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Abstract—In this paper, we address robust static anti-windup

proposed. While these available robust anti-windup sofisti

compensator design and performance analysis for saturated arise from different approaches and paradigms to the robust

linear closed loops in the presence of nonlinear probabiltec pa-
rameter uncertainties via randomized techniques. The propsed
static anti-windup analysis and robust performance synthsis cor-
respond to several optimization goals, ranging from minimzation
of the nonlinear input/output gain to maximization of the stability
region or maximization of the domain of attraction. We also
introduce a novel paradigm accounting for uncertainties inthe
energy of the disturbance inputs.

Due to the special structure of linear static anti-windup design,
wherein the design variables are decoupled from the Lyapuno
certificates, we introduce a significant extension, calledcenario
with certificates (SwC), of the so-called scenario approach for
uncertain optimization problems. This extension is of inde
pendent interest for similar robust synthesis problems inwolv-
ing parameter-dependent Lyapunov functions. We demonstriz
that the scenario with certificates robust design formulaton is
appealing because it provides a way to implicitly design the
parameter-dependent Lyapunov functions and to remove resic-
tive assumptions about convexity with respect to the unceain
parameters. Subsequently, to reduce the computational chswe
present a sequential randomized algorithm for iteratively solving
this problem. The obtained results are illustrated by numeical
examples.

Index Terms—robust control, anti-windup augmentation, un-
certainty, randomized methods.

I. INTRODUCTION

anti-windup problem, they mostly share the common feature
of arising from a deterministic approach wherein a constant
but unknown parameter belongs to a (known) compact set.
Then, by suitable relaxations of the assumptions at thee pric
of increased conservativeness, these sets are convexdfied t
obtain numerically tractable approaches to the analysis an
design problem. In this paper we follow a radically diffetren
paradigm, arising from randomized methods for performance
analysis and control design.

Randomized and probabilistic methods for control received
a growing attention in the systems and control community
in recent years [35]. These methods deal with the design of
controllers for systems affected by possibly nonlineaycst
tured and unstructured uncertainties. One of the key featur
of these methods is to break the curse of dimensionaliy,
uncertainty is “lifted” and the resulting controller séigs a
given performance for “almost” all uncertainty realizai$o In
other words, in this framework, we accept a “small” risk of
performance violation.

One of the successful methods that have been developed
in the area of randomized and probabilistic methods is the
so-called scenario approach, which provides an effectioé t
for solving control problems formulated in terms of robust

NTI-WINDUP designs correspond to control system@Ptimization [6]. In this case, the sample complexity, whis _
A augmentations in light of actuator saturations, to mitigafhe number of random samples that should be drawn according

the negative effects of the input nonlinearity. Their depel

to a given probabilistic distribution, is derived a pricaind it

ment has a history dating back to the era of analog contspllef€pends only on the number of design parametgrsand
more than half a century ago, and the most effective tECMiqurobablhstlc parameters called accuracgnd confidencé.

are well illustrated in[[33],[[37],[[34],.[18]. When robustss

In parallel with these methods, sequential-based appesach

to parameter uncertainties must be taken into account, oRf§v€ been developed, see for instance the recent sequential
recent results on suitable anti-windup constructions treco Probabilistic validation techniques proposed in [1] ané re
available, all of them formulated in the deterministic rebu €rénces therein. In particular, in_[11] an algorithm is pro-
control context. Some relevant examples correspond o [2BPSed which, at each iteration, constructs a candidate con-

[36], [31], [14], [34], [19], [17], [22], [20], where sevekauc-
cessful solutions differing in nature and architectureehiagen
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troller, whose performance is then validated through a Mont
Carlo approach. If the controller does not enjoy the reglire
probabilistic performance specification, a new controler
designed based on new sample extractions. At each step of
the sequence, a reduced-size scenario problem is solved. Th
method is usually effective in practical applications, reve

its sample complexity cannot be determined a priori. These
methods may be used in specific control problems such as
designing a common quadratic Lyapunov function. In these
cases, however, the fact that a single common Lyapunov
function should hold for all possible uncertainties leads t
an overly conservative design. The same drawback is known
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in classical robust control, where the design of a commdimes - to infeasibility. The scenario with certificatesigan
guadratic Lyapunov function requires an exponential numbgroposed here was then introduced lin/[15], where we also
of computations([2], [[9]. For these reasons, parameterizptbvided preliminary results on the design of anti-windup
Lyapunov functions have been developed and used in mamgmpensators minimizing the nonlineds gain.
robust control problems subject to uncertainty [3, Chapter As compared to these preliminary results, in this paper
19.4]. we fully exploit the potential of the proposed randomized

Within the above surveyed context, the contribution of thiapproach towards the design of static anti-windup gairssreyi
paper is two-fold. In the first part of the paper (Sectidn Il)¥rom suitable performance/robustness trade-offs. Moeziép
we develop a new framework, denoted as scenario wittally, after analyzing in-depth the formal properties ahd
certificates, which is very effective in dealing with pardere algorithmic solutions for the novel randomized approach, w
dependent Lyapunov functions. This framework continues thapply it to the robust design of anti-windup compensators
research originally proposed in [29] for feasibility prebis within different problem settings; namely, we address the
in the context of randomized methods. The main idea in thisinimization of the nonlinea€, gain, the minimization of the
approach is to distinguish betwealesign variablesd and area spanned by the nonline&y gain curve, the minimization
certificates¢ and has the advantage, compared to classial the reachable set and the maximization of the domain of
robust methods, that no explicit parameterization (linear attraction for closed-loop saturated systems. For eachef t
nonlinear) of the Lyapunov functions is required. In othesibove problems, we provide several discussions and a kuitab
words, the method is based on a “hidden” parameterizatisimulation example (in Sectidn V).
of the Lyapunov functions, and has the clear advantage toThe paper is ended by some concluding remarks.
reduce the conservatism compared to the methods based on
the design of common Lyapunov functions. Notation

In the second part of the paper (Sectigns$ Il V), we
show the application of the scenario with certificates appno ~ In the remainder of the paper, the following notation and
to anti-windup design and analysis in the presence of timédefinitions are adopted:
invariant uncertainty. In particular, we concentrate opecgic « the £5 norm of a scalar valued signalt), defined for
anti-windup scheme for linear saturated plant-contrdked- t>0,is
backs: static direct linear anti-windup design (see, 43, _ >~ 1/2
Part 1I]). Direct linear anti-windup corresponds to augirem 2]l = (/ z°(t) dt> ;
a linear saturated control design with a linear gdn,,
driven by the excess of saturatieiz(u) = u — sat(u) and
injecting suitable correction “anti-windup” signals atthtate
and output equation of the pre-designed windup-prone flinea
controller. Several different performance optimizati@sks
are considered, and we present different alternatives én th [I. SCENARIO WITH CERTIFICATES
subsections of Sectidn]Il. A notable one, which is novel to | this section, we briefly recall the scenario approach in

the anti-windup field and arises naturally from the proposegsjing with convex optimization problems in the presence
probabilistic context, is the one (in Sectibn 11l-B) whetet o ncertainty, and subsequently introduce a novel framewo

design minimizes an upper bound of the area spanned by {hs: we namescenario with certificate¢SwC).
nonlinearL, gain curve, accounting for uncertain (but proba-

bilistically known) energy of the external disturbancdrgbn )

the saturated closed loop. Each proposed performancecmefyi The scenario approach

is shown together with a robust performance analysis resultThe so-called scenario approach [6] has been developed to
that is not limited to the anti-windup context but is applitn deal with robust convex optimization problems of the form

to any uncertain linear closed loop subject to saturatiotién

« e denotes the Euler number;
« given a square matri€, He(2) = Z + Z7;
« given a matrixX, X[, denotes theé?" row of X.

