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A State-Dependent Updating Period For
Certifled Real-Time Model Predictive Control

Mazen Alamir

Abstract—In this paper, a state-dependent control updating computational cost have been rapidly identified as appgalin

period framework is proposed that leads to real-time im- properties in the real-time context which is the very reason
plementable Model Predictive Control with certified practical for which certification results were required.

stability results and constraints satisfaction. The schem is
illustrated and validated using new certification bound thd is ) ) ] ] ]
derived in the case where the Fast Gradient iteration is used Regarding the other alternatives, active set iteratiorfs [8
through a penalty method to solve generally constrained corex while computationally efficient and while showing a prowabl

optimization problems. Both the certification bound compugtion  finite number of iterations to converge (for QP problems),
and its use in the state-dependent updating period framewdrare  geam 1o resist to the derivation of convergence rates which

illustrated in the particular case of linear MPC. An illustr ative kes i ible th tati f tification b ds. A
example involving a chain of four integrators is used to show Makes Impossibie the computation or certincation boundas.

the explicit computation of the state-dependent control ugating  for interior point methods_[7], [15],.[4], certification bods
scheme. exist [11] but seem to be systematically over pessimistic

[14]. Nevertheless, for many problems, it might still be mor
appropriate to use these efficient although uncertified or
pessimistically certified algorithms rather than to usecaavsl
. INTRODUCTION certified iterations. Theight choice is problem-dependent.
Modern control paradigms such as Model Predictive
Control [10], Moving-Horizon Observers [[1] or adaptiveThe first part of this paper belongs to the family of
identification of varying models[[16] to cite but fewworks that address the derivation of certification bounds
issues involve the real-time, on-line solution of consteai for fast gradient-based iterations in the presence of géner
optimization problems. In such applications, the outpwonstraints. This is motivated by the nice properties
of the optimizer (namely the sub-optimal solution of thenentioned above, namely the reduced complexity of the
optimization problem) is fed to some neighboring modulesingle associated iteration that enables the use of exlyeme
in order to achieve some engineering tasks. The quality sfiort updating period. As it has been recently shoin [2],
the global task may strongly depend on the quality of thg], [6], this last property may compensate the drawback
sub-optimal solution and the frequency with which it can bef potentially higher number of iterations when compared
updated by the optimizer and since this solution has to k& some alternative methods, especially in uncertain sbnte
delivered in finite and probably short time, it is importaat t(which includes perfectly known systems under unpredietab
be able to precisely link the quality of the suboptimal solut set-point dynamics). In such situations, as underlined by
to the available computation time for a predefined embeddfd], it is important to distinguish between the concepts of
computation power. When the latter is not yet defined, suelmalytical complexitywhich involves only the number of
insight enables to choose the appropriate computationetpo iterations (regardless of their inherent computationastlco
given the required quality of the sub-optimal solution. and thearithmetical complexitywhich accounts for the total
number of elementary operations until convergence which
The last few years witnessed an increasing interest in tieobviously the appropriate indicator in real-time comtex
certification issue([14],[[9],L[5]. These almost simultanso and this is precisely why fast gradient is an interestingoopt
works proposed certification bounds for fast gradient-Base
iterations [13], [12] applied to Quadratic Programming JQPThe second part of the paperproposes a general framework
problems involving only simple constraints that enableyeaso explicitly account for the arithmetical complexity by
projection on the admissible set. Otherwise, the iteratioincluding the computation time for a single iteration in the
that are needed to perform the projection have to be countggbrall convergence analysis and trade-off handling. This
as well and certified with some associated lower boungsature if absent from recent works on the certification éssu
which would invalidate the relevance of the proposed boundsuch as[[14] where the number of iteration is induced from
the required precision on the solution and the correspgndin
It is not surprising that recent certification-related fssu number of iteration is derived as a consequence. This
concerned fast gradient-based iterations. This is becawgggumentation suggests that provided that one uses sofficie
the simplicity of this iteration and the associated lowigh number of iterations, convergence of the real-time MPC
- . . will be guaranteed. This paper shows that this argument
M. Alamir is with CNRS/Gipsa-lab, Control Systems Dept.,. : . - . .
University of Grenoble, France e-mail: mazen.alamir@gbégrinp.fr 1S generlcally erroneous and that in realistic situaticthe,
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beyond which stability can no more be guaranteed. wherep is called the penalty parameter whife: R"» — R
is the constraints induced cost given by:

More precisely, the contribution of the present paper
lies in the following items: V(p) = Z [max{0, ei(p)})* + Z max{0, ci(p) + 24}

i€l iclp

1) it gives a certification bound for the fast gradient For a given paire = (e, ey) Of strictly positive reals, a
algorithm when applied to solve a general (not necessarégndidate valug is called anz-suboptimal solution off{1) if
simple bounded) convex optimization problems by meatise following two conditions hold:
of a penalty approach. The number of iterations needed to
achieve a prescribed level of precision on the optimal cost [folp) = F7| <o and ¥(p) < 53/1 @)
and a prescribed level of precision on the satisfaction ef thyhere ¢ denotes the optimal value dfl(1).
soft constraints (while the hard constraints are fullysfed)
is given as a function of the problem’s characteristics. The relevance of the second constraint [@ (3) lies in

the fact that when satisfied, this constraint implies thathel
2) it shows how the certification bound so obtained camard constraints are rigorously satisfied while the maximum
be used in the framework of real-time MPC in order tgiolation of any soft constraint is lower than,.
assess the practical asymptotic stability of the closeg-lo
performance under a state-dependent control updatingceriThe first aim of the present paper is to derive the necessary
The latter is computed based on some key properties of tigations that enable for a given precisiento choose the
MPC formulation. This second part while using the results @fppropriate penalty coefficient and the stopping condition
the first part has a general scope and can be applied to @Wthe fast gradient iteration to be used in the unconstgin
available algorithm with computable certification bound.  minimization of the cost functiorf defined by[(2). Moreover,

the bound on the minimum number of iterations that
This paper is organized as follows: Sectigd Il defineguarantees aa-suboptimal solution to the original problem
the class of optimization problems addressed in the pap€fiderived. This is done in sectiohs]lll apd]IV.
together with the associated definitions and notation.i@ect
[Mstates the working assumptions and gives some preliminarhe second aim is to show that this certification result
results that are used in the next sections. The algorithm E(f@ﬂ any similar one for possibly another algorithm) can then
the associated certification bounds are presented in 8880 be used to design a real-time constrained MPC implementatio
with instantiation to the specific case of QP problems. Ttee ug which a state-dependent control updating period is used t
of the certification bounds in real-time MPC implementatiopield certified convergence properties. This is done inisact
through state-dependent control updating period is prehosy]
in section and the concrete computation of the parameters
involved in the expressions is shown for the specific case Phe results are proved in a rather general convex settings
linear MPC. Finally, the whole scheme is illustrated througand for both goals, the expressions enabling the parameters
the MPC-based tracking problem for a quadruple integratgrolved in the statements of the results to be computed are
under state and control constraints. For the sake of claity explicitly given in the specific case of QP problems and
the technical proofs are gathered in appeiidix A except thagfear MPC design.
that can be given in few words.

