
Study of Parameterized-Chain Networks

M. H. Zibaeenejad and J. G. Thistle*

Abstract

In areas such as computer software and hardware, manufacturing systems, and transportation,

engineers encounter networks with arbitrarily large numbers of isomorphic subprocesses. Param-

eterized systems provide a framework for modeling such networks. The analysis of parameterized

systems is a challenge as some key properties such as nonblocking and deadlock-freedom are

undecidable even for the case of a parameterized system with ring topology. In this paper, we

introduce Parameterized-Chain Networks (PCN) for modeling of networks containing several

linear parameterized segments. Since deadlock analysis is undecidable, to achieve a tractable

subproblem we limit the behavior of subprocesses of the network using our previously developed

mathematical notion ‘weak invariant simulation.’ We develop a dependency graph for analysis of

PCN and show that partial and total deadlocks of the proposed PCN are characterized by full,

consistent subgraphs of the dependency graph. We investigate deadlock in a traffic network as

an illustrative example.

I. Introduction

A parameterized network is composed of arbitrary finite numbers of isomorphic subpro-

cesses. Formally, such systems can be modeled as infinite families of finite-state systems.

They are a subclass of the so-called ‘parameterized systems’, whose models incorporate

parameters with unspecified values [1]. In the case of parameterized networks, the param-

eter is the number of subprocesses in the network. Practical examples of parameterized

networks include wireless sensor networks, transportation networks, manufacturing systems

and subprocesses in operating systems. Parameterized models are particularly useful when

the number of subprocesses is unknown, time-varying, or very large.

It is natural to ask how much analysis and control can be done independently of a specific

parameter values. Unfortunately, key problems such as checking the nonblocking property for

*M. H. Zibaeenejad and J. G. Thistle are with the Department of Electrical and Computer Engineering, University

of Waterloo, Waterloo, ON, Canada. mhzibaee,jthistle@uwaterloo.ca

parameterized networks are generally undecidable [2]. Parameterized networks have received

considerable attention in the model-checking literature [3], [4]. Most recently, the authors

of [5] seek to determine whether or not a given safety property holds for all instances of

parameterized toroidal mesh networks under process symmetry assumptions.

Within control literature, the deadlock analysis of a class of parameterized networks was

considered, where subsystems are identical and interact only via events that are shared with

all other subsystems [6]. This requires the communication topology of network to be that

of a graph-theoretic clique. In previous work [7], the present authors introduced a novel

mathematical tool, weak invariant simulation, to support deadlock analysis of parameter-

ized networks. Although the deadlock-freedom property is generally undecidable in ring

networks, weak invariant simulation relations was used to define a class of these networks in

which all the reachable deadlocked states can be calculated [2]. In this paper, we consider

Parameterized-Chain Networks (PCN) consisting of multiple linear parameterized segments

together with a finite number of finite-state subprocesses having arbitrary structure.

In networks consisting of several subprocesses, nontrivial deadlocks often occur in the

presence of a circular wait. When a circular wait occurs, the only available action of each

subprocess requires a resource that is being held by another subprocess [8], [9]. Graph-

theoretic techniques are used to characterize such dependencies in finite-state systems [9],

[10]. Unfortunately, these techniques are not directly applicable to the analysis of parame-

terized networks.

In this paper, we characterize dependencies between subprocesses of any instances of a

PCN by means of a single, finite dependency graph. In a preliminary form, the dependency

graph was introduced in [11], where it was conjectured it can be used to detect reachable

partial deadlocks of a PCN. Here we prove that specific subgraphs of the dependency graph

represent reachable generalized circular waits of instances of the PCN. We relate partial and

total deadlocks of the PCN to these generalized circular waits. Specifically, we show that

the existence of a generalized circular wait is a necessary condition for total deadlock and

a sufficient condition for partial deadlock of all but an acyclic subgraph of a PCN. In some

applications this yields a necessary and sufficient condition for total deadlock. We illustrate

our proposed method by analysis of a traffic network.

Section II covers preliminaries. Section III introduces PCN and a running example of

a train network. Section IV presents our deadlock analysis method. Section V expresses

the main results of the paper: the deadlock analysis of PCN by computation of the set of

reachable generalized circular waits using dependency graphs. Finally, Section VI summarizes

the results.

II. Preliminaries

A. Graphs

For the purposes of this paper, a directed graph D is an ordered pair (V, A), where V is

the node set and A is a set of ordered pairs of nodes called arcs. Considering an arc (u1, u2),

u2 is a direct successor of u1, and u1 is a direct predecessor of u2; the arc is an incoming

arc of u2 and outgoing arc of u1. The number of incoming arcs to a node is called its in-

degree, and the number of outgoing arcs from a node is called the out-degree of that node.

A directed graph D is strongly connected if for every pair u, v ∈ V , D contains sequences

of arcs linking u to v. A closed walk is a sequence of nodes starting and ending at the same

node, with each two consecutive nodes in the sequence adjacent to each other in the graph.

A simple circuit is a closed walk with no repetitions of nodes, other than the repetition of

the starting and ending node. For more on graph theory, see [12].

B. Discrete event systems basics

One of the conventional ways of presenting a DES employs generators [13]. In this pa-

per, the terms (sub)processes and generators are used interchangeably. A nondeterministic

generator is formally defined as a 4-tuple G = (X,Σ, ξ, x0), where X is a state set, Σ a

finite alphabet representing a finite event set, ξ : X × Σ → 2X is a transition function

(where 2X is the power set of X), and x0 an initial state.1 When ξ(x, σ) Ó= ∅ we say that

the transition ξ(x, σ) is defined or enabled. We denote by Σ+ the set of all nonempty finite

strings of events in Σ, and Σ∗ = Σ+ ∪ {ǫ}, where ǫ denotes the empty string (the identity

element for string concatenation). The transition function extends to ξ : X × Σ∗ → 2X in

a standard manner [13]. A shared event between two generators is an event that is enabled

from states of these generators. It can occur if both of the generators are in states that allow

the shared event: transitions labeled by a shared event occur simultaneously in generators

1We write 0 as a superscript because we reserve subscripts on state symbols to represent components of tuples of

states.

that share the event. Local events are not shared with any other generator. The semantics of

shared and local events are formalized by means of synchronous products. The synchronous

product G1‖G2 of generators Gi = (Xi,Σi, ξi, x0
i), i ∈ {1, 2} is the reachable component of

((X1 × X2),Σ1 ∪ Σ2, ξ, (x0
1, x0

2)), where

ξ((x1, x2), σ) =







































ξ1(x1, σ)× ξ2(x2, σ), if σ ∈ Σ1 ∩ Σ2;

ξ1(x1, σ)× {x2}, if σ ∈ Σ1 \ Σ2;

{x1} × ξ2(x2, σ), if σ ∈ Σ2 \ Σ1;

∅, otherwise.

