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A State-Dependent Updating Period For
Certified Real-Time Model Predictive Control

Mazen Alamir

Abstract—In this paper, a state-dependent control updating
period framework is proposed that leads to real-time im-
plementable Model Predictive Control with certified practical
stability results and constraints satisfaction. The scheme is
illustrated and validated using new certification bound that is
derived in the case where the Fast Gradient iteration is used
through a penalty method to solve generally constrained convex
optimization problems. Both the certification bound computation
and its use in the state-dependent updating period framework are
illustrated in the particular case of linear MPC. An illustr ative
example involving a chain of four integrators is used to show
the explicit computation of the state-dependent control updating
scheme.

Index Terms—MPC, Certification, Real-time, Stability.

I. I NTRODUCTION

Modern control paradigms such as Model Predictive
Control [10], Moving-Horizon Observers [1] or adaptive
identification of varying models [16] to cite but few
issues involve the real-time, on-line solution of constrained
optimization problems. In such applications, the output
of the optimizer (namely the sub-optimal solution of the
optimization problem) is fed to some neighboring modules
in order to achieve some engineering tasks. The quality of
the global task may strongly depend on the quality of the
sub-optimal solution and the frequency with which it can be
updated by the optimizer and since this solution has to be
delivered in finite and probably short time, it is important to
be able to precisely link the quality of the suboptimal solution
to the available computation time for a predefined embedded
computation power. When the latter is not yet defined, such
insight enables to choose the appropriate computational power
given the required quality of the sub-optimal solution.

The last few years witnessed an increasing interest in the
certification issue [14], [9], [5]. These almost simultaneous
works proposed certification bounds for fast gradient-based
iterations [13], [12] applied to Quadratic Programming (QP)
problems involving only simple constraints that enable easy
projection on the admissible set. Otherwise, the iterations
that are needed to perform the projection have to be counted
as well and certified with some associated lower bounds
which would invalidate the relevance of the proposed bounds.

It is not surprising that recent certification-related results
concerned fast gradient-based iterations. This is because
the simplicity of this iteration and the associated low
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computational cost have been rapidly identified as appealing
properties in the real-time context which is the very reason
for which certification results were required.

Regarding the other alternatives, active set iterations [8],
while computationally efficient and while showing a provably
finite number of iterations to converge (for QP problems),
seem to resist to the derivation of convergence rates which
makes impossible the computation of certification bounds. As
for interior point methods [7], [15], [4], certification bounds
exist [11] but seem to be systematically over pessimistic
[14]. Nevertheless, for many problems, it might still be more
appropriate to use these efficient although uncertified or
pessimistically certified algorithms rather than to use a slow
certified iterations. Theright choice is problem-dependent.

The first part of this paper belongs to the family of
works that address the derivation of certification bounds
for fast gradient-based iterations in the presence of general
constraints. This is motivated by the nice properties
mentioned above, namely the reduced complexity of the
single associated iteration that enables the use of extremely
short updating period. As it has been recently shown [2],
[3], [6], this last property may compensate the drawback
of potentially higher number of iterations when compared
to some alternative methods, especially in uncertain context
(which includes perfectly known systems under unpredictable
set-point dynamics). In such situations, as underlined by
[13], it is important to distinguish between the concepts of
analytical complexitywhich involves only the number of
iterations (regardless of their inherent computational cost)
and thearithmetical complexitywhich accounts for the total
number of elementary operations until convergence which
is obviously the appropriate indicator in real-time context
and this is precisely why fast gradient is an interesting option.

The second part of the paperproposes a general framework
to explicitly account for the arithmetical complexity by
including the computation time for a single iteration in the
overall convergence analysis and trade-off handling. This
feature if absent from recent works on the certification issue
such as [14] where the number of iteration is induced from
the required precision on the solution and the corresponding
number of iteration is derived as a consequence. This
argumentation suggests that provided that one uses sufficiently
high number of iterations, convergence of the real-time MPC
will be guaranteed. This paper shows that this argument
is generically erroneous and that in realistic situations,the
appropriate updating period shows lower and upper bounds
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beyond which stability can no more be guaranteed.

More precisely, the contribution of the present paper
lies in the following items:

1) it gives a certification bound for the fast gradient
algorithm when applied to solve a general (not necessarily
simple bounded) convex optimization problems by means
of a penalty approach. The number of iterations needed to
achieve a prescribed level of precision on the optimal cost
and a prescribed level of precision on the satisfaction of the
soft constraints (while the hard constraints are fully satisfied)
is given as a function of the problem’s characteristics.

2) it shows how the certification bound so obtained can
be used in the framework of real-time MPC in order to
assess the practical asymptotic stability of the closed-loop
performance under a state-dependent control updating period.
The latter is computed based on some key properties of the
MPC formulation. This second part while using the results of
the first part has a general scope and can be applied to any
available algorithm with computable certification bound.

This paper is organized as follows: Section II defines
the class of optimization problems addressed in the paper
together with the associated definitions and notation. Section
III states the working assumptions and gives some preliminary
results that are used in the next sections. The algorithm and
the associated certification bounds are presented in section IV
with instantiation to the specific case of QP problems. The use
of the certification bounds in real-time MPC implementation
through state-dependent control updating period is proposed
in section V and the concrete computation of the parameters
involved in the expressions is shown for the specific case of
linear MPC. Finally, the whole scheme is illustrated through
the MPC-based tracking problem for a quadruple integrators
under state and control constraints. For the sake of clarity, all
the technical proofs are gathered in appendix A except those
that can be given in few words.

II. PROBLEM STATEMENT

Consider the following optimization problem in the decision
variablep:

min
p∈R

np
f0(p) | ci(p) ≤ 0 ∀i ∈ Ih ∪ Is := {1, . . . , nc} (1)

whereIs and Ih are the disjoint subsets of{1, . . . , nc} that
define a partition of the set of constraints into soft and hard
constraints respectively.f0(·) is the cost to be minimized
while ci : Rnp → R defines thei-th inequality constraint.
Note that saturation constraints onp are supposed to be
included in the set of inequality constraints. It is assumed
that f0 andci are differentiable for alli.

The algorithm proposed in this paper invokes the following
penalty induced augmented cost:

f(p) := f0(p) + ρ× ψ(p) (2)

whereρ is called the penalty parameter whileψ : Rnp → R+

is the constraints induced cost given by:

ψ(p) :=
∑

i∈Is

[max{0, ci(p)}]2 +
∑

i∈Ih

[max{0, ci(p) + εψ}]2

For a given pairēε := (ε0, εψ) of strictly positive reals, a
candidate valuep is called anε̄-suboptimal solution of (1) if
the following two conditions hold:

|f0(p)− fopt| ≤ ε0 and ψ(p) ≤ ε2ψ (3)

wherefopt denotes the optimal value of (1).

The relevance of the second constraint in (3) lies in
the fact that when satisfied, this constraint implies that all the
hard constraints are rigorously satisfied while the maximum
violation of any soft constraint is lower thanεψ.

The first aim of the present paper is to derive the necessary
relations that enable for a given precision̄ε to choose the
appropriate penalty coefficientρ and the stopping condition
for the fast gradient iteration to be used in the unconstrained
minimization of the cost functionf defined by (2). Moreover,
the bound on the minimum number of iterations that
guarantees an̄ε-suboptimal solution to the original problem
is derived. This is done in sections III and IV.

The second aim is to show that this certification result
(or any similar one for possibly another algorithm) can then
be used to design a real-time constrained MPC implementation
in which a state-dependent control updating period is used to
yield certified convergence properties. This is done in section
V.

The results are proved in a rather general convex settings
and for both goals, the expressions enabling the parameters
involved in the statements of the results to be computed are
explicitly given in the specific case of QP problems and
linear MPC design.