T
classical LFT form. In all the above contexts, we will show fro = arg e ¢ (RO)
that the probabilistic approach allows to reduce consksvat st f(6,9) <0, Vg € Q,

as well as to cope with uncertainty entering nonlinearly in

the problem description, without overbounding it. Thedatt where, for giveng within the uncertainty se®, f(9,q) are

case has instead already been treated in various exampl@svex functions of the optimization variable € O, the

in the literature, where the trade-off between the robust adomain © is a convex and compact set iR" and the

deterministic approach is usually referred to @ebability uncertainty setQ) is not necessarily compact. Furthermore,

degradation functionsee e.g.[[35, Ex. 11.1 and 12.1]. we assume thaf (0, q) is a continuous (possibly nonlinear)
Preliminary results in the direction of this paper weréunction of ¢ for any givené.

presented in [16], [15]. In particular, in_[16] the resultene Following the probabilistic approach discussed for instéan

based on the classical scenario optimization approachan tin [35], [7] a probabilistic description of the uncertainiy

formulation, both the certificates and the design variabie® considered over). That is, we formally assume that is

treated as optimization variables over the whole operatiagrandom variable with given probability distribution with

region, thus leading to a conservative solution, and - sonmgipportQ. Such a probability distribution may describe the



likelihood of each occurrence of the uncertainty or a usepractical viewpoint, it is always preferable to numerigaiblve
defined weight for all possible uncertain situations. Th&n, the one dimensional problem of finding the smallest integer
independent identically distributed (iid) samplg¥, ..., ¢™) N such thatB(N, e, ny) < 6.
are extracted according to the probability distributiontioé
uncertainty over.
These samples are used to construct the following scendfio
optimization (SO) problem, based @v instances (scenarios) The classical scenario approach previously discussed deal
of the uncertain constraints with uncertain optimization problems where all variables
are to be designed. On the other hand, in the design with cer-
tificates approach we distinguish betwedgsign variables)
st.f(6,¢")<0,i=1,...,N. and certificates. In particular, we consider now a function

f(0,&,q), which is assumed to bmintly convexin 6 € ©

Problem[(SO) can be seen as a probabilistic relaxation dn‘-pr(andg € Z C R™ for giveng € Q (where©® and = are
lem (RQ), since it deals only with a subset of the constrainégpposed to be non-empty), and construct the followingsbbu

considered in[(RD), according to the probability distribot optimization problem with certificates
of the uncertainty. However, under rather mild assumptions

on problem[(RO), by suitably choosing, this approximation Orwe = arg mein c'o (RwC)
may in practice become negligible in some probabilisticseen sthesS Vg €

Specifically,N can be selected depending on the level of “risk” - (9), Ve € Q,

of constraint violation that the user is willing to accep.this where the sef(q) is defined as

d, theviolati bability of the desigrp is defined e
en eviolation probability of the desigrd is defined as S(g) = {0 € O] I < = satislying £(6,6,9) <0}.  (5)

Viol (#) =Pr{g € Q : f(0,q) >0} 6y . . .
The key observation that is at the basis of the approach
wherePr denotes the probability with respect to the distribudeveloped in this section is that the s&fy) is convex inf

tion of the random variable. Similarly, thereliability of the = for any giveng, as formally shown in Theorem 1 below.
designé is given by

Scenario with certificates

fso = argmin ¢’ 6 (SO)
0co

Remark 1. [Common vs. parameter-dependent certificates] As
Rel(§) =1 — Viol (). discussed in the Introduction, problem (RwC) corresponds t
searching for so-calleparameter-dependenertificates, in the
sense that a different certificate is allowed for every imsteof
Proposition 1. [10] Assume that, for any multisample extracthe uncertainty;, that is¢ = £(g). This is very different from
tion, problem [[SO) is feasible and attains a unique optim@he approach frequently adopted when dealing with uncertai
solution. Then, given an accuracy lewet (0,1), the solution systems, based on the design afmmoncertificates. This

Then the following result has been proven|ini[10].

fso of problem(SQ) satisfies would result in a robust problem of the form
Pr{Viol (fso) > €} < B(N,¢,ng), (2) {0co,€co} = argeerer)l?glea <To (CO)
where s.t. f(0,€,q) <0, Vg € Q,
B(N, €, ng) = nil <JZ> F(1— )V, () wherg the common certificage;o should be the same for_aII
s possible values of. Clearly, if the spread of the uncertainty

i _ i is large, it is unreasonable to expect the same certifi¢ate
.We hote that non-uniqueness .Of the ‘?Pt'ma' solution can R? hold for all ¢ € Q. For instance, in the classical case
circumvented by imposing adqunal tle-preak_ rules et \hen the certificates correspond to Lyapunov functions for
problem, seee.g, Appendlx_A of [6]. Also, in [8] it is shown roving stability, the difference between the two appreach
that the_feg5|bll|ty assumption can be removed at the eXPeiias on the difference between common Lyapunov functions
of EUbSt'tét'ng"." — 1 with ""l.'r.] Bb(N’ 6&"9)' h b znd parameter-dependent ones. In particular, for thisl@nob
rom Equation [[2), explicit bounds on the number g ifferent solutions have been proposed in the robust cbntro

samples necessary to guarantee the “goodness” of them'”f}terature, which are based on explicit parameterizati@ns.

Pave_ been derived. Tf;\e boundl provideld i_” [1_] shrc])ws that, fnear or bilinear) of the functiog(q), see for instance [3].
or givene, d € (0,1), the sample complexityV is chosen to One of the main novelties of the probabilistic approach dis-

satisfy the bound cussed in this paper is the fact that no explicit parametton

N> _© (1n1 I 1) m. @ is necessary. o
ele—1) J In [29], an approach to handle parameter-dependent linear
then the solutioso of problem [SO) satisfies Vitlso) < e  matrix inequalities (LMIs) has been introduced, and a sofut
with probability 1 — §. This bound improves by a constanfor feasibility problems, based on uncertainty randoniizat
factor upon previous bounds, see eld. [8], and it shows tleatd on an iterative ellipsoidal algorithm, has been derived
problem (SO) exhibits linear dependencelife andng, and The approach considers different certificates for each kEainp
logarithmic dependence oh/é. Note however that, from a value of the random uncertainty. In the same paper, the



conservatism reduction is illustrated by means of a nurakriavhere the subscript for the variablest; highlights that the
example showing that traditional robustness methods baseddifferent minimization problems are independent. Finag
common Lyapunov functions fail. note that[(8) immediately rewrites as probldm (3wC). O
In the current work, we follow along this line of research, _
and propose to approximate problef (BwC) introducing the We remark that problem (SwC) haé separate constraints,

following scenario with certificategroblem, based again on°n€ for eachg™, and each constraint involves a different
a multisample extraction certificate. However, notice that the dimensignof the certifi-

cates¢ does not enter in the right-hand side of the probability

Oswc =arg min 76 (SwC) bound [6) in Theoremll. Hence, the sample complexity of
0,61, 6N o . problem (SwC) is smaller than that of the scenario counterpa
st f(0.&,¢'") <0, i=1,...,N. of the problem with common certificates (CO), in which both

L 4 and¢ play the role of design variables. On the other hand,
Note that, contrary to problern ($0), in this case a new Cemfhe ccfmpplgxity of solving pgroblem (SwC) is higher, since

: o B
cate variable; is created for every sampig?, i =1,..., N, the number of optimization variables significantly incress

tehat |s\§l‘\;e n%t(g th)étTci)na?haelyizstgeOFg&g“?ﬁeognzbiﬁlUt;?,%ecause a different variabfe is introduced for every sample
Swo ! ' y ¢, This increase in complexity is not surprising, being

violation probabilities of desigH are given by problem (RwC) much more difficult than problem (CO). In

Rell) = Pr{q € Q|3¢ € = satisfying f(6, ¢, q) < 0} particular, we remark that, in the case when the constraints
=07 are linear matrix inequalities, then the scenario problamipe
Viol(8) = Pr{ﬂq € Q¢ € = satisfying f(0, ¢, q) < 0}. reformulated as a semidefinite program by combining the

. _ _ LMIs into a single LMI with block-diagonal structure. It is
We now state the main result regarding the scenario ophown, see[[4], that the computational cost of this problem
mization with certificates. with respect to the number of diagonal blogKss of the order