IIl. ASSUMPTIONS AND PRELIMINARY RESULTS

Il. PROBLEM STATEMENT A. Definitions and Notation
C_:onsider the following optimization problem in the decisio  |n what follows, f (p), f,(p) andy’ (p) denote the gradients
variablep: of the functions w.r.t the decision variable The euclidien
norm of f (p) is denoted byg(p) = ||f (p)||. For a scalar

i, folp) eip) <0 Vi€ Ul :={1,....nc} (1) continuously differentiable functiorf defined onR”, the

. 1 . X .
where I, and I,, are the disjoint subsets dfl, ..., n.} that notation’ € S, states that is a u-strongly convex function,

define a partition of the set of constraints |nt0 soft and har(?mely for all(p1, p2):

cor_lstralnts respect|velyf9() is the cost to _be m|n|m|_zed U(ps) > £(p1) + (€ (p1),p2 — p1) + EHpQ —m|? (4)
while ¢; : R*» — R defines thei-th inequality constraint. 2

Note that saturation constraints gn are supposed to bewherey is called the convexity parameter 6f13]. Similarly,
included in the set of inequality constraints. It is assumdtie notation/ € F; indicates that the continuously differen-
that fo andc¢; are differentiable for alt. tiable function? satisfies for all(py, p2):

, L
The algorithm proposed in this paper invokes the following £(p2) < £(py) + (£ (p1), 2 = p1) + 5 [Ip2 —p? (5)

enalty induced augmented cost:
P Y g When / satisfies both[{4)=(5), the notatighe 81 1 is used.

f(p):= folp) +p x¥(p) (2) The setC denotes the set of singular points f’@ ), hamely



the set ofp such thaty(p) = 0. Given a subsel C R"», the holds for allp. O
notationd(p, A) refers to the distance from to A, namely The expressions of the parametérs L, po, Do and 3 in
d(p, A) := min.c 4 ||z—p||. The short notatiod(p) := d(p,C) the specific case of quadratic cggtand affine inp constraints
is used for the specific s&t. The setA,—, is the set ofp ¢; are given in sectioh TV-IC.

such thaty(p) = 0. Given a bounded subsét, dp denote
the radius of? namelydp := sup(,, ,,)ep> 1 — 22| For a
compact sekK, the notationo(X) denotes the maximum norm
of elements inX, namelyo(X) := sup,x |||l

C. Preliminary results

In this section some preliminary results are stated. Faebet
readability, all the proofs are given in the appendix. Thstfir

result gives a property of the gradient @f at the stationar
B. Working Assumptions g property g o y

point p*:
Assumption 3.1: The cost function value fy(p) is
nonnegative for alp. Lemma 3.1: The following inequality holds
This assumption can be made satisfied by adding sufficiently [ fo(p™)Il < Do ©)

high positive constant. It is quite common in MPC conteXbzor See AppendikA.
where the cost function refers quite often to the integrahef

tracking error that is added to some positive terminal term.p,o following result characterizes the behavior of the

enalty ter in terms of the penalty coefficie
Assumption 3.2: There are two reald, > 0 and L, >0 P y termy p y nt

1 1
such thatfo € 7, andy € Fi | Lemma 3.2: If p > Lo/j then the following inequality:

Assumption 3.3: There isuo > 0 such thatfy € S, . <Ly Ko 12 2Lo |2
0 < —|d(p) + —| wherekg := ——/ —1(pu
¥(p) [ (p) \/_} 0 \/uow(p )

Moreover, ¥ is convex. 2 D B
(10)
Note that this assumption implies thate S}m and that there ) .
is a unique critical point forf which is denoted hereafter byholds for allp. In particular, forp™ one has:
p* € C. therefore according to the definition dfp), one has o Lyr?
d(p) = |p - p*|. Y(p*) < % (11)

In what follows, the notationp, and p, refer to two PROOF See AppendiXB.

vectors such that: -~ ] ]
Note that Lemma_3]2 quantifies how increasipgleads

pu := min fo(p) 5 ¥(pa) <0 (6) to a smaller constraint violation depending on the amount of
. ? _ o _ ~violation v (p,) at the unconstrained minimum, of f.
namely,p, is the unconstrained minimum gf, while p, is
any admissible point. Having,, the following definition can The following corollary gives a bound on the difference in
be stated sincg is 1supposed to be con.tlnuously differentiablgne cost f, evaluated at the un_constrained Optiml;uﬁ of
and becausgy € S,, [Assumptior3.B]: f = fo+ p¢ and the true optimal cost as a function of
constraint violation:
Definition 3.1: Define Dy by:
’ . opt i i TN
Dy = sup Ifo@)|l =0 @ . Lemma 3.3: Let*p be the opt|_maI so!u_uon of the orig
Fo(P)<fo(pa) inal problem [[1).p* the unconstrained minimum of. The

Remark 3.1: In fact, the knowledge of the admissible poin{OIIOWIng inequality holds:

p. is only required to computd,. therefore, if an upper

bound of D, can be found, the knowledge of, is not  |fo(@”) — fo@") < Do[
mandatory. This is clearly shown in sectlon TV-C in the sfieci

case of QP problems [see inequalfyl(23)] . This is cruciatsi PROOF. See Appendik .
in the MPC context the constraints are state dependent and it )
may become cumbersome to compuitdor each current state. Using Lemmd_ 3.3 one can prove the following result:

wgq%+%{ww>

) e

The next assumption concerns the behavior of the penalty magorollary 1: If the following inequality holds:

outside the admissible set. e 1
[W )} < Zie) =20 (1 + 2Di2°e) - 1] (13)
Assumption 3.4: There isg > 0 such that the following 0

inequality: then the stationary solutiop* satisfies:

9) > B x [dlp, Ay—o)] ®) Do)~ fol")| < ¢ (14




PROOF. This can be easily obtained after noticing that thalgorithm 1 [py, qn, an] = F™) (po, qo, o)

rh.s of [12) is a second order polynomial ¥ (p*)/p. 1. fori=1: N do

Writing that this polynomial is equal te and solving for it 2. Pip1 & Gi — f,(Qi)/L

gives the result. 0O 3  Computea;+1 € (0,1) solution of a?,; = (1 —

@iy1)0d + poiy1/L

Note however thatp* is never reached exactly. Instead, 4 Bi + (i(1 — ) /(a? + aiy1)

the fast gradient iteration will be used to reach an iterate: Qis1 < Dit1 + Bi(piz1 — pi)

p that is close top*. Now since the available certification 6: end for

bounds on the fast gradient iterations concern the guardnte

value of | f(p*) — f(p)| while the z-suboptimality is defined

in terms of the original cosfy, the following lemma gives a  proposition 4.1: ([13], page 80) The successive iterates of

link between these two indicators: Algorithm I starting from the initial guessy, oo = \/u0/L
and gy = po satisfy the following inequality:

fi) = f(p") <

Lemma 3.4: The following implication holds for alk:

[f(0) = f) < ef = Ltpo il ei 1 2
{ ] } 5 X min (1-2¢), 1o X |lpo — p*|| (18)
N 2¢ |2 Lo | 2¢
{|f0(p) = fo(p*)l < Do 1o + PRI } (15) Whe_rec := +/po/L and wherep* stands for the unconstrained
minium of f. &

PROOF. See AppendikD.

