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A Convex Sum-of-Squares Approach to Analysis,
State Feedback and Output Feedback
Control of Parabolic PDEs

Aditya Gahlawat and Matthew. M. Peet

Abstract—We present an optimization-based framework for
analysis and control of linear parabolic Partial Differential
Equations (PDEs) with spatially varying coefficients withat
discretization or numerical approximation. For controller syn-
thesis, we consider both full-state feedback and point obseation
(output feedback). The input occurs at the boundary (point
actuation). We use positive definite matrices to parametezie
positive Lyapunov functions and polynomials to parameterze
controller and observer gains. We use duality and an invertle
state variable transformation to convexify the controller synthesis
problem. Finally, we combine our synthesis condition with he
Luenberger observer framework to express the output feedbek
controller synthesis problem as a set of LMI/SDP constrairs.
We perform an extensive set of numerical experiments to
demonstrate accuracy of the conditions and to prove necesgi
of the Lyapunov structures chosen. We provide numerical and
analytical comparisons with alternative approaches to cotmol
including Sturm Liouville theory and backstepping. Finally we
use numerical tests to show that the method retains its accacy
for alternative boundary conditions.

Index Terms—Distributed parameter systems, partial differen-
tial equations (PDEs), control design, sum of squares.

I. INTRODUCTION

x € [0,1], t > 0, which has outpub(t) = w(1,t) € R and
mixed boundary conditions of the form

w(0,t) =0, we(1,t) = u(t), (2)

wherea, b and ¢ are polynomials witha(z) > o > 0, for

x € [0,1]. We assume the controller is parameterized by scalar
Ry and functionR, asu(t) = Rid(1,t)+ [} Ro(z)i(z, t)dz
where @ is an estimate ofw obtained from some set of
observer dynamics. The objective of the paper is to propose
an optimization-based method for determining controlking

Ry and R, and observer dynamics which minimize certain
closed-loop gains.

Control of PDE models is a challenging problem in that
slight variations in the type of PDE, boundary conditiorts, e
may dramatically alter properties of the solutian|[22]. The
model defined above is classified as an anisotropic parabolic
PDE with point inputs and point outputs. The term anisottopi
means that the values of the coefficienttr),b(x) and
c(z) depend on the spatial variable € [0,1]. Examples
of anisotropic systems include heat conduction with non-
homogeneous conductive properties or a wave propagating

Partial Differential Equations (PDEs) are used to modgirough a medium of varying density. The term point input

quantities which vary in both space and time with eaﬂgpoundary actuated) means that the control input dgtetmine
examples including the D’Alembert wave equation (1746{N€ of the boundary va_Iues and therefgre has no direct mea-
the Euler-Bernoulli beam (1750); the Euler equations (}757urable effect on Equatiofl(1). This is in contrast to theecas
and the Fourier heat equation (1822). Today, the use of pBEdistributed inputs, wherein the control effort is spreaer
models has expanded to include phenomena such as the n$2§2€ measurable subset of the domain. In a similar manner,

netohydrodynamics of plasma in a fusion readfor [43], tumof€ term point output means that the sensor measures tee stat
growth, infectious diseases, and ecological success$ion [gt a single point in the domain and hence the output operator

Chapter 11]. However, despite the variety of phenomenis Unbounded in thé., induced norm. _
modeled by PDEs, compared to the literature on Ordinar¥PerhapS the most common approach to analysis and control

Differential Equations (ODEs), our knowledge of how t&

analyze and control PDEs remains incomplete.

Consider the following class of scalar-valued anisotrop

parabolic PDEs with input(t) € R,

wt(Ia t) = a(I)wzz (I, t) + b(x)wm (Ia t) + C(I)’LU(I, t)v (1)
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PDEs is based on the use of discrete approximation. Such
approximation techniques typically use a model reduction
herein the PDE is approximated by a set of ODEs. Finite-
dimensional linear control theory is then used to analyze
stability and design control laws for the finite-dimensibna
approximations [[24], [[23]. Furthermore, results have been
obtained which show that as the order of the discrete approx-
imation increases, stability of the closed-loop approXiors

will eventually imply stability of the closed-loop PDE. A
disadvantage of the discrete approach, however, is that the
required order of the approximation cannot be established a
priori. Consequently, the stability of any particular ampr
imation is not guaranteed to imply stability of the actual
PDE. For this reason, among others, there has been some
interest in finding approaches to analysis and control which
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can be applied directly to the PDE model without the use &finctions have the quadratic forii = (Z(w), PZ(w)),,
discretization or numerical approximation. Such methaes avherew € L is the infinite-dimensional staté is a positive
sometimes termed direct or infinite-dimensional. definite matrix andZ is a fixed vector of multiplication and
There has been significant progress in the use of diréategral operators with monomial multipliers and kerndlse
methods for control of PDE systems. One approach is derivative of the Lyapunov function is likewise constraine
express the control problem as the solution to a set wf be a negative definite quadratic form. If such a Lyapunov
operator-valued Riccati equations. This approach wasepplfunction exists it directly proves stability of the PDE -.iteere
to distributed input/distributed output optimal controbplems is no numerical approximation. For state-feedback coletrol
in [41]. The problem of point actuation with full-state fdetk synthesis, the controller, as defined above, is parametthy
was considered in [21] (and related work) and extendeld ih [28 scalarR; and a functionR,. Combining these gains with the
to output feedback controller synthesis through the use ofgaadratic Lyapunov functions used for stability analysedds
Luenberger observer. An alternative Riccati-based amproasynthesis conditions which are bilinear in the design \deis
for static output feedback of a certain class of well-posddowever, as described in SectignsiVIl and VIII, by defining an
operators can be found in [35], [36], [42]. A limitation ofetbe invertible state transformation and a variable substitytive
Riccati-based methods, however, is that they rely on finitderive synthesis conditions which are linear in the optatian
dimensional numerical methods for obtaining the operatorariables. Next, in Sectidn 1X we introduce a class of inéinit
valued solution. While convergence of these approximatiodimensional Luenberger observers with observer gainshaga
has been demonstrated [21], for a given level of approximparameterized by the coefficients of polynomials. Agaimgis
tion, it is not possible to determine whether existence ofthe Lyapunov function from Sectidnl V and the invertible stat
solution implies the closed loop is stable when applied o tivariable transformation from Sectidn VIl, we obtain SDP-
original PDE. based observer synthesis conditions. Finally, in SeEfifym
Backsteppingl[18] is a popular and well-developed methagrify the accuracy of the method with a series of numerical
for boundary control of parabolic PDE systems. This appnoatests which indicate that the proposed stability condgiare
is based on the use of a boundary controller to transformecurate to several decimal places and suggest that for any
the PDE to a simpler model for which the existence of suitably controllable and observable system, the algorith
decreasing Lyapunov function has previously been estadalis will return an observer-based controller. This is followeyl
The backstepping approach is commonly used in the litezatBection[XIIl, wherein we include numerical and analytical
and has been extended to many classes of PDE systems - semparisons with other results in the literature, inclgdin
e.g. [17], [33], [34], [32]. A highlight of the backsteppingSturm-Liouville and backstepping.
method is that for certain types of system, stabilizability A significant contribution of the paper, in addition to a
guarantees the existence of a backstepping transformatioew approach to analysis and control of PDEs, lies in the
However, a drawback of the backstepping approach is ttkxibility of the optimization-based approach. Specifigahs
it is not based on optimization, but rather typically regsir the use of LMIs for control of ODEs enabled the field of
numerical integration of a PDE in order to obtain the stabiebust control, so too does our LMI/Lyapunov-based apgroac
lizing controller - thereby making extensions to robust an control of PDEs allow the extension to analysis and cdntro
optimal control more difficult. Although a complete surveyf PDEs with parametric uncertainty, PDEs with nonlingarit
the of the literature on direct control of PDEs is beyonchultivariate PDEs and PDEs coupled with ODEs or delays.
the scope of this paper, we do note some other significaihally, we note that our approach is complementary to sgver
results on the use of Lyapunov functions for analysis andcent results in the use of LMIs for stability and control of
control of infinite dimensional systems including: a ratgti PDEs, including, e.g. our early work i [27], modeling and
beam [4]; quasilinear hyperbolic systems$ [3]; and contifol @ontrol of nonlinear dynamic systems in [39], stability ks
systems governed by conservation lais [5]. As an alteraatiof semilinear parabolic and hyperbolic systemsin [12] dred t
to Lyapunov-based methods, a classical spectral appr@aachtimerous results contained (n_[26].
stability and stabilization is based on Sturm-Liouvillediny.
In particular, the differential operators which define tH2H3
in this paper can be adapted to the Sturm-Liouville framéyvor
from whence one can attempt to determine stability andWe denote the vector space of-by-n real matrices by
designstatic output-feedback controllers. As is demonstrate™>™ and the subspace of symmetric matrices 3§y C
in SectionXIIl, however, the use of dynamic output feedbadk™*" where the multiplicative and additive identities are
offers considerable advantages over this classical frammew denoted byl, € S™ and0,,, € R™*", respectively. For
The goal of this paper is to design stabilizing static state € S*, P > 0 (P > 0) denotes thatP is a positive
feedback and dynamic output feedback controllers for PDOtefinite (positive semi-definite) matrix. The spaceseftimes
systems. Our approach is inspired by the use of Linear Matéentinuously differentiable and infinitely differenti@bfunc-
Inequalities (LMIs) and Semi-Definite Programming (SDPjons on an intervalW C R are denoted byC™ (W) and
in control of ODEs. For stability analysis, as discussed i@ (W), respectively. In a similar manne€™™ (W, Ws)
Section§ V anf V1, we use positive definite matrices to craateepresents the space aof and m—times continuously dif-
linear parametrization of a cone of Lyapunov functions Whicferentiable functions on intervald’; ¢ R and W, C R,
are positive on the Hilbert spade. Specifically, the Lyapunov respectively. The shorthand, and u; denote the partial

II. NOTATION



derivative ofu with respect to independent variablesand and L, € R such that for stabilizing gain®; and Ry, if

t, respectively. For a bivariate functiorf(z,y), we denote 1

D,f := f, and Dof := f, - i.e. D, is differentiation with u(t) = Riw(1,t) —|—/ Ry (z)w(x, t)dx,

respect to the first variable anB, is differentiation with 0

respect to the second. In a similar mannB¢ := f,, and wherew satisfies

D2 .= f,,. Recall Lo(W) is the standard Hilbert space . . .

0f23quarenyebesgue in(teg)rable functions with standard norm (2, 1) =(2) sz (2, 1) + b(z)a(@,?)

and inner product. We usé&/™(W) to denote the Sobolev + c(z)i(z,t) + Li(z) (0(t) —v(t))
subspaceH™ (W) := {y € Ly(W) i—f ELQ(W)} with G

. n dmg d™ for v(t) = w(l,t) and o(t) = w(1,t) with boundar
inner product(z,y) g = >, <dt—m, FJ{>L2. We occa- condi(tiz)ns (1) (t) (1,) y
sionally letL5(0,1) := L»([0,1]) andH™(0, 1) := H"([0,1]).

For normed spacest and Y, £(X,Y) denotes the Ba- w(0,t) =0,  da(1,t) = ul(t) + Lo (0(t) —v(t)),
nach space of bounded linear operators framto Y with o _ _ (6)
induced norm||G||z := supy,,—i/|Gz|ly and we denote then the trivial so!uhonw = 0 of Equations[(L) -[(?) is
L(X) == L£(X,X). We defineZy(zx) € R+1X! 1o be the globally exponentially stable.

column vector of all monomials in variables of degreed Note that if we consider only bounded linear operators, then

or less arranged in increasing lexicographical order. Wenof the structure of the controller ifl(4) is not restrictive, aagy
use the notatiorZ,(z,y) := Z4([r;y]) to denote the vector bounded linear functional can be represented in this waygusi
of monomials in bothx andy. For any functionT € L, only the integral form (second term). However, we also would
we useMr : Ly, — L, to denote the multiplier operatorlike to consider unbounded operators and hence we include
defined byT". i.e. (M7w)(x) = T(x)w(z). For any functions the termR;w(1,t) as well. If controllers of this form prove
M, Ky, Ky € C* we define inadequate, then one can generalize the structure further t
include terms such aﬁ; Rs(z)wy(z, t)dx as in [15].
(Xpar k1 12y w) () ) The choice for the structure of the Luenberger observer was
i similarly determined in an ad-hoc manner through inclusibn
= M(z)w(z) +/0 K, u(&)ds +/w K (w, Qw(€)de. terms necessary to achieve separation of controller sgisthe
(3) and observer design objectives. That is, the goal of the
observer is to stabilize the dynamics of the estimationrerro
[ll. PROBLEM STATEMENT e = —w and the terms in Equations] (5)[J (6) were chosen

For the system of Equations (1) (2), the strict positivify 0as the minimal necessary to achieve this objective. Again,
a(z) implies that the differential operator defining the PDEhis structure mirrors the structure of observers foundhia t
is uniformly elliptic [11, Section6.1]. This means thatv backstepping approach.
diffuses from higher density to lower density, a propertyakh
is representative of most physical systems. The choice &f Existence and Uniqueness
sensor and actuator location is somewhat arbitrary. For th
heat equation, inputv,(1,t) = w(t) would represent heat
flow into the rod and the output(t) = w(1,t) represents the )
temperature of the rod at that pqnt. Note that the results ef A= a(x)d_ I b(x)i + e(x). @)
this paper can be adapted to Dirichlet, Neuman and Robin dx?