The definition extends naturally to M ≥ 2 generators.

The natural projection [13] is defined as P
Σ̂
: Σ∗ → Σ̂∗, such that

P
Σ̂
(ǫ) = ǫ; P

Σ̂
(α) =











α, if α ∈ Σ̂;

ǫ, if α /∈ Σ̂;

P
Σ̂
(sα) = P

Σ̂
(s)P

Σ̂
(α), for all s ∈ Σ∗, α ∈ Σ.

For a synchronous product
∥

∥

∥

M

i=1
Gi, with Gi = (Xi,Σi, ξi, x0

i), M ∈ N, and a shared event

σi of subprocess Gi, 1 ≤ i ≤ M , companion states of σi in subprocess Gj, 1 ≤ j ≤ M are

states xj, for which ξj(xj, σi) Ó= ∅. The set of such companion states is χj(σi) [2].

C. Weak invariant simulation

We first define weak simulation and then weak invariant simulation. Consider generators

Gi = (Xi,Σi, ξi, x0
i), i ∈ {1, 2}, and a natural projection P

Σ̂
: Σ∗ → Σ̂∗ with Σ̂ ⊆ Σ,

Σ = Σ1 ∪ Σ2.

Definition 1. [14] A weak simulation of G2 by G1 with respect to Σ̂ is a binary relation

WS ⊆ X1×X2 between states of the two generators G1 and G2 such that for each (x1, x2) ∈

WS and every l2 ∈ Σ∗
2, if x′

2 ∈ ξ2(x2, l2) Ó= ∅, there exists l1 ∈ Σ∗
1 and x′

1 ∈ ξ1(x1, l1) such

that P
Σ̂
(l1) = P

Σ̂
(l2) and (x

′
1, x′

2) ∈ WS. 2

2Simulations of G2 by G1 are often defined elsewhere in the literature as subsets of X2 × X1.

Definition 2. [2] Let I be a weak simulation relation of G2 by G1 with respect to Σ̂. The

weak simulation relation I is a weak invariant simulation w.r.t. Σ̂ if for any pair (x1, x2) ∈ I

and for all l1 ∈ Σ∗
1, l2 ∈ Σ∗

2 and all x′
1 ∈ ξ1(x1, l1), x′

2 ∈ ξ2(x2, l2), we have

P
Σ̂
(l1) = P

Σ̂
(l2) ⇒ (x′

1, x′
2) ∈ I.

For more on weak invariant simulation, see [7], [2].

III. The network model

A. An illustrative example: traffic network

Before we present our framework, we bring in a running example. Consider the train traffic

network of Figure 1(a) with two intersections and three routes with arbitrary lengths. In

PCN modeling of this network, intersections are distinguished subprocesses (their structure

is dissimilar to the rest of the network) and routes are parameterized segments. We assume

that each train entering the network consists of two cars; hence a train occupies two spaces

of each route (one for each car). Each intersection will accommodate exactly one train at a

time; no new train is allowed in the intersection until the previous one completely leaves.

Other interesting variants of this problem can be obtained by considering more complex

network structures and trains with different numbers of cars.

In the traffic network of Figure 1(a), trains enter the network from intersection one and

continue to the main route. When a train arrives at intersection two, it decides to leave the

network or to turn onto one of the branches. Consider an instance of the network where

the main, top, and bottom routes have lengths 20, 12, and 17 respectively. We model the

last two spaces of the top and bottom routes by distinguished subprocesses; therefore the

parameterized segments R′, and R′′ respectively contain 10 and 15 subprocesses in this

instance of the network (see Figure 1(b),(c)). We will present the deadlock analysis of the

parameterized network, where the routes have arbitrary lengths, after the description of our

results.

B. Linear parameterized discrete event systems

For the purposes of this paper, a Parameterized Discrete Event System(PDES) P is an

infinite set of synchronous products of M isomorphic finite-state subprocesses, where M

Intersection 1 Intersection 2

Bottom route

Top route

Main route

Fig. 1. (a) A traffic network consisting of two intersections and three routes. Spaces in each route get filled by arrival

a car of a train from the previous space and become empty when a car passes to the next space. Arrows show the

direction of train movements. (b) The PCN of traffic network example. I1 is an input node and I2 is an output node.

R, R′, and R′′ are parameterized nodes. The last two spaces of top (bottom) route are modeled by distinguished

subprocesses A1 (A2). (c) An instance of the traffic network example where parameterized nodes R, R′, and R′′ are

replaced by parameterized segments with 20, 10 and 15 subprocesses respectively.

ranges over the set of natural numbers greater than two. Formally,

P = {
∥

∥

∥

M

i=1
Pi : M > 2},

where Pi = (Xi,Σi, ξi, x0
i), with X1 = X2 = ..., and M is the unspecified parameter. We

are particularly interested in PDES with linear topology. PDES P has linear topology if for

any member
∥

∥

∥

M

i=1
Pi ∈ P , subprocess Pi, 1 < i < M , has events shared only with both Pi−1

and Pi+1, and P1 and PM respectively have events shared only with P2 and PM−1.

We assume all subprocesses have the same state set Xs and instantiated from a template

subprocess Pn in the following manner. Let Pn = (Xn,Σn, ξn, x0
n), and assume all event

symbols in Σn have either n or n + 1 as indices. Define instance Pi for any i ∈ N, by

replacing the index n (respectively n + 1) with i (respectively i + 1), and defining ξi such

that for all x ∈ Xs and σn ∈ Σn (respectively σn+1 ∈ Σn), ξi(x, σi) = ξn(x, σn) (respectively

ξi(x, σi+1) = ξn(x, σn+1)).