The following is a direct consequence of Proposifiod 4.1:
Here again, LemmB_3.4 gives the condition on the precision
€1 required onf in order to induce a precisios, on fo, Corollary 3: If the initial guess satisfie§p, — p*|| < d
namely: then for anye > 0, the integer:

Corollary 2: If pis such thatf(p) — f(p*)| < e; with N(e,v) := max {O,min{%, %(\/g— 1)}} (19)

[@] < Zuea) 16) where = 2¢/((L + 110)82) ; ¢ = \/pio/L
Bol is an upper bound of the number of iteratioNsneeded by

whereZ, is the function defined by {13hen, one hasf,(p)— Algorithm [1 to deliver a sub-optimal solutiopy satisfying
fop)| < ea. [f(pn) = F(P)l < e o

PROOF. Use the same arguments as before since the r.h.sPGPOF Inject|[po —p*[| < & 'in (18) and impose that the r.h.s

(19) involves the same polynomial as 12). IS < €. .
(WE:) oy n112) Now using the bound offipy — p*|| < r(po) given by [I7),

The certification bound of the fast gradient needs dR€ following result follows:

upper bound on the distance between the initial ggeasd

the minimizer of f, namelyp*. The following lemma gives ~ Corollary 4: Given any initial value po, let v :=
such an upper bound in terms of the value of the funcgion €40/ [(Z + 10) f(po)] then N(c,vo) is an upper bound of the
at the initial guess: number of iterationsV needed by Algorithnfilll to deliver a

sub-optimal solutiorpy satisfying|f(pn) — f(p*)| <e. O
Lemma 3.5: The following inequality is satisfied for af:
) B. The Proposed Algorithm
Ip* = pl| < { f(P)] =:7(p) (17) The proposed algor|thm. involves the quantities defined by
Ho (20)-(21) that depend on:
« the problem’s intrinsic propertie§uo, Lo, Ly, 8, Do)
« the unconstrained solution-dependent paramegefsee

@9

« the desired precision pait:= (g9, €y)

PROOF This is a direct consequence of the inclusjoe S}m
and the fact thaff, (and hencef) is positive. O

IV. THE ALGORITHM

o 2Ly k3
A. Recalls on the Fast Gradient iteration = €2 m = Ho Zz(Eo)
5 1= 5 41—
The fast gradient algorithm proposed in [13] is commonly ,, .= % (20) 5052 2 21)
used to perform unconstrained minimization of a functfoa 2625 (e0/2) N2 1= 4L1"
¥

S, Itis briefly recalled through Algorithri] 1 for which the
following convergence result holds ps = Lo/B



Th

ese quantities are used in Algoritfiin 2 below:

Algorithm 2 p* = A(po, € := (€0,€y))

Proposition 4.3: Provided that the set of inequalitiely <
B implies the conditiorp € P, the following inequality holds:

Dy < [/\mam(H)] P+ ”FH (23)

1 ag = (10/L)%, qo == po where

2: p = max{p1, p2, p3}

3: n = min

%= \/ﬂo{% m} S I VIFI2 + 2Amin (H) [£] o0
5t Y0 = npo/[(L + po) fo(po)] Amin (H)

6: Nmaz = N(Q '70) . .

7. Gmin = po\/20/L in which

8: again=true _ 1 )

o: while (again)do F = 5 Amaa(H) [o(B)]" + | F| - o) (25)
100 [pir1, Gir1, i) = FGW (pi, qi, i)

11: if [(i > Npaz) OF (9(pi) < gmin)] then PROOF. See AppendikJF.

12: again=0

13: else Assumption[3 4 is satisfied wittB := o, (A) which
14: i=i+1 is the lowest non zero singular value of the constraints
15; end if matrix A. The coefficientsq involved in lemmd_312 and the
16: end while expressions[(20J=(21) used to compuyteand n; is obtained
17: p* = p; using the values ofq, 3, uo andp, mentioned above.

. . I NUMERICAL EXPERIMENTS In order to check the validity
The following result gives a certification bound on th%]c the certification bound\' ), 500 random QP
number of iterations needed by Algorithth 2 to achieve an (po; €0, &), . )
=-suboptimal solution of the original problem problems have been generated with- 10 decision variables
' andn, = 20 constraints. More precisely := CCT + oI
is used whereC' € R™*! ando € [1073,1], F and sy has
been computed so that the cost|jig — p.||% + 1 wherep,

is randomly generated. The constraints matrides R"™*"

Proposition 4.2: Let be given a precision paig :=
(€0,€¢), an initial guesgpo. Let yo := nuo/[(L + o) fo(po)]
where n := min{n;,n2} with the n;s given by [21). The " .
algorithm in whichp = max{py, ps, ps} is used with thep;s and B € R™ has been randomly generated so that a feasible

. . ; solution exists. The precision, = 10~2 has been used while
defined by [2D) involves at most (¢, 7) unconstrained fgst eo has been systematically taken equal 1td of the true

gradient elementary iterations before it delivers an esm timal cost that is obtained hYUADPROG-MATLAB Solver
p* that is ane-suboptimal solution of the original constraine puma’ . by '
he initial guess is systematically taken equalOt@as one

optimization problemi{1). might use in cold start MPC context.

PROOF. See AppendikE. The results are shown in Figufd 1 where the histogram
In the remainder of the paper, the maximum number gyer the 500 trials of the ratio between the effectively
iterations that guarantee the precision as expressed n%e_d_ed .number of iterationy” and the maxmal_computed
Propositior Z2 is denoted by: certification boundV,, ., (step 6 of Algorithm 2) is plotted.

y: The results suggest that for this class of QP problems, the

(22) bounds is not that conservative and that since some scenario

lead to a ratio between 0.5 and 0.6, as far as certification is

needed, it cannot be strongly reduced.

N(pOa €0, 6’111) = N(Ca ’YO)

as the arguments d¥ completely determine and .

C. Case of Quadratic Programming (QP) problems

Here, the expressions dfy, Ly, 1o, Do and S are given in

the specific case of QP problems where the cost function alnd thi . it i d that tification bound
the constraints take the form: n this section, it is assume at a certification boun

1 N(po,co0,ey) is given for some algorithm. Based on such a
fop) = 5p"Hp+ F'p+s0 5 cilp) = Aip = By

V. APPLICATION TOREAL-TIME MPC

bound, a real-time MPC implementation framework is pro-
posed using a state-dependent control updating perioéhigad
In this case, Assuming tha{, is such that assumptidn_8.1to provable practical convergence. It is therefore impurta
holds, it is straightforward that Assumptidns|3.2 &nd 3.BI80 ynderline that the results of this section does not nedéssar
With Lo = Apaa(H), Ly = Omaz(A) and g = Amin(H).  relate to the use of the fast-gradient algorithm as they can
Moreover, one hag,, := —H ' F. Now according to remark apply to any algorithm for which a certification can be asso-
8.3, p, is not needed provided that an upper bound By cjated that depends on the initial guegsand some required
can be derived. This is the aim of the following propositionprecision pair(eo ande,) in the sense of{3).



Histogram of the ratiaV/N,,qx set-point changes whilé&? accommodates for the presence

40 : : : : : of disturbances that affects the input of some integrator in
the system or for the presence of unpredictable time-vgryin

30 | set-point.

20 .