Theorem 1. Assume that, for any multisample extractior®f N3/2, The sequential method discussed in the next section

problem (SwQ) is feasible and attains a unique optimalaims at improving the computational efficiency by reducing

solution. Then, given an accuracy levet (0, 1), the solution the number of scenarios.
Oswc of problem(SwQ) satisfies
C. Sequential randomized algorithm for SwC
Motivated by the computational burden of the SwC solution,
in this section, we present a sequential randomized algorit

Proof. We first prove convexity of the s&(q). To see this, that alleviates the load by solving a series of reduced-size

Pr {Viol (fswc) > €} < B(N, ¢, ng). 6)

considerd;, 6, € S(q). Then, there exist,, & such that problems. The algorithm is a minor modification of [11,
Algorithm 1], which was introduced for the standard scemari
f(61,&1,9) <0 and f(62,&2,9) <O0. approach, and it is based on separate design and validation

steps. The design step requires the solution of the reduced-
size SwC problem. In the validation step, contrary [tol [11]
where only functional evaluations are required, the fekitsib
problems|[(®) and{10) need to be solved. However, it should

Consider nowd, = A1 + (1 — \)f2, with A € [0, 1], and let
& = A& + (1 — M\)&. From convexity off with respect to
both # and¢ it immediately follows that

_ be pointed out that the latter problems are of small size,
S(O.600) S Af(E1,61,0) F+ (1= ) (02,62,4) <O, and can be solved independently, and hence parallelizesl. Th
henced, € S(q), which proves convexity. sequential procedure is presented in Algorithm 1, and its
Now, observe that the conditioh € S(q) is equivalent to theoretical properties are stated in the subsequent lertsna.
requiring proof follows the same lines of that in_ [11, Theorem 1 and
fe(0,q) = inf f(0,£,q9) <0, Algorithm 1], and is omitted for brevity. It should be streds

' R however, that in[[111] the sequential approach was not agplie

so that problem{RWC) is equivalent to to SwC, but to standard scenario optimization.

: T
e 0 (") Sequential Algorithm for SwC

st fe(6,q) <0 VgeQ.

Note that, from the convexity of(q), it follows that the
function f¢ (6, q) is convex ind for giveng; see alsa [, p. 113].
Hence, problem{7) is a robust convex optimization problem.

1) INITIALIZATION
set the iteration countdr = 0. Choose the desired prob-
abilistic levelse, 6 and the desired number of iterations

Then, we construct its scenario counterpart ke > 1
2) UPDATE
minc’ 6, (8) setk =k + 1 and N, > Nkﬁ where N is the smallest
6

, integer s.tB(N,e,ng) < 5/2t
st miy f(6,6¢7) <0 i=1....N, 3) DESIGN
¢ ER™



o draw Ny iid (design) sample$qfil), .. .,qC(lN’“)} [1l. ANTI-WINDUP COMPENSATOR DESIGN

« solve the followingreduced-size SwC problem . , , , . )
Consider the linear uncertain continuous-time plant with

ézvk =arg min 70, (9) inputs subject to saturation
0,61, 6N,
St f(0,6.45)) <0, i=1,.... N tp = Ap(@ap + Bpu(a)o + Bpu(@)w
it the | . . h i = Cp,y(Q)Ip + Dp,yu(Q)U + Dp-,yw(Q)w (13)
) Ireiu?n gssst\;:jeftg\z © reacheth = &) z = Cp:(0)Tp + Dp2u(q)0 + Dy zuw(q)w,
4) VALIDATION where z,, is the plant stateg € R™ is the control input,
« setM, according to[{I1) w is an externgl input (possibly comprisilng references and
. draw iid (validation) sample$q§1), o ’ngk)} disturbances); is the performance outpuy, is _th(_a measured
. for j=1to M output andq denotes random qncertamty within the @I_
. . We denote byg € Q the nominal value of the uncertain
— if the validation problem parameters.
find ¢; such that As customary with linear anti-windup desigh _[37], we
A G assume that a linear controller has been designed, baské on t
FOn: &y a”) <0 (10) nominal system, in order to induce suitable nominal closed-
is unfeasible goto stefil(2). loop properties when interconnected to pldnt (13)
o returnfssyc = Oy, . Te = Acxe+ Beyy+ Beww+ 11 (14)
u = Cexe+ Dc,yy + Dc,ww + v2,

Lemma 1. Assume that, for any multisample extractionyherezx. is the controller statew typically comprises refer-
problem() is feasible and attains a unique optimal solutionences (but may also contain disturbancesis the controller
Then, given accuracy level € (0,1) and confidence level output andv = [vI' »I]7 is an extra input available for
6 €(0,1), let anti-windup action. The controllef (L4) is typically desag
in such a way that the so-callathconstrained closed-loop
alnk +In (Hg,—1(a)) +1n 2 (11) systemgiven by [I3), [I¥),c = u, v = 0 is nominally
In (1;) asymptotically stable and satisfies some nominal or robust
performance requirements.
where H,, _1(a) = Zkt:—llj—a, with o > 0, is a finite Consider now the (physically more reasonaldejurated

\ , - ,, - - _ th ;
hyperharmonic series. Then, the probability that at itemt [Nterconnections = sat(u), where thek™ entry tgf_o— IS
% Algorithm 1 returns a solutiofss.c with violation greater Satk(uxr) = max(min(ay, ug), ), denoting thek™ input

My, >

than e is at mosts, i.e., by uwi. When the input saturates, the closed loop system
composed by the feedback loop betwelen (13) andl (14) is no
Pr {Viol (fsswc) > €} < 6. (12) longer linear and may exhibit undesirable behavior, uguall

called controller windup Then, one may wish to use the free
Remark 2. The dimension of the system that can be handlégput v to design a suitablstatic anti-windup compensatof
by the algorithm depends not only oy, but also on the the form
desired probabilistic accuracy and confidence. The paddr [1
considers a real-world example of a hard disk drive comjsti v =[v] vI" = Dyw(u — sat(u)). (15)
of 153 design parameters arfil uncertain parameters. It is_ =~ o ) ) .
shown that the sequential approach provides results ewen F§iS signal can be injected into the right hand side of the
very tiny values of accuracy and confidence, contrary to ti§@ntroller dynamics[(14) to recover stability and perfonce

one-shot solution, i.e. the one considering all Meonstraints ©Of the unconstrained closed-loop system.
at once. o When lumping together the plant-controller-anti-windup

components[(13),[(14)[(I15) = sat(u), one obtains the

In the second part of this paper, we introduce the problem g9-called anti-windup closed-loop systera nonlinear con-
robust £, gain minimization for linear anti-windup systemstrol system which can be compactly written using the state
The SwC approach appears to be well suited for suchza= [a:g 2T as in [16) (at the top of the next page), where
design problem, for several reasons: i) the nominal design alz denotes the deadzone functiae,, dz(u) = u—sat(u), and
be formulated in terms of linear matrix inequalities, iijeth all the matrices are uniquely determined by the datdin (13),
uncertainty set can in principle be of any size and shape, a@d), (I5) (seee.qg, the full authority anti-windup section in
i) the optimization variables can be easily divided in iges [37] for explicit expressions of these matrices).
variables for the anti-windup augmentation and certifisate The compact form in[{16) may be used to represent both
for stability and performance guarantees, iv) the number tife saturated closed loop before anti-windup compensation
uncertain parameters can in principle be arbitrarily lamge by selectingD,,, = 0, or the closed loop with anti-windup
any functional dependence is allowed. compensation, by performing some nonzero selectioR of.