III. A SSUMPTIONS AND PRELIMINARY RESULTS

A. Definitions and Notation

In what follows,f
′

(p), f
′

0(p) andψ
′

(p) denote the gradients
of the functions w.r.t the decision variablep. The euclidien
norm of f

′

(p) is denoted byg(p) = ‖f ′

(p)‖. For a scalar
continuously differentiable functionℓ defined onRn, the
notationℓ ∈ S1µ states thatℓ is a µ-strongly convex function,
namely for all(p1, p2):

ℓ(p2) ≥ ℓ(p1) + 〈ℓ
′

(p1), p2 − p1〉+
µ

2
‖p2 − p1‖2 (4)

whereµ is called the convexity parameter ofℓ [13]. Similarly,
the notationℓ ∈ F1

L indicates that the continuously differen-
tiable functionℓ satisfies for all(p1, p2):

ℓ(p2) ≤ ℓ(p1) + 〈ℓ
′

(p1), p2 − p1〉+
L

2
‖p2 − p1‖2 (5)

When ℓ satisfies both (4)-(5), the notationℓ ∈ S1µ,L is used.
The setC denotes the set of singular points off(·), namely
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the set ofp such thatg(p) = 0. Given a subsetA ⊂ Rnp , the
notationd(p,A) refers to the distance fromp to A, namely
d(p,A) := minz∈A ‖z−p‖. The short notationd(p) := d(p, C)
is used for the specific setC. The setAψ=0 is the set ofp
such thatψ(p) = 0. Given a bounded subsetP, δP denote
the radius ofP namelyδP := sup(x1,x2)∈P2 ‖x1 − x2‖. For a
compact setX, the notation̺ (X) denotes the maximum norm
of elements inX, namely̺(X) := supx∈X ‖x‖.

B. Working Assumptions

Assumption 3.1: The cost function value f0(p) is
nonnegative for allp.

This assumption can be made satisfied by adding sufficiently
high positive constant. It is quite common in MPC context
where the cost function refers quite often to the integral ofthe
tracking error that is added to some positive terminal term.

Assumption 3.2: There are two realsL0 ≥ 0 andLψ ≥ 0
such thatf0 ∈ F1

L0
andψ ∈ F1

Lψ

Assumption 3.3: There isµ0 > 0 such thatf0 ∈ S1µ0
.

Moreover,Ψ is convex.

Note that this assumption implies thatf ∈ S1µ0
and that there

is a unique critical point forf which is denoted hereafter by
p∗ ∈ C. therefore according to the definition ofd(p), one has
d(p) := ‖p− p∗‖.

In what follows, the notationpu and pa refer to two
vectors such that:

pu := min
p∈Rp

f0(p) ; ψ(pa) ≤ 0 (6)

namely,pu is the unconstrained minimum off0 while pa is
any admissible point. Havingpa, the following definition can
be stated sincef0 is supposed to be continuously differentiable
and becausef0 ∈ S1µ0

[Assumption 3.3]:

Definition 3.1: DefineD0 by:

D0 := sup
f0(p)≤f0(pa)

‖f ′

0(p)‖ ≥ 0 (7)

Remark 3.1: In fact, the knowledge of the admissible point
pa is only required to computeD0. therefore, if an upper
bound of D0 can be found, the knowledge ofpa is not
mandatory. This is clearly shown in section IV-C in the specific
case of QP problems [see inequality (23)] . This is crucial since
in the MPC context the constraints are state dependent and it
may become cumbersome to computepa for each current state.

The next assumption concerns the behavior of the penalty map
outside the admissible set.

Assumption 3.4: There isβ > 0 such that the following
inequality:

ψ(p) ≥ β ×
[

d(p,Aψ=0)
]2

(8)

holds for allp. ♦
The expressions of the parametersL0, Lψ, µ0, D0 andβ in
the specific case of quadratic costf0 and affine inp constraints
ci are given in section IV-C.

C. Preliminary results

In this section some preliminary results are stated. For better
readability, all the proofs are given in the appendix. The first
result gives a property of the gradient off0 at the stationary
point p∗:

Lemma 3.1: The following inequality holds

‖f ′

0(p
∗)‖ ≤ D0 (9)

PROOF. See Appendix A.

The following result characterizes the behavior of the
penalty termψ in terms of the penalty coefficientρ:

Lemma 3.2: If ρ > L0/β then the following inequality:

ψ(p) ≤ Lψ
2

[

d(p) +
κ0√
ρ

]2

whereκ0 :=
2L0

β

√
2

µ0
ψ(pu)

(10)

holds for allp. In particular, forp∗ one has:

ψ(p∗) ≤ Lψκ
2
0

2ρ
(11)

PROOF See Appendix B.

Note that Lemma 3.2 quantifies how increasingρ leads
to a smaller constraint violation depending on the amount of
violation ψ(pu) at the unconstrained minimumpu of f0.

The following corollary gives a bound on the difference in
the costf0 evaluated at the unconstrained optimump∗ of
f = f0 + ρψ and the true optimal cost as a function of
constraint violation:

Lemma 3.3: Let popt be the optimal solution of the orig-
inal problem (1).p∗ the unconstrained minimum off . The
following inequality holds:

|f0(popt)− f0(p∗)| ≤ D0

[
ψ(p∗)

β

] 1

2

+
L0

2

[
ψ(p∗)

β

]

(12)

PROOF. See Appendix C.

Using Lemma 3.3 one can prove the following result:

Corollary 1: If the following inequality holds:
[
ψ(p∗)

β

] 1

2

≤ Z1(ǫ) :=
D0

L0

[(

1 +
2L0

D2
0

ǫ

) 1

2

− 1

]

(13)

then the stationary solutionp∗ satisfies:

|f0(popt)− f0(p∗)| ≤ ǫ (14)
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PROOF. This can be easily obtained after noticing that the
r.h.s of (12) is a second order polynomial in

√

ψ(p∗)/β.
Writing that this polynomial is equal toǫ and solving for it
gives the result. �

Note however thatp∗ is never reached exactly. Instead,
the fast gradient iteration will be used to reach an iterate
p that is close top∗. Now since the available certification
bounds on the fast gradient iterations concern the guaranteed
value of |f(p∗) − f(p)| while the ε̄-suboptimality is defined
in terms of the original costf0, the following lemma gives a
link between these two indicators:

Lemma 3.4: The following implication holds for allǫ:
{

|f(p)− f(p∗)| ≤ ǫ
}

⇒
{

|f0(p)− f0(p∗)| ≤ D0

[
2ǫ

µ0

] 1

2

+
L0

2

[
2ǫ

µ0

]}

(15)

PROOF. See Appendix D.

Here again, Lemma 3.4 gives the condition on the precision
ǫ1 required onf in order to induce a precisionǫ2 on f0,
namely:

Corollary 2: If p is such that|f(p)− f(p∗)| ≤ ǫ1 with

[
2ǫ1
µ0

] 1

2

≤ Z1(ǫ2) (16)

whereZ1 is the function defined by (13)then, one has|f0(p)−
f0(p

∗)| ≤ ǫ2.

PROOF. Use the same arguments as before since the r.h.s of
(15) involves the same polynomial as in (12). �

The certification bound of the fast gradient needs an
upper bound on the distance between the initial guessp and
the minimizer off , namelyp∗. The following lemma gives
such an upper bound in terms of the value of the functionf
at the initial guessp:

Lemma 3.5: The following inequality is satisfied for allp:

‖p∗ − p‖ ≤
[
2f(p)

µ0

] 1

2

=: r(p) (17)

PROOF. This is a direct consequence of the inclusionf ∈ S1µ0

and the fact thatf0 (and hencef ) is positive. �

IV. T HE ALGORITHM

A. Recalls on the Fast Gradient iteration

The fast gradient algorithm proposed in [13] is commonly
used to perform unconstrained minimization of a functionf ∈
Sµ,L. It is briefly recalled through Algorithm 1 for which the
following convergence result holds

Algorithm 1 [pN , qN , αN ] = F (N)(p0, q0, α0)

1: for i = 1 : N do
2: pi+1 ← qi − f

′

(qi)/L
3: Computeαi+1 ∈ (0, 1) solution of α2

i+1 = (1 −
αi+1)α

2
i + µ0αi+1/L

4: βi ← (αi(1− αi)) /(α2
i + αi+1)

5: qi+1 ← pi+1 + βi(pi+1 − pi)
6: end for

Proposition 4.1: ([13], page 80) The successive iterates of
Algorithm 1 starting from the initial guessp0, α0 =