10 | The cost function is defined at instart based on the
knowledge of the state(¢) (including the current value of

0 s sn oo ool - : the set point and the disturbance estimation and predjction

0 0.1 0.2 0.3 0.4 0-5 0.6 This leads to a constrained optimization problem of the form
N/Nmaz (@ in which both f, and ¢; are dependent on the current
value z(t) of the state, namely:
Fig. 1. Histogram showing the statistics of the raNg/N;,q. between the folp,z(t)) ;5 w(p,x(t))

effectively needed number of iteratiod$ and the certification boundV,,, =
computed from the theory when using the numerical experisndescribed

vy . Consequently, the call of Algorithin] 2 as well as the bound

(22) on the number of iterations must now incorporate the
statex(t) as an argument, namely:

A. Definition, notation and working assumptions

(29)
In this section, a set of assumptions are stated. Not all of

them are used in all the subsequent results. That is Whylfhorder to use the results of the preceding section, onesneed

the statement of each result, the assumptions that are dheddefSsume that for anl: there are positive realso(x), Ly (x)
L : and 3(z) and a strictly positiveuo(x) > 0 that play the
are explicitly mentioned. ) ) . .
roles of Ly, Ly, B andy as defined in the preceding section.

ﬁ* :A(p075015’¢7x) ) N(po’go,gw,l')

In MPC framework, the controller disposes of a mod
of the form

&= F(z,u)

| . .
?\low if for some reasons, one knows that the pais, z)
involved in [29) belongs to some compact §et= P x X,

then one can obtain a certification bound that depends only

(26)
where the following assumption is used regarding the defirﬁ[1 the precision parameters= (<o, ), namely:

tion of the vectorz:

(z,u) € R™ x R"

Nc(eo,eq) = (me)ue((CN(p, €0,Eqp, L) (30)

Assumption 5.1: The state vector: involved in [26) gath- Moreover, the following result shows that the bound
ers the physical state of the system together with the curré¥c(co, <) can be computed through static optimization steps
set-point and current estimation of the disturbance. Thdaho involving the functionsf, and1:
also incorporates the assumption on the future behavior ofProposition 5.1: Let a compact se€ := P x X be given.
these exogenous variables. the boundN¢ (e, €,,) defined by[(3D) can be computed by the

following steps:
We consider that the future control profiles are parametrize 1) Computeyy™** according to:
through a finite dimensional vectgr of degrees of freedom o ,
such that at each instantthe future profile depends qi(t) P = glgg{lﬁ@wff) | fo(pu,z) = 0}
according to:

(31)

2) ComputeL, Ly as the maximum oL (z) and Ly (z)
u(t+s) :==U(s,p(t)) s€[0,T) (27) overz € X
where U/ is some predefined map arid is the prediction 3) g\?eTxplgag ando as the minimums of (z) and o ()
horizon. 2L
8 4) Computes;'™* := ﬁm

Since the MPC has to be computed based on the predictiord)
of the future state (in the sense of Assumptlon] 5.1), the6)
following assumption is needed to characterize the state

prediction error: 7)
8)
Assumption 5.2: For each compact sét to which belongs  9)

Computep™** using [20) in whichx]*** replacess
Computen™™ := min{n;,n.} where then; are com-
puted by [[ZIL) in whichpy™*® replacesp.
CompUtefémlm ‘= MaX(p z)eC fO(pa ,T)

Computeyy™™ = 1" o /[(L(p™*) + pio) £

Computec™" := /o /L(pme*)

the pair(p(t), z(t)), the predictioni(¢ + 7) of the future state Finally compute the desired quantity:

starting fromz(t) and under the control profil(-, p(¢)) can
be affected by an error satisfying

|2t +7) -2t +7)| <EQ+E:xT (28)

Note that E2 in (28) accommodates for unpredictable

Ne(eo,e) i= N (™™ A5y (32)

where N is defined by[(19).
PrROOF Straightforward as the computation systematically
takes the worst case towards the increasé&vof

d



In section[V-C, Explicit computation of all the quantities
involved in Propositiod 5]1 is given for the specific case of
state-dependent QP optimization problems that arise in the
linear MPC context.

It is also assumed that the cost functigh is proper in
both p andz in the following sense:

D¢

Assumption 5.3: For any positive reath > 0, there is a . _
compact seC, such that the following implication holds: ~ Fig- 2. lllustration of Assumptioh 5.6.

{folp.2) < 0} = {(n,2) € Cy} (33) _ | | o
) ) Regarding the penalty functiof) the following assumption is
Regarding the dependence fif and on z, the following ,seg:

assumption is considered:

) N Assumption 5.6: [Figure[2] For any compact sét, there
Assumption 5.4: For any compact seéf, there are positive j5 5 positive realDc > 0 and a positive functiom(-) such

real K2, K¢ > 0 such that : that -
[ fo(p,z1) — fo(p, x2)|| < KQ - [lz1 — z2]| (34) Z(s p,x) > max {0, ¢(x) — Dcs} (38)
(o, 21) = $(p22)| < KE - [lor — @] (35)
for all (p,x) €

for all (paxl)a (p7 1'2) eC.
Note that condition [(38) simply states that with bounded

A typical formulation of fy(p, zo) in MPC is given by: control, there is a limitation on the speed with which the
state can be steered to the desired region. With this respect
fo(p,z0) == Q&(T,p,z0)) / U(z(s,p,20),p,8)ds  ¢(z) is simply a state dependent term inthat expresses

how far doesx lie from the desired region. This notation
= Q&(T,p,x0)) +/ (s, p,xo)ds (36) enables many situations to be handledrascludes set-point
definition and therefore, mesures of the difference between
where z(s, p, o) is the predicted state value at instant the physical state of the system and their desired value can
starting fromz, at instant0. take the simple form expressed bjr).

Regarding the formulation of the MPC, the followingFinally, the following assumption is used to characterize t
(commonly satisfied) assumption is needed in the sequel: available computational facility:
Assumption 5.5: The MPC formulation is based on a cost
function of the form[(3B) with the necessary constraintg tha Assumption 5.7: The system is controlled with a compu-
make the following inequality satisfied: tational facility that performs a single elementary itevatof
ol (t + T) (t+ 7)) — folpP (1), 2(t)) < the fast gradient (step 9 of Algorithim 2) in time units.

< —A(r,z(t)) = / (s, p°P'(t), z(t))ds  (37) Note thatif another certified algorithm than the fast gratiie
used,r. used hereafter denotes the time necessary to perform

wherep°?t(t) is the optimal solution of the problem definec® single iteration of that specific algorithm.

for the statex(t) while p°P(t + 7) is the optimal solution

of the problem defined by the predicted future state+ 7) B. Certified MPC by state-dependent updating period
starting fromz(¢) under the optimal contral((-, p°?*(t)) that

; ? . Assume that a scheme is based on the iterative on-line
is applied on the intervdk, ¢ + 7].

definition of a sequence of updating instants and a sequence

Note thatp°?!(t) does not appear as an argumentiokince of precision parameters denoted by:

p°P(t) is assumed to be uniquely determineddy). toor =te + 7o {5(()’“)7% )}k . (39)
Remark 5.1: Note that the inequalityf (37) is satisfied only
for the ideal predicted future stafét+7) since otherwise the which are linked through the definition of the updating pédsio
bad knowledge of uncertainties and/or the set-point change according to:
may mvahdate the inequality if the true valugt + 7) of the o= Te X NC(E((JkJrl)’ E(k+1)) (40)
state is used. ¥
Remark 5.2: Note that inequality[{37) is commonly sat-whereC is some compact subset B> x R andr, is the
isfied in the standard provably stable MPC formulationsomputation time needed for a single fast gradient itematio
Moreover, the r.h.e\(7, z(t)) is generally exhibited through (see Assumptioh 5.7).
the corresponding stability proof (see [10]).