T = Acl(‘])x + (Bclyq(Q) + Bcl,v(Q)Daw) dz(u) + Bcl,w(Q)w
z = Ccl,z(q)x + (Dcl,zq(q) + Dcl,zu(q)Daw) dZ(u) + Dcl,zw(q)w (16)
u = Ccl,u(Q)x + (Dclyuq(Q) + Dcl,uv(Q)Daw) dz(u) =+ Dcl,uw(Q)w
Q=Q" >0, U > 0 diagonal (17a)
Acl(Q)Q (Bcl,q(Q) + Beiw (Q)Daw) U+y” Betw (Q) 0
Ccl,u(q)Q (Dcl,uq(q) + Dcl,uv(q)Daw) U-U Dcl,uw(q) 0
He 0 0 “1/2 0 <0, (17b)
Ocl-,z(Q)Q (Dclyzq(Q) + Dcl,zv(Q)Daw) U Dcl,zw(Q) _721/2
Q Yy
> =1,... 17
ARG U are)
Aa(9)Q  Beig(@QU + Ban(@)X +Y"  Baw(q) 0
Ccl,u(q)Q Dcl,uq(q)U + Dcl,uv(q)X -U Dcl,uw(Q) 0
He 0 0 “1/2 0 <0 (18)
Ccl,z(q)Q Dcl,zq(q)U + Dcl,zv(q)X Dcl,zw(q) _%I
A. L5 gain minimization gain of the system is given by
First, we analyze systerh (16) for tm@minal casethat is 42(s) = 2mil} " 72 (20)
when no uncertainty is present a@ds a singleton coinciding Q.U
with the nominal valuey of the parameters. s.t. [I).

In this nominal case, the results [n [12], [24]. [23]. [33}dan  As suggested i [23], one may use the result of Proposition 2
references therein generalize the well-known sector ¢immdi to compute an estimate of the nominal non”né@rgain curve
originating from absolute stability theory, into a so-edll (see[[27]), namely a function— 4(s) such that for each in
generalized sector condition, stating that given any mdifj the feasibility set of[{1I7) and for each satisfying||wl|2 < s,

it holds thatdz(u)"U~"(u — dz(u) + Hz) > 0 for all z the zero initial state solution tG (1L6) satisfies
satisfying dz(Hz) = 0. This condition is a powerful tool

because it enables us to provide a non-global homogeneous 1]z < A(s)[[w]]2.

characterization of the stability and performance pragef To do so, it is possible to sample the nonlinear gain curve
the nonlinear closed loop_([L6) by way of an extension of abse++ 4(s) by selecting suitable positive values < - -- < s,

lute stability theory. In particular, if_(17) the generalizsector and, for eachk = 1,...,n, solving [20), after replacing =
condition provides guarantees on the derivative of a quidras,. Then, theL, gain curve estimate can be constructed by
Lyapunov functionz” @~z in a suitable (ellipsoidal) sublevelinterpolating the point$sy., 31 (sx)), k = 1,...,n.
set&((s?Q)~!) (seel[IP) below) contained in the region where Following the derivations in[[12] (which generalize the
dz(Hz) = 0 (this is guaranteed by (1l7c)). Here, parametetgobal results of[[28]), one may notice that the prodDgt, U

Q, U andY = U~'H can be optimized by way of a convexappears in a linear way in equatién (17b) and, for a fixed value
semi-definite program. More formally, we recall the followi of s, the synthesis of a static anti-windup gain minimizing the
stability and performance analysis result from|[23, Theorenonlinear £, gain can be written as a convex optimization
2]. problem, as stated next.

Proposition 2 (Regional stability/performance anaIysis)PrOpOSition 3 (Regional stability/performance synthesis)

Given a scalars > 0, consider the nominal system, that is |eplven the plant-controller paif (13)[{14), and a scalac> 0,

Q = {g}. Assume that the semidefinite programming (SD%)nsider tr?e nr?misngllasystglm, that@= {g} is a singleton.
problem ([7) in the variablesy?, @, Y and U is feasible. ssume that the probiem

Then: 52(s) = e gl}i/nUX} 72 (21)

(a) the nonlinear algebraic loop if{16) is well posed, svt([IED 2, ()

(b) the origin is locally exponentially stable fof {16) with . . T _
basin of attraction containing the set is feasible. Then, selecting the static anti-windup gain as

Do = XU, (22)

the anti-windup closed-loop syster J(13).1(14).] (15),=
(c) for eachw satisfying ||w||2 < s, the zero initial state sat(u) or its equivalent representation i ({16) satisfies prop-
solution to [16) satisfiedz||a < A|lw|2, where theL, erties (a)-(c) of Propositiofil2.

E(s*Q)7Y) = {z: 2TQ 7z < 5%}, (19)



Remark 3. The static linear anti-windup architectude {15) Note that both problemd_(23) anf {24) are difficult non-
adopted in Proposition] 3 and in the rest of this paper onvex semi-infinite optimization problems, due to the fact
only one among many possible choices (see, €.gl, [37]). thmt one has to determine the certificates as functions of the
particular, when using direct linear anti-windup desigas, uncertain parameteg. A classical approach in this case is
alternative appealing approach is given by the design oft@a assume a specific dependence (generally affine) of the
plant-order linear filter (namely, of the same order of theertificates on the uncertainty. Instead, in this paper wiptd
plant) generalizing the static selection[in](15). Such aatlyic a probabilistic approach, assuming thds a random variable
generalization of [(I5) was shown in_[21] to be importanwith given probability distribution ove®, and apply the SwC
to guarantee global exponential stability in the presenfce @approach discussed in Section II-C. This allows us to find an
saturation. However, this fact was later de-emphasize@ orimplicit dependence o of the certificates. This is in the
the above mentioned generalized sector condition was-intepirit of the original idea proposed in_[29]. The following
duced (seel[24], which provides the non-global extension wfo theorems, whose proofs come straightforwardly from
the results in[[21]). More specifically, non-global guase® Proposition§il and 2, exploit the SwC approach to address the
of stability in the presence of saturations/deadzones isr@bust nonlineatl, gain estimation and synthesis for saturated
fundamental tool to establish exponential stability prtips systems.
of the origin for non-asymptotically stable plants that are In particular, our first anti-windup theorem provides a con-
stabilized through a saturated control input. o vex optimization procedure to obtain probabilistic infation
about the worst case nonlineds gain. To this end, we fix
Remark 4. The separation between the Lyapunov certificatgn upper bound for |lw||, and define two scalarsandd in
Q,Y and the optimization variableX’, U in (18) is only (0,1) denoting, respectively, an acceptable level of probabilit
possible when adopting the static architecturelid (15).ctvhiof constraint violation and a level of confidence. Then, irep
makes the robust extensions provided below reasonably sisy- (20), we apply Theorer] 1 with the design variables
ple. Extensions to the dynamic plant-oder anti-windup cas@d the certificateg given, respectively, byy = ~2? and
is possible only if one adopts certain conservative convgx- {Q,U,Y} and the numbeN of samples selected, based
relaxations of the nonconvex robust conditions, alonglaimi on bound[(6), to satisfy
directions to those well surveyed, for example,[in|[13]. o
B(N,e,np) < 0. (26)
Consider now theincertain casewhen the system matrices
in (I8) defining the dynamics af and z are continuous (pos-
sibly nonlinear) functions of the uncertaingye Q, which is
considered to be time invariant. Then, the interest is inifipd o o
robust solutions to the analysis and design problems digcus 'n€orem 2 (Probabilistic performance - analysisfGiven
before. For instance, in the analysis case, one could séarchScalars 5 >0, ande, § € (0,1), selectN satisfying [(25),
common certificate®), Y, U in (20) such that? is minimized X ¢ =77 and&={Q.U,Y}. _
over [IT) for allg € Q. This approach is pursued in [16], 'f the scenario approximation (SWC) of proble@d) is
where scenario results are used to find probabilistic gteean €asible and attains a unique optimal solution, then forfeac
estimates. Note that the use of a common Lyapunov functidt |l < s, the zero initial state solution of systeif)) satisfies
is well justified when the uncertainty is, for instance, time
varying. However, as discussed in Section ]I-C, an approach
based on common certificates is in general very consenvativeyith level of confidence no smaller than- §.
the case of time-invariant uncertainty, and one would beemor
interested in findingparameter-dependerertificates. To do  Our second anti-windup theorem allows for robust random-
this, we would need to solve the following robust optimiaati jzed synthesis using the SwC approach and follows parallel
problem with certificates steps to those of Theoref 2 by combining Theofém 1 with
o . Proposition[8. To this end, and following_(21), we choose
77 (s) =miny (23)  the design variable® and the certificatest as follows:
st.y” € {+*] 3{Q,Y,U} satisfying (I7} Vg € Q. 6 = {#>,X,U} and¢ = {Q,Y}. Indeed, the variable§
o ) ) ) ~must include the quantitieX and U used to determine the
A similar rationale can be applied to robustify the anti-tip  5nti.windup gain in[[2R): these variables must be the saree ov
synthesis problem of Propositioh 3. As a matter of fact, whey, sample extractions so that a unique anti-windup gainbean

the system matrices are uncertain, one meets similar @sstryetermined. Then the following holds combining Theofém 1
tions to those highlighted as far as analysis was concermngg, propositior 3.