8ve now briefly discuss the uniqueness and existence of
solutions. Define the operator

dzr

boundary conditions with only slight modifications to thet is known that the operata# restricted to space
conditions and proofs. These extensions are addressed in

SectionXIV. Do ={we H*0,1): w(0) =ws(1) =0}, (8)
The goal of this article is to design algorithms which resolvgenerates a strongly-continuous semigroup, or Cg-
the following problems: semigroup, onL,(0,1) (see, e.g.,[[7, Sectioa.1]). More

1) Stability Analysis Establish global exponential stabilityprecisely, one can represedt as the negative of a Sturm-
of the trivial solutionw = 0 of the autonomous systemLiouville operator onD, and hence, using the spectral prop-
u(t) = 0 and determine the exponential rate of deday erties of a Sturm-Liouville operator, it can be proven that
2) State feedback controllf the autonomous system isrestricted toD, generates & -semigroup onL»(0,1) [9].
unstable, construct gain?; € R andRy(z) € C°°(0,1) Thus, using Theorents1.3 and3.1.7 in [7] we conclude that
such that if in the autonomous case(¢) = 0), for any initial condition
1 wqy € Dy there exists a unique classical solution[af (1} (2).
u(t) = Ryw(1,1) +/ Ry (z)w(z,t)dz,  (4)  For the state-feedback case, using a fixed point argument
0 similar to the one presented inl[2] it can be shown that for

then the trivial solutionw = 0 is globally exponentially r < R andR, e Loo(0,1), the closed loop systerfil(1) E1(2)
stable with some desired rate of decay,

3) Output feedback controllf only output feedback is B !
available ((t) = w(1,t)), construct gaing; € C*>(0, 1) u(t) = Faw(l, 1) +/O Ry (z)w(z, t)de,



admits a unique local in time solutian € C*2((0,7T),[0,1]), with polynomial multipliers and semi-separable kernelsef,
for T > 0 sufficiently small, for any initial conditiomy € D, if P > el, it has a symmetric square root and hence

where V(w) = <P%Z(w),P%Z(w)> > ¢||w||®. For the time

D = {w € H*(0,1): w(0) = 0 and derivative, we will similarly requirel’ (w(t)) + pV (w(t)) =
1 —(Z(w(t)), QZ(w(t))), for some scalap > 0 andQ > 0
wy (1) = Ryw(1) +/ Ry (z)w(z)dx}. where here and throughout the paper we denotel/bthe
0 ©) function which satisfiesV (w(t)) := 4y (w(t)) for any
solution of the associated PDE - i.e. the derivative along
Thus if we can establish that any solution of the CIOS%'UtiOﬂS or time-derivative. Existence of suéh@ > 0
loop system decays exponentially, then this implies the exnplies exponential stability of the system. As was done for
istence and uniqueness of a unique classical solutiog | Mis in finite-dimensional systems, this approach can then
C12((0,00), [0,1]) for any wy € D. The proof of this state- pe extended to controller and observer synthesis, as edtlin
ment has been omitted, but follows the arguments presentgdow.
in [2, Section 6]. a) Controller Synthesisfor controller synthesis, again

Finally, consider the observer-based controller as defimedconsider the LMI approach for the finite-dimensional system
Equations[(ll) -[(R) and5) EX6). Define the estimator error as

e = — w, which is governed by i(t) = Az(t) + Bu(t),

er(,t) = a()eqs (@, ) +b(2)es (z, t)+c(2)e(z, t)+ L1 (z)e(1, )Where z(t) € R™ and u(t) € R™. For this system, there
(10) exists a stabilizing state feedback controller of the fau(t) =
with boundary conditions Rz(t) if and only if there exists a positive definite matix
andY € R™*™ such that

e(0,t) =0, ex(1,t) = Lae(1,1). (11)
It has been established in |12, Section 2] that for €
C'(0,00) and L, € R, Equations [[10) -[(d1), if expo- If this LMl is feasible, then forR = Y P~!, the Lyapunov
nentially stable, admit a unique local in time solutienc  function V(z) = T P~1z is positive definite and has time
C'2((0,7),10,1]), for T > 0 sufficiently small, for any initial derivative

conditioneg € D., where V= xT(P—1A+ PBR+ ATP !4 (BR)TP—I)x
D = {w € H*(0,1): w(0) = 0 andw,(1) = Low(1)}. = (P7'2)T(AP + BRP + PAT + (BRP)")(P~'x)

12
Therefore, if we can establish that any solution( of) the y' (AP +BY + PA" + (BY)")y <0,
coupled closed-loop dynamics decays exponentially, then twherey = P~'x. The extension of this LMI approach to
local in time solution can be extended to a classical saluti®DEs is to search for a positive definite opergfoe Z* P2
e € C2((0,00),10,1]) for any initial conditioneg € D.. for some P > 0 and operator), defined by (Vz)(z) :=

Yi2(1) + [, Ya(x)z(x)dz, such that ifu = Rw = YP~'w,

(AP + BY) + (AP + BY)T <.

IV. A FRAMEWORK FORSTABILITY ANALYSIS AND

1
CONTROL u(t) = Ryw(1,t) +/ Ro(z)w(z, t)dx
Our approach is motivated by the use of LMIs for optimal N .
control of finite-dimensional systems. For example, cozsid = Y1 (P~ w)(1,1) +/ Y (2) (P~ w)(z, t)dz,
the autonomous finite-dimensional ODE 0

i(t) = Az(t), then the Lyapunov functonV = (w,P 'w) =
_ _ , , (Z(P~'w), PZ(P~1w)) satisfiesV (w(t)) + 2uV (w(t)) =
where z(t) € R™. This ODE is exponentially stable if and_ <Z (P—lw) QZ (P—lw)> for some scalarz > 0 and
only if there exists a positive definite matriX € S such that Q > 0, which implies the closed-loop system is exponentially
ATP+ PA<O. stable. This is detailed in Sectign MIII.
b) Observer SynthesisAs mentioned previously, for
Feasibility of this LMI implies that the Lyapunov functiongpserver design, we use a Luenberger observer and a sep-
V(z) = 2! Pz is positive definite and its derivative alongaration principle to decouple the error dynamics as defined
solutions V(z) = a"(A"P + PA)x is negative definite. jn Equations[{I0) -[{T1). For a finite-dimensional Luenberge
For stability of PDEs, our approach is to use positive Mgpserver, where the output ist) = Cx(t), the estimator

trices to define positive quadratic Lyapunov functions, eynamics are defined using the controller g&imnd observer
cept that instead o¥/(z) = 27 Pz, we will use the form gain L as

V(w) = (Z(w), PZ(w)), whereZ : Ly — RP is a vector .

of bases for a subspace of linear operatorsIgn(similar &= (A+ LC)Z — Lu(t) + Bu(t).
to how 2 = [z1,---,2,]7 is a vector of bases for the
space of linear functions o®™). In our case, howeverZ
parameterizes a subspace of multiplier and integral opesat é(t) = (A+ LO)e(t).

If u(t) = Fi(t), then the error dynamics become



Existence of an observer gain which renders the error dynaifhen
ics stable is equivalent to the existence dPa- 0 andT" such

1
that V(w) = / Yw(z)dz
PA+TC+ATP+CTTT <.

If this LMI is feasible, then forL = P~!T, the Lyapunov / / z) Ky (2, §)w(§)dédx
function V(e) = e Pe is positive definite and has derivative
V(e) = ¢"(PA+ PLC + ATP + CTLTP)e / / D@, u(Qdede (A7)
=l (PA+TC+ATP +CTTT)e < 0. = (Z(w), PZ(w <P Z(w), p3 Z(w )> > ef|w]?.
For the infinite-dimensional PDE, we have two observer gains
which we construct as Proof: The proof follows directly from the definition of
. . Z and the Sum-of-Squares representatioryof ]
Li(z) =P (Ti(z) + T5(z)) and Ly =P (T»), The form of the Lyapunov function defined by Theoifém 1 in

Equation [[IIF) is somewhat atypical for the study of paraboli

for some gainsly, 7> and 75 and whereP = Z*PZ for
g b2 3 P PDEs. A more commonly used verS|on wouId b’éw) =

some P > 0. We then use the Lyapunov functidri(e) =

o 1
(Z(e),PZ(e)) and search for & > 0 such thatV(e) = Jo w(@)M (z)w(z)dx or even yet/ (w) = [, w (z)da
~(2(e),QZ(e)) < —6V(e) < 0, for somes > 0. This is for M > 0. Such forms can be obtalned as a speC|aI case
detailedjin Sectio_'u__]}(. ' ' of Theorem[L whenP,; = 0 for ¢ # j # 1. However, as

we discuss in Section _Xll, neglect of th€; and K, terms

results in significantly less accurate conditions for ditgtand
V. SUM-OF-SQUARESLYAPUNOV FUNCTIONS WITH control

SEMI-SEPARABLE KERNELS For polynomialsM, K; and K, let X{y i, k., be de-

In this Section, we define the mapand show how this map fined as in [(B). If M, K; and K, satisfy the conditions
is used to construct Lyapunov functions of the fovfw) = of Theorem(L, therV (w) = (w, X{ar x, k53 w) > €llw|?,
(Z(w), PZ(w)). This approach is based on prior work, asvhich implies the operato”’,, x, .} i positive definite

described in[[28]. Specifically, we define and furthermore, coercive. Moreover, sinkg K; and K> are
polynomials, the operator is bounded, which implies thateh
Za, (z)w(z) exists af > 0 such thate||w||> < V(w) < 6]|lw|2. Finally,
(Zw)(z f Za, (z, Ew(§)dE | the constraint[{16) in Theorefd 1 implies that the operator
fo Zay (z, §)w(§)dE X(ar k1 i) 1S self-adjoint.
where recall Zy, (x) and Zg,(x,€) are the vectors of all ~AS discussed in Sectidn 1V, Theordm 1 allows us to use
monomials of degre€; andd, or less, starting withi. positive matrices to parameterize positive Lyapunov fiomst

_ of the Form [[1F). By expanding these forms, the coefficients
Theorem 1. Givend;,d; € N and e > 0, ¢ € R, let  of the polynomials)M, K; and K, are linear combinations
Z1(x) = Za, () and Z(x,§) = Za, (2,€), With n = di + 1 of the elements ofP > 0. Furthermore, if we can express
andm = 3(d2+2)(d>+1) denoting the length of these vectorsyye derivativel” in the Form [(IV), where the coefficients are
respectively. Suppose that there exists a maltie S"**™  4q3in jinear combinations of the elementsRfthen we can

such that enforce negativity of the derivative along the solutiansoy
P € 01,n—1 p. p usingV(w) = — (Z(w), QZ(w)) to equate these coefficients
B e | 12418 to those defined by) > 0. Constructing the matrices which
P= P Poy  Pos =0, relate the elements of and @ can be automated using
PL Pl Ps3 MATLAB toolboxes for polynomial manipulation such as

(13) MULTIPOLY, contained in the package SOSTOOLS][29] and
where P;; is a partition of P such thatPy; € S”, Pos € S™  further developed in our package DELAYTOOLS [28].

and P33 € S™. Now let For polynomialsM/, K; and K5, we represent the constraint
M@) = Z1(@) PuZa(e), gy {0 M) = (Z0), () for some P > 0 as

T T {M7 K17 KQ} S E{d1,d275} where
Ki(z,8) = Z1(x)" PraZa(x,§) + Z2(§, )" Pa1Z1(§)

£ = = {M K K . M K K SatiSfy
T dy,ds2,€ s AA1, L3 2 y A1, A2
/ 22(77795) 13322(771§)d77 fndac)

0 Theoren{l fordy, ds, €}.
¢ T
+/£ Za(n,x)" P3yZa(n, &)dn The constrain{M, K1, K2} € E¢4, 4,.¢) iS an LMI constraint
1 in the coefficients of the polynomiald/, K; and K, and
+/ Zo(n, )T Pag Zo(n, €)dn), (15) the unknown matrixP > 0. In this way, the shorthand

{M, K1, K2} € Z¢4, 4, allows us to define LMI constraints
Ka(,€) = K1 (€, ). (16) implicitly. o



VI. A TEST FORSTABILITY the classical solutionv of (I8) - (I9) satisfies

In this section, we use the results of the previous section lw®)| < ~|lw(0)[le%, ¢ >0,
to test the existence of a Lyapunov function which establsh ) _ ) _
stability of the scalar parabolic PDE defined in Equatiéfs (1 WhereDy is defined in Equatior8).