We set Σi = ΣLi
∪ΣSi

; ΣLi
is the set of local events (events that are shared neither with

Pi−1 nor with Pi+1) and ΣSi
is the set of shared event symbols. Local event alphabets are

pairwise disjoint. Symbols in ΣSi
either have index i or index i+ 1: shared events between

`

(a)
(c)

(b) (d)

Fig. 2. The models of subprocesses of the traffic network example. (a) The distinguished subprocess that models

intersection one. Event i is a local event (the entrance of a train from the outside of the network). Shared events top

and bot denote entrance of a train from the top and bottom routes. The intersection goes back to the empty state by

departure of both cars of the train to the next space (string s1d1, where s1 and d1 indicate departure of the first and

second cars). (b) The models of the ith and (i+1)th spaces in the linear PDES representing the main route. The ith

space gets filled by arrival of the first car (event si) and becomes empty by event si+1 and wait for the second car

of the train, then the second car fills the space by event di and it leaves by event di+1. (c) the model of intersection

two. It gets filled by string s21d21. A train can exit the network by local event o. Alternatively, a train returns via

the top (bottom) route by string s′

1d′

1 (s
′′

1 d′′

1). (d) the model of A1 (model of A2 is similar) which indicates the last

two spaces of the top route.

subprocesses Pi−1 and Pi have index i, while event shared between Pi and Pi+1 have index

i+1. In the example of Figure 1(a), each route has an arbitrary length and can be modeled

as a linear PDES. Figure 2(b) depicts models of the ith and (i + 1)th spaces of the main

route.

Remark 1. The assumptionM > 2 is for efficient presentation of the results: our framework

can be applied to networks with linear PDES segments with 1 or 2 subprocesses, however

such networks may require different dependency graphs.

C. Parameterized-chain networks

A PCN is a strongly connected, finite, directed graph whose nodes are partitioned into

distinguished nodes and parameterized nodes. The former, represented graphically as squares,

will denote distinguished subprocesses, and the latter, represented as circles, will denote

linear PDES that are subnetworks of the overall system. Distinguished nodes are finite-

state subprocesses that can have a structure distinct from those of other subprocesses. Each

parameterized node is the template finite-state subprocess for the linear PDES that the

node denotes. All parameterized nodes have an in-degree and an out-degree of one. We

assume that the state sets corresponding to subprocesses associated with different nodes are

disjoint. We denote the (distinguished) nodes with in-degree larger than one input nodes, and

the nodes with out-degree larger than one output nodes. We make the following structural

assumptions on the PCN: it has a single input node, the input node is not an output node,

and output nodes are not direct successors or direct predecessors of the input node. See

Figure 1(b) for an example of PCN. In the running example of the traffic network (Figure

1), subprocesses I1, I2, A1, and A2 are distinguished subprocesses. I1 is the input node and

I2 is an output node. R, R′, and R′′ are parameterized nodes.

A PCN represents an infinite family of finite-state systems. Each member of a PCN family

is represented by an instance, whose topology is inherited from that of the PCN: an instance

is obtained from a PCN by ‘expanding’ each parameterized node into a finite, directed, linear

subgraph with M nodes for some particular value M > 2, where each node of the linear

subgraph is a subprocess of the parameterized segment. The direction of the arcs in the

linear subgraph agrees in the evident way with those of the unique arcs leading into and out

of the corresponding parameterized node, so that the overall graph is, like the PCN from

which it is derived, strongly connected.

Recall that all nodes of a PCN instance are subprocesses. When a parameterized node

is expanded into a linear subgraph of P1,P2,...,PM , that leads to a distinguished node D,

any occurrence in D of an event σn+1 shared by D and the template of the parameterized

segment is replaced in D by σM+1 (for example, see shared events s21 and d21 in the model

of distinguished subprocess I2, in an instance of a PCN depicted in Figure 2(c)).

Any two nodes of an instance that are connected by a single arc are called neighbors. Sub-

processes have common shared events only if they are neighbors. We assume that each event

symbol is at most shared between two subprocesses. The term input (output) subprocess in

an instance refers to an input (output) node.

Each subgraph of a PCN instance corresponds to a generator obtained by the synchronous

product of all subprocesses in that subgraph. We will not distinguish between a subgraph

of an instance and its corresponding generator.

D. Assumptions on a PCN

Checking existence of deadlock in a parameterized network is undecidable even for the case

of a parameterized network with ring topology [2]. In this paper, we consider parameterized-

chain networks consisting of several parameterized segments as well as distinguished subpro-

cesses with a more general topology. Thus, in order to characterize a tractable subproblem,

we impose some restrictions on PCN. The following assumptions are expressed for any

instance of a PCN; however the satisfaction of these assumptions for any instance implies

their satisfaction in all instances (See Remark 3 of [2]).

First, we set mild assumptions on all subprocesses of all instances of the PCN (assumptions

(1-3) below). Then we restrict the input subprocess by (4-5) and output subprocesses by

(6).

Consider any instance of a PCN. Let Gi and Gi+1 be two arbitrary neighboring sub-

processes of this instance such that Gi+1 is a direct successor of Gi. For k = i, i + 1, let

Gk = (Xk,Σk, ξk, x0
k). We assume the following:

(∀xi, x′
i ∈ Xi)(∃t ∈ Σ∗

i)[x
′
i ∈ ξi(xi, t)], (1)

(∀σi ∈ Σi ∩ Σi+1)[|χi(σi)| = 1], (2)

(x0
i , x0

i+1) ∈ Vi+1 (3)

where Vi+1 is a weak invariant simulation of Gi+1 by Gi w.r.t. Σi ∩ Σi+1.

Assumption (1) is a condition on the structure of individual subprocess Gi, while as-

sumptions (2) and (3) restrict the way subprocesses interact. Assumption (1) states that

the transition graph of each subprocess is strongly connected. This assumption often holds in

nonterminating subprocesses: in the absence of synchronization with other subprocesses, this

assumption rules out states that could become permanently inaccessible as the subprocess

evolves.

By (2), each shared event in the subset Σi ∩ Σi+1 has exactly one companion state in

subprocess Gi. In other words, interactions between Gi and Gi+1 via a specific shared event

in Σi ∩ Σi+1 can occur only if Gi is in that specific state. If (2) is not satisfied, suitable

enrichment of the event alphabet would make it hold (by distinguishing occurrences of the

same event that can occur in distinct states), but this alphabet enrichment could make the

remaining assumption (3) stronger.

Assumption (3) states that Gi weakly invariantly simulates Gi+1 with respect to Σi ∩

Σi+1. This assumption implies a sense of directionality between neighboring subprocesses

of the network. It expresses that Gi can eventually execute any event shared with Gi+1,

if interaction with the rest of the network is ignored. Violation of assumption (3) means

that even if the interaction of Gi and Gi+1 with the rest of the network is ignored, Gi may

never be able to provide some of the resources needed by Gi+1. This might indicate a ‘design

flaw’ in network architecture that can easily be identified by calculation of the synchronous

product of Gi and Gi+1. Assumption (3) usually holds in networks that contain ‘directional’

parameterized segments; for example, in many manufacturing plants, workpieces normally

move in a default direction and a subprocess can always expect eventually to receive a

workpiece from its direct predecessor neighbor. In the traffic network example of Figure 1,

where routes are modeled as linear parameterized segments, this assumption implies a space

in a route eventually receives train cars from the previous space (see the modeling of Figure

2(b)).