√

µ0/L
andq0 = p0 satisfy the following inequality:

f(pi)− f(p∗) ≤
L+ µ0

2
×min

{

(1− c)i, 1

(1 + ic)2

}

× ‖p0 − p∗‖2 (18)

wherec :=
√

µ0/L and wherep∗ stands for the unconstrained
minium of f . ♦

The following is a direct consequence of Proposition 4.1:

Corollary 3: If the initial guess satisfies‖p0 − p∗‖ ≤ δ
then for anyǫ > 0, the integer:

N̄(c, γ) := max

{

0,min{ log(γ)

log(1 − c) ,
1

c
(

√
1

γ
− 1)}

}

(19)

where γ := 2ǫ/((L+ µ0)δ
2) ; c =

√

µ0/L

is an upper bound of the number of iterationsN needed by
Algorithm 1 to deliver a sub-optimal solutionpN satisfying
|f(pN)− f(p∗)| ≤ ǫ. ♦

PROOF. Inject ‖p0−p∗‖ ≤ δ in (18) and impose that the r.h.s
is ≤ ǫ. �

Now using the bound on‖p0 − p∗‖ ≤ r(p0) given by (17),
the following result follows:

Corollary 4: Given any initial value p0, let γ0 :=
ǫµ0/[(L+ µ0)f(p0)] thenN(c, γ0) is an upper bound of the
number of iterationsN needed by Algorithm 1 to deliver a
sub-optimal solutionpN satisfying|f(pN )− f(p∗)| ≤ ǫ. ♦

B. The Proposed Algorithm

The proposed algorithm involves the quantities defined by
(20)-(21) that depend on:

• the problem’s intrinsic properties(µ0, L0, Lψ, β,D0)
• the unconstrained solution-dependent parameterκ0 [see

(10)]
• the desired precision pair̄ε := (ε0, εψ)

ρ1 :=
2Lψκ

2

0

ε2ψ

ρ2 :=
Lψκ

2

0

2βZ2

1
(ε0/2)

ρ3 := L0/β

(20)

η1 :=
µ0

2
Z2

1 (
ε0
2
)

η2 :=
µ0ε

2

ψ

4Lψ

(21)
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These quantities are used in Algorithm 2 below:

Algorithm 2 p̂∗ = A(p0, ε̄ := (ε0, εψ))

1: α0 = (µ0/L)
1

2 , q0 := p0
2: ρ = max{ρ1, ρ2, ρ3}
3: η = min{η1, η2}
4: c =

√

µ0/L
5: γ0 = ηµ0/[(L+ µ0)f0(p0)]
6: Nmax = N̄(c, γ0)
7: gmin = µ0

√

2η/L
8: again=true
9: while (again)do

10: [pi+1, qi+1, αi+1] = FG(1)(pi, qi, αi)
11: if [(i ≥ Nmax) or (g(pi) ≤ gmin)] then
12: again=0
13: else
14: i = i + 1
15: end if
16: end while
17: p̂∗ = pi

The following result gives a certification bound on the
number of iterations needed by Algorithm 2 to achieve an
ε̄-suboptimal solution of the original problem.

Proposition 4.2: Let be given a precision pair̄ε :=
(ε0, εψ), an initial guessp0. Let γ0 := ηµ0/[(L+ µ0)f0(p0)]
where η := min{η1, η2} with the ηis given by (21). The
algorithm in whichρ = max{ρ1, ρ2, ρ3} is used with theρis
defined by (20) involves at most̄N(c, γ0) unconstrained fast
gradient elementary iterations before it delivers an estimate
p̂∗ that is anε̄-suboptimal solution of the original constrained
optimization problem (1).

PROOF. See Appendix E.

In the remainder of the paper, the maximum number of
iterations that guarantee the precision as expressed in
Proposition 4.2 is denoted by:

N(p0, ε0, εψ) := N̄(c, γ0) (22)

as the arguments ofN completely determinec andγ0.

C. Case of Quadratic Programming (QP) problems

Here, the expressions ofL0, Lψ, µ0, D0 andβ are given in
the specific case of QP problems where the cost function and
the constraints take the form:

f0(p) =
1

2
pTHp+ FT p+ s0 ; ci(p) = Aip−Bi

In this case, Assuming thats0 is such that assumption 3.1
holds, it is straightforward that Assumptions 3.2 and 3.3 holds
with L0 = λmax(H), Lψ = σmax(A) and µ0 = λmin(H).
Moreover, one haspu := −H−1F . Now according to remark
3.1, pa is not needed provided that an upper bound forD0

can be derived. This is the aim of the following proposition:

Proposition 4.3: Provided that the set of inequalitiesAp ≤
B implies the conditionp ∈ P, the following inequality holds:

D0 ≤ [λmax(H)] · p̄+ ‖F‖ (23)

where

p̄ :=
‖F‖+

√

‖F‖2 + 2λmin(H)
[
f̄
]

λmin(H)
(24)

in which

f̄ :=
1

2
λmax(H) [̺(P)]

2
+ ‖F‖ · ̺(P) (25)

PROOF. See Appendix F.

Assumption 3.4 is satisfied withβ := σmin(A) which
is the lowest non zero singular value of the constraints
matrix A. The coefficientκ0 involved in lemma 3.2 and the
expressions (20)-(21) used to computeρ and η is obtained
using the values ofL0, β, µ0 andpu mentioned above.

NUMERICAL EXPERIMENTS In order to check the validity
of the certification boundN(p0, ε0, εψ), 500 random QP
problems have been generated withn = 10 decision variables
and nc = 20 constraints. More precisely,H := CCT + σI
is used whereC ∈ Rn×1 and σ ∈ [10−3, 1], F and s0 has
been computed so that the cost is‖p − pu‖2H + 1 wherepu
is randomly generated. The constraints matricesA ∈ R

n×nc

andB ∈ Rnc has been randomly generated so that a feasible
solution exists. The precisionǫψ = 10−2 has been used while
ε0 has been systematically taken equal to1% of the true
optimal cost that is obtained byQUADPROG-MATLAB solver.
The initial guess is systematically taken equal to0 as one
might use in cold start MPC context.

The results are shown in Figure 1 where the histogram
over the 500 trials of the ratio between the effectively
needed number of iterationsN and the maximal computed
certification boundNmax (step 6 of Algorithm 2) is plotted.
The results suggest that for this class of QP problems, the
bounds is not that conservative and that since some scenarios
lead to a ratio between 0.5 and 0.6, as far as certification is
needed, it cannot be strongly reduced.

V. A PPLICATION TO REAL-TIME MPC

In this section, it is assumed that a certification bound
N(p0, ε0, εψ) is given for some algorithm. Based on such a
bound, a real-time MPC implementation framework is pro-
posed using a state-dependent control updating period leading
to provable practical convergence. It is therefore important to
underline that the results of this section does not necessarily
relate to the use of the fast-gradient algorithm as they can
apply to any algorithm for which a certification can be asso-
ciated that depends on the initial guessp0 and some required
precision pair(ε0 andεψ) in the sense of (3).
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Fig. 1. Histogram showing the statistics of the ratioN/Nmax between the
effectively needed number of iterationsN and the certification boundNmax
computed from the theory when using the numerical experiments described
in section IV-C.

A. Definition, notation and working assumptions

In this section, a set of assumptions are stated. Not all of
them are used in all the subsequent results. That is why in
the statement of each result, the assumptions that are needed
are explicitly mentioned.

In MPC framework, the controller disposes of a model
of the form

ẋ = F (x, u) (x, u) ∈ R
n × R

nu (26)

where the following assumption is used regarding the defini-
tion of the vectorx:

Assumption 5.1: The state vectorx involved in (26) gath-
ers the physical state of the system together with the current
set-point and current estimation of the disturbance. The model
also incorporates the assumption on the future behavior of
these exogenous variables.

We consider that the future control profiles are parametrized
through a finite dimensional vectorp of degrees of freedom
such that at each instantt, the future profile depends onp(t)
according to:

u(t+ s) := U(s, p(t)) s ∈ [0, T ] (27)

where U is some predefined map andT is the prediction
horizon.