). Recall the autonomous(¢) = 0) form of the PDE Proof: Recall the operatorXy k, k,} is as defined

wi(@,1) = (@) wes (z, 1) + b(x)ws (2, ) + c(z)w(z, ) in (3). As discussed in Sectidnllll, for any(0) € D, the

’ ’ ’ ’ (18) autonomous system admits a unique classical solution. By
Theore LM, K1, K>} € 24, 4,6, then

w(0,6) =0,  wy(l,t)=0. (19) ML, M, Ko, K2} € Zdr.as,
szw,X wzw,Pw,
The main technical contribution of this section is reforatirlg o (w) < (M, K1, Ko} > < )
the derivative of the Lyapunov functiori in (I7) in the form satisfiese[|w|* < V(w) < 6|jw||* for somef > 0. The
of Equation [(II7). This is achieved in the following theorergalculation of the time derivativé” and its reformulation is

wherein we obtain functiona/, K, and K, such that lengthy. It involves integration by parts, the Wirtingeequal-
1 ity and the assumption(z) > «a. For this reason, we have
V(w) < / w(z) M (z)w(x)dx included this proof in the appendix as Lemfa 3. Continuing,
0 X by Lemmé[3B, for anyw which satisfies Equationg_(118)[-_{(19),
+/O /0 w(z) Ky (x, §)w(§)déda V(w(t) < <w(t),X{M,K1,K2}w(t)> .

1 1 ~ ~ A~
+/ / w(z)Ka(z, &) w(€)dédn. Now, since{—M — 26M,—K; — 26K, — Ky — 26 K3} €
0 Jx Eg, dp0r WE have thatX{M K1 ko) < —26P and thus
Note that the inequality in this expression is delibera, i —V(w) — 26V (w) > 0. This implies that 2V (w(t)) <
certain negative semidefinite terms have been left outfof —26V (w(t)) for all ¢ > 0. Thus,V(w(t)) < V(w(0))e= 2.

K, and K. Concluding, we have that
Before giving the main theorem, we define the following
linear map 2, which relates functiond/, K; and K5 to an w(t)]] < 7||w(0)”e—5t7 v = Q
upper bound on the time-derivative of the Lyapunov function €
defined by these functions. Specifically, we say that u
A Note that using the arguments in the proof of [7, Theo-
{M, Ky, Ko} = Qs(M, Ky, K2), (20) rem 5.1.3], the above result holds for weak/mild solutions
if where the initial condition need only satisfy, € L2(0,1).
To test the conditions of TheoreM 2, the variables are
M(x) :ﬂ [ﬂa(x)M(I) —b(:z:)M(:c)} the gqeﬁicientg ofA the pojynomiaIM, Kl and Kg._ The
Ox | Ox coefficients of M, K, and K, are then linear combinations
o of these variables. Finally, the constrainds =4, 4, . are
+2 {% la() (Ka(z,£) — Kz(:c,f))]L_w LMI constraints, as discussed in Sectloh V. Constructirey th
2 T matrices which map these coefficients can be automated using
+2M (z)e(x) — 5 o, (21) SOSTOOLS or DelayTOOLs. The algorithm used can be
R 9 T1d adapted from the algorithm presented for output feedback
Kq(z,8) ==— [— [a(x)K1(x,8)] —b(:c)Kl(:v,g)} controller in Section_X. Application of the conditions of
oz 8176 5 Theorem[2 to several numerical examples can be found in
+ g | o OK @ O - 0O K0, ¢)| - SeetorX.
IRZS
+ (e(x) + ¢(€)) K (z,€), (22) VII. | NVERSION AND STATE TRANSFORMATION
Ky(z,8&) =K1 (&, ). (23)  As discussed in Section ]V, for controller synthesis, we

will use a state variable transformatien= P~ 1w so that
(Zh, PZ(P~'w)) = (h,w). DefineP = X{ k, K.}, Where
XM, Ky, K5} 1S as defined in[{3). The® has the form

Theorem 2. Suppose that there exist scalatsé > 0,
di,ds,dy1,ds € N and polynomialsV/, K; and K- such that

{M, K, K2} € 24, dy e . 1
(3T — 35, — 25—y~ 23T} €5 4, (PI@M@(e)t | Kaw x(dst | Kalw x(6)cs.

(b(1) — az(1)) K1 (1, 2) — a(1)(D1 K1)(1,2) = 0, where if {M, K1, Ko} € Z(4,.4,.}, the operator is coercive
(b(1) —agx(1))M(1) — a(1)M,4(1) <0, with (w, Pw) > €||lw||?. Operators of this type are a com-
K5(0,2) = 0, bination of a multiplier operator and two integral operator

o Furthermore, sincel; and K, are polynomials, there exist
where {M, K1, K>} := Q4(M, K1, K5). Then for any initial polynomials F; and G; such thatK(z, &) = Fi(2)TGy(€)
conditionw(0) € Dy, there exists a scalay > 0 such that and Ks(z,£) = Fa(z)TGo(€). This implies that the two



integral operators can be combined into a single integral 10"
of the form folK(x,g)z(g)dg where K is a kernel of the
semiseparable type. That is, there exist functibhsand G;
such that

_JERE@TG(E), >¢
K, = {FQ(:C)TGQ(§), otherwise

Integral operators with semiseparable kernels are usegpte+
sent the input-output map of well-posed Linear Time-Vagyin
(LTV) systems, as explored in [IL6, Sectiod,ITheoremd.1].
These operators have certain properties which make them wel

suited for use in Lyapunov functions. Specifically, they moé¢ 108 ‘ ‘
trace-class, which means that their eigenvalues may not be 1 2 3 4 5
summable. Moreover, as discussed(in| [16, Sectid}, Isince

M(z) > e > 0, P~' is a bounded linear operator and can Fig. 1:|lw — PP, },w] as a function ofn.

be calculated explicitly, as in the following theorem, whis

adapted from[[16, Section 8, Theorem3.1]. _ ) ) )

and integration, which can be performed in MATLAB or
Theorem 3. Suppose thatf{M, K1, K2} € E{ng,dg,e} for Mathematica. In practice, we have found tliat converges
some di,dg,e > 0 with Ki(2,§) = F(x)"G(§) and after only a few iterations. To illustrate, in Figure 1 we bav
Ka(x,€) = G(2)" F(€). Let P € L(L»(0,1)) be defined as applied this approach to a givefi/, K1, K>} € Z11, and
P = XM,k Ko} Where Xy i, k) is as defined in@3).  plot |w — PP, ! ,w| as a function ofn for the arbitrarily

Define chosen function(z) = z(z—0.4)(z—1). HereP, !, denotes
G(z) . " the construction forP~! defined in Theoreml3 with/(x)
B(x) = [F(x)} , Clx) = [F@a)" —G)"], replaced by, ;1 (). In this casen = 5 yields anL; norm

1 error of ~ 10~°. In this example, we approximated (¢) !
H =[Ni+ NUD)] N2U(1) using the first five terms of its Chebyshev series.
Ny = {I 0} N, = {0 0} Finally, we emphasize that construction®f! is not part
0 0]” 0 I}’ of the optimization algorithm, but rather is performed afte
and U(z) = lim,_,oc Uy (), where algprithm has solve(_j the cqntroller synthesis problem @o _b
defined in the following section) and returned the polyndmia

Unti(x) =1 - /OIB<£>M<£>—1C<5>Un(£>d§, (24) VvariablesM, Ky, and K».

and []1 =T. Then’ the inverse of the Operat@' is given by VIIl. STATE-FEEDBACK CONTROLLER SYNTHESIS

z Our approach to controller synthesis is based on the use
(P~ 'w) () ZM(CC)UJ(CC)JF/ Ky (@, §w(€)dé of a state variable transformation = P~'w which, by

0

1 Theoren(B, is guaranteed to exist for aRy= X{y k, k.1
+/ Ky (z, €)w(€)de, defined by{M, K1, Ko} € =4, 4,.c}- Specifically, we will
@ use the Lyapunov functiol’ (w) = (P~ w,w) = (y, Py).
M(z) =M (x)~, Ignoring the input for the moment and using the operator
K (z,&) :M(x)*lC(x)U(x)(H — [)U(g)*lB(g)M(g)*l, dgfined in Equation.[.{7), the_t.ime-derivative of this funaotio
K, (2, €) =M ()" C(2)U (2) HU (€) "  B(€) M (€) . yields the dual stability condition

y -1

Note that sinceM({) > e M(£)~! is bounded and V(w) =2(P" w, Aw) = 2 {y, APy) <0,
continuous and hence the matrix of rational functionshich we must enforce for all € L. The critical point
B(&)M(£)~*C(¢) is bounded and continuous. Therefore, its that the operatof"~!' does not appear explicitly in the
follows from [8, Chapter3] that the uniform limit U(z) stability condition. Rather its existence is only inferriedm
exists and is non-singular far € [0,1]. SinceU(x) is non- the constraint orP that {M, K1, Ko} € (4, 4,,c3- The next
singular on[0, 1], the matrixH is well defined. Therefore, by step in our approach is to combine this dual stability caorit
construction_MK,,K, € C*. Furthermore, note that sincewith a variable substitution through the use of a contradier
P satisfiese||w||? < (w, Pw) < 0||w||? for somed > 0, then the form
1/6]|w]]? < (w, P~ w) < 1/ellw|?. 1

Theorem B not only proves existence, but gives a practi- u(t) = Y1(P~'w)(1,) +/ Yo () (P~ w) (2, t)da
cal method for constructing the state variable transfoionat 0
P~ for which (Zh, PZ(P~'w)) = (h,w). Specifically, if = Ryw(1,t) +/ Ry(z)w(z, t)dz,
we truncate the sequendé, and approximateM (x)~! by 0
a Chebyshev series, then construction of the functions Mherein we have replaced the original controller gaisand
K; and K, is simply a matter of polynomial multiplication R, with the new variables; andY,. OnceY; andY, are



determined by the SOS solver, the actual gaifisand R» Proof: We start the proof by observing that since
can be recovered by computi®y ! and applying the formula {M, K1, K2} € Z4, 4, as per Theorerfll 1, these polyno-

listed here. mials define a positive operat@® = X,/ k, x,) such that
Before giving the main theorem, we recall that the input|w||?> < (w, Pw) < 6|jw|? for someé > 0. Furthermore,
enters the dynamics as by Theoremi B, there exist bounded and continuously differen
tiable functions M K, and K, such thatP~! = x’
wi(z,t) = a(z)wey (x, t) + b(x)w, (2, t) + c(x)w(x, t), I unetl =1 K su MK, K,}

satisfying 1/6||w[? < (w,P7'w) < 1/e[jw|*>. We now
propose the Lyapunov function

V(w) = (P 'w,w) = (P~ 'w, PP~ 'w)

(25)
w(0,t) =0, wy(1,t) = u(t). (26)

The goal, then, is to define conditions @h (which defines 1
M, K, and K5) as well as orl; and the polynomial> such - / (P~ 'w)(z)M () (P~ w)(x)dx
that the closed-loop system is exponentially stable. 0