To make the analysis tractable, we now restrict the structure of the input and output

subprocesses. Consider an arbitrary instance of a PCN. Let G1 be the unique input subpro-

cess of an instance, and G2 be its direct successor subprocess, and GN be any of its direct

predecessors in the instance. Let Gk = (Xk,Σk, ξk, x0
k), k = 1, 2, N . We assume

(∀α ∈ ΣN ∩ Σ1)(∀β ∈ Σ1 ∩ Σ2)[χ1(α) ∩ χ1(β) = ∅], (4)

(∀(x1, x2) ∈ R)[x1Wx2], (5)

where R is the state set of synchronous product G1‖G2 andW is a weak invariant simulation

of G2 by G1 w.r.t. shared events of G1. Assumption (4) expresses that for any state of G1 in

which an event shared with G2 is enabled, there is no event shared with GN enabled from

that state, and vice versa. In the traffic network example of Figure 1, this assumption implies

that when intersection one (the input subprocess) is in state f , from which the shared event

of a train exiting from the intersection (event d1) is enabled, there is no event shared with

the top and bottom routes that can occur. This means that a train from these routes cannot

enter the intersection when it is full (in state f).

Assumption (5) expresses that all the state pairs in the synchronous product of G1 and

G2 are in relation W . This means that from any reachable global state, if G2 is in a state

in which a shared event with G1 is defined, G1 can always reach the companion state of

that shared event without executing any other shared event. In other words, the input

subprocess G1 acts a source node: regardless of the states of the rest of the network, G1

can always provide resources requested by G2. Note that this assumption is stronger than

(3) and further reinforces the directionality of the network. Although this assumption on

the unique input node is relatively strong, it is a natural assumption for some networks.

For example in a manufacturing pipeline, this assumption implies an inexhaustible source

of workpieces entering the pipeline. In the traffic network example of Figure 1, it implies

possible entrance of a train into the traffic network at any time. This assumption is used to

establish reachability of the generalized circular waits that we compute below. If it is relaxed,

the method may compute some generalized circular waits that are in fact unreachable. This

may represent a useful compromise for purposes of control synthesis, where at worst it will

lead to a control policy that is more restrictive than strictly necessary.

Let Gj be an arbitrary output subprocess in an instance of a PCN, Gj+1 be any of its

direct successor subprocesses and Gj−1 be its predecessor subprocess. For any such Gj−1,

Gj and Gj+1, we assume

(x0
j , x0

j+1) ∈ Qj+1, (6)

where Qj+1 is a weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1.

Assumption (6) determines how output subprocess Gj interacts with its direct successor

subprocesses in any instance of the PCN. This assumption expresses that output subprocess

Gj, from its initial state, can reach companion states of events shared between Gj and

Gj+1 via a string that contains no event shared with its other direct successor subprocesses

(different from Gj+1). However, the simulation relation Qj+1 need not hold after Gj executes

an event shared with other direct successor subprocesses. In other words, as long as Gj

executes no event shared with its direct successor subprocesses other than Gj+1, execution of

events shared between Gj and Gj+1 is not blocked by its other direct successor subprocesses.

However, subprocess Gj may execute a shared event with the rest of the network at any time,

after which the simulation relation need not hold. In the traffic network example of Figure

1, R′
1 and R′′

1 are the direct successors of output subprocess I2. In this example assumption

(6) means that the first space of each route can expect to receive the second car of the train

after receiving the first one.

IV. The deadlock analysis

In the present section we characterize a generalized version of reachable circular waits

among subprocesses of any instance of a PCN. Specifically, we define for any PCN a de-

pendency graph on states of subprocesses, and define ‘full, consistent’ subgraphs of the

dependency graph as a tool for detection of partial and total deadlocks of PCN instances.

Partial and total deadlocks in an instance of a PCN are formally defined below.

Definition 3. Let X ′ be the state set of a subgraph of a PCN instance (that is, the Cartesian

product of the state sets of these subprocesses); then x ∈ X ′ is a partial deadlock of that PCN

instance if under synchronization with the rest of the network, subprocesses of the subgraph

can reach state x, but no transition is possible from that state. A partial deadlock is a total

deadlock if the subgraph is the entire instance. An instance of a PCN is deadlock-free if it

has no total deadlock.

A. Cycles and isolated cycles

In order to locate reachable circular waits among the subprocesses, we initially focus on

the individual ‘cycles’ of instances of a PCN. For the purpose of our analysis, we disable

certain transitions of input and output subprocesses to yield a subgraph with ring structure.

The next operation will be used to restrict the transitions of subprocesses.

Definition 4. For a given generator Gi = (Xi,Σi, ξi, x0
i), Gi(

∆i→) is the restriction of the

generator to a transition function ξ̂ : Xi × ∆i → 2Xi and is formed by erasing transitions

with events that belong to the set Σi \ ∆i, and unreachable states. Formally, Gi(
∆i→) =

(X̂i,Σi, ξ̂i, x0
i) and, for all xi ∈ Xi and σ ∈ Σi,

ξ̂i(xi, σ) =











ξi(xi, σ), if σ ∈ ∆i;

∅, if σ ∈ Σi \∆i;

and X̂i ⊆ Xi is the set of all x̂i ∈ Xi, such that there exists l ∈ Σ∗
i for which x̂i ∈ ξ̂i(x

0
i , l).

Note that the above operation does not alter the alphabet of Gi; it merely prevents the

occurrence of any events in Σi \∆i by altering the transition function of the generator.

Next, we define a cycle and an isolated cycle of a PCN. These notions are defined with

reference to an instance (not the PCN itself). When we refer to a cycle or isolated cycle

with N subprocesses, terms i + j and i − j are calculated using modulo-N arithmetic over

the complete residue system {1, 2, ..., N}.

Definition 5. A cycle GN =
∥

∥

∥

N

i=1
Gi of an instance of a PCN is the synchronous product of

N subprocesses of a simple circuit in an instance, with the respective distinct subprocesses

relabeled from G1 to GN in the direction of the arcs, starting with the input subprocess.

(Note that any simple circuit in an instance must include the unique input node.) Let

Gi = (Xi,Σi, ξi, x0
i), 1 ≤ i ≤ N , and ∆i = (Σi−1 ∩Σi)∪ (Σi ∩Σi+1)∪ΣLi

. Then the isolated

cycle is ĜN = ‖Ĝi = (X̂,Σ, ξ̂, x0), where Ĝi = Gi(
∆i→). States of cycles or isolated cycles

with N subprocesses take the form of N-tuples x = (x1, x2, ..., xN), where xi is the state of

the ith subprocess Gi.