More precisely, given the current stai€¢,) and a control Te(r,q)
U(-,p*(t)) that is applied during the sampling period

[tk,tks1], Algorithm [2 is used to compute the control /(2D¢)
parameterp*(tx+1) (that is to be applied during the next

sampling period) with the hot starfp*(¢x)]T™ and the

precision parameterg{""" 1) Note that by the very 4/De T
definition [40) of 7, the value of the control parameter

p*(try1) that is obtained by Algorithn[]2 before;,
necessarily meets the precision requirements, namely:

Fig. 3. Evolution of'¢(7, ¢) involved in Lemmd5R.

Fo(D* (trgr), 2(trs1)) — fo(@P (thgr), E(tpr1)) < sék“) Decrease condition
ci(p* (trgn) (b)) < 0 i€l (41) 10'f ‘ ——— 7
(P (thg)s 2(ter)) < Effﬂ) iel, - ___ K°(E° + E! %;'c N(eo,ep)) ||
Using the first inequality, one can prove the following résul —eo+ K°(E° + E;l '7;(: - N(eo,ey)) ||
""" Le(7,q |

Lemma 5.1: If the following conditions hold

1) 7 is defined by[(40) for some compact €et= P x X
2) Forallk, [p*(tg)]"™ € P
3) Forallk, z(ty) € X
4) Assumption$ 514, 5.4 ad 5.5 are satisfied
then the following inequality holds for alk:

fo(P* (trg1), (tet1)) — fo(P" (tr), z(tr)) <
e + KQ(EQ + Ebr) + e — A(ry, 2(tr))(42)

10°

~

decrease | e

T T T TITT]
N
~

PROOF. See Appendik G.

===
L

Note that the termfo(p* (¢ ), z(tx)) represents the value of —2 | |
the cost function at the effectivelyisited pairs (p(t ), z(t1)). go 02 04 7 06 0.8 1
Therefore, the difference expressed in the Lh.s [ofl (42) i (k1)

: ' . The targeted precisio =

is relevant for the stability assessment of the resulted 9 precisiony =0
truncated MPC implementation. On the other hand, using the

definition [40) of 7, the r.h.s of [[4R) can be viewed as &ig. 4. Typical evolution of the quantities involved in the r.h.s exfuation

; i e (k+1) _(k+1) e {@8) invoked in corollanfb. The decrease of the cost fumci® possible if
funcuop of the precision pa|(50 € ) The Stablhty .there is a tagreted future precisiep for which the red-solid curve lies below
issue is therefore dependent on the possibility to defigR gash-dotted curve.

these precision parameters in such a way that the r.h.s of
(42) is negative. This is the aim of the following developien

Using the definition 40 of 7, and the r.h.s of @3 in
Since the only negative term in the rh.s df(42) i§42 the following computable function can be defined:
—A(1, x(tx)), we need a lower bound of\(7y;, z(¢x)). The 0,0 15 _
following straightforward lemma gives such a lower bound: Br.(0,29,) := Ke(Be + 7eEeN(eo,ey)) + €0

Pe(re - N(€osep), ) (45)
Lemma 5.2: If the following conditions hold: so that the following corollary of Lemni&] can be stated:
1) (p"(te), x(tx)) € C
2) Assumptiori 5J6 is satisfied Corollary 5: If the following conditions hold
then a computable lower bound of the quantify(r, z(¢;)) 1) The requirements of Lemnia] are satisfied
can be obtained by: 2) Assumptior5.8 holds
3 (t >q
A(r, (1) = Te(r, a(x(t)) (az) O atrln)=a

then the following inequality holds

whereT'c(r,q) is given by (see Figuiel 3): Fo(B (brsn)s () — folB (h), 2(t0)) <

1 . A )
qr — 3Dcr? if 7 <q/Dc ey + Re (), 07 g) (46)
Ic(r,q) = pr (44) . .
4 otherwise where R, (-) is defined by[{5).
2D¢
PROOF. See AppendikH. Figureld presents a typical situation showing that for a given

past achieved precisiongk), a given computational power



leading to the computation time. and a given precision,, uq = 0. Using the extended system with the extended state
on the soft constraints satisfaction, either there issfid?) = = (27, z]) and the extended dynamic built up usirfg2Y
making the r.h.s of equatiorid® invoked in corollary§ Wwith Z; = 0, one obtains the controlled system model given
negative or there is an interval of successful values((ﬁ)Tl) by:
which does not corltaiﬁ and which depends on the current i = A+ B (53)
value ofq(z(tx)) = q.

where x is an extended state containing the set-point and
Note that corollaryd involves quantities that depend on someisturbance model state and where the cost funciBf is
compact set to which belong all the p&jip* (¢)]*™, #(tx+1). given by:
Using assumptiop.3 it is possible to prove that such compact - 1
set is linked to a set of initial conditions for which a cegifi Usipyz) =5 [q(z(s,p,x)) + [U(s,p)|E] (54)
convergence result can be derived for the resulting read-ti o
MPC. This is stated in the following proposition which is th&/hereq(z) is given by:
main contribution of the paper: q(z) = ||z — ZdHQQ — ||Cx||2? (55)

Proposition 5.2: Consider a positive reab, > 0 and the The control parametrization mag(-,p) used in B8 gives
corresponding compact subsél,, c R"™ x R" defined the control profile over the prediction horizon as a function
according to assumptida.3 Let be given a precision,, > 0 of the finite dimensional parameter vecjor
on the soft constraints satisfaction.

This formulation leads to state-dependent QP where the

If the following conditions hold withC = Cy,: cost function and the constraints are given by:
1) Assumption$s.Z andb.8 are satisfied 1 7 T T
2) 3Gmin > 0 and~, > 0 such that the inequality: folp,z) = 5P Hp+ (Fiz) p+2' Sz (56)
- Ap < BO 4 By (57)
(€064, ) < — | 22 47 . ,
Rr.(c0,20, ) l?)D(Cqb ] (47 It results that the definition ofLy, L, and po remains

) ) . ) unchanged since these parameters depends only on the state
admits a solutiore§” (¢) € [0, VeGpin/(2Dc,, )] for all  independent quantitied and A.

then the truncated MPC design based on the adaptive samplings also assumed that the formulation involves approegriat
period defined by: final constraints such thdBf) of Assumptior5.3 holds with
< so A(r, z) satisfying:
m = 7o x N(e a(a(tn)), =) (4g) D) samsing
steers the system to the set: A(r,z) > / q(x(s,p°, x))ds (58)
0
Xmin 1= {x eR" | g(2) < timm} (49) This can be obtained through appropriate final equality

constraints that can be explicitly embedded in the control
parametrization mapl{(-,p) or through softened final

G2 inequality constraints as suggested
Jolp* (to), a(te)) < o 5 &) < Telmin  (5g) NEAUEEY ggested gl

provided that the initial condition satisfies:

Given a set of interesX, the upper bound o), defined by

Moreover, if the hard constraints depend only prthen along ] can be used provided th is reolaced b
the closed-loop trajectory, one has: 23-@3 . 4E| : y

- sup |[Fiz| < || Fy|| x o(X (59)
-eIPa,igo[Ci(p (tk)7$(tk))] < 0 ek H 1 ” H 1” ( )
! ho= . - . 2 .
“max [¢;(p*(t), z(tr))] < ey + (51) The co_mputatlon qipm“”” invoked in of proposition5.1
tels,k20 is obtained according to:

+Ké’¢0 -(Eg,, ++Eg, ™) . .
PROOF. See Appendifll Y= max [Z} (max{0, Mz — L;}) 1 (60)
C. Case of linear MPC where
— 1
Linear MPC formulation applies to system of the form M; = - {AiH LR+ Bf )}
2= Aoz + Bou (52) L, = BY

in order to stabilize the physical statearound some desiredwhere A; and BZ.(j) denote thei-th line of A and B
value z,. We assume for the sake of simplicity that is a respectively. Note that the optimization probler@&)( can
steady state forf52) that corresponds to the steady contrdbe computed once for all using available NLP solvers for a
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beforehand given sets of interé&tand X. P x X, the constantd{? and K involved in [34) and B9 of

Assumptior5.4 can be given by:
Once ™** is computed, the resulting:;*** involved 0 T
in Propositior5.1 [item (4)] can be computed and used in the K(E [ F7 (| % o(P) + 2i\m;z(5) x o(X)  (65)
computation ofp™a*. Finally, the parametef;"** involved K¢ = 2n [ [(BD)T (66)
in Propositior5.7 is computed according to: whereyma7 is computed byB0).

D "o R D PROOF. See AppendiiKl
e | ) (7 5)C)
po)ebxx | \z) \Fi ) \= . . .
The only remaining parameters af¢ and £/ involved in
=W (28 of Assumption5.2 and which describe the prediction
which admits the upper bound: error on the extended state as a function ofr. Note that

s 5 if the model is perfectly known, the only prediction error
0 < Pamae(W)] % ol =]l comes from the fact that the future evolution of the set-poin
= Amac(W) X o(P x X) zq 1S unknown. Two cases can be distinguished:

, ) . ) ) « If the set point if filtered, then
It remains to give explicit computation ob¢ in (38 of

Assumptior5.8 This is given by the following proposition: E2 =0 and E} = max(||24(t)]) (67)
Proposition 5.3: If the constraintsp € P implies that « Otherwise
U(s,p) € U for some compact setl, then the following E2 = o(Zg) and EL = max,(||Z4(t)]]) (68)

expression ofD¢ meets the requirement of Assumpt{br& o .
In case other sources of prediction errors prevail, then

De = Mnaz(Q) x 0(X) x [[[As]|o(X) + || Bs[le(U)]  (61) an additional positive terme; has to be added so that

_ 1 ; i
PROOF. Compute the derivative of Ciz(s,p,x)||3, (which Eg = max,([[Za(t)[]) + €1 is used.

takes the valueg(z) at s = 0) and derive a lower bound on
the speed with which this term may convergeltgiven the
compact set to which belongs the argumeni@nd p.

1) llustrative example: MPC control of a chain of integra-
tors: Let us consider MPC control of a chain ofintegrators

given by:
The next result concerns the explicit derivation of the 4 = 2y fori=1,....n—1 (69)
compact setC4 given an initial cost function level as . underlul < @ = 10 70
described in AssumptidB.3 This is the aim of the following o “ ful < @ (70)
result: in which the objective is to track a reference trajectoryzen
Proposition 5.4: If The possible set pointg; belong to a under the state constraints:
compact setZ,, then given ¢, the compact seC, involved _9 21 (t) +2
in 33 of Assumptior5.3is given byC, := P x X where: <_1> < <22(t)) < <+1> (71)
P = {p st |pl| < [QS/Amin(WO)]%} (62) using the formulation of sectio¥=Cl This is obviously a
N very important sub-class of systems that is heavily used in
X = {x st [zf] < o(Za) + [¢/ Amin(Wo)] 2 }(63) Mechatronics.

where W, is the matrix given by: We consider a parametrization of the form:

H F
Wo = (FT Sﬁ) ©4)  Uep0) = @u)lput)  : pueRT(72)
where Fy; € R™xm: and S;; € R™*" are the z- in which a final constraint on the state is imposed:
corresponding sub-matrices df; and S involved in 12(T) = Z4|| = Cx(T) = 0 (73)
respectively.

By doing this, the stability of the ideal perfect scheme is
PROOF See Appendiid guaranteed with Assumptid®3 satisfied. The final constraint
satisfaction can be imposed through the reduced parametriz

Once the compact sél,, is computed for a given initial value tion:
¢ of the cost function, the constants? and K involved in
(39 and of Assumption5.4 can be explicitly computed
using the following proposition: where the matrice& and M depend on the function basisg,
involved in [79 and the prediction horizoi' such that taking
Proposition 5.5: For the cost functionf, defined by 68 p = 0 always leads t@, that satisfies the final constraint. This
and the constraints defined &7, given a compact séf := means that because of the saturation consti@t (he final

pu = Kp+ Mxg (74)



11

constraint [[3 can be feasible througliz4) only for initial 10-3 Checking conditiond (76) an@(77)
statex, such that i — —_—

. |--- K2EL.N(eo) | i
| Mao|| <@ (75) L | e
leading to the bound/zo| < u/|M]| (~ 11.3 in the case Lof |7 D(reN (e0), Gmin) |
n = 4). By doing this, the number of decision variables is v |== Lhsof[76)
given byn, = m — n. In the following results, the weighting ——  rhsof(76)
matricesQ = I, and R = 0.001 are systematically used in +=+=  rhsof )

sequel whilem = 10 dimensional parametrization variable is
used in control parametrizatioffd). This leads to a number v
of free decision variables of dimension, = 6. '

0.5 Y

(59 and 6. A prediction horizonT' = 10 is used in the 1 '

The computation time for a single iteration. = 0.1us

is used (time needed for a matrix-vector multiplication in
Step 10 of Algorithm 2). It is supposed that the reference
value z, lies in the domain—>5, +5]. All the constraints are
taken to be soft withe, = 1072. The formulation of the .
problem and the choice of the constraints checking instants Lol Lol L
lead to a number of constraints. = 300. 10-6 10-° 10~ 10-3

€0

Note that in order to check the existencef;, satisfying

the condition m of Proposition m' one can check the Fig. 5. Check of the certification feasibility for the chaifvo= 4 integrators.

existence of solutios;, to the inequality The condition [7B) is satisfied by an interval of valuessgfincluding values
satisfying [Z7). Successful valueg;,;n, = 0.36, v. = 0.2, E} = 0.05.

_2 )
R (20, €0, Gin) < — [M] (76)
0

. are used in and .
since if [76) is satisfied foig,,;, in the l.h.s, it will be satisfied 7 L .

forany g > gmin used in the I1.n.s whilg,., is used in the once the lower boung,.;,, is computed, one can come back

r.h.s. An additional condition invoked in Proposit{ei® states to the g-dependent certification conditio®) of Proposition

that this solutionsg must be such that: in order to compute for each > G the lower bound
£0(q) and the upper bounds(g) of the admissible values of

=2 [
e < [”ﬂ] a7 <.