To simplify exposition, we now define the following linear
map, 2., which relates functiond/, K; and K, to an upper

L /O /0 (P~ 1w)(2) K (2, €) (P~ w)(€)de dar

bound on the time-derivative of the Lyapunov function define 1 orl ) )
by these functions for the controller dynamics. Specifjcalie +/ / (P~ w)(2) Ko (2, §) (P~ w)(§)dédx.
say that 0 Je
{M, K1, K2} = Qu(M, K1, K>), (27) Lety =P~ 'w. Note that ifw € H?(0,1), theny =P~ 'w €
. H?(0,1). Now, sincel /6||w||? < (w, P~ w) < 1/e|jw]|?, we
if have that the Lyapunov function is upper and lower bounded.
Ni(2) = (a0 () = bo()) M(2) + b(a) Mo () Now suppose that
2 1
+ a(x) My (z) + 2¢(z) M (z) — %ae u(t) = Y1 (P~ w)(1,t) —|—/ Ya(z) (P~ w)(x, t)dx
0
0 1
+al) |25, (K €) - Kalw )| — Ruw(l,t) + / Ry ()uw(z, t)dz.
z 0
28
N ) (28) Since MK;,K, € C*(0,1) andY> is polynomial, we have
Ki(z,€) = a(z)(DyK1)(x,§) + b(x)(D1K41)(,€) that Ry, € C>°(0, 1). Therefore, as discussed in Secfion 1l the
+ a(€)(D3K 1) (x, &) + b(€) (Do K ) (, €) closed loop Systeni (25)E{P6) admits a solutiore H2(0,1)
+ (c(x) + e(€)) Ky (z,€), (29) Which impliesy = P~'w € H?(0,1). Again, the calculation
i _ i 30 of the time derivativeV and its reformulation is lengthy. It
2(@,§) = Ki1(§, 2). (30) involves integration by parts, the Wirtinger inequalitydan

Theorem 4. Suppose that there exist scalarsy > 0, the assumptiom(z) > a. This proof is in the appendix as

dv,ds, d1,d> € N and polynomialsM, K; and K, such that Lemmal4 which establishes that for amy which satisfies

Equations[(2b) -[(26),

V((t) < (0 Xar gy, 1y 0
+y(1,)Ny(1,t) + 2y(1, t)a(1) M (1)y.(1, 1),

{M,Kl,KQ} EEdl,dg,é and KQ(O,I) =0.
Further suppose

{—M —2uM, —Kl —2uKjy, —Kz - Q/LKQ} S Etﬂ,d},()’

N where N = a(1)M,(1) + (b(1) — az(1))M(1). Now,
where{M, K1, Ka} = Q.(M, K1, K3). Let since {-M — 2uM,—-K, — 2uK,,—K, — 2uK,} €
My(1) ag(1) —b(1) Zd1.d2,0, We have thatXMK o} < —2uP and
Y, < M(1), Ya(z)= (D1K:1)(1,z).
1< 2am MW, Yale) = (DK (3;) hence (y(t), Xy g, fcpyyt >§ < (), Pyt) =
- . : : : :
If the control inputu(r) is defined as 21 (w(t), P~ w(t)). Applying this to the inequality, we get
V(w(t)) <—2u {(w(t), P~ w(t))
u(t) =Y1(P~lw)(1,t) / Ya(2)(P~tw) (2, t)dz +y(1,)Ny(1,t) + 2y(1, )a(1) M (1)y(1,1).
A sufficient condition for stability, then, is that
= 1,t) 32 ! ’
=R / Ba( (32) 2y()a(1)M(1)y.(1) <  —y(1)Ny(1). Unfortunately,

however, our control input enters via, (1) and noty,(1).
To see the relationship between (1) andy. (1), we expand
the former and then solve for the latter as follows

where P~ ! is as defined fofP = X, k, k,} in Theoren{B
and Xqy i, K.} IS as defined irf3), then there exists a scalar
~v > 0 such that for any initial conditionv(0) € D (where

D is as in Equation(@)) the solutionw of (23) - (26) exists, we(1,t) =M, (1)y(1,t) + M(1)y.(1,1)

belongs toC!2((0, ), [0, 1]) and satisfies 1
()] < Alw©]e . ¢ >0, + [ @0 @



where solving forM (1)y..(1) yields

M(l)ym(lvt) :wz(lvt) - Mz(l)y(lv t)
- [ i)t @4

This implies that the Lyapunov function satisfies

V(w(t)) < —2uV (w(t)) +y(1,t)Ny(1,1)
+2y(1,t)a(l) (ws (1, t) - Mm(l)y(lv t))

1
—2y(1,t)a(1)/0 (D1 K1) (1, 2)y(x, t)dx.

Now, examining the proposed controller, we obtain
1
wy(1,t) = u(t) = Ryw(1,t) —i—/ Ry(x)w(z, t)dx
0
1
— BP0 + | Fala)(Py)(ast)ds
0

— Viy(L,6) + / Ya(@)y(x, t)de,

which is expressed in the new optlmlzatlon variab]esand
Y2. Now, pluggingw, (1) = Yiy(1) + fo Yo (x)y(z)dz into
the time-derivative of the Lyapunov functlon we get
V(w(t)) < —2uV (w(t))
+y(1,8)*(N + 2a(1)Y; — 2a(1) M, (1))

/ Ya(a

— 2y(1, t)a(1) / (DK ) (1, 2)y (. t)de. (35)

+2y(1,t)a

—Yi / Yl 1,@ )d
+/O (/Yz (&) d§+/ Ya(©)K, (6, >s>w(w>dw
so that
Ry =Y1M(1), (36)
1
Rz<x>:m51<1,x>+/ SO, (6 d§+/ Ya(©)Ko (€, 2)de,
’ (37)

where we have used the identity

/(Jl/:f(x,f)didzzr = /(Jl/;f(x,g)dxdg = /Ol/omf(é,:c)dfdx,

and the fact that K(z, &) = Ky (&, z).

IX. OBSERVERSYNTHESIS

In SectionVIIl, we described LMI conditions under which
one can obtain controller gai®; and R»(z) such that input
u(t) = Ryw(1,t) + fol Ry (z)w(z, t)dz ensures exponentially
stability of the closed-loop system. However, this form of
controller requires measurement of the state,t) at every
point x € [0,1] at all times. Implementation of such a
controller is problematic as such a distributed measurémen
is unlikely to be readily available. A more common scenario
is one in which we may only measure the valuew(r, ¢)
at discrete points in the domain. In particular, we assume
that only a single measurement is available at the boundary
of the domain, and in particular, at(t) = w(1,t). As
discussed in Sectioh ]I, in this scenario, we seek to find

By inspection, we see that the stability conditions are now an estimator/observer which will yield a real-time estienat

N +2a(1)Y; — 2a(1)M,(1) < 0

andYs(z) = (D1 K;)(1, ). This then implies that’ (w(t)) <
—2uV(w(t)) for all ¢ > 0 and henceV(w(t)) <
V(w(0))e~2rt. Since|lw||* < 6V (w), we have
lw®)ll < VOV (w(t)) < v/OV (w(0))e ™
< VO/ew(0)le™".
[ ]

At this point, it is significant to note that given values fhet
variablesYs, Y,, M, K; and K5, the controller gaind?; and
R> can be found by calculating MK, and K, via Theorem
and using the formula

1
le(l)—l-/o Ry (z)w(z)dx

+ / Ya (a)y(x)de

:Yl(Pflw)(l)jL/ Ya(2) (P~ w)(z)dx

= / YK, (1, 2)w(x)dx

+/01 Ya(z) (/0 Ky (x,ﬁ)w(@dﬁdx—i—/:K2($7§)w(§)d§) dx

=Yiy(1)

of the state of the system at all points and which, if used in
closed-loop, will ensure exponential stability of the eds
loop. Specifically, our observer is a dynamic system with
input v(t) = w(l,t) and outputw(z,t), where w(x,t) is
the estimate of the state at timeWe adopt the Luenberger
observer framework discussed previously, which impliest th
the dynamics of the observer are given by

We(x,t) = a(X)Wes (z,t) + b(2)0y (2, 1)

+ c(@)(z,t) + Li(z) (8(t) — v(t))
wz(la t) = U(t) + L2 ({)(t) - ’U(t)) )

whered(t) = w(1,t) is the predicted output and the scalar
and functionZL; (x) are gains which map error in this predicted
output to the dynamics of the observer state. In the follgwin
theorem, we seek conditions dn and L, which ensure that

if R, and R, are as defined in Theoreh 4 and the controller
is defined as

1
u(t) = Ryw(1,t) —l—/o Ry (z)w(z, t)dx,

then Equationd (38) £(39) coupled with Equatidns (25) 1 (26)
and Equation[{40) define an exponentially stable system.
Our approach is based on the separation principle [7,
Chapters], [18, Chapteis]. Specifically, we consider the error
dynamics of the PDE coupled with the observer dynamics

(38)

@(0,t) = 0, (39)

(40)
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in Equations[(3B) -[{39). That is, if we define the error as(0) € D. (See Equation{12)), there exists a scalay > 0

e = w — w, then this quantity satisfies

er(x,t) = a(x)ege (2, t) + b(x)ey(z,t) + c(x)e(x, t)
+ z1(x, t), (41)
e(0,t) =0, ex(1,t) = 22(2t), (42)
where the feedback signats and z, are defined as
z1(x,t) := Li(z)e(1,t) and z3(t) := Loe(1,t). (43)

such that
t> 0.

le@®)ll < vlle(0)le=,

Proof: We start by observing that sindé\/, K1, K-} €
Zd, .d»,¢, @S per Theore 1, these polynomials define a positive
operatorP = X(u1 . k,} Such thate|w|? < (w,Pw) <
6]|w||* for somed > 0. Furthermore, by Theorel 3, there exist
bounded and continuously differentiable functionsM and
K, which define the positive operat@?—' = X K, K.}

The key point is that the error dynamics do not depend diterefore, sincd., € C*>(0,1), we have that the ciosed-loop

the choice of controller gain&; and R,. In the following
theorem, this will allow us to choose observer gainsand

error dynamics[(41) {(42) admit a local in time solutiefor
anyeg € D..

L, which stabilize the error dynamics. Then, in Theorfgm 6 e now propose the Lyapunov function

we will show that if the controller gains are chosen as

V(e) =(e, P
per Theoren[ 4 and the observer gains are chosen as per © <€1 €)
Theorend, then the coupled dynamics are stable in both the :/ e(x) M (z)e(z)dz
state and state estimate. Unlike for controller synthehis,

conditions for stabilization of the error dynamics are lohse

on the use of a simple Lyapunov functidn(e) = (e, Pe)

where the operato = Xy k, x,} IS defined by some

{]\/f Kl,Kg} € Zdy dae-

The foIIowmg theorem is motlvated by the LMI approach

x) K1 (z, §)e(§)dédx

L
o L

x)Ko(x,&)e(§)dEdx.

K, and K, are deflned by a positive definite matdkand the ©One in Theoreri2 except for the presence of the terfmand

observer variables are scalds and polynomials’; and 75

(defined by their vector of coefficients). Referring to the ILM
motivation, these observer variables are similar to therimat

T and the observer gains are then recoveredas P~ 'T;
andL;
gain matrixL = P~'T.