Remark 2. An isolated cycle ĜN is a ring network formed by restriction of all subprocesses

of the cycle GN to the transitions that are not shared with subprocesses outside of GN . Note

that in GN , the only subprocesses that have events shared with subprocesses outside of GN

are the input subprocess G1 and output subprocesses Gj, j ∈ J , where J is the index set of

output subprocesses of GN .

B. Forward dependency property

Here we define a forward dependency property based on synchronous products of neigh-

boring subprocesses in an isolated cycle of the network. This property aims to characterize

the occurrence of a circular wait. By Lemma 1 given in the appendix, in an isolated cycle

all the events of a subprocess shared with the neighbor of ‘lower’ index can eventually be

executed. Therefore the only shared events that may be blocked in an isolated cycle are

those shared with the neighbor of ‘larger’ index. A state pair (xi−1, xi) in a synchronous

product of two neighboring subprocesses Gi−1 and Gi is forward-dependent if the only event

enabled in state (xi−1, xi) in the synchronous product is an event shared with Gi+1.

Definition 6. Consider cycle GN = ‖Gi, 1 ≤ i ≤ N of an instance of a PCN and isolated

cycle ĜN = (X̂,Σ, ξ̂, x0). For any i, 1 ≤ i ≤ N , let R̂i be the state set of the synchronous

product Ĝi−1‖Ĝi = (R̂i,Σi−1 ∪ Σi, δi, (x
0
i−1, x0

i)). A state pair (xi−1, xi) ∈ R̂i is forward-

dependent if

(∀σi ∈ Σi−1 ∪ Σi)[(δi((xi−1,xi), σi) Ó= ∅)

⇒ (χi+1(σi) Ó= ∅)]. (7)

A state x ∈ X1×X2×...×XN is forward-dependent if for all i, 1 ≤ i ≤ N , (xi−1, xi) ∈ R̂i and

(xi−1, xi) satisfies (7). We denote by Xd ⊆ X1×X2×...×XN the set of all forward-dependent

states of cycle GN .

If a state pair (xi−1, xi) ∈ R̂i satisfies (7), it means that the only transitions available from

this pair in the synchronous product Ĝi−1‖Ĝi are shared with the neighbor of ‘larger’ index

in the isolated cycle, Ĝi+1. For a reachable state x in ĜN , if property (7) holds for all i, then

all the subprocesses of ĜN are waiting for execution of an event shared with their respective

immediate neighbors with larger index. Note that for such a state x, there can be events

shared with subprocesses outside of cycle GN enabled from x1 or xj, j ∈ J , where J is the

index set of output subprocesses of GN . Execution of these shared events may break the

circular wait within the cycle. Therefore, the existence of a circular wait in an isolated cycle

of the network need not cause a partial deadlock. We introduce the dependency graph below

to identify generalized circular waits among multiple cycles of the network which cause a

partial deadlock.

C. The dependency graph

Define the binary relation Depend to be the set of all forward-dependent state pairs in any

isolated cycle in any instance. The dependency graph is based on this relation: its nodes are

exactly those states that belong to any pair in Depend; its arcs are precisely the elements

of Depend.

Note that the relation Depend can be computed by considering a single, arbitrary instance.

The state sets of all subprocesses in any parameterized segment are the same and these

subprocesses are isomorphic. Therefore the forward-dependent pairs in any two neighboring

subprocesses (except the last two) in a parameterized segment are the same. Consequently,

any instance includes all of the pertinent local structure that appears in any cycle of any other

instance. Hence the dependency graph can be constructed based on an instance of minimal

size (where each parameterized node is replaced by a linear PDES with three subprocesses).

The computation of the setDepend is as follows. Consider all isolated cycles of the instance

of PCN with minimal size. For each isolated cycle, consider all sequences of three consecutive

subprocesses. For each of them, compute a synchronous product of the first two subprocesses,

and check forward dependency by comparison of the result to the third subprocess. The

computational complexity of this is polynomial-time in the maximum subprocess alphabet

size, the subprocess state-set cardinality, the sum of out-degree of output nodes, and the

number of nodes of PCN.

The next definition states the consistency property of a subgraph of the dependency graph

and explains how a consistent subgraph of the dependency graph represents a set of states

of subgraphs of instances of the PCN.

Definition 7. A subgraph D̄ of the dependency graph D , is consistent if it is strongly

connected and contains a state of the input node and does not contain more than one state

of any distinguished subprocess.

A consistent subgraph D̄ is perhaps best thought of as representing a regular set of

‘putative’ states of strongly connected subgraphs of instances of the PCN. (We say ‘putative’

because it is not clear a priori that these ‘states’ are reachable – their reachability is

established below).

Indeed a consistent subgraph of the dependency graph uniquely determines a state of

the input node and of other distinguished subprocesses. Within such a subgraph D̄ the

existence of loops consisting of nodes that are states of subprocesses belonging to the same

linear parameterized segment reflects the arbitrary length of instances of that segment. A

consistent subgraph thus determines states of distinguished subprocesses and regular sets of

possible states of linear parameterized segments linking those distinguished subprocesses.

The consistent subgraph D̄ is said to represent all putative states of strongly connected

subgraphs of the instances of PCN in which:

(a) The states of distinguished subprocesses are only those determined by D̄ ; and

(b) The states of instances of parameterized segments consist exactly of one member of each

of the regular sets determined by D̄ .

Consider Figure 3 (a), showing the dependency graph of the traffic network example. The

consistency property contains two main conditions. First, the subgraph must be strongly

connected and must include the input node. For example, in the dependency graph of Figure

1
If Rf

2
Iw¢

2
Iw ¢¢

Rf ¢ Rf ¢

ˆ

Rf ¢¢ Rf ¢¢

ˆ

2
Af

1
Af

1
Ih

Rf̂

1
If 2

Iw¢

Rf
2
Iw¢1

Ih

Rf̂

1
Af

1
Af

(b)

(c)(a)

Rf ¢ Rf ¢

ˆ

Rf

Rf̂

Rf ¢

ˆ
Rf ¢

Fig. 3. (a) The dependency graph of traffic network example. (b),(c) Two of full, consistent subgraphs of the

dependency graph of traffic network example.