Again, instead of looking for common Lyapunov certificates

as in [16], we write the following RwC problem Theorem 3 (Probabilistic anti-windup synthesis)Given
(2 N . o scalarss > 0, ande, 6 € (0,1), selectN satisfying [(25),
7(s) —mm72 , _ _(24) fix § = {4 X,U} and¢ = {Q,Y}.
st.{7*,U X} e {{»* U, X} | 3{Q, Y} satisfying If the scenario approximatiod (SWC) of problef@d) is
([Zd), @7d), @®)} Vqe<Q. feasible and attains a unique optimal solution, then forteac

Then the following result is a straightforward consequeoifce
Theorenf]L and Propositidd 2.

Pr(f[zlly > 4(s) [[wll,) <€,



2(s) = min 2

) {72,Q1,-.,Qn . Y1 »»»-,YN.,U.,X}’Y

Aa(@)Qs Bag(¢)U + Ba (@)X +Y7  Baw(g®) 0

Cotu(¢)Qi Det,uq()U + Do (¢P)X ~ U Degus(¢?) 0
0 0 —1/2 0

Cax(@)Qi Deteq(@)U + Dat2o(@)X  Detzuld®) %

<0 (25)

1

;v
QY S0 k=1,.ne i=1...N
Yimw Ui/s

lwll, < s, the zero initial state solution of the uncertainThen we may compute an upper bound on the area spanned
system{16) with anti-windup static compensat@@2) satisfies by the £, gain as follows

Pr(lz|, > A(s) ||w|l,) < e, s s Do gkt gkl
(Il > 5(s) oll) [ ane [Sorara-ynS 2
with level of confidence no smaller than- 6. s S k=0 k—0 k+
For completeness, i (5) we report the SwC problem bas€His leads to the following RwC problem
on the application of Theorel 3. Similarly, the SwC problem Ny okl _ gkl
based on the application of Theoréh 2 can be constructed min —T% (28)
following the same rationale and it is not reported here due t LUXi3 k+1
space limitations. st. {s,I,U, X} € S(q,s), VqgeQVse][s3],
Remark 5. The reformulation of the SwC approach fofyhere we usedl’ = [To,... ,rnw]T and, according to

nonlinear gain analysis and anti-windup synthesis in Thegarametrization(27),

rems[2 and]3 is appealing from an engineering viewpoint, e

As a matter of fact, since tha' instances of the system ©(%5) = {{r U, X} | 3{Q. Y} saﬂsfymglm,(m),(m
matrices are extracted according to the probability diation with +2 replaced by i Tish}.

of the uncertainty, this solution provides a view of what k=0

may happen in most of practical situations. Moreover, we Notice that the above design problem is still a convex
stress that the proposed formulation does not constrain tstimization problem, with the only difference that the tcos
unknown Lyapunov matrice®;'s to be the same for all the function is not a single value of (for a nominals), but a
sampled perturbations. Instead, it allows them to vary amoset of values ofy’'s. Namely, we want to minimize the area
different samples. This is possible because @h&s (as well underlying thel, curve parameterized as a polynomial curve.
as theY;’s) are only instrumental for the computation of thé'he problem constraints can still be formulated as LMI’s.
robust compensator. Note that, unlike system matriegs the The following result is a straightforward generalizatioh o
Aq(q™)'s, which are uncertain by definition, the certificateshe construction in Theoref 3 for this new optimization goal

are unknown buthey are not random variables I - .
y Theorem 4 (Probabilistic synthesis with uncertain energy)

B. Uncertain disturbance energy ?11\7/?7 (s}(iaf;(sje é i?é?i/l}) selectiV’ satistying [(25), fo¢ =
The previous approach can be further modified by observ-if the scenario approximatiof (SWC) of proble@8) is
ing that the design is valid only for a given value ef feasible and attains a unique optimal solution, then the zer
correspondnig to an upper bound on the disturbance enejgiyial state solution of the uncertain systef@g) with static

[wl2 (see the guarantees in Theores 2 Bhd 3). Howevgfhti-windup compensata@2) satisfies
randomization makes it possible to change the perspective
of anti-windup augmentation, by considering alscas an Pr([|z[ly > 7(s) [[w]l5) <,

uncertain variable, to take into account the knowledge of\gth level of confidence no smaller than- §, where¥(s) =

certain known probability distribution of the energy of the /32(5), and~2(s) defined in [(2F).
disturbances acting on the system.

When considering an uncertain disturbance energy, ratffggmark 6. Notice that, when also the input is uncertain, an
than minimizing thel, gain at a specific value of, we may additional tuning knob appears, namely, which character-
consider to minimize the curve over a compact rapga] of izes the trade-off between computational load and conserva
values ofs, possibly being relevant for the specific distributionfiveness. On the one hand, more additional parameters mean a

polynomial curve over the considered interval, that is, L, gain curve is well approximated by the selected polynomial
expansion, the upper bound is tight. From practical expege

206} — L cls 5], 27 [37], .the gain curves are typically sigmoidal or expondntia
() kzzo ks, 8 € s3] 27) functions. Then small values of, are already enough to



obtain good results (usually, frol to 6). Notice that other Theorem 5 (Robust domain of attraction)Given scalars
basis functions whose integral is linearly parameterizad ce, § € (0,1), selectN satisfying [2B), fixd = {Q,X,U}
be suitably selected, without any conceptual change. o and¢ ={Q,Y}.

If for a selection ofQ = QT > 0 and a scalara > 0 the

C. Optimized domain of attraction and reachable set scenario approximatiori (SWC) of proble@l) is feasible and
o L : . attains a unique optimal solution, then for any initial catiah
Similar derivations to the ones of the previous sections can : . .

) ) ; In the set[(3R), any solution of the uncertain systeifdg) with
be obtained by focusing on different performance goals, as.. = . . ) L

; ! i . anti-windup static compensatd?2) and withw = 0 satisfies
well characterized in[[12] (see also [24]). In particulavot
- . forall ¢t >0,

performance goals which have been well characterized mvithi
the context of the use of generalized sectors for saturated ;(0) e £(Q~') = Pr ( lim |z(t)| = 0) >1—e¢,
systems correspond to: i) maximizing the size of a quadratic =00

estimate of the domain of attraction of the origin in thavith level of confidence no smaller than- 4.

absence of disturbances (that s, = 0), i) minimizing In Theoremb we characterize properties of the scenario

the best quadratic estimate of the reachable set from zer imati f bl 1) with th tificat
initial conditions and in the presence of a bounded disturba gﬁiro?gnay?n %)agcoi)r;?ngeq??hg \c/ivtlefiniti:n cIeIEr] I(Sa ﬁs

[wl]2 <s.