Theorem 5. Suppose there exist scalars,d > 0,
dl,dg,dl,dg € N and polynomialsM, K; and K> such that

{M,K1,K3} € 24, a5, and Ky(0,x)=0.
Further suppose

{—M —26M, — Ky — 20K, =Ky — 26K>} € B, . o
where { M, f(l,fQ} = Q,(M, K1, K,). Let M, K, and K,
defmeX{A}K Ka} = {MKPKQ} as in Theoreml3 and

Ly :=(a(1)M (1)) Ty, (44)

Li(2) =M(@)(T1(z) + T3(x))
| TKu, €)(Ty(€) + Ty(€))de
+ [ K00 + T, @5)
where )

Ti(z) = =0.5((b(1) — ax (1)) K1 (1, 2) — a(1)(D1 K1) (1, 7)),

(46)
Ty < —0.5((b(1) — az(1))M (1) — a(1)M,(1)) (47)
Tg(ZC) = —LQCL(l)Kl(l, I), (48)

and Xk, k,y @and Xy
for any e which sausﬁes@fﬂ’ (42) with initial condition

= P~ 1(T1 +1T3), which is similar to the LMI observer

29 defined in [(4B). Specifically, we have

V(e) < <€7 X{A%,R1,R2}e>
+2(Pe, z1) + 2z2a(1)(Pe)(1)
+2 (e, Mg, e(1)) + e(1) Rae(1),

where Ry (z) = (b(1) — a,(1))K1(1,2) — a(1)(D1K1)(1, )
and Ry = (b(1) — a,(1))M (1) — a(1)M,(1). In the proof of
Theoreni®2, we had; = 0 andz; = 0 and hence the stability
condition was thatR; = Ry = 0 and thatX{M7k17k2} <
—26P. For the observer, we similarly requife, ; » z,y <
—20P. However, we now have the observer gaingz) =
Li(xz)e(1) and e, (1) = zo = Loe(1) which the algorithm
can choose in order to cancel ol and R,. Unfortunately,
however, these gains depend & and K; and the gains
are currently bilinear with the operator variali® (and the
functionsM K3, and K> which define it). Hence we would
like to perform a variable substitution. This is compliahte
however, by the fact that there are two observer gains - one at
the boundary and one directly injected into the dynamics. Le
us first examine the second gain = Lse(1) which appears

in the term

zoa(1)(Pe)(1) = e(1)Laa(1)(Pe
=e(1) Laa(1)M (1) e(1)
——_——

T>

+ /0 e(1)Loa(1) K1 (1, x)e(z)dx

)(1)

=e(1)Te(1) —l—/o e(1)Laa(1) K4 (1, z)e(x)dx,

are as defined irf3). Then where we have made the variable substitutifh =

Loa(1)M(1) which implies Ty is a scalar variable. The
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variable L, is thereby partially eliminated from the searchTheorem 6. Givends, ds,d;,ds € N ande, 6, 1 > 0, suppose
However, since(z) > 0 andM () > 0, givenTs, the gainL, that there exist polynomiald/, N, K;, K2, S1 and S2 such
can later be recovered ds, = (a(1)M(1))~'T3. Of course, that

this variable substitution has nabmpletelyeliminated the

original variableL,. To completely eliminate., will require {M, K1, K2} € Ed, s
assistance from the second gdin. To see how this is done, (49)

we examine the second term in whieh appears {—M —2uM,—Ky — 2uK,, — Ky — 2uK>} € B d,.dy.0
(50)
<’P€, Z1>_<ev PMi, 6(1)>—<8, MT1€(1)>+<85 MT36(1)> : KQ(O’ x) =0, (51)

My + M, {N, 51,82} € Eay dye
Here we have defined a new varialiig(z) which is de- (52)

fined by Tl(x) = M(‘T)Ll(x) + fom Kl(:c,f)Ll(f)d§ + {—N - 2§N, —Sl - 2551, —S’g - 2652} S E(il ds,0
[} Ko(x,6) L1 (€)dE — Ty(z) for which Mp,c = PMp, ¢ — T(53)
Mrp,c for any ¢ € R where T3 will be defined shortly. S2(0,z) = 0, (54)

Furthermore, for anyf’s, the mapl, — T3 is invertible with
Li(2) =M(@)(Ti(x) + Ty(x)) where 1M, By Ka) = Qe Ky Ka), (N, 55, Ba)
. Q,(N, S1,52) and 2d; and 2d; + 1 are the degrees oM,
+/ K, (z, )(T1(&) + T5(€))dE N and K1, S1, respectively.
0

Then, there exist gainB;, R2(z), Li(z) and L, such that

1 .
+ [ Kol m© + e 1
N t:RAl,t+/R o(z, t)dz, 55
if P~1 = XM-,KL-,& . In this way, we eliminate the variable u(?) 1 (1,7) 0 2(w)i(z, t)d (59)
L, and repﬁace it withl'; andT5. The next step, then, is to and w satisfies Equation€ZB) - (28) and & satisfies Equa-

choosel’; so as to cancel the remaining term which containg o (38) - (39) with a zero initial condition then
L. This is done usinge, Mr,e(1)), which we expand to get
1 lw(®)] < llw(0)]le=",

(e Mrye(1)) = [ el)Ta(@)e(1d
0

for somey > 0 and anyx satisfying0 < x < min{yu, d}.

W1h|Ch we ~would like to —use to ellmln_ate Proof: If the conditions in [(4B) - [(91) are satisfied,
Jo e)L2a(1) K1 (1, w)e(x)dz. Clearly, then, the appropriatey, ., e polynomials\/, K; and K, satisfy the constraints
choice forTy is of Theorem[ #. Therefore, we may construi¢t and Ry (z)

T3(x) = —Laa(1) K1 (1, z). using [36) -[(3). Similarly, ifV, S; and S, satisfy [52) -[(B4),

) o then the conditions of Theorelh 5 are satisfied with= N,

NoFe that the depgndence m_on Ly is adm!55|ble becauseK1 — 5 and K, = S,. Thus, we can construct observer gains
Ts is nota free variable anl_ig is computed directly fronT%. L (x) and L, using [@3) - [@b). Now, 6P, = X(1/ x, 1.},
This means that once feasible valuesTgrand7; have been 5 . = = "5 _ o and P, — X e o .
found, we then calculat&, from T, then uselL, to calculate _° L {N,51,52} € o 7 THN,S51,52)
Ty and then usd} and T to calculate the gair;. Therefore, the theorem conditions imply that < —2uP.

Concluding the proof, the time-derivative of the Lyapuno@ndPe < —207P,. _
function becomes Using the proof of Theorei 5, there exists a scalar- 0

) such that
Vie) < <e, X{M,Rl,k2}€> Vo(e) < =26V, (e) — Bre(1)?, (56)

+2{e, (M, + Mp,) e(1)) +e(1) 2Tz + Ro) e(1). whereV,(e) = (e, P,e). Similarly, for the observer dynamics
Therefore, if 7y = —Ry, 27> + R, < 0 and {—M — in(38) - (39) with the input(55), using the proof of Theorien 4
20M,—K; — 20K, — Ko — 26K5} € Ed, dy.00 WE have that one can prove that there exists a scalar> 0 such that

V(e) < —25V (e), Ve() < = 2uVe(@) + 2 (5, Lie(1)) +5(1)(2a(1) L2)e(1)
IRV
which, in a similar manner as Theoréin 2 establishes exponen- = B25(1)°, (57)
tial stability of the error dynamics with decay rafe [ ]

wherey = P lw and Vo.(w) = (b, P, lw) = (3, Pg).
From [56) - [5Y) we infer that for any > 0 we have

(58)

X. AN LMI coONDITION FOROUTPUT-FEEDBACK

K
U (1)
e(1)

STABILIZATION . . U
In this section we briefly summarize the results of the rVo(e) + V() < —2rdVo(e) +< (1)
paper by giving an LMI formulation of the output-feedback e(1)
controller synthesis problem.
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where and Mupad. To help with understanding this process, we define

—2pPe 0 L several subroutines which perform specific relevant taskk a
U= * —P2 a(l)La| , combine them in the pseudo code which would be used to
* * —rf obtain the observer-based controllers.
and the inner product is defined din(0,1) x R x R. Now, [M,Ki,K;]=mult_semisep (¢)
for any 0 < x < min{4, u}, if we chooser > 0 sufficiently « Declares polynomial variabled/, K; and K, and
large, it follows that/ < diag(—2x7P,,0,0). Thus, from [5D) enforces the constraiftM, K1, Ko} € 24, .dy.e-
we get that [M, K1, K,]=omega_primal (M, K;, Ky)
1V, (€) + V(i) < — 208V, (€) — 26V, () . _Constructs]\?[, K, and K, as defined by the mafi,
< =2k (rVy(e) + Vo(w)) . o IHA@)'
o R . [M, K;,Ky]=omega_dual (M, K;,K)
Therefore defining/ (w, ¢) = 7Vo(e) + Ve(w), we get that « ConstructsM, K; and K, as defined by the maf,
Vi, e) < =26V (b, e). in 22).

eq_constr (F)

« Given a setF' of univariate/bivariate polynomials,
7 (e, Poe) + {(w, P, ') < e "1 (w(0), Pow(0)), (59) declares element wise equality constraht= 0.
M, K,,K,]=inv_op (M, K;,K>)

Integrating in time,

where we have used the fact that0) = 0 and thuse(0) =

—w(0). Now, as discussed, there exist scatargl, > 0 such « Given {M, Ky, K>} = Eq, 4, calculates the inverse
that multiplier M and kernels K and K, by approximating
, , 1 , . 1 , U(z) by performing the integration in_(24) a finite
elle]]” < (e, Poe) < O1]le]]7, e—IIIDH < (w, P, M) < EHIDII . number of times and using a Chebyshev series approx-
2

imation of M (z)~!.

Therefore, using (39) we get [Ri,R;]=controller_gains (M,Ki,Ki,M, K, K,)

llell? + [lo]2 < 7’_‘91||w(0)”2672m7 « The function defined; and}/'g(x) usi.ng [31). Conse-
o quently,?; and Rs(z) are defined usind (86) and (37),
whereo = min(re, 1/62). Thus, respectively.
[Li,L2] =observer_gains (M, K1, Ki1,M, K]_ 14 Kz)
N T91 Kkt . . 7~
llell, J@]] <4/ —[lw(0)][e™"". « The function constructg’, using [4Y) and set&. us-
_ _ 7 R ing (44). Then the function constructs(x) and75s(x)
Finally, using the fact thatw|| < [|@|| + [|e|| produces using [46) and[[48) and construdts(z) using [@5).
0, o A pseudo code for the SOSTOOLS implementation of the SDP
[w(®)]| <2 7”10(0)”6 e is presented in Algorithri]1.
[

The variables in Theorem] 6 are polynomials which are Xl. NUMERICAL RESULTS

parameterized by vectors of coefficients associated togepre In this section we test the conditions of Theoréfls 2, 4and 5
termined monomial basis. There are two types of constrairitg applying them to two parameterized instances of scalar
on these variables: equality constraints between polyalsmi parabolic PDEs. The first instance is a variation of the aass
and constraints of the forne =4, 4, .. To test the condi- isotropic heat equation. Because this system is well-stydi
tions of Theoreni6, these variables and constraints mustWe are able to compare our results with a number of existing
converted to a form recognized by an SDP solver such ggsults in the literature. The second system is an anisiotrop
SeDuMi [37]. Many of these tasks have already been auteDE with arbitrarily chosen coefficients. Both instancegeha
mated in SOSTOOLS [29] and our extended toolbox, Delagh instability term, parameterized by an instability facto
TOOLS [28]. Specifically, SOSTOOLS has functionality for\. For both systems, we test stability, find controllers and
declaring polynomial variables and enforcing scalar dtal construct observer-based controllers.

constraints. Furthermore, DelayTOOLS[[28] allows the user Example 1:Our first system is defined as follows.

to declare matrix-valued equality constraints and creais n .

polynomial variables which satisf¢ =4, 4, .. Furthermore, wi(@, 1) = W (2,1) + Aw(w, 1), AER, (60)
the multipoly toolbox allows one to manipulate polynomialvith boundary conditions
variables in order to construct new dependent polynomials
such as i M, K1, K>} = Q.(M, K1, K5). Once all variables w(0,8) =0, wa(1,t) = u(t).

and constraints have been declared, SOSTOOLS convertstdlé output of the PDE is(t) = w(1,t). For u(t) = 0, the
constraints and variables to a format which can be acceptgshliytical solution of this PDE is given by

by SDP solvers such as SeDuMi, SDPT3 or MOSEK. The a- o

posteriori polynomial manipulations such as operatorrisios w(z,t) = Z eAnt (W0, bn) b (2),

can be performed using a combination of the multipoly toglbo

n=1
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d="7 8 9 10 11
A=14.3982 17.9626 22.8645 23.3093 27.1179

Algorithm 1: Output-feedback controller synthesis.
Declaring optimization variables:

1) [M, K1, K2]=mult_semisep (€) TABLE II: Max. A as a function ofd; = dy = d for which
2) [N, S1,S2]=mult_semisep () the conditions of Theoreml 4 are feasible, thereby implying
Constructing polynomials: the existence of an exp. stabilizing state-feedback cbetro
1) [M,K;,K,]=omega_dual (M, K, Ky) for PDE [60).
2) [N, S:,S,]=omega_primal (N, S;, S3)
Declaring affine constraints: d=7 8 9 10 11