Since the MPC has to be computed based on the prediction
of the future state (in the sense of Assumption 5.1), the
following assumption is needed to characterize the state
prediction error:

Assumption 5.2: For each compact setC to which belongs
the pair(p(t), x(t)), the prediction̂x(t+ τ) of the future state
starting fromx(t) and under the control profileU(·, p(t)) can
be affected by an error satisfying

‖x̂(t+ τ) − x(t+ τ)‖ ≤ E0
C + E1

C × τ (28)

Note that E0
C

in (28) accommodates for unpredictable

set-point changes whileE1
C

accommodates for the presence
of disturbances that affects the input of some integrator in
the system or for the presence of unpredictable time-varying
set-point.

The cost function is defined at instantt based on the
knowledge of the statex(t) (including the current value of
the set point and the disturbance estimation and prediction).
This leads to a constrained optimization problem of the form
(1) in which both f0 and ci are dependent on the current
valuex(t) of the state, namely:

f0(p, x(t)) ; ψ(p, x(t))

Consequently, the call of Algorithm 2 as well as the bound
(22) on the number of iterations must now incorporate the
statex(t) as an argument, namely:

p̂∗ = A(p0, ε0, εψ, x) ; N(p0, ε0, εψ, x) (29)

In order to use the results of the preceding section, one needs
to assume that for allx, there are positive realsL0(x), Lψ(x)
and β(x) and a strictly positiveµ0(x) > 0 that play the
roles ofL0, Lψ, β andµ0 as defined in the preceding section.

Now if for some reasons, one knows that the pair(p0, x)
involved in (29) belongs to some compact setC := P × X,
then one can obtain a certification bound that depends only
on the precision parameters̄ε := (ε0, εψ), namely:

NC(ε0, εψ) := max
(p,x)∈C

N(p, ε0, εψ, x) (30)

Moreover, the following result shows that the bound
NC(ε0, εψ) can be computed through static optimization steps
involving the functionsf0 andψ:

Proposition 5.1: Let a compact setC := P× X be given.
the boundNC(ǫ0, ǫψ) defined by (30) can be computed by the
following steps:

1) Computeψmax according to:

ψmax := max
x∈X

{

ψ(pu, x) | f
′

0(pu, x) = 0
}

(31)

2) ComputeL0, Lψ as the maximum ofL0(x) andLψ(x)
overx ∈ X

3) Computeβ andµ0 as the minimums ofβ(x) andµ0(x)
overx ∈ X

4) Computeκmax0 :=
2L0

β

√

2ψmax/µ0

5) Computeρmax using (20) in whichκmax0 replacesκ0
6) Computeηmin := min{η1, η2} where theηi are com-

puted by (21) in whichρmax replacesρ.
7) Computefmax0 := max(p,x)∈C f0(p, x)
8) Computeγmin0 := ηminµ0/[(L(ρ

max) + µ0)f
max
0 ]

9) Computecmin :=
√

µ0/L(ρmax)

Finally compute the desired quantity:

NC(ε0, εψ) := N̄(cmin, γmin0 ) (32)

whereN̄ is defined by (19).
PROOF. Straightforward as the computation systematically
takes the worst case towards the increase ofN . �
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In section V-C, Explicit computation of all the quantities
involved in Proposition 5.1 is given for the specific case of
state-dependent QP optimization problems that arise in the
linear MPC context.

It is also assumed that the cost functionf0 is proper in
both p andx in the following sense:

Assumption 5.3: For any positive realφ > 0, there is a
compact setCφ such that the following implication holds:

{

f0(p, x) ≤ φ
}

⇒
{

(p, x) ∈ Cφ

}

(33)

Regarding the dependence off0 andψ on x, the following
assumption is considered:

Assumption 5.4: For any compact setC, there are positive
realK0

C
,Kψ

C
> 0 such that :

‖f0(p, x1)− f0(p, x2)‖ ≤ K0
C · ‖x1 − x2‖ (34)

‖ψ(p, x1)− ψ(p, x2)‖ ≤ Kψ
C
· ‖x1 − x2‖ (35)

for all (p, x1), (p, x2) ∈ C.

A typical formulation off0(p, x0) in MPC is given by:

f0(p, x0) := Ω(x̄(T, p, x0)) +

∫ T

0

ℓ(x̄(s, p, x0), p, s)ds

=: Ω(x̄(T, p, x0)) +

∫ T

0

ℓ̄(s, p, x0)ds (36)

where x̄(s, p, x0) is the predicted state value at instants
starting fromx0 at instant0.

Regarding the formulation of the MPC, the following
(commonly satisfied) assumption is needed in the sequel:

Assumption 5.5: The MPC formulation is based on a cost
function of the form (36) with the necessary constraints that
make the following inequality satisfied:

f0(p
opt(t+ τ), x̂(t+ τ)) − f0(popt(t), x(t)) ≤

≤ −∆(τ, x(t)) := −
∫ τ

0

ℓ̄(s, popt(t), x(t))ds (37)

wherepopt(t) is the optimal solution of the problem defined
for the statex(t) while popt(t + τ) is the optimal solution
of the problem defined by the predicted future statex̂(t+ τ)
starting fromx(t) under the optimal controlU(·, popt(t)) that
is applied on the interval[t, t+ τ ].

Note thatpopt(t) does not appear as an argument of∆ since
popt(t) is assumed to be uniquely determined byx(t).

Remark 5.1: Note that the inequality (37) is satisfied only
for the ideal predicted future statêx(t+τ) since otherwise the
bad knowledge of uncertainties and/or the set-point changes
may invalidate the inequality if the true valuex(t+ τ) of the
state is used.

Remark 5.2: Note that inequality (37) is commonly sat-
isfied in the standard provably stable MPC formulations.
Moreover, the r.h.s∆(τ, x(t)) is generally exhibited through
the corresponding stability proof (see [10]).

s

ℓ(s, p, x)

q(x)

q(x)

DC

Fig. 2. Illustration of Assumption 5.6.

Regarding the penalty functionℓ, the following assumption is
used:

Assumption 5.6: [Figure 2] For any compact setC, there
is a positive realDC > 0 and a positive functionq(·) such
that :

ℓ̄(s, p, x) ≥ max {0, q(x)−DCs} (38)

for all (p, x) ∈ C.

Note that condition (38) simply states that with bounded
control, there is a limitation on the speed with which the
state can be steered to the desired region. With this respect,
q(x) is simply a state dependent term inℓ that expresses
how far doesx lie from the desired region. This notation
enables many situations to be handled asx includes set-point
definition and therefore, mesures of the difference between
the physical state of the system and their desired value can
take the simple form expressed byq(x).

Finally, the following assumption is used to characterize the
available computational facility:

Assumption 5.7: The system is controlled with a compu-
tational facility that performs a single elementary iteration of
the fast gradient (step 9 of Algorithm 2) inτc time units.

Note that if another certified algorithm than the fast gradient is
used,τc used hereafter denotes the time necessary to perform
a single iteration of that specific algorithm.

B. Certified MPC by state-dependent updating period

Assume that a scheme is based on the iterative on-line
definition of a sequence of updating instants and a sequence
of precision parameters denoted by:

tk+1 = tk + τk ;
{
ε
(k)
0 , ε

(k)
ψ

}∞

k=0
(39)

which are linked through the definition of the updating periods
τk according to:

τk := τc ×NC

(
ε
(k+1)
0 , ε

(k+1)
ψ

)
(40)

whereC is some compact subset ofRnp × Rn and τc is the
computation time needed for a single fast gradient iteration
(see Assumption 5.7).
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More precisely, given the current statex(tk) and a control
U(·, p̂∗(tk)) that is applied during the sampling period
[tk, tk+1], Algorithm 2 is used to compute the control
parameterp̂∗(tk+1) (that is to be applied during the next
sampling period) with the hot start[p̂∗(tk)]+τk and the
precision parameters(ε(k+1)

0 , ε
(k+1)
ψ ). Note that by the very

definition (40) of τk, the value of the control parameter
p̂∗(tk+1) that is obtained by Algorithm 2 beforetk+1

necessarily meets the precision requirements, namely:

f0(p̂
∗(tk+1), x̂(tk+1))− f0(popt(tk+1), x̂(tk+1)) ≤ ε(k+1)

0

ci(p̂
∗(tk+1), x̂(tk+1)) ≤ 0 i ∈ Ih (41)

ci(p̂
∗(tk+1), x̂(tk+1)) ≤ ε(k+1)

ψ i ∈ Is
Using the first inequality, one can prove the following result:

Lemma 5.1: If the following conditions hold

1) τk is defined by (40) for some compact setC := P×X

2) For all k, [p̂∗(tk)]+τk ∈ P

3) For all k, x(tk) ∈ X

4) Assumptions 5.2, 5.4 and 5.5 are satisfied

then the following inequality holds for allk:

f0(p̂
∗(tk+1), x(tk+1))− f0(p̂∗(tk), x(tk)) ≤

ε
(k)
0 +K0

C(E
0
C + E1

Cτk) + ε
(k+1)
0 −∆(τk, x(tk))(42)

PROOF. See Appendix G.