3, the loop between nodes fR and f̂R is not a consistent subgraph because it does not include

the input node. Accordingly, it does not correspond to a circular wait. Indeed it represents

only parameterized segment R in which all subprocesses are alternating in state f and f̂

(note that the state sets of all subprocesses of the linear parameterized segment are the

same). The second condition of consistency is that the dependency graph does not include

two states for the same distinguished subprocess (obviously a subprocess cannot be in two

states simultaneously). In the dependency graph of Figure 3(a), a consistent subgraph cannot

contain both nodes w′
I2

and w′′
I2

or both fI1
and hI1

. This dependency graph contains four

consistent subgraphs. The two such subgraphs that present the states of the top loop of the

network are depicted in Figure 3 parts (b) and (c) (the two that present the bottom cycle

are similar owing to network symmetry). Each of these subgraphs represents the states of a

set of instances of the top loop of the traffic network example. For example, subgraph 3(b)

represents the following state set: I1 is in state f , the main route comprises an arbitrary

number M of spaces, and the corresponding subprocesses Ri, 1 ≤ i ≤ M , are in state f

for odd values of i and in state f̂ for even values of i. Subprocess I2 is in state w′, the top

route consists of M ′ spaces and corresponding subprocesses R′
i, 1 ≤ i ≤ M ′, are in state f̂

for odd values of i and in state f for even values of i. Finally A1 is in state f .

Remark 3. In the consistent subgraphs of Figure 3 parts (b) and (c), (w′
I2

, f̂R′) is the only

outgoing arc from node w′
I2
. Therefore in all states represented by this subgraph, the first

subprocess of parameterized segment R′ is in state f̂ . Then (f̂R′ , fR′) is the only outgoing

arc from f̂R′ to the state of a subprocess in R′
1. Therefore in all states presented by these

subgraphs, the second subprocess of R′ is in state f . Using this argument, we conclude that

subprocesses R′
i are in state f̂ , for odd values of i and in state f for even values of i. Since

(f̂R′ , fA1
) is the only arc from states of the linear PDES R′ to A1, the last subprocess of R′ in

all states represented by this subgraph is in state f̂ . This means that R′ has an odd number

of subprocesses. Hence this subgraph represents no state of instances of the PCN with even

numbers of subprocesses in linear PDES R′. Similarly, all other consistent subgraphs of the

dependency graph represent sets of states of instances of the PCN with odd numbers of

subprocesses of linear PDES segment R′′.

D. Deadlock detection

As mentioned earlier, forward-dependent states of isolated cycles that form the depen-

dency graph need not represent partial deadlocks of an instance of a PCN. To establish

a relationship between the dependency graph and reachable total and partial deadlocks,

we now define the full subgraphs of the dependency graph. This property deals with the

issue of output subprocesses in deadlock analysis: a state of an output subprocess may have

events shared with different direct successor subprocesses. In order to prevent execution of

these shared events, states of all direct successors must be included in a suitably generalized

circular wait. Therefore a corresponding subgraph of the dependency graph has to include

branches that correspond to each of these direct successors.

Definition 8. A subgraph of a dependency graph is full if, for any state xj of any output

subprocess Gj, and any direct successor Gj+1 of Gj, if an event shared with Gj+1 is enabled

from xj in Gj, then the subgraph contains exactly one arc (xj, xj+1) where xj+1 is a state

of Gj+1.

All consistent subgraphs of the dependency graph of the traffic network example are

also full. Figure 3 parts (b) and (c) show two of these full, consistent subgraphs. The

relationship between full, consistent subgraphs of the dependency graph and deadlocks in

PCN is described below.

1+jG

1
G

jG

2+jG
NG

1-NG

2
G

1-jG

1+jP
2+jP1-MP

MP

Cycle number one

Cycle number two

Fig. 4. A GPDES instance containing a single output subprocess.

V. Main results

To aid readability and avoid cumbersome notation, we first consider the particular network

structure of Figure 4 and carry out the deadlock analysis (Theorem 1). We then use the

results of this analysis for development of a deadlock analysis method for a general GPDES

(Theorem 2).

The deadlock analysis involves the following question: is a forward-dependent state rep-

resented by a dependency graph in fact a reachable deadlocked state? The next theorem

provides a response for the case of the network structure of Figure 4.

Theorem 1. Consider a GPDES satisfying (1-6) with the structure of Figure 4. Let D be

the dependency graph of this GPDES. Denote cycle number one as GN = (X,Σ, ξ, x0). In

an instance of this GPDES let x and y respectively be the states of cycles one and two in

Figure 4.

(a) Assume there is no event enabled from xj in output subprocess Gj that is shared with

subprocesses outside of cycle number one. State x is a partial deadlock if and only if it

is represented by a full, consistent subgraph of D .

(b) A state of an instance of the GPDES is a total deadlock if it is represented by a full,

consistent subgraph of D .

Proof. Part (a): (If) Assume x is represented by a full, consistent subgraph of D , but is

not a partial deadlocked state of the GPDES instance. According to Proposition 5(c), x is a

forward-dependent state. Therefore by Lemma 2, state x is reachable in ĜN , and therefore

is reachable within the global network. By assumption, state x is not deadlocked; therefore

for some event β ∈ Σ, ξ(x, β) Ó= ∅. By the structure of the network, only G1 and Gj have

events shared with subprocesses outside of cycle number one. But by assumption, there is

no event enabled from xj in Gj that is shared with subprocesses outside of GN . By (5) and

the definition of forward-dependent states, there is an event shared with G2 enabled from

x1 in G1. Therefore by (4), there is no event enabled from x1 that is shared with PM . This

means that β is an event defined in one of the subprocesses of isolated cycle ĜN . Since x

is a forward-dependent state, by (7) β must be a shared event. Let i, 1 ≤ i ≤ N be such

that β ∈ Σi−1 ∩ Σi. Given that ξ(x, β) Ó= ∅, if δi is the transition function of Ĝi−1‖Ĝi, we

have δi((xi−1, xi), β) Ó= ∅. But by (7), χi+1(β) Ó= ∅. This means that a β transition is defined

both in Ĝi+1 and in Ĝi−1. This contradicts the network assumption that only neighboring

subprocesses have events shared between them. Therefore state x is a reachable deadlocked

state of cycle number one and partial deadlocked state of the GPDES instance.

(Only if) Consider an arbitrary reachable partial deadlocked state x ∈ X.

We first show that state x belongs to the subset Xd of Definition 6. Because x is a reachable

state, for all i, 1 ≤ i ≤ N ,

(xi−1, xi) ∈ Ri, (8)

where Ri is the state set of the synchronous product Gi−1‖Gi = (Ri,Σi−1 ∪Σi, δi, (x
0
i−1, x0

i)).

We next show that for all i, any events enabled from xi in Gi must belong to Σi ∩ Σi+1.