The goal of this section is then to briefly overview th
possible extensions of the results in Theordrhs 3 [dnd 4
these two cases. The following two propositions establigh t
baseline results, proven in [12], [24] for the nominal case.

becomes clear that constrainfs](29) are imposed with eertifi
%ates{Q,Y} depending on the uncertainty which lead to
reduced conservativeness. An interesting feature arfsorg
these g-dependent certificates ih_(29) is that the rightmost
constraint in [[29a) implies tha® is a uniform lower bound
Proposition 4 (Domain of attraction) Given the plant- on all certificates;. Stated otherwise, this implies that
controller pair (I3), [1%) and a matrix) = Q7 > 0, consider £(Q™%) C &(Q; '), i = 1,...,N, namely set£(Q~')
the nominal system, that i® = {g} is a singleton. Assumeis a subset of all the stability regiorﬁa(Q;l) obtained for
that the SDP problem each one of the extracted samplgs Then, differently from
_ classical deterministic approaches, although the&gér—!)
{@,ér,l?)é,x} log det(Q) (31) is a guaranteed region of robust stability, it is not necdysa
a forward invariant set (whereas for eaghwe know that
st@, vqeq, £(Q; 1) is a forward invariant set).
is feasible. Then, selecting the static anti-windup gainiras A similar (but somewhat converse) comment applies to the
(22), the nonlinear algebraic loop il (16) is well posed andobust reachable set studied in the theorem below, wherein t

for any initial conditionz(0) in the set rightmOf,t inequality in[(30a) implies that for eaghwe have
_ _ E(s2Q; ) cE@QY), i=1,...,N, namely se€(Q 1) is

-1y . . TAH—-1 i ) ) )
EQ7) ={r: 27 Q@ w <1}, (32) a superset of all the reachable set estimétesQ; ') obtained

the (unique) solution: to the anti-windup closed loop with from the scenario approximation ¢f (33).

w = 0 satisfieslim [z(t)| = 0. Theorem 6 (Robust reachable setfsiven scalarss > 0, and

e, 6 € (0,1), selectN satisfying [26), fixd = {Q, X,U} and
Proposition 5 (Reachable set)Given the plant-controller pair £ = {Q,Y'}.
(I3), (I3), and a scalas > 0, consider the nominal system, If the scenario approximation (SWC) of problef83) is
that isQ = {g} is a singleton. Assume that the SDP probleri¢asible and attains a unique optimal solution, then forreac
_ lw|, < s, the zero initial state solution of the uncertain

{Q-,IQiII},X } trace(Q) (33) system({18) with anti-windup static compensat@2) satisfies

st. @), VgeQ Pr(z(t) ¢ £(Q71)) <e

is feasible. Then, selecting the static anti-windup gainras for 4|l ¢ > 0, with level of confidence no smaller than- 4.
(22), the nonlinear algebraic loop in_(16) is well posed and

any solution fromz(0) = 0 with |lw||, < s satisfies Remarl_< 7 Notice_that Thgolre!ﬂ]G proposes a selection of
. S the anti-windup gain that minimizes a suitable measure ef th
z(t) €€(Q ) ={z: 2" Q x <1}, Vt=0. size of the reachable set for a specific selection of the bound

In light of the results summarized above, we can formulafe®n the £z norm of the disturbance. Itis then possible to
robust optimal design and analysis exploiting the constsaj follow similar derivations to those given in Section IIl-Bitv
9) and [3D), respectively, and leading to randomizedyais! the goal qf p_rowdlng a suitably weighted opumal select|pn
and synthesis tools. These are stated below in two theoreidhe anti-windup gain performed by focusing on the size
whose formulations parallel the one of Theorgm 3. Analysff the reachable set in the presence of an unknafn
results can also be easily stated, paralleling the forimuan O™ of the disturbance, for which probabilistic infornueatiis

Theoreni®, but are omitted due to their straightforward regtu @vailable. Then one may quantify the “size” of the reachable
and to avoid overloading the exposition. set for each value of by a suitable parametrization similar

to the right hand side of (27), and finally minimize some net
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Q=Q" >0, U>0dagonal Q<Q, (29a)

ACl(q)Q Bcl q(q) + Bcl v(q)X
H : : <0, 29b
¢ |:CCl7’U«(Q)Q -Y Dcl,uq(q)U + Dcl,uv(q)X -U ( )
=2
uj, - Yy _
|:Yv[z] Q:| >0, k=1,...,ny, (29C)
Q=Q" >0, U>0diagonal s°Q>Q, (30a)
ACl(Q)Q Bcl,q(Q) + Bcl,v(Q)X Bcl,w(Q)
He CCl,’U«(Q)Q -Y Dcl,uq(q)U + Dcl,uv(q)X -U Dcl,uw (q) < 07 (30b)
0 0 ~1/2
52 /o2
uy/s* Yk _
|: Yv[z] Q >0, k=1,...,ny, (3OC)

. . . name || value | units
performance metric taking into account the whole range of o 373 o
possible occurrences of th&, norm s of the disturbancev. R 20 Q
Since this extension is straightforward, it is not discdsse 23 31175 g
H 4

greater detail. o Rs 10 Q
Cy 0.01 F

Ca 0.01 F

IV. SIMULATION EXAMPLES Cs 0.01 F

The following numerical results are obtained using Matlab TABLE |

R2015a on a 64 blt WindOWS 8.1 Computer equipped Wlth NOMINAL PARAMETER VALUES FOR THE NETWORK INFIG.[Il.
an Intel(R) Core(TM) i7-4500U at 1.80 GHz and 8 GB of

memory. The optimization is implemented using Yalmipl/[25]

and Sedumil[32]. with

m = C1R1 + Ci1Ra + CoR3 + CoRy + C3Rs, (35)

2 = 0102R1R3 + 0102R1R4 + OlcQRQRg

In thishsebcti(()jn, yve_show thet_effgc(';iveness of thetpr?poiﬁd 4+ C1CyRyRy + C1C3 Ry Ry + C1C3 Ry R
approach, by designing an anti-windup compensator for the
passive electrical network in Fig] 1. The circuit is a bench- + CaCsR3Rs + CoCs Ralis, (36)
mark example in the anti-windup literature and was already 73 = C1C2C3R1R3R;5 + C1C2C3R1R4Rs
employed in [[37] to show the potential of static anti-windup + C1C2C3RoR3 Ry + C1C2CsRa Ry R (37)
in a deterministic context.

A. L5 gain minimization

Notice that the dependencemf i = 1,2, 3 upon the physical

Ry R3 Rs parameters is highly nonlinear.
I | I | % The nominal plant can then be put in the forin](13) via

R R o suitable state-space realization, where
Vi 2 4 3 Vo ~10.6 —6.09 —0.9|1]0
C C! Ap | Bpu | Bpw 1 0 0o |o]o

1T T Cp.z | Dpoou | Dpow | = 0 1 0 |ojo |,

Cpy | Dpyu | Dpyw —1 —11 -30[0]0
Fig. 1. The passive electrical network with saturated inmitage. 1 11 30 [0o]O

andw represents the reference value for the output voliage
The dynamics of the network is determined by 5 resistof® thatz = w —y is the tracking error.
and 3 capacitors, whose nominal values are reported in lable The controller is a PID and it is designed based on the
The gaink is instead selected such that the transfer functist®minal model, such that the nominal phase margifdis

betweenV; andV, is monic. degrees and the nominal gain margin is infinity. In the form
After some cumbersome computations, the transfer functifd), the controller is expressed by the matrices
of the network turns out to be 80 0 11 -1

- 1 0o o] o
20.25 1600 | 80 | —80

82 + ClR2+C2R4S+ 1 Ac | Bc7y | Bcaw
C1CaRo Ry C1Ca2Ro Ry (34) C. | D, | Dy

3. M242 4 ML 1
s +7738 +7738+773

G(s) =
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Assume now that the inpui; is saturated between the Once the nominal and the robust anti-windup gains are
minimum and the maximum voltages1. For a specific fixed, we may characterize their nominal and robust perfor-
value of s, a static anti-windup compensator based on thmance by applying, respectively, the analysis tools of Brop
nominal model can be designed to minimize the nonlinesition[2 and Theorerl 2. For comparison purposes, we study
gain between the reference and the tracking error, by splvithe nominal and robust performance also for the case with
the optimization problem{21) and relying on Propositidn 310 anti-windup compensation. Comprehensively, we obfain s
Using s = 0.003, the nominaloptimal valuej?(s) = 2.31 is curves, all reported in Fid.] 2, where the nominal curves are
obtained, together with the optimal nominal anti-windujinga dashed and the robust ones are solid.