Note that the termf0(p̂∗(tk), x(tk)) represents the value of
the cost function at the effectivelyvisitedpairs(p̂(tk), x(tk)).
Therefore, the difference expressed in the l.h.s of (42)
is relevant for the stability assessment of the resulted
truncated MPC implementation. On the other hand, using the
definition (40) of τk, the r.h.s of (42) can be viewed as a
function of the precision pair(ε(k+1)

0 , ε
(k+1)
ψ ). The stability

issue is therefore dependent on the possibility to define
these precision parameters in such a way that the r.h.s of
(42) is negative. This is the aim of the following development.

Since the only negative term in the r.h.s of (42) is
−∆(τk, x(tk)), we need a lower bound on∆(τk, x(tk)). The
following straightforward lemma gives such a lower bound:

Lemma 5.2: If the following conditions hold:

1) (p̂∗(tk), x(tk)) ∈ C

2) Assumption 5.6 is satisfied

then a computable lower bound of the quantity∆(τ, x(tk))
can be obtained by:

∆(τ, x(tk)) ≥ ΓC(τ, q(x(tk)) (43)

whereΓC(τ, q) is given by (see Figure 3):

ΓC(τ, q) :=







qτ − 1

2
DCτ

2 if τ ≤ q/DC

q2

2DC

otherwise
(44)

PROOF. See Appendix H.

τ

ΓC(τ, q)

q/DC

q2/(2DC)

Fig. 3. Evolution ofΓC(τ, q) involved in Lemma 5.2.

0.2 0.4 0.6 0.8 1
10−2

10−1

100

101

The targeted precisionε(k+1)
0 = ε0

Decrease condition

K0(E0 + E1 · τc · N̄(ε0, εψ))
ε0

ε0 +K0(E0 + E1 · τc · N̄(ε0, εψ))

ΓC(τ, q̄)

ε
0 ε̄0

decrease

Fig. 4. Typical evolution of the quantities involved in the r.h.s ofequation
(46) invoked in corollary 5. The decrease of the cost function is possible if
there is a tagreted future precisionε0 for which the red-solid curve lies below
the dash-dotted curve.

Using the definition (40) of τk and the r.h.s of (43) in
(42) the following computable function can be defined:

Rτc(ε0, εψ, q̄) := K0
C(E

0
C + τcE

1
CN̄(ε0, εψ)) + ε0 −

ΓC(τc · N̄(ε0, εψ), q̄) (45)

so that the following corollary of Lemma5.1 can be stated:

Corollary 5: If the following conditions hold

1) The requirements of Lemma5.1 are satisfied
2) Assumption5.6 holds
3) q(x(tk)) ≥ q̄

then the following inequality holds

f0(p̂
∗(tk+1), x(tk+1))− f0(p̂∗(tk), x(tk)) ≤

ε
(k)
0 +Rτc(ε

(k+1)
0 , ε

(k+1)
ψ , q̄) (46)

whereRτc(·) is defined by (45).

Figure4 presents a typical situation showing that for a given
past achieved precisionε(k)0 , a given computational power
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leading to the computation timeτc and a given precisionεψ
on the soft constraints satisfaction, either there is noε

(k+1)
0

making the r.h.s of equation (45) invoked in corollary 5
negative or there is an interval of successful values ofε

(k+1)
0

which does not contain0 and which depends on the current
value ofq(x(tk)) = q̄.

Note that corollary5 involves quantities that depend on some
compact set to which belong all the pair([p̂∗(tk)]

+τk , x̂(tk+1).
Using assumption5.3, it is possible to prove that such compact
set is linked to a set of initial conditions for which a certified
convergence result can be derived for the resulting real-time
MPC. This is stated in the following proposition which is the
main contribution of the paper:

Proposition 5.2: Consider a positive realφ0 > 0 and the
corresponding compact subsetCφ0

⊂ Rnp × Rn defined
according to assumption5.3. Let be given a precisionεψ > 0
on the soft constraints satisfaction.

If the following conditions hold withC = Cφ0
:

1) Assumptions5.2, 5.4, 5.5 and5.6 are satisfied
2) ∃q̄min > 0 andγc > 0 such that the inequality:

Rτc(ε0, εψ, q̄) ≤ −
[

γcq̄
2
min

3DCφ0

]

(47)

admits a solutionεsol0 (q̄) ∈ [0, γcq̄
2
min/(2DCφ0

)] for all
q̄ ≥ q̄min

then the truncated MPC design based on the adaptive sampling
period defined by:

τk := τc × N̄(εsol0 (q(x(tk)), εψ) (48)

steers the system to the set:

Xmin :=
{

x ∈ R
n | q(x) ≤ q̄min

}

(49)

provided that the initial condition satisfies:

f0(p̂
∗(t0), x(t0)) ≤ φ0 ; ε

(0)
0 ≤ γcq̄

2
min

6DCφ0

(50)

Moreover, if the hard constraints depend only onp, then along
the closed-loop trajectory, one has:

max
i∈Ih,k≥0

[ci(p̂
∗(tk), x(tk))] ≤ 0

max
i∈Is,k≥0

[ci(p̂
∗(tk), x(tk))] ≤ εψ + (51)

+Kψ
Cφ0
· (E0

Cφ0
++E1

Cφ0
τk)

PROOF. See AppendixI.

C. Case of linear MPC

Linear MPC formulation applies to system of the form

ż = A0z +B0u (52)

in order to stabilize the physical statez around some desired
value zd. We assume for the sake of simplicity thatzd is a
steady state for (52) that corresponds to the steady control

ud = 0. Using the extended system with the extended state
x = (zT , zTd ) and the extended dynamic built up using (52)
with żd = 0, one obtains the controlled system model given
by:

ẋ = Asx+Bsu (53)

where x is an extended state containing the set-point and
disturbance model state and where the cost function (36) is
given by:

ℓ̄(s, p, x) :=
1

2

[
q(x̄(s, p, x)) + ‖U(s, p)‖2R

]
(54)

whereq(x) is given by:

q(x) = ‖z − zd‖2Q := ‖Cx‖2Q (55)

The control parametrization mapU(·, p) used in (56) gives
the control profile over the prediction horizon as a function
of the finite dimensional parameter vectorp.

This formulation leads to state-dependent QP where the
cost function and the constraints are given by:

f0(p, x) =
1

2
pTHp+ (F1x)

T p+ xTSx (56)

Ap ≤ B(0) +B(1)x (57)

It results that the definition ofL0, Lψ and µ0 remains
unchanged since these parameters depends only on the state
independent quantitiesH andA.

It is also assumed that the formulation involves appropriate
final constraints such that (37) of Assumption5.5 holds with
∆(τ, x) satisfying:

∆(τ, x) ≥
∫ τ

0

q(x̄(s, popt, x))ds (58)

This can be obtained through appropriate final equality
constraints that can be explicitly embedded in the control
parametrization mapU(·, p) or through softened final
inequality constraints as suggested in [10].

Given a set of interestX, the upper bound onD0 defined by
(23)-(25) can be used provided that‖F‖ is replaced by

sup
x∈X

‖F1x‖ ≤ ‖F1‖ × ̺(X) (59)

The computation ofψmax invoked in (31) of proposition5.1
is obtained according to:

ψmax := max
x∈X

[
nc∑

i=1

(
max

{
0,Mix− Li

})2

]

(60)

where

Mi := −
[

AiH
−1F1 +B

(1)
i

]

Li := B
(0)
i

where Ai and B
(j)
i denote thei-th line of A and B(j)

respectively. Note that the optimization problems (60) can
be computed once for all using available NLP solvers for a
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beforehand given sets of interestP andX.