To do so, we prove that (xj, xj+1) ∈ Qj+1, where Qj+1 is a weak invariant simulation w.r.t

ΣSj
\Σj−1. According to (1), there must exist an event enabled from xj. By assumption there

is no event enabled from xj that is local or shared with Pj+1. By Proposition 1, (xj−1, xj) ∈

Vj, where Vj is a weak invariant simulation of Gj by Gj−1 w.r.t. Σj−1 ∩ Σj. So there exists

an event σj−1 ∈ Σj−1 ∩ Σj such that ξj(xj, σj−1) Ó= ∅, then by definition of weak invariant

simulation, there exists a string lj−1 ∈ (Σj−1 \ Σj)
∗ such that χj−1(σj−1) ∈ ξj−1(xj−1, lj−1).

If lj−1 has no events shared with Gj−2, then σj−1 can be executed, a contradiction. For

the case lj−1 contains shared events with Gj−2, by Lemma 1 (because Gj−1 = Ĝj−1), these

shared events can be executed. Therefore the only events defined from xj are shared with

Gj+1. But this means that (xj, xj+1) cannot belong to any weak invariant simulation w.r.t

ΣSj
\ Σj−1. According to Proposition 4, we must have

(xj, xj+1) ∈ Qj+1, (9)

where Qj+1 is a weak invariant simulation w.r.t ΣSj
\ Σj−1. Now set state x as the initial

state of GN to form a new cycle G′N and its isolated version Ĝ′N . By Lemma 1, if the

event enabled from xi, 1 ≤ i ≤ N , is shared with Ĝ′
i−1, it can be executed, a contradiction.

Because G′
1 and G′

j are respectively the only input and output subprocesses, for all i /∈ {1, j}

Ĝ′
i−1 = G′

i−1 (see Remark 2). This means that for i /∈ {1, j} any events enabled in xi must

belong to Σi ∩Σi+1. We have already shown that the only events enabled from xj in Gj are

shared with Gj+1. For i = 1, by Proposition 2(b), (x1Ŵx2), where Ŵ is a weak invariant

simulation of Ĝ2 by Ĝ1 w.r.t. all shared events of G1. This means that there must be an

event defined from x1 in Ĝ′
1. By assumption, no local event is enabled from x1 in G1. So,

in order for weak invariant simulation Ŵ to hold, there must be an event shared with G2

enabled from x1 in G1. By (4) there is no other event enabled from x1 in G1. Therefore the

only event enabled from x1 is shared with G2; so for all i, (xi−1, xi) satisfy (7).

Now it suffices to show that for all i, (xi−1, xi) ∈ R̂i, where R̂i is the state set of the

synchronous product Ĝi−1‖Ĝi. Because G1 and Gj are the only subprocesses that have

shared events with subprocesses outside of GN , for i Ó= 1, j, subprocesses Gi and Ĝi are the

same. Therefore we only need to show (xi−1, xi) ∈ R̂i for i = 1, 2, j, j + 1. Note that by (8),

(3) and Proposition 1, (xi−1, xi) ∈ Vi.

For the case where i = j+1 or i = 2, by (1), there exists li ∈ (Σi\Σi−1)
∗ such that for some

σ ∈ Σi−1∩Σi, ξi(xi, liσ) Ó= ∅. Therefore, because events enabled from xi−1 are in Σi−1∩Σi, by

(9) for the case i = j+1, and by (5) for the case i = 2, we must have ξi−1(xi−1, σ) Ó= ∅. Let si

be the string labeling any path from x0
i to xi. Consider string sili. Since ξi(x

0
i , sili) Ó= ∅, by (6),

there must exist a string si−1 ∈ Σ∗
i−1 such that ξi−1(x

0
i−1, si−1σ) Ó= ∅ and PΣSi−1

\Σi−2
(si−1) =

PΣSi−1
\Σi−2

(sili). But li ∈ (Σi \ Σi−1)
∗; therefore

PΣSi−1
\Σi−2

(si−1) = PΣSi−1
\Σi−2

(si). (10)

Since si ∈ Σ∗
i , si−1 contains no event shared with Pi. By (2), the companion state of σ in Gi−1

is unique; therefore xi−1 is reachable in Ĝi−1 via si−1. By (10), PΣi−1∩Σi
(si−1) = PΣi−1∩Σi

(si).

Therefore (xi−1, xi) ∈ R̂i.

Now for i = j or i = 1, by (1) and (2), there exist σ′ ∈ Σi−1 ∩ Σi and li ∈ Σi \ Σi−1 s.t.

ξi(xi, liσ
′) Ó= ∅. Because (xi1

, xi) ∈ Vi, and because all events enabled from xi − 1 belong

to Σi−1 ∩ Σi, we must have ξi−1(xi−1, σ′) Ó= ∅. Moreover, because (x0i−1, xi) belongs to a

similar weak invariant simulation, there exists si−1 s.t. ξi−1(x
0
i−1, si−1σ

′) Ó= ∅, with the same

projection as si onto Σi−1 ∩ Σi. Hence (xi−1, xi) ∈ R̂i. Therefore for all i, 1 ≤ i ≤ N ,

(xi−1, xi) ∈ R̂i, (11)

Part (b): We assume that x and y are components of a (putative) state represented by a

full, consistent subgraph of D , and show that they are components of a total deadlock (x1

to xj are the same as y1 to yj). By Proposition 5(c) states x and y are forward-dependent

states of cycles numbers one and two respectively; by Proposition 5(b) some events α ∈ Σj+1

and β ∈ ΣPj+1
are enabled from xj in Gj. Furthermore, by the forward-dependency property

no local events or events in Σj−1 are enabled from xj. For simplicity, assume that α and

β are the only events enabled from xj in Gj. Event β is shared with Pj+1, and Pj+1 to

PM are in states yj to yM . Since y is a forward-dependent state, the only events enabled

from yk, 1 < k < j and j + 1 ≤ k ≤ M , are shared with the respective neighbors of

‘larger’ index. This means that the only shared event enabled from yM is shared with G1.

By forward dependency and (4), the only shared event enabled from y1 is shared with G2.

This forms a circular wait. Therefore no event other than α can occur from state y. By the

same argument, no event other than β can occur from state x. Therefore, if the putative

state with components x and y is reachable, then it is a total deadlock.

Now we show that states x and y are indeed simultaneously reachable. By the fact that

x is a forward-dependent state, for all i, we have (xi−1, xi) ∈ R̂i, where R̂i is the state set

of the synchronous product Ĝi−1‖Ĝi. Therefore by Proposition 3, we have (xi−1, xi) ∈ V ′
i,

where V ′
i is a weak invariant simulation of Ĝi by Ĝi−1 w.r.t. Σi−1 ∩Σi. By Proposition 2(b),

(5) also holds for this isolated cycle. Assumptions (1,2,3,4) are not affected by the isolation

operation. By Proposition 5(c) and Lemma 2 state x of cycle one is reachable in the isolated

cycle. Now consider the pair (xj, yj+1).

