2Q)−1 is a
non-negative matrix. Let Q̃ := (1− α2)

∑∞
k=0 α

2kQk, a doubly stochastic
matrix. Thus we have

e(2) ≤ (1− α2)−1Q̃e∗(2)

⇒ max
i
e2
i ≤ β(e∗)

(1− α2)
max
i
e∗i

2

⇒ max
i
ei ≤

√
β(e∗)√

(1− α2)
max
i
e∗i ,

where β(e∗),
√
β(e∗) ∈ (0, 1). The second inequality follows if we assume

that an agent with the maximum e∗i samples an agent with a lesser e∗i with
non-zero probability. This assumption in turn follows from irreducibility
and an assumption that at least one e∗i is different from the rest. Thus we

get a multiplicative improvement over
maxi e

∗
i√

(1−α2)
, which would correspond

to the estimate from Tsitsiklis and Van Roy (1997). Let Π := 1
n

∑n
i=1 Πi

and J̄ = 1
n

∑n
i=1 φ

ir∗i. Then

‖J∗ − J̄‖ ≤ ‖J∗ −ΠJ∗‖+ ‖ΠJ∗ − J̄‖

≤ ‖J∗ −ΠJ∗‖+
1

n

n∑
i=1

‖ΠiJ
∗ − φir∗i‖

≤ ‖J∗ −ΠJ∗‖+
1

n

n∑
i=1

α

n∑
j=1

q(i, j)‖J∗ − φjr∗j‖

≤ ‖J∗ −ΠJ∗‖+
1

n

n∑
i=1

α‖J∗ − φir∗i‖

≤ ‖J∗ −ΠJ∗‖+
αβ(e∗)

(1− α)
max
i
e∗i

≤ (1− α)‖J∗ −ΠJ∗‖+ αβ(e∗) maxi e
∗
i

(1− α)
.

The numerator is a convex combination of ‖J∗−ΠJ∗‖ and β(e∗) maxi e
∗
i ,

a multiplicative improvement over maxi e
∗
i .

This suggests that the maximum error and the variance should be less in
the distributed algorithm. We do not, however, have a formal proof for
this. We have instead included some simulations that support this intu-
ition.

Specifically, we have considered the problem of calculating the average
discounted sum of queue lengths over an infinite horizon. The maximum
queue length is capped at 50. The arrival probability is 0.3 and the depar-
ture probability is 0.35. The discount factor is 0.9. We have considered
3 agents. The sampling probabilities, basis functions and initial values of
weights are as follows:
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Q =

5/12 5/12 1/6
1/4 1/4 1/2
1/3 1/3 1/3


φ1

1(i) = I{i > 5}
φ1

2(i) = I{i > 10}
φ1

3(i) = I{i > 20}

φ1
4(i) =

i
1
51

∑50
k=0 k

φ2
1(i) = I{|i− 25| < 5}
φ2

2(i) = I{|i− 35| < 10}

φ2
3(i) =

i2

1
51

∑50
k=0 k

2

φ3
1(i) =

√
i

1
51

∑50
k=0

√
k

φ3
2(i) = I{i > 30}
ri0 = [0, 0, .....ni times...., 0..0]T

The plot of variance vs iteration and maximum error vs iteration for both
our distributed algorithm (coupled) and the uncoupled algorithm are given
below. We see that the variance and maximum error is lower in the former
case.

Figure 1: Maximum error vs number of iterations
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Figure 2: Variance vs Number of iterations

2. Performance comparison for Average Cost Problem:

Define the equivalence relation i′ ≈ j′ if for some finite n ≥ 1, there
is a sequence i′ = i0, j0, i1, j1, · · · , in−1, jn−1, in = j′ such that p(jk, ik),
p(jk, ik+1) > 0 ∀ 0 ≤ k < n. Consider equivalence classes under ≈. We
assume that the whole state space is one equivalence class. Note that this
assumption will be satisfied if every node has a self loop, which is true
for most queuing models. Furthermore, it does not cause any loss of gen-
erality as observed in Tsitsiklis and Van Roy (1999), because inserting a
self-loop of probability δ ∈ (0, 1) at each state is tantamount to replacing
P by (1 − δ)P + δI, equivalently, introducing a sojourn time binomially
distributed with parameter δ at each state. This does not affect either β
or J∗, and amounts to a harmless time scaling for the algorithm.

Let θ denote the zero vector.

Lemma 3 Under the above assumption, supx 6=θ,ηT x=0
‖Px‖
‖x‖ < 1, where

‖ · ‖ is the weighted norm.