Drem = [—-0.0855,0.0011, 0.9887]7. This value corresponds As expected, we observe that the robust compensator out-
to the squared value of the dashed blue curve in[Big. 2 at therforms the one designed for the nominal system, as faeas th
abscissa = 0.003 ~ 107252, robust£s gain is concerned (solid curves). Conversely, when

Under the hypothesis that the parameters are Gaussian Hi§- performance is evaluated on the nominal system (dashed
tributed with mean values as in Table | and standard deviatigurves), the robust compensator yields worse resultsg sinc
of 10%, a robust randomized compensator can be compufédnore conservative. From the analysis point of view, reotic
following TheoreniB. First notice thayy = 5 = 1+3+1 (aris- also that theC, gains estimated using the robust probabilistic
ing from~2, X andU, respectively). Then, fixing parametergnethod are larger than the ones given by the nominal analysis
e =0.01 andé = 10%, we see thatV = 2819 samples are This holds for any configuration of the saturated closegloo
necessary to satisfy(4). Therefore, we follow the seqaentpystem (without anti-windup, with nominal compensator and
algorithm of Sectiof II-C to reduce the computational burdeWith robust compensator). _ _
In particular, using the same valse= 0.003 as in the nominal ~ The time-domain performance degradation of the nominal
synthesis above, we apply the Sequential algorithm for Swelosed-loop system using the robust compensator in place
initialized with k, = 10. Such a procedure terminates aftepf the nominal one can be assessed by looking at the time
3 iterations, using onlyN = 846 samples, and providing Fesponses illustrated in Figl 3. From the figure, we conclude
the robust optimal valug? = 9.1 (evidently larger than that, although in any case the use of a compensator (red

the nominal one), together with the optimal robust antfolid and blue dash-dotted curves) improves upon the respon
windup gainDrnd = [—2.1493,0.0266, 0.6407]7. This value Without anti-windup (black dotted) in terms of tracking @rr

aw

approximately corresponds to the squared value of the sofifid overshoot, we have to accept worse behavior in nominal
red curve in Fig[R at the abscissa= 0.003 ~ 10252, conditions when using robust anti-windup (indeed, the blue
We observe a slight difference between the two values @@sh-dotted response yields faster transients than theofied

the figure, the gain is higher), justified by the fact that theurves). However, this choice is rewarding when acting on a
performance analysis is carried out with a different set of
samples. We should remark that in terms of computatior

time, the SwC approach is more demanding than the nomi Ia
design. In this example, the elapsed time for compensa 21 ' "\
design is approximately seconds in the latter case and abot ¥
5 hours in the former. 1t X
35 ; ; ; ; ‘ 0
——no AW (robust analysis)
30 |===no AW (nominal analysis) = = =uncon
——nAW (robust analysis) Il no AW
25F |===-nAW (nominalanalysis) | ([ [/ + | |== nAW
——TrAW (robust analysis) ) Y rAW
20 F | == =rAW (nominal analysis) )
“ i’ 0 5 25
15¢ S Time [-]
ll'/,,

10 Fig. 3. Time responses of the closed-loop system with ndnpaeameters

and different configurations of the anti-windup architeetuunconstrained
system (dashed), saturated system without anti-winduppeasator (dotted),
saturated system with nominal anti-winddp:o™ (dash-dotted) and saturated
system with robust anti-windu@:2d (solid).

-
-
-----

s ©10° system subject to uncertainty. Specifically, in FEiy. 4, wevsh
that the response with the perturbed plant using robust anti
Fi_gr-] 2. ﬁz_gé}ind estimates for the nOﬂlinegir CI?Sel%-)Ioorlrl)lﬂT‘ls'yStleEES \?]rimd)awindup is less sensitive to parameter uncertainties as acedp
without anti-windup compensator. Both robust (solid) a mal ashe: H Wi :
analysis are considered to assess the performance of r(idust D:2nd) t_O nominal anti Wlndup. As _an example, the flgu_re S_hOWS the
and nominal (redD29™) compensators with respect to the system witholime responses correspondinglté different combinations of

anti-windup augmentation (black). +10% perturbations of the nominal parameters.



12

unconstrained

4 10 f
1
2 1
0 I —— dAW (min)
o > 10t — dAW (max) | |
— rAW
-4 _—— =
0 10 20 o 100 20 | 2'::5
nominal AW randomized AW T
4 10° =
2 \ 2 1Q
n - 1 1 4
o’ 2 0 > 1'2J\n\ / - y,
/’. e 1 1 )
-2 r2 5 \),__/ '
c L 1
-4 -4 0.8 1 1
0 10 20 0 10 20 1072
Time [-] Time [-] s

Fig. 4. Sixteen perturbed time responses of the uncertaisedtoop Fig. 5. Randomized minimization of thé, gain considerings = 0.003
system with different configurations of the anti-windup hatecture: uncon- (blue solid ngc;m,min) and s = 0.01 (green solid, D2S™ ™) against

strained system (upper-left), saturated system withotitvéindup compen-  4ndomized minimization of the area underlying the cureel Golid, D224).
sator (upper-right), saturated system with nominal armtiewp D2O™ (lower aw

left) and saturated system with robust anti-windDgz*d (lower right).

the curve may be a good trade-off. Indeed, whilesathe

It should be here remarked that, if the approachlin [1&'“8 curve provides a smaller _gain,_that blue curv_e.blows
is employed, the optimization problem for the design of thie? to |_nf|n|ty even before reaching= 3, thereby _prOV|d|n_g_
anti-windup compensator becomes infeasible. This is due @ OPtimal behavior at and not even guaranteeing stability

the conservativeness of the formulationin|[16], which fiezgs at 5. Similarly, the green curve provides desirable optimal

a single Lyapunov function for all the possible unc:ertaiHen‘or'ﬁn"’\nce ak but sacrifices the performance at _Th?
instances of the system. red curve clearly shows a trade-off that somewhat sits in the

middle between the two extreme green and blue solutions.
o Such a result is obtained at the price of some additional
B. Uncertain disturbance energy computational cost, in that more free parameters are iegblv

We use the example of the previous section to illustraeecall the parameterization of the curve inl(27)). The stap
the synthesis of Sectioh IIIB aimed to (probabilistichllytime for designing such a compensator is then alobiburs
minimizing the area spanned by the nonlingargain curve (with an increase o20% with respect to the SwC design of
within a given interval. Specifically, we consider the casée previous section).
where the system parameters are fixed, bus unknown
and has a uniform distribution between = 0.003 and C. Reachable set and domain of attraction

s = 0.01. To this end, we use a cubic upper bound for |, this section, we illustrate the effectiveness of the peeal
the curve (namely, we fix., = 3 in (28)). Notice that now anqomized anti-windup design approach when the control
ng = 8, becausey_Q is no longer needed, but the parameteigyieciive is the minimization of the reachable set or the
[y, k =0,...,3 in (Z7) have to be designed. In this waymaximization of the domain of attraction (see SecfionJ)I-C
the scenario boundi(4) raises up 80— 3293. However, the 1q this aim, a simple example with a planar closed loop is

sequential algorithm of Sectidn THC with, = 10 allows ¢qnsidered to easily visualize the obtained sets in propase
us to find the desired solution with “only2306 samples. planes.

The corresponding anti-windup compensator reayy'd = Consider the first-order plant
[—0.0003554,0.0000021, 0.9987978]7. The nonlinear’, gain

of the closed-loop system with such a compensator corre- Ap | Bpu | Bpw a |b]0
sponds to the red curve represented in Fig. 5. To bettersasses Cpz | Dpzu | Dpow | = | =1]0]1 |,
the performance with this anti-windup gain, we also show Cpy | Dpyu | Dpyw Lj0jo

the nonlinearl, gain curves obtained from the determinisyhereq andb are stochastic variables with Gaussian distribu-

tic design of Propositiof]3 corresponding to the minimunign. Specifically, letE[a] = —1, E[b] = 1 and their standard
s = s = 0.003 (blue curve) and the maximurh = 0.01 deviation be oR0%.