Once ψmax is computed, the resultingκmax0 involved
in Proposition5.1 [item (4)] can be computed and used in the
computation ofρmax. Finally, the parameterfmax0 involved
in Proposition5.1 is computed according to:

fmax0 := max
(p,x)∈P×X








(
p
x

)T (
H F1

FT1 S

)

︸ ︷︷ ︸

:=W

(
p
x

)








which admits the upper bound:

fmax0 ≤ [λmax(W )]× max
z∈P×X

‖z‖2

= λmax(W )× ̺(P× X)

It remains to give explicit computation ofDC in (38) of
Assumption5.6. This is given by the following proposition:

Proposition 5.3: If the constraintsp ∈ P implies that
U(s, p) ∈ U for some compact setU, then the following
expression ofDC meets the requirement of Assumption5.6:

DC = λmax(Q)× ̺(X)× [‖As‖̺(X) + ‖Bs‖̺(U)] (61)

PROOF. Compute the derivative of‖C̄x(s, p, x)‖2Q (which
takes the valuesq(x) at s = 0) and derive a lower bound on
the speed with which this term may converge to0 given the
compact set to which belongs the argumentsx andp. �

The next result concerns the explicit derivation of the
compact setCφ given an initial cost function levelφ as
described in Assumption5.3. This is the aim of the following
result:

Proposition 5.4: If The possible set pointszd belong to a
compact setZd, then given φ, the compact setCφ involved
in (33) of Assumption5.3 is given byCφ := P× X where:

P :=
{

p s.t ‖p‖ ≤ [φ/λmin(W0)]
1

2

}

(62)

X :=
{

x s.t ‖x‖ ≤ ̺(Zd) + [φ/λmin(W0)]
1

2

}

(63)

whereW0 is the matrix given by:

W0 =

(
H F11

FT11 S11

)

(64)

where F11 ∈ Rnp×nz and S11 ∈ Rnz×nz are the z-
corresponding sub-matrices ofF1 and S involved in (56)
respectively.

PROOF See AppendixJ.

Once the compact setCφ is computed for a given initial value
φ of the cost function, the constantsK0

C
andK1

C
involved in

(34) and (35) of Assumption5.4 can be explicitly computed
using the following proposition:

Proposition 5.5: For the cost functionf0 defined by (56)
and the constraints defined by (57), given a compact setC :=

P×X, the constantsK0
C

andK1
C

involved in (34) and (35) of
Assumption5.4 can be given by:

K0
C := ‖FT1 ‖ × ̺(P) + 2λmax(S)× ̺(X) (65)

K1
C := 2nc [ψ

max] · ‖(B(1))T ‖ (66)

whereψmax is computed by (60).

PROOF. See AppendixK.

The only remaining parameters areE0
C

andE1
C

involved in
(28) of Assumption5.2 and which describe the prediction
error on the extended statex as a function ofτ . Note that
if the model is perfectly known, the only prediction error
comes from the fact that the future evolution of the set-point
zd is unknown. Two cases can be distinguished:

• If the set point if filtered, then

E0
C
= 0 andE1

C
= maxt(‖żd(t)‖) (67)

• Otherwise

E0
C
= ̺(Zd) andE1

C
= maxt(‖żd(t)‖) (68)

In case other sources of prediction errors prevail, then
an additional positive terme1 has to be added so that
E1

C
= maxt(‖żd(t)‖) + e1 is used.

1) Illustrative example: MPC control of a chain of integra-
tors: Let us consider MPC control of a chain ofn integrators
given by:

żi = zi+1 for i = 1, . . . , n− 1 (69)

żn = u under|u| ≤ ū = 10 (70)

in which the objective is to track a reference trajectory onz1
under the state constraints:

(
−2
−1

)

≤
(
z1(t)
z2(t)

)

≤
(
+2
+1

)

(71)

using the formulation of sectionV-C. This is obviously a
very important sub-class of systems that is heavily used in
Mechatronics.

We consider a parametrization of the form:

U(s, pu(t)) = [Φu(s)] pu(t) ; pu ∈ Rm (72)

in which a final constraint on the state is imposed:

‖z(T )− Zd‖ = Cx(T ) = 0 (73)

By doing this, the stability of the ideal perfect scheme is
guaranteed with Assumption5.5 satisfied. The final constraint
satisfaction can be imposed through the reduced parametriza-
tion:

pu = Kp+Mx0 (74)

where the matricesK andM depend on the function basisφu
involved in (72) and the prediction horizonT such that taking
p = 0 always leads topu that satisfies the final constraint. This
means that because of the saturation constraint (70), the final
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constraint (73) can be feasible through (74) only for initial
statex0 such that

‖Mx0‖ ≤ ū (75)

leading to the bound‖x0‖ ≤ ū/‖M‖ (≈ 11.3 in the case
n = 4). By doing this, the number of decision variables is
given bynp = m− n. In the following results, the weighting
matricesQ = In andR = 0.001 are systematically used in
(55) and (56). A prediction horizonT = 10 is used in the
sequel whilem = 10 dimensional parametrization variable is
used in control parametrization (72). This leads to a number
of free decision variables of dimensionnp = 6.

The computation time for a single iterationτc = 0.1µs
is used (time needed for a matrix-vector multiplication in
Step 10 of Algorithm 2). It is supposed that the reference
value zd lies in the domain[−5,+5]. All the constraints are
taken to be soft withεψ = 10−2. The formulation of the
problem and the choice of the constraints checking instants
lead to a number of constraintsnc = 300.

Note that in order to check the existence ofqmin satisfying
the condition (47) of Proposition (5.2), one can check the
existence of solutionε∗0 to the inequality

Rτc(ε0, εψ, q̄min) ≤ −
[

γcq̄
2
min

3DCφ0

]

(76)

since if (76) is satisfied for̄qmin in the l.h.s, it will be satisfied
for any q̄ ≥ q̄min used in the l.h.s whilēqmin is used in the
r.h.s. An additional condition invoked in Proposition5.2 states
that this solutionε∗0 must be such that:

ε∗0 ≤
[

γcq̄
2
min

2DCφ0

]

(77)

Note also that the parameterφ0 invoked in (76) defines an
upper bound on the possible initial value of the costf0(p, x).
Therefore, in the case of hot starts, the size ofφ0 can define
the quality of the hot start. Otherwise, one can take an upper
bound pessimistic valueφ0 by starting fromp = 0 and taking
the upper value off0(0, x) over the set of admissible initial
state defined by (75), namely:

φ0 ≤ λmax(S)
ū

‖M‖ (78)

Based on the knowledge ofφ0 given by (78), the condition
(76) can be checked for different candidate values ofq̄min.

Figures 5 and 6 shows the results for the casesn = 4
and n = 2 respectively. More precisely, Figure5 shows
that for the quadruple integrator system under an unknown
future behavior of the set-point characterized byE1

C
= 0.05,

the certification conditions (76) and (77) are satisfied with
q̄min = 0.36 andγc = 0.2.

Figure 6 shows that the certification is possible for the
double integrator system with the unknown behavior of the
set-point defined byE1

C
= 0.3 provided that̄qmin = 0.18 and

10−6 10−5 10−4 10−3

0

0.5

1

1.5

·10−3

ε0

Checking conditions (76) and (77)

K0
C
E1

C
τcN̄(ε0)
ε0

Γ(τcN̄(ε0), q̄min)
l.h.s of (76)
r.h.s of (76)
r.h.s of (77)

Fig. 5. Check of the certification feasibility for the chain of n = 4 integrators.
The condition (76) is satisfied by an interval of values ofε0 including values
satisfying (77). Successful values:q̄min = 0.36, γc = 0.2, E1

C
= 0.05.

γc are used in (76) and (77).

Once the lower bound̄qmin is computed, one can come back
to the q-dependent certification condition (47) of Proposition
5.2 in order to compute for each̄q ≥ q̄min the lower bound
ε0(q̄) and the upper bounds̄ε0(q̄) of the admissible values of
ε0.