Note also that the parametey invoked in [[6) defines an

upper bound on the possible initial value of the cfigfp, ). The state dependent samplirig8( can therefore be defined
Therefore, in the case of hot starts, the sizesgican define Py the number of iteration associated to the precisigtt
the quality of the hot start. Otherwise, one can take an upg#yen by:

bound pessimistic valug, by starting fromp = 0 and taking sol

the upper value offy(0,x) over the set of admissible initial 20" (@) = (1 = Meola(@)) + Ado(4(@)) (79)
state defined by[79), namely: where\ € [0.5,0.9] in order to enhance high sampling period
i (higher values ot) while keeping some security margin.

d)O S Amam (S) (78)

M

Based on the knowledge af, given by [78), the condition
(79 can be checked for different candidate values;,gf,.

Figures [l shows the corresponding evolutions of the
boundsg,(¢) andéy(q) as functions of the ratiq/ g, for

the quadruple integrator system & 4) studied previously.

) This Figure clearly shows that wheg(xz) is high, law
Figuresld and @ shows the results for the cases = 4 ,acision (high values of,) can be used. Although this is a
and n = 2 respectively. More precisely, Figuil shows | qn fact, the results proposed here gives a certified @kpli
that for the quadruple integrator system under an unknowgmntation of this feature. The Figure shows also clearly
future behavior of the set-point characterized By = 0.05, {hat attempt to achieve over-precise solution may lead to

Ehe certification conditiond76) and [77) are satisfied with instability since there is a lower bounds e
Gmin = 0.36 and~, = 0.2.

Figure [6 shows that the certification is possible for the VI. ConcLusioN

double integrator system with the unknown behavior of the In this paper a certification bound on the convergence of
set-point defined bysl = 0.3 provided that,,;, = 0.18 and the fast gradient algorithm when applied to solve convex



Checking conditiond (76) an@([77)

1073
1 T — T T T T T T T
KNG |
—e— &0 .
0.8+ T F(TCN(i?O)a (jmzn)
= |.h.s of [76)
i ——  r.h.s of [76)
0.6 |-=+= rh.sof [7T)
0.4 \\‘\
0.2 e
0 X
N\ -
_ .2 | Lol Lol ! \\EHH\ Lo
0% 107" 10°¢ 10° 10* 1077
€0

Fig. 6. Check of the certification feasibility for the chaifvo= 2 integrators.
The condition[(7B) is satisfied by an interval of valuesgfincluding values

satisfying [ZT).

Successful valuegy, i, = 0.18, y. = 0.2, E: = 0.3.

1071
1072
1073
1074
1079
1076

10~7

108

Fig. 7. Quadruple integrator: Evolution of the boundinguesie, (¢(x)) and
£o0(q(z)) and a possible state dependent precisigft () defined by [(7D).

q(z)/Gmin
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optimization problems with general inequality constraiith

a prescribed level of sub-optimality is first given. The ftésg
bound is then used to derive a real-time implementation of
MPC with state-dependent updating period leading to cextifi
convergence of the resulting closed-loop to a neighborhood
of the desired set-point. The proposed results clearly sdow
that the time needed to perform the elementary iteration
is a key parameter in the resulting MPC implementation.
To this respect, the proposed results can be used to afford
limited computational power or to compute, for a given cohtr
problem and a given specification in terms of optimality and
constraints fulfillment, the admissible computation potret
need to be assigned.

APPENDIX
A. Proof of Lemm&.]
This comes from the fact thgh* is the unconstrained
optimum of f which means that:

fo(p*) + p¥(p*) < fo(pa) + ¥ (Pa) = fo(pa)

and sincey(p*) > 0, the last inequality givesfy(p*) <
fo(pa). The inequality to be proved is therefore a simple
consequence of the definiti@ of Dy. O

(80)

B. Proof of Lemm&.2
Let us denote by, the closest element afl,—o to p*.
The triangular inequality implies:

lp —p*|| + |p* — pyll < d(p) + [Ip* — pyll
(81)

lp —pyll <

and because € Fj :

¢(p)fz#%pw)-%<¢/@w07p-—p¢>-Fzgng——pwHQ (82)

but sincep, € Ay—o, one has that)(p,) = 0 andy) (py) = 0
[because of the particular structure of the penalty], tfoeee
(82 becomes (because @1)):

w@)ﬁgfw—pwVS%fP@%+M*—nMr (83)

It remains to prove that the terffp* — p,|| can be bounded
so that the inequalityd0) holds. Note that sincg* minimizes
f, one has:

fo(py) + pb(py) > fo(p*) + pib(p”)

and sincey(p,) = 0 the last inequality leads to:

vt < < Lfolne) = folo")] (84)
< IR 15" = poll+ 215" ol eS)

Now let p, be the unconstrained minimizer gf, namely
fo(pu) = 0. Note thatp, is uniquely defined sincg, > 0 by
assumption. Now by definition gf* andp,,, one has:

Jo(p*) + p¥(p*) < folpu) + pt(pu) (86)



on the other hand,
Do@*) = folpa) + 519" = pul® (87)

By combining B9)-(&%), it comes that:

. 2p
Hp _puH < Q/J(pu)
Ho

This with the Lypschitz induced inequality gives:

2p7/)(pu) = “2)\/5

1fo(™) = O < Lollp™ = pull < Loy /-

where k:(') := Lo+/2¢(p.)/po.This last inequality together

with 85 implies:

P(p*) < (88)

: . Lo, ,
[Fov/lp” = poll + <P —pyl?]

I

Now using B) in which d(p*, Ay—o) = ||p* — pyl gives:

% 1. * LO *
Blp* — pyl® < ;[Hox/ﬁl\p —pyll+ 5 lp — pyll*]

and after straightforward manipulations, it comes that:

’

LQ « Ko
— _ < 9
-Gl =l < £ (89)
Now assuming thap > Ly//3, one obtains:
1p* — ol < 20— 2Lov/ 2o /o
= Bp B\/P
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D. Proof of LemmdB.4
Assume that for somg the following inequality hold:

|f(p) = (") <€ (93)
this means thatf(e S} ):
2¢ 3
lp—p*ll < [—} (94)
Ho
on the other hand:
L
[fo(p) = Fo*)| < Dollp —p*| + -l = p"I* (95)
this together with[@4) gives the result. O

E. Proof of Propositiond.2

PrROOF. We shall first prove that when the algorithm stops,
one has:

@) = f@)l<n (96)

then we prove that whef®6) holds thernp* is anz-suboptimal
solution of the original problem. To provédd), we shall
distinguish two situations depending on the exit conditidn
step 10. Indeed, either(p;) < gmin := ro+/2n/L in which
case[09) is satisfied since e Sfm,L- Or the algorithm stops
after N(c, o) iterations whereyy := nuo/[(L + o) fo(po)]
which implies by virtue of Corollanfd

We shall now prove that wherl@6 holds, one necessarily
has:

1fo(*) — fo@)| < e0 5 Y(*) <&l
Proof of ¥(p*) < 53}

(97)

which together with83) clearly ends the proof since the in-BY the o-strong convexity off, equation [§6) implies that

equality f[J) is a direct consequence of the fact thgt*) = 0
by definition. O

C. Proof of Lemm&.3

Sincep,, is admissible ang°?! is the optimal solution of
the constrained problem, one necessarily has:

fo®@°") < fo(py)

Moreover, sincefy € ]—'io, the following inequality holds:

(90)

* ! * * LO * 2
folpy) < fol@") + 1 fo@ )l lp" = 2ol + = lip™ = pyll
and since] f,(p*)|| < Do (Lemmal3.):

* * L *
fo(py) < fo(p™) + Dollp —pw||+70||p —pyl*  (91)

which together with[@0) and B) of Assumptior3.4 gives:

omty _ g (o w@ﬂr @[w@*)}
ot~ foo") < 0o | HE2]T 20 [HED ) oy
This obviously ends the proof. O

[Ilp* — p*|| < \/(2/0o)n. Injecting this in gives:
L
Y(pT) < =2

{ m ﬂ]

2 Bo /P

So in order to prove thap(p*) < sfp, it is sufficient to prove
the following two inequalities:

(ﬁgé‘_ﬂ, i and ﬂgé‘_ﬂ, i
120} 2 Lw \/ﬁ 2 Lw

But the first inequality is satisfied becauge< 7, while the
second is satisfied because> p;.

Proof of | f(p*) — fo(p°™")] < eo

Using the triangular inequality:
[fo(®") = fo@®")] < |fo(B") — folp™)| +
[fo(p") — fo(p™™)]
and using[@5 and [2) the last inequality gives:
N , 2n]% Lo [29
|fo(p*) — folp pt)| < Dy [%] + 5 [%] +
w@*)F Lo [wp*)}
5 "2 78

Do | :
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therefore, the result can be obtained if the following ireigy H. Proof of Lemmd&.2

are safisfied: By definition of B7) of A and usingB8 of Assumption

2 , it comes that:
af] B[] <t e ©
1o 2 Lpo 2 T
* % * 3 > ’ -
ey ) M) = [ max{0.a(o) - Des)s
o178 2 | B ) min{r,q(z)/Dc}
_ o - . . = / (q(z) — D¢s)ds
The first inequality is satisfied sineg< n; while the second 0

is satisfied if: min{7,q(z)/Dc

i [q(x)T — %DCTQ}
[W’ >] < (D) (100) '

B which can be expressed usifg (7, q) given by @3). O
But thanks to[{J) [satisfied since» > ps] this can be proved
if the following inequality holds:

I. Proof of Propositiors.2

Lykg _ 50
28p S Zl(i) (101) The first inequality in[B0) together with Assumptiofs.3
L - impliy that Corollary[H applies withk = 0, C = C4, and
hich is satisfied b > oo
which Is satisfied because= pa. 7 := q(z(t1,)), therefore one has:
F. Proof of Propositiord-3 fo(@*(t1), z(t1)) — fo(B" (to), x(to)) <
(0) (1)
Recall that in the specific case of QP problem, the definition gy + Rr.(eq ey, q(x(to))) (104)
of Dy becomes ) 1) ] ] ]
and sincesy’ = £5° (2 (to)), if ¢(x(t0)) > Gmin the inequality
Dy = sup ||Hp+ F| (4D gives:
fo(p)<fo(pa)
=2
But we have by assumptiofip,| < pmaz, Which enables to RTC(Egl),gw,q(x(to))) < _chfJ_mm (105)
write: Csq
1 2 and thanks to the second inequality [B0), the inequality
a S _/\mam H P + F . P + = X )
fo(pa) < G (H) [o(P)] + | FI|- o(B) + b0 = f T rrves
1
and sincefo(p) > 5 Amin(H)|lp[* = [ F[lllp] + ¢0o, the last Velrmin
inequality implies: 0+ R (e e alo(to)) <  6Dc, (106)
. b0
il < I VIFIE+ 2Amin(H)[F =60l _ - This together with {08 implies that fo(p (t1), z(t1)) de-
- Amin (H) creases meaning that the new pair is stillGg, and since
which obviously gives the results. 0 eV satisfies by assumption the second inequality5@,(the

argumentation can be repeated to derive the propertieseof th
next pair(p*(t2), z(t2)) meaning that the following inequality:
G. Proof of Lemm&.1

. . _ 2
Using Assumptiof5.4 and5.2 , it comes that: FolD* (tran), @(tesn)) — fo(F* (t), (ty)) < —cimin

6D(C¢o
Jo(P* (thg1), 2(trs1)) < fo(P" (thy1), Z(try1)) +
+KOx [ES+ EL xn]  (102) is satisified as far ag(xz(t;)) remains grater thag,,;,. This
clearly implies thatz(¢;) converges to the limit seX,,;,
Now by definition of7, the solutionp*(¢;41) satisfies defined by 9.

e A o . k41 ) : .
Jo(0" (trt1), 2(te41)) < folp pt(thrl)aI(thrl))"'Eé : regarding the constraints, note that the hard constraints
are necessarily satisfied since they depend onlypohy

which together with Assumptid.3 gives: assumption and that*(¢;41) satisfies by construction the

Fo(p* (trs1), 2(tpsr)) < Fo(p?Pt (), z(ts)) + 6(()’€+1> hard constraints while allowing only for a violation of thefts
— A, 2(tr)) constraints by an amount which is lower thap, therefore,
o TR one has:

< folp*(t) aty)) + e
+eF = A(r, 2(t))(103) (D" (thr1), 2(tetr)) S ey Vi€ L (107)

Using the last inequality ifIl02 gives the result. O which obviously gives[&1) by Assumptiong.2andb.4 O



J. Proof of Propositiorb.4 [4]

Given z4, one rewrite the cost function using the change 0[5]
variabley = z — z4 enables to write the cost functiofg) in
the form

_1p T(H F, p [6]
fo(l%y) 9 (y) (F1T1 S11 y
~————
o 7
which means that iffo(p, ) < ¢ then the following inequal-
ities hold:

1l < [6/Amin(W)I? 5 [yl < [6/Amin(Wo)]?  (108)

The first inequality obviously give8B) while the second leads [g]
to:

(8]

121l < llzall + [¢/Amin (Wo)] 2
which gives [63).

[20]
= [11]
K. Proof of Propositior5.3
In order to prove thafgh) satisfies[84), we use the definition [12]
of fy to write:

[ fo(p,z1) — fo(p, z2)|| =

[(Fr(z1 = 22)) o+ |21 1% = [|22l ]

< (E )T (@1 = 22)[| + 2Xmaz (S) X o(X) x [Ja1 — 22

< (I % 0(P) + 2X a2 (S) x 0(X)] - [la1 — a2
which proves[@5).

[13]

[14]
[15]

It remains to prove thatk! defined by [66) satisfies (16]

(35 we first note that:

Ne

V(@)=Y [rilp, o))

i=1

with r;(p,z) = max{0, A;p — B} — B}z}. Therefore:
ol %
1521 <2) Irw,2)] - 1B
=1

and using the inequalities expressing the equivalence ef th
L, and L; norms, the last inequality gives:

o e
1521l < 2ne Y In(p,2) - (1BO)T
=1
< 2n0[W(p, )] x [|(BD)T
< 2n x T x |(BO)|

which obviously gives[@g).
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