1) eq_constr ( (—M—ZuM, -f<1-2uK1 , _f<2 ~21K5) A =14.5233 17.7643 23.4406 24.7772  27.8820

-mult_semisep (0))
2) eg_constr ( (—N—26N, —§1—2681 ’ —é2—2552)
-mult_semisep (0))
3) eq_constr (K, (0,x))
4) eq_constr (S, (0,x)) PDE [60).
if SOS problem is feasiblden

| Return outputs: M, K, Kz, N, S1, S;. )
Calculating control gains: a dynamic output feedback controller can be constructed for

any value ofA > 0.
Example 2:To illustrate the versatility of the proposed
[Ri,R,]=controller_gains (M, Ki,Ki, M, K, , K, )method, we next consider the following arbitrarily chosen

Calculating observer gains: anisotropic system
1) [N,S;,S,]=inv_op (N, S1, S2) wi(z,t) = a(x)weq (x, t) + b(z)w, (z,t) + c(x)w(x, t), (61)
2) [L;,L,]=observer_gains(N,S;,S:,N,S;,S,)

TABLE IIl: Max. X\ as a function ofd; = dy = d for which
the conditions of Theorefd 5 are feasible, thereby implyireg t
existence of an exp. stabilizing output-feedback corgrdibr

1) [MI Kl ’ K2 ] =inV_Op (Ml K1 ’ K2)
2)

wherea(z) = 23 — 2% + 2, b(z) = 322 — 2z and ¢(z) =
—0.523 + 1.32% — 1.5z + 0.7 + X\ with X € R. Although the
d=3 4 5 6 7 analytic analytical solution to this PDE is not readily available, we
A=059 219 2457 246 2461 2.467 may use a finite-difference scheme to numerically simulate
the system and thereby estimate the range\ dbr which
the PDE [[G]) is stable. Specifically, we find that the system
is unstable forA > 4.66. To determine the accuracy of the
conditions of Theorerf]2, we find the largesfor which the
conditions of Theorernl 2 are feasible. Tablé IV lists thedatg
such\ usinge, § = 0.001 as a function of polynomial degree
d1 = dy = d. The maximum\ for which we can prove the
exponential stability for is\ = 4.62, which is 99.14% of
Yhe predicted stability margin of.66. The < 1% discrepancy
may be due to conservatism or inaccuracy in the predicted
aximumA\ on account of inaccuracy in the discretization or
?)oor choice of initial conditions in the simulation.
To test the accuracy of the conditions in Theolem 4, we
gain find the largest for which the conditions of Theorem 4

TABLE I: Max. A as a function ofl; = dy = d for which the
exp. stability conditions of Theoref 2 are feasible, implyi
stability of PDE [60) withu(t) = 0.

where \,, = XA — (2n — 1)272/4 and ¢, = v/2sin((2n —
1)rz/2). This implies that Equatiod (60) is unstable for>
7% /4 ~ 2.467. To test the numerical accuracy of the stabilit
conditions in Theoreml 2, we found the largast 0 for which
the conditions of Theorefd 2 are feasible as a function of t
parametergl; andd, which define the degree of the variable
M, K1 and K. Table[] presents these results €96 = 0.001.
Ford, = dy = 7, we can construct a Lyapunov function Whichél

proves stability for\ = 2.461, which is99.74% of the stability are feasible withe — 0.001 and ;2 = 0.001, thereby implying

- N
margin - ~ 2.4674. the existence of an exponentially stabilizing state-feetb

To test the accuracy of the conditions in Theoriéim 4, W&, oller. TablV presents this maximumas a function

find the largest\ for which the conditions of Theorel 4 are ¢ o degreed; — d» — d. The results suggest that for

feasibl_e withe = 0.001 and » - 0.00L, _t_h_ereby implying sufficiently high degree, a static state-feedback comtralan
the existence of an exponentially stabilizing state-feettb be constructed for any value of> 0
controller. Table[dl presents this maximuim as a function To test the accuracy of the conaitions of Theorf@m 5, we

of t_h(_a degre_edl = dy = d. '_I'he results suggest that foragain find the largest for which the conditions of Theorehi 5
sufficiently high degree, a static state-feedback comtralbn are feasible withe — 0.001 and§ = 0.001, thereby implying
be constructed for any value of> 0. ’

To test the accuracy of the conditions of Theolgm 5, we

find the largest\ for which the conditions of Theoreld 5 are d=3 4 5 6 7 simulation
feasible withe = 0.001 and § = 0.001, thereby implying A=437 461 461 462 4.62 4.66
the existence of an exponentially stabilizing dynamic atip

feedback controller with output(t) = w(1,t). Table [ TABLE IV: Max. A as a function ofl, = dy = d for which the
presents this maximum as a function of the degreé, — ©XP- stability conditions of Theorefd 2 are feasible, implyi

ds = d. The results suggest that for sufficiently high degre&tability of PDE [81) withu(t) = 0.



14

d=14 5 [§ 7 8 d=1 2 3 4...9 10 Ki,Ko #0
A =19.0216 36.1359  39.7247  43.5974  44.5219 Ex.1 A=391 478 4388 4.88 4.88 27.1179
Ex.2 A=351 7.03 8.59 8.59 8.59 44.5219

TABLE V: Max. A as a function ofd; = d; = d for which _
the conditions of Theorerfl] 4 are feasible, thereby implyinfABLE VII: Re-evaluation of the results of Tabléd Il ad V
the existence of an exp. stabilizing state-feedback cbetro With added constraink’; = K, = 0.

for PDE [61).

d=1 2 3 4...9 10 Ki,K2#0
Ex.1 A=23.89 479 488 4.88 4.8 27.8820
d=41 5 6 7 8 Ex.2 A=351 7.12 843 843 843 44.079

A=18.3090 36.0199 38.0478 40.5931 44.079

TABLE VIII: Re-evaluation of the results of Tablésllll afhd]VI

TABLE VI: Max. \ as a function ofd; = d = d for which with added constraink; = K = 0.

the conditions of Theorefd 5 are feasible, thereby implyieg t
existence of an exp. stabilizing output-feedback corgrdibr

PDE (61). Chebyshev series approximation and 5 iterations are used to
defineU., = Us. The controllers are then applied to the state
and estimator dynamics, which are then discretized using a

the existence of an exponentially stabilizing dynamic attp trapezoidal approximation. The initial state is set to
feedback controller with output(t) = w(1,¢). Table[V] (o032 (oo

presents this maximum as a function of the degre# = wo(z) =€ 20007 — ¢ 20007

ds = d. The results suggest that for sufficiently high degree hile the initial observer state is set @(z,0) = 0. Fig-

a dynamic output feedback controller can be constructed for X .
any value ofA > 0. ures[2(d) {2(¢) illustrate the state evolution of the system

We conclude i the corjectre tat ne proposed meu ST 0 1 ST ST especiel byl
is asymptotically accurate in the sense that, for any 0, 9 gaifi; ().

if the PDE [1) - [2) is stable in the autonomous sense, thior at the boundaries is logical since at= 0, the boundary

the conditions of Theoreifn 2 will be feasible for suﬁicientlfﬁr?sr'te'ggwég’? 1: ?heensg;firhezjer:&cﬁg%31:10retf'firrtequ'red'
high d; and d,. Moreover, we conjecture that if the system T '
is observable and controllable for some suitable definitiorkll_
of controllability and observability, then the conditiord
Theorem$ 4 and 5 will be feasible for sufficiently highand ) _
ds. We emphasize, however, that this is only a conjecture and€call that the Lyapunov functions used in Theoréirs 2, 4,
additional work must be done in order to make this statemed® all have the form

rigorous and determine its veracity. A further caveat tcs¢he (w) = /1 w(@)M(2)w(z)de

results is the observation that the maximum degleandd, 0

for which the conditions can be tested is a function of the /1 x 1

memory and processing speed of the computational platforfn w($)</ Ky (2, §w(§)dE +/ K2(I55)w(§)d€) dx.

on which the experiments are performed. Specifically, the i 0 i ) v o

number of optimization variables in the underlying SDP pro s mentioned previously, this form is atypical in the study

lem is determined by the number of polynomial coefficienfd Parabolic PDEs and the reader may question the neces-

which scales a®(d2). To illustrate, all numerical experimentsSY Of the termsK; and K as their presence significantly

presented in this paper were performed on a machine Wﬁﬂmplicates the analysis and increases the complexityeof th

8 gigabytes of random access memory, which limited O&Fabilit_y conditions. Th_erefc_)re, to_ illustrate the nedgssf .
analysis to a maximum degree &f — d, — 11 for PDE [60) including these terms, in this section we repeat the nurakric
andd, — dy — 8 for PDE [B1). examples present_ed previously with the addgd rgstnch_an t
In the following subsection, we illustrate the controllarsl Ky = K =0 (which translates tP; = 0 for i # j # 1 in
observers which result from feasibility of the conditionfs OTheorerT[lL). Ta?"_@" lllustrates these re_sults for the mifer
Theorem$}4 anl5 using numerical simulation. synthesis cond!tlons_ of Theore[m 4 using the same methpd—
ology as described in the previous section. These numerical
tests indicate that while inclusion df; and K, allows us
A. Numerical Implementation of Observer-Based Contrsllekg control the PDE for anyA > 0, when K; = K, = 0,

To illustrate the observer-based controllers which res@tr method will fail for some\, regardless of the polynomial
from feasibility of the conditions of Theoreni$ 4 and 5, weegreed; = d; = d. As indicated in Tablg VI, the results are
take the anisotropic PDE_(b1) with = 35. This value ofx similar for the observer synthesis conditions of Theofém 5.
renders the autonomous system unstable. We then synthesize
controller and observer gains using the results of Theo@ms X!ll. COMPARISONWITH AND RELATION TO EXISTING
and[® ford, = d, = 6, along with the inverse state RESULTS
transformation defined in Theorel 3. For the inverse stateln this section, we compare our numerical results with
transformationM (x)~! is approximated using a sixth orderseveral results in the literature which can be used for littabi

N ECESSITY OFSEMI-SEPARABLE KERNELS IN THE
LYAPUNOV FUNCTION
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time

0 0.2 04 0.6 0.8 1
time

(a) Evolution of closed-loop state(z,t). (b) Evolution of closed-loop state estimai€x, t). (c) Control inputw,(1,t) = u(t).

Fig. 2: Evolution of closed loop system for Example 2 with= 35 using controller from Theorerl 4 and observer from
Theoren{b.

analysis and control, including those based on Sturm-lilguv subject to the boundary conditions(0) = 0 and w,(1) +
theory and backstepping. kw(1) =0 and whereg; ando; are scalars such that

q(z) < ¢ and o(z) <oy.