The state dependent sampling (48) can therefore be defined
by the number of iteration associated to the precisionεsol0

given by:

εsol0 (x) := (1 − λ)ε0(q(x)) + λε̄0(q(x)) (79)

whereλ ∈ [0.5, 0.9] in order to enhance high sampling period
(higher values ofε0) while keeping some security margin.

Figures 7 shows the corresponding evolutions of the
boundsε0(q) and ε̄0(q) as functions of the ratioq/q̄min for
the quadruple integrator system (n = 4) studied previously.
This Figure clearly shows that whenq(x) is high, law
precision (high values ofε0) can be used. Although this is a
known fact, the results proposed here gives a certified explicit
computation of this feature. The Figure shows also clearly
that attempt to achieve over-precise solution may lead to
instability since there is a lower bounds onε0.

VI. CONCLUSION

In this paper a certification bound on the convergence of
the fast gradient algorithm when applied to solve convex
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10−8 10−7 10−6 10−5 10−4 10−3
−0.2

0

0.2

0.4

0.6

0.8

1
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ε0

Checking conditions (76) and (77)

K0
C
E1

C
τcN̄(ε0)
ε0

Γ(τcN̄(ε0), q̄min)
l.h.s of (76)
r.h.s of (76)
r.h.s of (77)

Fig. 6. Check of the certification feasibility for the chain of n = 2 integrators.
The condition (76) is satisfied by an interval of values ofε0 including values
satisfying (77). Successful values:q̄min = 0.18, γc = 0.2, E1

C
= 0.3.

2 4 6 8 10 12 14
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

q(x)/q̄min

ε0(x), ε̄0(x) andεsol0 (x)

ε0
ε̄0
εsol0

Fig. 7. Quadruple integrator: Evolution of the bounding valuesε
0
(q(x)) and

ε̄0(q(x)) and a possible state dependent precisionεsol
0

(x) defined by (79).

optimization problems with general inequality constraints with
a prescribed level of sub-optimality is first given. The resulting
bound is then used to derive a real-time implementation of
MPC with state-dependent updating period leading to certified
convergence of the resulting closed-loop to a neighborhood
of the desired set-point. The proposed results clearly showed
that the time needed to perform the elementary iteration
is a key parameter in the resulting MPC implementation.
To this respect, the proposed results can be used to afford
limited computational power or to compute, for a given control
problem and a given specification in terms of optimality and
constraints fulfillment, the admissible computation powerthat
need to be assigned.

APPENDIX

A. Proof of Lemma3.1

This comes from the fact thatp∗ is the unconstrained
optimum off which means that:

f0(p
∗) + ρψ(p∗) ≤ f0(pa) + ψ(pa) = f0(pa) (80)

and sinceψ(p∗) ≥ 0, the last inequality givesf0(p∗) ≤
f0(pa). The inequality to be proved is therefore a simple
consequence of the definition3.1 of D0. �

B. Proof of Lemma3.2

Let us denote bypψ the closest element ofAψ=0 to p∗.
The triangular inequality implies:

‖p− pψ‖ ≤ ‖p− p∗‖+ ‖p∗ − pψ‖ ≤ d(p) + ‖p∗ − pψ‖
(81)

and becauseψ ∈ F1
Lψ

:

ψ(p) ≤ ψ(pψ) + 〈ψ
′

(pψ), p− pψ〉+
Lψ
2
‖p− pψ‖2 (82)

but sincepψ ∈ Aψ=0, one has thatψ(pψ) = 0 andψ
′

(pψ) = 0
[because of the particular structure of the penalty], therefore
(82) becomes (because of (81)):

ψ(p) ≤ Lψ
2
‖p− pψ‖2 ≤

Lψ
2

[

d(p) + ‖p∗ − pψ‖
]2

(83)

It remains to prove that the term‖p∗ − pψ‖ can be bounded
so that the inequality (10) holds. Note that sincep∗ minimizes
f , one has:

f0(pψ) + ρψ(pψ) ≥ f0(p∗) + ρψ(p∗)

and sinceψ(pψ) = 0 the last inequality leads to:

ψ(p∗) ≤ 1

ρ

[
f0(pψ)− f0(p∗)

]
(84)

≤ 1

ρ

[
‖f ′

0(p
∗)‖ · ‖p∗ − pψ‖+

L0

2
‖p∗ − pψ‖2

]
(85)

Now let pu be the unconstrained minimizer off0, namely
f

′

0(pu) = 0. Note thatpu is uniquely defined sinceµ0 > 0 by
assumption. Now by definition ofp∗ andpu, one has:

f0(p
∗) + ρψ(p∗) ≤ f0(pu) + ρψ(pu) (86)
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on the other hand,

f0(p
∗) ≥ f0(pu) +

µ0

2
‖p∗ − pu‖2 (87)

By combining (86)-(87), it comes that:

‖p∗ − pu‖ ≤
√

2ρ

µ0
ψ(pu)

This with the Lypschitz induced inequality gives:

‖f ′

0(p
∗)− 0‖ ≤ L0‖p∗ − pu‖ ≤ L0

√
2ρ

µ0
ψ(pu) =: κ

′

0

√
ρ

where k
′

0 := L0

√

2ψ(pu)/µ0.This last inequality together
with (85) implies:

ψ(p∗) ≤ 1

ρ

[
κ

′

0

√
ρ‖p∗ − pψ‖+

L0

2
‖p∗ − pψ‖2

]
(88)

Now using (8) in which d(p∗,Aψ=0) = ‖p∗ − pψ‖ gives:

β‖p∗ − pψ‖2 ≤
1

ρ

[
κ

′

0

√
ρ‖p∗ − pψ‖+

L0

2
‖p∗ − pψ‖2

]

and after straightforward manipulations, it comes that:

[

β − L0

2ρ

]

‖p∗ − pψ‖ ≤
κ

′

0√
ρ

(89)

Now assuming thatρ ≥ L0/β, one obtains:

‖p∗ − pψ‖ ≤
2κ

′

0

β
√
ρ
=

2L0

√

2ψ0(pu)/µ0

β
√
ρ

which together with (83) clearly ends the proof since the in-
equality (11) is a direct consequence of the fact thatd(p∗) = 0
by definition. �

C. Proof of Lemma3.3

Sincepψ is admissible andpopt is the optimal solution of
the constrained problem, one necessarily has:

f0(p
opt) ≤ f0(pψ) (90)

Moreover, sincef0 ∈ F1
L0

, the following inequality holds:

f0(pψ) ≤ f0(p∗) + ‖f
′

0(p
∗)‖ · ‖p∗ − pψ‖+

L0

2
‖p∗ − pψ‖2

and since‖f ′

0(p
∗)‖ ≤ D0 (Lemma3.1):

f0(pψ) ≤ f0(p∗) +D0‖p∗ − pψ‖+
L0

2
‖p∗ − pψ‖2 (91)

which together with (90) and (8) of Assumption3.4 gives:

|f0(popt)− f0(p∗)| ≤ D0

[
ψ(p∗)

β

] 1

2

+
L0

2

[
ψ(p∗)

β

]

(92)

This obviously ends the proof. �

D. Proof of Lemma3.4

Assume that for somep the following inequality hold:

|f(p)− f(p∗)| ≤ ǫ (93)

this means that (f ∈ S1µ0
):

‖p− p∗‖ ≤
[
2ǫ

µ0

] 1

2

(94)

on the other hand:

|f0(p)− f0(p∗)| ≤ D0‖p− p∗‖+
L0

2
‖p− p∗‖2 (95)

this together with (94) gives the result. �

E. Proof of Proposition4.2

PROOF. We shall first prove that when the algorithm stops,
one has:

|f(p̂∗)− f(p∗)| ≤ η (96)

then we prove that when (96) holds then̂p∗ is anε̄-suboptimal
solution of the original problem. To prove (96), we shall
distinguish two situations depending on the exit conditionof
step 10. Indeed, eitherg(pi) ≤ gmin := µ0

√

2η/L in which
case (96) is satisfied sincef ∈ S1µ0,L

. Or the algorithm stops
after N̄(c, γ0) iterations whereγ0 := ηµ0/[(L + µ0)f0(p0)]
which implies (96) by virtue of Corollary4.