Proof Clearly supx 6=θ,ηT x=0
‖Px‖
‖x‖ ≤ 1. If equality holds, we must have∑

j

p(i, j)x2
j = (

∑
j

p(i, j)xj)
2 ∀i,

which is possible only if for each i, xj is constant for j ∈ {k : p(i, k) > 0}.
Thus xi′ = xj′ , if i′ and j′ belong to the same equivalence class (defined
above). Since we have assumed that the entire state space is a single
equivalence class, x is a constant vector. This along with ηTx = 0, x 6= θ
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gives us a contradiction. Hence the claim follows. 2

Define Πi is before. As before Let 1̄ := [1, 1, .., 1, ..., 1]T . Define Π1̄c to be
the projection on the subspace that is orthogonal to 1̄ with respect to the
weighted norm ‖.‖. Let T be defined as

(Tx)(i) := c̄(i)− µ∗ +

n∑
j=1

p(i, j)x(j).

Since J∗ + c1̄ ∀c ∈ R are valid differential cost functions, we define the
error of the ith agent as:

inf
c∈R
‖J∗ + c1̄− φir∗i‖

= ‖Π1̄c(J∗ − φir∗i)‖

As ηTJ∗ = 0, we have Π1̄cJ∗ = J∗ and hence the error is equal to

‖J∗ −Π1̄cφir∗i‖.

Let e, e(2), e∗ and e∗(2) be defined analogously. We assume that ∀i φij j ∈
1, 2, ..ni are orthogonal to 1̄ w.r.t. the weighted norm. This gives us:

ηTJ∗ = 0,

ηTφj = 0. (8)

This assumption is not restrictive since ηTJ∗ = 0 and we are approximat-
ing J∗. This leads to

Πiµ
∗1̄ = 0

⇒ Πiµ
∗1̄ = Πi(η

TJ∗)1̄.

ΠiTJ
∗ = Πi(c− µ∗1̄ + PJ∗)

= Πi(c− (ηTJ∗)1̄ + PJ∗)

= Πi(c+ (P − 1̄ηT )J∗).

Similarly, Πiφ
ir∗i = Πi(c+ (P − 1̄ηT )φir∗i).

Hence

‖J∗ −Π1̄cφir∗i‖2 = ‖J∗ − φir∗i‖2

= ‖J∗ −ΠiJ
∗‖2 + ‖ΠiJ

∗ − φir∗i‖2

= ‖J∗ −ΠiJ
∗‖2 + ‖ΠiTJ

∗ −ΠiT

n∑
j=1

q(i, j)φjr∗j‖2.
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For the sake of brevity, denote (J∗ −
∑n
j=1 q(i, j)φ

jr∗j) by Ei. By (8)

ηTEi = 0. Thus,

‖J∗ −Π1̄cφir∗i‖2 = ‖J∗ −ΠiJ
∗‖2 + ‖Πi(P − 1̄ηT )Ei‖2

≤ ‖J∗ −ΠiJ
∗‖2 + ‖(P − 1̄ηT )Ei‖2

≤ ‖J∗ −ΠiJ
∗‖2 +

m∑
l=1

η(l)(

m∑
j=1

(p(l, j)− η(j))Ei(j))
2

= ‖J∗ −ΠiJ
∗‖2 +

m∑
l=1

η(l)(

m∑
j=1

(p(l, j)(Ei(j)− ηTEi))2

≤ ‖J∗ −ΠiJ
∗‖2 + α2

m∑
l=1

η(l)(Ei(l)− ηTEi)2

≤ ‖J∗ −ΠiJ
∗‖2 + α2‖Ei − ηTEi‖2

= ‖J∗ −ΠiJ
∗‖2 + α2‖J∗ −

n∑
j=1

q(i, j)φjr∗j‖2,

where α := supηT x=0,x 6=0
‖Px‖
‖x‖ . From Lemma 3 we know that α < 1.

Following the steps in the preceding section we get,

max
i
ei ≤

√
β(e∗)

1− α2
max
i
e∗i

‖J∗ − J̄‖ ≤ (1− α)‖J∗ −ΠJ∗‖+ αβ(e∗) maxi e
∗
i

(1− α)
,

where J̄ and Π are defined as before and β(e∗) ∈ [0, 1). Thus we get
multiplicative improvements in the bound over the uncoupled case. It is
worth noting that the bound derived in Tsitsiklis and Van Roy (1999)
does not seem to extend easily to the distributed set-up. As before, we do
expect that the variance should be less in the distributed algorithm with
gossip as opposed to the uncoupled case. Again we do not have a formal
proof, but we have included simulations to support our intuition. We
simulate with the same parameters in section 4.1 except that the feature
vectors are projected on 1̄

c
. The simulations showed significant reduction

in variance, however the maximum error was approximately same for both.
We have included the graph for variance here.
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Figure 3: Variance vs number of iteration

3. Interestingly, the simple convergence proof above fails for TD(λ) for λ 6= 0.
It will be interesting to see whether our scheme can be modified to suit
general λ.
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