A. Static Controllers Using Sturm Liouville Theory ) _ ) i
Now let us first consider Numerical Example 1, as defined

The output feedback controllers we construct are dynamjc Equation [6D) in Sectiofi XI. In this case, we have that
in that they rely on an auxiliary set of estimator dynamicz§0 —1, ¢ = A andoy = 1. Therefore, estimating the first
which must be simulated in real-time. By contrast, statitpat eigenvalue of[(63) we get that® ~ A—n2. Since, for stability
feedback cor_1tro||ers do not use an estimator and instegd rg)e require© < 0, for a large enoughs > 0, a control
only on a gain of the form, e.gi(t) = —ru(t) = —rw(l,1). input of the formu(t) = —kw(1,t) can stabilize [(60) for
Unfortunately, even for finite-dimensional systems thejm A < w2, This result is significantly more conservative than

of static output feedback design is unsolved whén# I. ¢ requits described in TabIE&TIHII which yield a stabiig
That is, there is no LMI or polynomial-time algorithm which., o ier for at least < 27.1179. Of course this result is not

is guaranteed to find a stabilizing output feedback Como”{particularly surprising, as static output feedback cdters are
if one exists [[38], [1B]. However, there are numerous resulf ¢ nset of dynamic output feedback controllers.

which give sufficient conditions for th_e existence of such a similarly, for Numerical Example 2 (Equation(61)) we have
controller, often based on the use of a fixed Lyapunov functio, ..\ _ ,3"_ .2 +2, gqlz) = —0.52% + 1.32% — 1.5z + 0.7+ \

For the parabolic PDE which we consider, Sturm—LiouviIIecmda(I) — 1. Thuspo = 50/27, g = 0.7+ A and oy = 1.

theory [10, Chapter 2] can be used to express conditions e efore, estimating the first eigenvalue BT1(63) we get tha
existence of static-output feedback controllers. Spdbfidar S ~ A — 17.58. As before, we requirgisc < 0. Therefore

u(t) = —rw(L, ), the stability of [1) - [2) depends on thet,, 5 |arge enough > 0, a control input of the formu(t) =
first eigenvalue of the following Sturm-Liouville eigenual —kuw(1,t) can stabilize[[80) for < 17.58. Whereas, from

problem TablesTVEV] we see that Theoreis 4 dfd 5 yield a dynamic

d dw(x output feedback controller for at least< 44.079.
= (102 + dwu) = po@eta), 62

wherey is the eigenvalue and

B. The Case Whedl + A* <0

For some values of the coefficientgz), b(x) and c(x)

JE&a . g(a) = c(x)@ o(z) = p(a) we may have thatd + A* < 0 on D,, where the operator

a(z) A is defined in[(¥) and the se&b, is defined in [(B). The
The boundary conditions for this eigenvalue problem agutputfeedback stabilization of such systems, i.e. systith
w(0) = 0 and w, (1) + kw(1) = 0. For our system, using A+ A* < 0 and collocated control/observation, is considered
the properties of the coefficientsx), b(z) and c(z) it can in [6]. The authors in[[6] show that for such systems there
be established that is continuously differentiabley and o €xists a scalar > 0 (possibly = oc) such that the control
are continuous and there exist scalarsand o such that u(t) = —xv(t) exponentially stabilizes the system. We wish
p(z) > po > 0 ando(z) > ¢ > 0. If y; is the first eigen- to see if our methodology offers a performance gain over the
value of [62), then it can be established using the RayleigRntroller proposed in_[6]. If we choosgz) = 1, b(x) = 0
quotient thatu; < iS¢, whereus© is the first eigenvalue of andc(z) = 7*/4, then

p(z)=e

the following constant coefficient Sturm-Liouville eigewe &2 2
problem A= ) + R (64)
d*w(x) Applying integration by parts and Lemra 1, it can be estab-

PO ) +aw(z) = pForw(z), (63) Jished thatA + A* < 0 on Do. If we apply a controller of
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d=6 7 8 9 10 11 then for any solutiony of Equations[(65) -[{86
§=801 127 1721 2031 22.66 25.78 y q ) -L(86),

TABLE IX: Max. exp. decay raté as a function of polynomial 2@, t) = w(,t) - /0 B, Sw(E, t)dg,
degree,d; = dy = d for Equations[{ll) -[(2) withA as in
Equation [[64) for which we can construct output feedba

(ias%a solution of the target system in Equatiohs] (67) - (68).
controllers using Theorenis 4 ahH 5.

rthermore, if the mapg : w — z is invertible, then stability
of the target system implies stability of the original cldse
loop PDE. For the example problem given, tliisis obtained

o as a solution of &ernel-PDEand can be found explicitly
the form proposed in [6], then(t) = —rv(t) = —rw(1,t), a5 (18]
for somex > 0. Using the theory in Subsectign XII#A it is
easily established that even for an arbitrarily large 0, the I ( A(x? — 52))
closed loop system state will decay with a rate close to, buf(z, &) = —A¢ —
less ther8n? /4. Whereas, from TableIX we observe that for Al? = ¢2)
di; = do = 11 we can construct an output feedback controllevhere/, is the first order modified Bessel function of the first
with a minimum exponential decay rate 2i.78, a significant kind. Moreover,& has an inverse of the form

improvement oveBr? /4. . @
(57 z) (z) = z(x, ) —|—/0 F(x,8)z(&t)dE,  (70)

, 0<¢<z <1, (69)

20,

where
7y ( NaZ = 52))
A2 —£2)

where J; is the first order Bessel function of the first kind.
Using properties of Bessel functions, it can be shown th#t bo

F(z,8) = —X¢ , 0<¢<e<, (70)

~100; o3 5 5 5 | kernelsE and F' are bounded on the doma{f¢, z) : 0 <
' oo ' ¢ < z < 1}. This implies that bott€ and£~! are bounded
Fig. 3: Control gainRy(z). with induced norms which we denote || and |7 ..

Now, to understand how this backstepping transformation
implies the existence of a Lyapunov function with semi-
separable kernels, we first note that stability of the target

C. Backstepping system in Equation§ (67) E(68) is established using thelsimp

Backstepping is a well-known alternative for the construdyYaPunov function
tion of stabilizing controllers for parabolic PDEs. Spegfly, 1 )
the backstepping approach defines a control law which, when Viarget(2) :/0 z(x)"dr = (2, 2),
coupled with an invertible state transformation, convents , , ) )
controlled parabolic PDE to the form of a desired staberWh'Ch' using[(6F) -((68), integration by parts and Lenitha 1
PDE (the target system). Although backstepping is not 3F obtain
optimization-based method and does not explicitly seascha f Viarget (2(£)) < —Viarget (2(1)), (72)

Lyapunov-based stability proof, it turns out that the estiste dt

of a backstepping controller typically impli_es the exisien_)f_ for any = which satisfies[(87) -[(88), where — = This
a Lyapunov function of the Forni (1L 7), defined by a multlpllellrmp"es 2

M and semiseparable kerndl§ and K. To demonstrate the

existence of this Lyapunov function, let us consider theesys Viarget(2(t)) < € “Viarget (2(0)) = ||2(,1)|| < e 2°
defined by Example 1,

z(x,0)]|-

Now, for the original system we define the Lyapunov

wy(,1) = W (@, ) + Aw(a, 1), (65) function
w(0,8) =0, w,(1,1) = ult), (66) Vytant (w) = (Ew, Ew) . (73)
where\ > 0. Now define thearget system Now, since for any solutiony(t), of the original system; =
Ew(t) is a solution of the target system, we have that
2t (x7 t) = Zzx (.I', t)a (67) d
2(0,t) =0, z.(1,t) =0. (68) 7 Vitant(w(t)) = - (Ew(-, 1), Ew(:, 1))
The key backstepping result is that there exists a function = % (z(-,1), 2(-, 1))

such that if

= %‘/target(z(t)) < —E‘/target(z(t))

u(t) = E(1,1)w(1,t) —l—/o (D1E)(1, 2)w(z, t)dz, — —Viarget(Ew(t)) = —€ (Ew(t), Ew(t))
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= —Vpiant (w(t)). may be approximated by polynomials, then the existence of a
backstepping controller implies the feasibility of Theoré
for some degree. Despite this similarity, there are, of seur
Votant(w(t)) < €™ Viyant (w(0)), differences between the proposed method and backstepping.
Specifically, our approach is optimization based, wherhas t
search for the backstepping transformation is not. Adgaga
|Ew(-,t)|| < e*%tng(., 0)]|. (74) of the proposed method include the ability to analyze stgbil
of autonomous PDEs and simple extensions to robust control

Bou?dedness off and £~ now implies |w(t)| < of PpEs with parametric uncertainty via Positivstellemsat
€7 [ cllEw @) and [|Ew(0)]| < [[€][z[lw(0)]], which yields  reqyts [30].

@Il < IE~H N cllEllce™ 2w (0)]],

which proves that,n: (w) = ||Ew||? establishes exponentialD- Finite-Dimensional Approximations

Therefore,

which means

stability of the original system. In this subsection we consider the merits of the SOS
We now show that,;..:(w) has a form consistent with approach with respect to finite-dimensional approximation
Theoreni#. Expanding That is, we consider whether there are advantages over model
Vitant (w) = (Ew, Ew) reduction techniques wherein the PDE is reduced to a set of
’ coupled ODEs - as in, e.d.][1].
we get Before continuing, we note that establishing a suitable
1 1z metric for comparison of finite-dimensional and infinite-
Votant (W) / / / w(&)dEdx dimensional approaches is complicated by the fact that that
the methods proposed in this paper are suboptimal. Thatis, w
/ / Yw(€)dEda are not seeking observer-based controllers which are aptim
in any sense. Rather, we simply seek observer-based con-
trollers which establish closed-loop stability. In thisise, our
/ / / VE(En)w(n)dndédz.  omods are roughly equivalent to existing finite-dimenalo

approaches in that for all numerical examples considered, w
are able to construct observer-based controllers for tdyita
high polynomial degree. In a sense, then, one could argue

Changing the order of integration twice in the last integuradl
collecting like terms, we obtain

Voo (1) = /1 w(z)?dz that finite-dimensional approaches are superior in that dine
plant able to go beyond stabilization and constrotimalobserver-
based controllers using a suitably high level of discreitza

/ / z)Hy (2, §)w(§)dsdz In practice, however, our experience has shown that there ar

disadvantages to discretization-based methods such as pol
/ / x)Ho(z, &)w(€)dédr, placement. Specifically, we have seen that if the reduction
scheme is not carefully chosen, discretization may result i
= <w,X{1,H1,H2}w>7 loss of controllability or poorly conditioned controlldiby

where matrices. To illustrate, consider the following model:

wi(x,t) = wee(x, t) + 15w(x, t),

(2,€) / E(n,z)E(n,§)dn — E(§, v), One approach to reduction of this PDE to a system of ODEs

is to use a finite difference method to approximate the dpatia
which has the form of a Lyapunov function consistent witlerivative as

Equation [[(IIF) using a semi-separable kernel where we have
L . 2 Axy,t) — t
M(z) =1, K1 = H; and Ky = Hs. In a similar manner, if  w,,(x,t) ~ (w(x + wi’ ) (=, ))
we defineP = X;; ¢, ¢,} Where 2

AIl + AZCQ

2 (w(w,t) —w(w—Awl,t))
1 - )

Gi(w.6) = [ P00 (. )dn + Pz ), Awi+ Az Ay

o where Az; is the step size to the left of and Az, is the
Ga(z, €) :/ F(n,z)F(n,&)dn + F(, x), step size to the right. Using this scheme we obtain an ODE

¢ model of the form

-1 _
thenP~" = X{; u, u,} and hence W (E) = Aw™(8) + B™ul(t), (76)

_ -1 -1

Vatant () = (P~ w, PP~ w), (79) wherew™(t), B™ € R™*! and A™ € R™*™ andm € N is
which is a form consistent with Theordrh 4. Thus we concludbe order of reduction. While relatively straightforwattijs
that for this class of systems, if we assume the funcfion approach creates significant technical challenges. Fonpgbea
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m 5 10 20 Boundary Condition Output (t)

m m ~ 7 25 63 —
cond(C(A™,B™))~ 10 10 10 Dirichlet w(0,t) =0 wa(L, 1)
w(l,t) = u(t)
TABLE X: Con(_jmon number ofC(A™, B™) as a function of Neumann w(0,t) =0 w(l, 1)
order of reductionn. wz(1,1) = u(t)
Robin w(0,t) + wz(0,t) =0 w(l b)

w(l,t) + we(1,t) = u(t)

a) Controllability of the Reduced Mod_eﬂ'he reduced- TABLE XI: Alternative boundary conditions and outputs for
order model must be chosen so as to maintain the Properygse [6D) and(B1).

of controllability and observability. In most cases, hoeev

there is no guarantee that a finite-difference approximatio — 5 o =

scheme will preserve these properties. For example, for the —piichist X = 177634 22.8645 233093 27.1179

finite difference scheme defined above, it is known that if = Neumann  14.8163 17.1814 21.8781  21.8781

the original system is controllable and a uniform grid sige i Robin 13.8367  16.6565 18.6050 18.9758
chosen, then the reduced system is also controllable. Hawev ) )

if one were to chose a non-uniform grid, then controlla}oiIitT'A‘BLE Xll: Max. A as a fu_nctlon of polynom_lgl degreg,
is no longer guaranteed. For example if one were to chode = &2 = d f?’f PDE [80) with boundary conditions as in
a logarithmic grid, form > 13 the reduced model is not 1ablelXl for which we can construct output-feedback boupdar
controllable (although it is still stabilizable). In suchcase, controliers.

the performance of the closed loop system will be limited by

the location of the uncontrollable eigenvalues.