(green curve). The corresponding compensators are, Fespedhe integral controller with unitary gain

tively, Drom-min — [_(.022124,0.000276,0.999904]7 and

Dremmax — [0.073639, 0.000920, 0.999999]7. In the lower Ac | Bey | Bew ] _ [ 0| -1]1 }

subplot of Fig[h, the same nonlinear gains are normalized in Ce | Dey | Dew 1 | -1 | 1

terms of percentage of the red curve. is employed, so that the stability of the nominal unconsgdi

Fig. [ shows that the minimization of the area underlyingosed-loop system is guaranteed. Suppose now that thé inpu
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Fig. 6. Reachable sets for the closed-loop system Sithifferent uncertainty samples (blue lines) and estimatéseoreachable set given by the deterministic
design (black line, leftD2o™) and SwC design (black line, righp:and),

5 10 | | | | | 32X 10*

2 2r

1 1r

=x° 0O <7 Or

I -1t

- -2t
3 2 =) 0 1 2 3 =S ) =) 0 1 2 3
X, x 10° % x 10"

@) (b)

Fig. 7. Domain of attraction for the closed-loop system with different uncertainty samples (blue lines) and estimatethe domains given by the
deterministic design (black line, leflp22™) and SwC design (black line, righpiard),

u is bounded below and above bby= —1 andu = 1, respec- crosses the black line (the robust design gives pnbpabilis-
tively. For both the following probabilistic design proeeds, tic certificates). A different conclusion can be drawn when
we sete = 0.01 andd = 1076, Sinceny = 6, the resulting the compensator is designed based on the nominal model
scenario bound, according ol (4), turns out toe= 2977. only, according to Propositionl 5, as illustrated in Hig.)p(a
The sequential algorithm of SectionTI-C is run with=10. In this case, the anti-windup compensator redd{™ =
—0.00001,0.99998]%, which evidently does not guarantee

. X fiat the reachable sets achievable with different unceytai
set_ca_n be designed accpr(r:ialgg to Theofém 6. Th; re'Su“glﬂnples (blue thin lines) are included in the estimated set
anti-windup compensator ;5 = [-0.0212,0.9902]" and (black thick line). Notice that the samples used to plot the

is obtained withN = 596 samples instead oN = 2977 - . ;
. ; ' .50 instances of the uncertain system in Fig. 6(a) and[Fig] 6(b
thanks to the sequential algorithm. Fg. 6(b) shows that tlg el the same ! n sy I @ a1 6(0)

reachable set obtained with such an approach (black thic

line) can be considered as an upper bound for the reachabl@he same comparison, with analogous conclusions, can
sets of the uncertain closed-loop system with random be made when the goal of the anti-windup design is the
samples of the uncertain parameters (blue thin lines).diilsh maximization of the domain of attraction. In particular,
be remarked that, being the samples drawn independeriypposition[# and Theorefd 5 yield, respectivelyio™ =
from the samples used for design, one reachable set actuéip.3475, —1.0063]7 and Dr2*d = [-3.2036, —0.9998]7T,

A robust anti-windup compensator minimizing the reachabl
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using N = 1191 samples with the sequential algorithm. [4] A.Ben-Tal and A. NemirovskiLectures on modern convex optimization

Fig. [7(@) clearly shows - also in this case - the limits_ SIAM, Philadelphia, PA, 2001. o ,
f the deterministic apbroach. which takes into accoun OnI[5] S. Boyd and L. Vandenbergh€onvex OptimizationCambridge, 2004.
0 pp ! y 6] G. Calafiore and M.C. Campi. The scenario approach tosobantrol

the nominal values of the system parameters, thus leading t0 design.IEEE Transactions on Automatic Conty@1(5):742—753, 2006.
an unreliable estimate of the minimum domain of attractior’] G. Calafiore, F. Dabbene, and R. Tempo. Research on piistiab

. . . . methods for control system desigAutomatica 47:1279-1293, 2011.
(bIaCk thick “ne)’ crossed by many of the uncertain doma"fs] G.C. Calafiore. Random convex progran®AM Journal on Optimiza-

samples (blue thin lines). Conversely, in Fig. 7(b), thedan- tion, 20(6):3427—3464, 2010.
ized compensator guarantees that most (in probabilityhef t [9] G.C. Calafiore and F. Dabbene. A reduced vertex set résultterval
uncertain domains (que thin “nes) contain the estimatéef semidefinite optimization problem3ournal of Optimization Theory and

. . . ) . Applications 139:17-33, 2008.
domain of attraction obtained using the randomized apiroggg] m.c. campi and S. Garatti. The exact feasibility of ramtzed solutions
(black solid line). of robust convex program&IAM Journal on Optimizatignl9(3):1211—

For such a simple example, the elapsed time to compute Ltfﬁ 1230, 2008.
t

. . M. Chamanbaz, F. Dabbene, R. Tempo, V. Venkataramaaraoh,Q-G.
robust compensator (for both the domain of attraction aed Wang. Sequential randomized algorithms for convex optition in the

reachable set) is smaller than in the electrical networkpta presence of uncertaintylEEE Transactions on Automatic Control, To
and is aboub3 minutes. This is still significant if compared to___aPpea; 2016.

. . . .[12] J.M. Gomes da Silva Jr and S. Tarbouriech. Anti-windugsign
the amount of time required for the simple compensator, 'Wh'é with guaranteed regions of stability: an LMI-based apphoatEEE

is approximately5 seconds, but on the other hand, such a Transactions on Automatic Contrd0(1):106-111, 2005.
tuning provides robustness guarantees otherwise unalpiain [13] Y. Ebihara, D. Peaucelle, and D. Arzeli@:variable Approach to LMI-

. . s . based Robust ControlSpringer, 2015.
with a classical deterministic approach. Moreover, it $tidne [14] G. Ferreres and J.M. Biannic. Convex design of a robusiwindup

recalled here that the design time has no effect of the an-lin = controller for an LFT modellEEE Transactions on Automatic Contyol
computational time for the anti-windup compensation, sinc _ 52(11):2173-2177, 2007.

. . S. Formentin, F. Dabbene, R. Tempo, L. Zaccarian, aMl Savaresi.
the robust compensator Is characterized by the same S'H:‘UC{ Scenario optimization with certificates and applicatioasanti-windup

of the nominal one. design. INEEE Conference on Decision and Confrphges 2810-2815,
Los Angeles (CA), USA, December 2014.
[16] S. Formentin, S.M. Savaresi, L. Zaccarian, and F. Dabb&andomized
V. CONCLUSIONS analysis and synthesis of robust linear static anti-windup IEEE
. . . Conference on Decision and Contrpiages 4498-4503, Florence (ltaly),
In this paper we proposed a novel paradigm for approaching pecember 2013.
static linear anti-windup design for linear saturated owligys- [17] F. Forni and S. Galeani. Gain-scheduled, model-basgidaandup for
tems in the presence of nonlinear probabilistic unceritsnt LPV systems.Automatica 46(1):222-225, 2010.

. . . S. Galeani, S. Tarbouriech, M.C. Turner, and L. ZaaoariA tutorial on
The proposed parad|gm relies on randomized approaches Eﬁh modern anti-windup desigrEuropean Journal of Contrpll5(3-4):418—

provides a successful tool to tackle this challenging robus 440, 2009.
analysis and design problem. The peculiar structure ofcstafl9] S. Galeani and A.R. Teel. On a performance-robustneage-off

linear anti-windup design is particularly suited as a pmng Tégr]]-sgotgﬁthe natural anti-windup probleriutomatica 42(11):1849—

extension of the typical scenario approach to randomized @) A. Garulli, A. Masi, G. Valmorbida, and L. Zaccarian. dbkl stability
sign. In particular, since the design variable is decoufrieah and finite £2,,-gain of saturated uncertain systems via piecewise poly-

e : _ « ; nomial Lyapunov functionslEEE Transactions on Automatic Control
the Lyapunov certificate, we introduce a so-called “scenari 58(1):242-246, 2013,

with certificates” paradigm to provide a dramatically re@dic [21] G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.Turner, and
conservatism, as compared to typical approaches, based on L. Zaccarian. Antiwindup for stable linear systems withuhpaturation:
common quadratic certificates. The randomized approach to an LMI-based synthesis.|IEEE Transactions on Automatic Contol
. . . . 48(9):1509-1525, September 2003.
anti-windup design may be formulated using a wide range sz] G. Grimm, A.R. Teel, and L. Zaccarian. Robust lineari-aihdup
optimality goals that we study in this paper and for which we  synthesis for recovery of unconstrained performarae.J. Robust and
illustrate the advantages by way of numerical results. Nonlinear Control 14(13-15):1133-1168, 2004.
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