We shall now prove that when (96) holds, one necessarily
has:

|f0(p̂∗)− f0(popt)| ≤ ε0 ; ψ(p̂∗) ≤ ε2ψ (97)

Proof ofψ(p̂∗) ≤ ε2ψ
By the µ0-strong convexity off , equation (96) implies that
‖p̂∗ − p∗‖ ≤

√

(2/µ0)η. Injecting this in (10) gives:

ψ(p̂∗) ≤ Lψ
2

[√
2η

µ0
+
κ0√
ρ

]2

So in order to prove thatψ(p̂∗) ≤ ε2ψ, it is sufficient to prove
the following two inequalities:

√
2η

µ0
≤ εψ

2

√

2

Lψ
and

κ0√
ρ
≤ εψ

2

√

2

Lψ

But the first inequality is satisfied becauseη ≤ η2 while the
second is satisfied becauseρ ≥ ρ1.

Proof of |f(p̂∗)− f0(popt)| ≤ ε0

Using the triangular inequality:

|f0(p̂∗)− f0(popt)| ≤ |f0(p̂∗)− f0(p∗)|+
|f0(p∗)− f0(popt)|

and using (15) and (12) the last inequality gives:

|f0(p̂∗)− f0(popt)| ≤ D0

[
2η

µ0

] 1

2

+
L0

2

[
2η

µ0

]

+

D0

[
ψ(p∗)

β

] 1

2

+
L0

2

[
ψ(p∗)

β

]
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therefore, the result can be obtained if the following inequality
are satisfied:

D0

[
2η

µ0

] 1

2

+
L0

2

[
2η

µ0

]

≤ ε0
2

(98)

D0

[
ψ(p∗)

β

] 1

2

+
L0

2

[
ψ(p∗)

β

]

≤ ε0
2

(99)

The first inequality is satisfied sinceη ≤ η1 while the second
is satisfied if:

[
ψ(p∗)

β

] 1

2

≤ Z1(
ε0
2
) (100)

But thanks to (11) [satisfied sinceρ ≥ ρ3] this can be proved
if the following inequality holds:

Lψκ
2
0

2βρ
≤ Z2

1 (
ε0
2
) (101)

which is satisfied becauseρ ≥ ρ2. �

F. Proof of Proposition4.3

Recall that in the specific case of QP problem, the definition
of D0 becomes

D0 := sup
f0(p)≤f0(pa)

‖Hp+ F‖

But we have by assumption‖pa‖ ≤ pmax, which enables to
write:

f0(pa) ≤
1

2
λmax(H) [̺(P)]

2
+ ‖F‖ · ̺(P) + φ0 =: f

and sincef0(p) ≥
1

2
λmin(H)‖p‖2 − ‖F‖‖p‖ + φ0, the last

inequality implies:

‖p‖ ≤ ‖F‖+
√

‖F‖2 + 2λmin(H) [f − φ0]
λmin(H)

=: p̄

which obviously gives the results. �

G. Proof of Lemma5.1

Using Assumption5.4 and5.2 , it comes that:

f0(p̂
∗(tk+1), x(tk+1)) ≤ f0(p̂∗(tk+1), x̂(tk+1)) +

+K0
C ×

[
E0

C + E1
C × τk

]
(102)

Now by definition ofτk, the solutionp̂∗(tk+1) satisfies

f0(p̂
∗(tk+1), x̂(tk+1)) ≤ f0(popt(tk+1), x̂(tk+1)) + ε

(k+1)
0

which together with Assumption5.5 gives:

f0(p̂
∗(tk+1), x̂(tk+1)) ≤ f0(p

opt(tk), x(tk)) + ε
(k+1)
0

−∆(τk, x(tk))

≤ f0(p̂
∗(tk), x(tk)) + ε

(k)
0

+ε
(k+1)
0 −∆(τk, x(tk))(103)

Using the last inequality in (102) gives the result. �

H. Proof of Lemma5.2

By definition of (37) of ∆ and using (38) of Assumption
(5.6), it comes that:

∆(τ, x) ≥
∫ τ

0

max{0, q(x)−DCs}ds

=

∫ min{τ,q(x)/DC}

0

(q(x) −DCs)ds

=

[

q(x)τ − 1

2
DCτ

2

]min{τ,q(x)/DC

0

which can be expressed usingΓC(τ, q) given by (44). �

I. Proof of Proposition5.2

The first inequality in (50) together with Assumption5.3
impliy that Corollary 5 applies withk = 0, C = Cφ0

and
q̄ := q(x(tk)), therefore one has:

f0(p̂
∗(t1), x(t1))− f0(p̂∗(t0), x(t0)) ≤

ε
(0)
0 +Rτc(ε

(1)
0 , εψ, q(x(t0))) (104)

and sinceε(1)0 = εsol0 (x(t0)), if q(x(t0)) > q̄min the inequality
(47) gives:

Rτc(ε
(1)
0 , εψ, q(x(t0))) ≤ −

γcq̄
2
min

3DCφ0

(105)

and thanks to the second inequality in (50), the inequality
(105) gives:

ε
(0)
0 +Rτc(ε

(1)
0 , εψ, q(x(t0))) ≤ −

γcq̄
2
min

6DCφ0

(106)

This together with (104) implies that f0(p̂∗(t1), x(t1)) de-
creases meaning that the new pair is still inCφ0

and since
ε
(1)
0 satisfies by assumption the second inequality in (50), the

argumentation can be repeated to derive the properties of the
next pair(p̂∗(t2), x(t2)) meaning that the following inequality:

f0(p̂
∗(tk+1), x(tk+1))− f0(p̂∗(tk), x(tk)) ≤ −

γcq̄
2
min

6DCφ0

is satisified as far asq(x(tk)) remains grater than̄qmin. This
clearly implies thatx(tk) converges to the limit setXmin
defined by (49).

regarding the constraints, note that the hard constraints
are necessarily satisfied since they depend only onp by
assumption and that̂p∗(tk+1) satisfies by construction the
hard constraints while allowing only for a violation of the soft
constraints by an amount which is lower thanεψ, therefore,
one has:

ci(p̂
∗(tk+1), x̂(tk+1)) ≤ εψ ∀i ∈ Is (107)

which obviously gives (51) by Assumptions5.2 and5.4. �
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J. Proof of Proposition5.4

Givenzd, one rewrite the cost function using the change of
variabley = z − zd enables to write the cost function (56) in
the form

f0(p, y) =
1

2

(
p
y

)T (
H F11

FT11 S11

)

︸ ︷︷ ︸

W0

(
p
y

)

which means that iff0(p, x) ≤ φ then the following inequal-
ities hold:

‖p‖ ≤ [φ/λmin(W0)]
1

2 ; ‖y‖ ≤ [φ/λmin(W0)]
1

2 (108)

The first inequality obviously gives (62) while the second leads
to:

‖z‖ ≤ ‖zd‖+ [φ/λmin(W0)]
1

2

which gives (63). �

K. Proof of Proposition5.5

In order to prove that (65) satisfies (34), we use the definition
of f0 to write:

‖f0(p, x1)− f0(p, x2)‖ =
∥
∥(F1(x1 − x2))T p+ ‖x1‖2S − ‖x2‖2S

∥
∥

≤ ‖(FT1 p)T (x1 − x2)‖+ 2λmax(S)× ̺(X)× ‖x1 − x2‖
≤

[
‖FT1 ‖ × ̺(P) + 2λmax(S)× ̺(X)

]
· ‖x1 − x2‖

which proves (65).

It remains to prove thatK1
C

defined by (66) satisfies
(35) we first note that:

ψ(x) :=

nc∑

i=1

[ri(p, x)]
2

with ri(p, x) = max
{
0, Aip−B0

i − B1
i x

}
. Therefore:

‖∂ψ
∂x
‖ ≤ 2

nc∑

i=1

|ri(p, x)| · ‖B(1)
i ‖

and using the inequalities expressing the equivalence of the
L2 andL1 norms, the last inequality gives:

‖∂ψ
∂x
‖ ≤ 2nc

nc∑

i=1

|ri(p, x)|2 · ‖(B(1))T ‖

≤ 2nc [ψ(p, x)]× ‖(B(1))T ‖
≤ 2nc × ψmax × ‖(B(1))T ‖

which obviously gives (66). �
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