b) lll-conditioned Controllability Matrix: Now suppose we

[ i truct output-feedback based controllers as aifunct
wish to perform pole placement by applying Ackermann&2" €ONS _
formula to the reduced order model. As mentioned, it can 9& @1 = d2 = d for PDEs (60) and(81), respectively, for the

shown that the reduced order model [n](76) is controllab undary conditions I|sted_|n_Taki]EXI using equnentmaie_
for any m € N when derived using uniform step size ates ofé = u = 0.001. Similar to the observation made in

(Az; — Au,) as established by the Hautus test. Howeve$ection[X], the numerical results in this section suggesat th
the pole placement problem (which is similar to our conditio®" methodology is asymptotically accurate for the correide

for exponential stabilization with desired decay ratejeebn alternative boundary”cor}dglons, thi‘ |s,hg|veln aPny|> 0, we
inversion of the controllability matrixC(A™, B™) - a step Zan_cznsirudctgontro edrs o_lsgrverz y;: ?osmgla abrgaggn
which is numerically sensitive to conditioning 6{A™, ). @1 = d2 = d. A more detailed study of alternative boundary

This is problematic since, as seen in Tdble X, the contrﬂ)llabcond't'OnS can be found in the thesis work bfl[14].
ity matrix for this system is ill-conditioned and the coridlit
numberworsensas the level of disretizatiom increasesThis XV. CONCLUSION AND FUTURE WORK
implies that as the level of discretization increases, migak We have defined an algorithmic, polynomial-time approach
errors may dominate - potentially resulting in unstable @p the design of observer-based controllers for a general
unpredictable controllers. Naturally, these issues ard- weclass of scalar parabolic partial differential equatiorsing
known and have been addressed in the literature througleasurements and feedback at the boundary. The results use
methods such as robust place placement [40] or GalerlgBlynomials and semidefinite programming to parameterize
schemes [19]. The advantage of the SOS approach, howevey, isonvex set of positive Lyapunov functions on the Hilbert
that the controllers are provably stable at the pre-lumptage spaceL,. By combining these Lyapunov functions with an
and thus the only numerical concern is implementation, Whignvertible state transformation, we obtain convex coodsi
does not appear to be sensitive to issues such as condifigin stability, controller synthesis and Luenberger observ
number. design. Furthermore, we have tested our results using pa-
rameterized numerical examples in order to show that the
stability conditions are accurate to several significanirég
and the synthesis conditions yield controllers for a larges<

The results of this paper may be readily adapted to othefrcontrollable and observable systems. Furthermore, we ha
types of boundary conditions. Specifically, the conditiafis
Theoremd R, [14 anf@l 5 can be easily modified to consider

Tabled Xl andXII] illustrate the maximum for which we

XIV. A LTERNATIVE BOUNDARY CONDITIONS

: o d=5 6 7 8

alterngﬂve boundary cond_|t|ons. Although.ecor!omy of spac Birichlet N =36.0199 330478 405930 44070
prohibits us from presenting these conditions in full, ifsth Neumann  29.8492 31.1447  31.1447  34.1584
section we give the results of numerical tests performed Robin 24.6490 27.8503  27.8503  29.4373

using Dirichlet, Neumann and Robin boundary conditions. _ ) _
Specifically, for the two PDES(60) an@{61) which defindABLE Xlll: Max. A as a function of polynomial degree,
Examplesl and 2, respectively, in SectioR XI, we consider?s = d2 = d for PDE [61) with boundary conditions as in

the boundary conditions and the outputs as listed in Table )Ilab![e{%l for which we can construct output-feedback boupdar
controllers.
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adapted the approach to three alternative classes of bgunda self-adjoint, we can writé/ (w(t)) = 2 (w;, Pw). Using
measurements and actuators. Finally, we have performedguation [IB) we expand this out to get

series of comparisons with existing results in the literatu
showing, e.g. that the method is analytically equivalent to
backstepping for controller synthesis and furthermoreus n
merically competitive for the examples considered. By gsin
an optimization-based algorithm defined by polynomials, Ve
results presented here have the advantage that they may b

5

V(w(t)) =2 (w, Pw) =2 T,

n=1

(77)

here

further extended to the problem of nonlinear stability sie@,
robust control, and control of coupled, multivariate, hyqmdic
and elliptic PDEs - topics of ongoing research.

APPENDIX

To facilitate presentation in this appendix, we use the

following lemmas. The first is simply a restatement of th
Wirtinger inequality

Lemma 1 ([31])). Letz € H?(0, 1) be a scalar function. Then

1(2(96) — 2(0))%dx < % 1 2o () da
0

The second lemma is accomplished by splitting the integra

in two parts and applying a change in the variable of mtegr
tion to the second part.

Lemma 2. For any bivariate polynomialsK’ and P the
following identity holds for anyw € L1(0,1)

I (/“f
[
//

Lemma 3 (Analysis) Given polynomialsa, b and ¢ with
a(z) > a > 0, for all z € [0, 1], suppose that there exists
a scalare > 0 and polynomialsM/, K; and K> such that

€)de + / (x,é)w(f)dé) di

K(z,8) + P(&, x)] w(§)dsdz

Pz, &) + K(& z)] w(§)déda.

{M,K1, K>} € Zq, dyse;

(b(1) — ax(1)) K1 (L, 2) — a(1)(D1K1)(1,
(b(1) — ax(1))M (1) — a(1)M,(1) <0,
KQ(O,SC) =0.

z) =0,

Let

V(w) = (w, X(a kK03 W0)

whereXyy i, k,} 1S as defined if3). Then, for anyw which
satisfies Equationl8) - (19),

V(w(®) < (), X g ey ®))

Where{M,f(l,f(Q} = QS{M, Kl,KQ}.

Proof: Let P = X(ar k. k.3 SO thatV(w) = (w, Pw).
If w satisfies [(1B) -[(19), then takmg the time derivativ
of V(w(t)) and since{M, K1,Ks} € E4, 4, implies P

1
efl :/ We (z,t)a(x) M (2)w(x, t)dz,
o
Iy :/0 wy(x, )b(z) M (x)w(z, t)dx,
Is :Z/Av Wee (x, t)a(x)
2
Z /A w2, t)b(z)
:i i
/0 w(zx, t)? M (z)c(z)dx
—l—Z/Aiw(:v,t)c(x)

L ereA; = {(&,2) : 0< €<z <1} andAy = {(§2) :
x < & < 1}. Applying integration by parts twice and
usmg the boundary conditiom (0, t) = w,(1,t) = 0 yields

Ki(z, §w(¢, t)dédr,

e Iy= Ki(z, (€, t)dEdx

r

5

1
— w.(x 2@;0 xT)ax
Ty= = [ oo 0Pale) M @)
+%/0 %[a(z)M(x)]w(
— L (@ OMO) + oML (L1

Sincea(z) > a > 0 and{M, K1, K2} € 24, 4,.c, We have
a(x)M(z) > ae. Thus, by application of Lemnid 1 we get

/01 w(z,t)*dz.
) dz

w(l,t)?.

Again, applying integration by parts once and usin@, t) =
Ol

x,t)%dx

2

de < ——ae

1
—/ wy (2, )2 a(z) M (z)

0
Therefore, we conclude that

62

1
I, S%/o w(z,t)? (@ [a(x)M (2)] — %ae
1

— 5 (a:()M) + a(1) M, (1) (78)

1/t o) 1
Tommg [ (o 55 )M ()] das (DM (1u(1, 07
(79)
Since{M, K1, K3} € 24, d,,e, We haveK(z,&) = Kz (£, x)

and thus Ky (z, ) Ky (z,z). Exploiting this property,
the constraintK;(0,2) = 0, and the boundary conditions
w(0,t) = w,(1,t) = 0, we apply integration by parts twice
to obtain

olw(ac’t)2 ([

0

¥y = ox

[a(z) (K1 (z, §)—Ka(z, 5))]] . ) dx
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2 B NN
+Z/iw(x,t)<aa—;[a<x)m<x,s>]> wie tydede eIy = Piw and (M, Ky, Ko} € QoM I, Ko}

Proof: Taking the time derivative o/ (w(t)) and since
P~ is self-adjoint, we obtain

V(w(t)) =2 <wt,77_1w>
wm + b(wy + (- )w, P*1w>

5 (Pa) + D) = (Py) + )Py )

1
—w(l,t)/ a; () K1(1, 2)w(z, t)dz
1
—w(l,t)/o a(1)(D1 K1)(1, 2)w(x, t)dx.

Applying Lemma2 and usinds; (=, ¢) = Ky (€, z), we get

= 2(a(
<5
o= [ wte 7 <[§ ) (5 (2,) ~ KQ(““”@”L_) i =231 )

wherey = P~1w and

1 82
g Iy= | a(z) 5= (M(x)y(z, t)y(z, t)d,

+ Z / w(z,t) 3””2 {a(x)Ki(x’g)] w(é, t)déda. /01 out
652 a(é)Kl(ZC,f) FQ :/ b(x)g(
(80) o ox

2 1
Applying integration by parts once and following the samer, _ / alz (/ Ki(e Nd ) .t
procedure as fof';, we get 3 Z () 922 Oy (&, t)dE ) y(z, t)de

- _ i%/&w(:v,t) [Zj:j:r [ZEQKE EH w(€, t)dédx Iy —Z/ (/ Ki(x ,E)y(é,t)dg) y(z,t)dz,
+w(17t)/01 b()K, (1, 2)w(z, t)de.  (81) I's= /0 c(x)M(@)y(z, t)2da

—w(l,t)/( (DK (1, 2)+a(1)(D1 K1) (1, 2)) w(zx, t)dx

M(x)y(:v, t))y(‘rv t)dx,

Finally, employing Lemma&]2 produces T Z/ (z,t)c (,8)y(& t)dédx
1
s :/0 w(z, t)*M (z)c(z)dz whereds = {(6.0) : 0< €<z < 1} Ag = {(E.2) : 0<
2 4 x <& <1}, p1 =[0,2] and B2 = [z, 1]. Before proceeding
+ 5 | w@t) (e(@) +e(€)] Ki(z, §)) w(E, t)dedz. W calculatey(0, t). The definitiony = P~'w implies
i=1 = A 1
(82) w(0,t) = M(0)y(0,1) +/ Ko(0, 2)y(z, t)dz.
0

Finally, we combine the term$ (I78) E_(82) into the der'vaTherefore sincew

tive (Z4) and use the constraints (0,£) = 0 and K5(0,z) = 0, we get

y(0,%) = 0. Now, since M (z)a(z) > ae andy(0,t) = 0,

(b(1) — ax (1)K (1,2) — a(1)(D1 K;)(1,2) = 0, applying integration by parts twice and using Lemina 1
(b(1) = a,(1)M(1) = a(1)M,(1) <0, produces
1! 2
to eliminate extraneous terms, thereby completing the fproo F1§§/O (am(:C)M(x)-l-a(x)]\/[m(x)—%ae) y(x,t)%dx
[ |
1 2
Lemma 4 (Controller Synthesis)Given polynomials, b and T3 (a(1)M(1) = as ()M (1))y(1,¢)
c with a(z) > a > 0, for all z € [0, 1], suppose that there +a(1)M(1)y.(1,t)y(1,t). (84)
exists a scalar > 0 and polynomialsM, K; and K, such _. . L . .
that Similarly, applying integration by parts once yields
1 1
{M7 K17 KQ} € Edl,dz,ea K2(07x) =0. F2 25/ (b(l’)Mm(l') - bm(I)M(l')) y((E, t)QdI'
0

Let + %b(l)M(l)y(l,t)Q. (85)

_ —1
V(w) =(w, P~ w), Applying integration by parts twice and Lemrh 2 yields

whereP = X(y k,,k.} and Xja i, i,y is as defined ir@). 1 9

Then, for anyw which satisfieq25) - (26) I3 :/0 (a(ff) [% [K1(z,€) — Kz(%ﬁ)]h ) y(a,t)*de

V(®) < (u(0). X, ey (1) 2 o217 i)
UML)+ () (M 2 Jy YD) la@)%—i} e §) e

+2a(1)M (1)y.(1,t)y(1, 1), (86)



In a similar manner as faf';, we obtain

arr g e e
)

Z/ xt{gg

Finally, applying Lemm&l2 td's produces

1
T :/0 c(x)M (x)y(x,t)*dx

)+ c(§) Ki(x, §)y (&, t)ddz.

(88)

1 2
+ ig/Aiy(x,t)(c(x

[19]

[20]
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[22]
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[25]
[26]

Substituting Equationd (84) {{B8) int@_(83) completes the

proof.
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