By the same argument we have (xj, yj+1) ∈ V ′
j+1, where V ′

j+1 is a weak invariant simulation

of P̂j+1 by Ĝj w.r.t. the shared events of Gj and Pj+1. Set state x as the new initial states

for cycle number one and isolated cycle number two with these initial states. By the same

reasoning as above, state y is also reachable in this isolated cycle. Since x1 to xj are the

same as y1 to yj, states x and y are simultaneously reachable.

Theorem 1 relates to a network with the particular structure of Figure 4. For states x

such that no event enabled from state xj in Gj that is shared with subprocesses outside

of GN , part (a) of the theorem provides a necessary and sufficient deadlock condition for

partial deadlock. Part (b) gives a sufficient condition for total deadlock of the network.

The following theorem considers PCN with a generalized topology, and establishes that

(a) any full, consistent subgraph of the dependency graph represents a partial deadlock; and

(b) a necessary condition for occurrence of a total deadlock is existence of a full, consistent

subgraph of the dependency graph. Note that partial and total deadlocks are reachable by

definition.

Theorem 2. Consider a PCN G satisfying (1-6).

(a) Let S be a full, consistent subgraph of the dependency graph of G . Then every state

represented by S is a partial deadlock of an instance of G .

(b) An instance of G has a total deadlock only if a state of a subgraph of the instance is

represented by a full, consistent subgraph of the dependency graph of G .

Proof. (Part (a)) We first show that such a state (if reachable) is a partial deadlock, then

we show its reachability. The proof of this part is similar to that of Theorem 1(b). Let x

be a state represented by S . Since S is consistent, it is strongly connected. Therefore any

subgraph of an instance of which x is a state must also be strongly connected. Let xj be

the (unique) state of an output subprocess Gj represented by S . By fullness the instance

subgraph must include any direct successor Gj+1 of Gj (provided that an event shared with

Gj+1 is enabled from xj in Gj).

Because S is a subgraph of the dependency graph, no subprocess of the instance sub-

graph can execute until one of its direct successors does. By strong connectedness of the

instance subgraph, this can never happen. Therefore x is in a generalized circular wait and

consequently deadlocked.

To show reachability of states represented by S , assume that x is such a state. We show

that x is reachable in G . The proof is by induction on the structure of this subgraph. Since

S is consistent, it contains a cycle that includes the input node. Add to this cycle all arcs

(u, v) such that u and v are states of parameterized subprocesses of the cycle. By Lemma

2, any state x represented by the resulting subgraph is a reachable state of a corresponding

subgraph of an instance. This forms the base case of the induction. Now consider a consistent

subgraph S ′ of S and assume it represents a reachable state set in G . If S ′ and S are

the same; we then have the result by assumption. Otherwise, there must exist a state of an

output node in S ′ and an arc from that state that exists in S but not in S ′. Therefore

there exists a consistent subgraph S ′′ of S that is formed by adding to S ′ a path from

that state to that of the input node (and all arcs (u′, v′) such that u′ and v′ are states of

parameterized subprocesses within that path.) By assumption, any state represented by S ′

is reachable within its corresponding instance. Now consider the subgraph S ′′ that includes

the new paths. By the proof of Theorem 1(b), any state represented by this subgraph is

reachable. This completes the induction. Therefore state x represented by S is a reachable

state in PCN G .

(Part (b)) Consider an instance of the PCN that is in a (reachable) total deadlocked

state x. Since x is reachable, by Proposition 4, the state xj of any output subprocess Gj, is

in relation Qj+1 with the state of one of its direct successor subprocesses (Qj+1 is a weak

invariant simulation w.r.t. all the shared events of Gj that are not shared with the direct

predecessor of Gj in the instance.) Therefore, there exists a cycle in the instance of the

PCN such that the states of all output subprocesses of that cycle are in such weak invariant

simulation relations with the states of their direct successors in the cycle. Let this cycle be

cycle number one. Consider the isolated version of cycle number one. By Proposition 2(a),

the state of output subprocess Ĝj of the isolated cycle is in a relation Vj with the state of its

direct successor in the cycle (Vj is a weak invariant simulation w.r.t. shared events between

the two subprocesses). Since Gj was chosen arbitrarily, all output subprocesses of the cycle

are in such weak invariant simulation relations. By Proposition 2(b), (5) also holds for this

isolated cycle. Assumptions (1, 2, 3, 4) are not affected by the isolation operation. Therefore

by the proof of Theorem 1(a), isolated cycle number one is deadlocked if and only if its

subprocesses are in states represented by a consistent subgraph of the dependency graph.

Let Ŝ be such a subgraph.

If no state of any output subprocess of cycle number one has an event enabled from it

that is shared with a direct successor for which there is no state in Ŝ , then Ŝ is full.

Otherwise, let Gj+1 be a direct successor of Gj not belonging to cycle number one such that

an event shared between Gj+1 and Gj is enabled from xj. This means that two different

events are defined from xj, shared with two different direct successors of Gj. By Proposition

7, there exists a string r ∈ Σ∗
j containing only local events and events shared with Gj−1

such that xj ∈ ξj(x
0
j , r). Therefore by (6) and the definition of weak invariant simulation,

(xj, x0j+1) ∈ Q̂′
j+1, where Q̂′

j+1 is a weak invariant simulation of Gj+1 by Gj w.r.t. all

the shared events of Gj that are not shared with the direct predecessor of Gj. Consider

another cycle in the instance that contains the input subprocess and Gj and Gj+1. Set

those components of the total deadlocked state corresponding to subprocesses of this cycle

as the new initial states of subprocesses of this cycle and label this new cycle as cycle

number two. The isolated version of cycle number two satisfies all assumptions of Theorem

1(a). It is therefore deadlocked if and only if it is in a state represented by a consistent

subgraph of the dependency graph. This consistent subgraph is merged with Ŝ to form

a consistent subgraph representing the states of both cycles. We inductively repeat this

procedure for all direct successors of all output subprocesses. The procedure terminates

when the consistent subgraph is full. This full, consistent subgraph represents a component

of the total deadlocked state.

Remark 4. Part (b) of the above theorem gives only a necessary condition for the existence

of a reachable total deadlock in an instance of the PCN. But by part (a), this condition

implies the existence of a reachable partial deadlock that includes the input subprocess.

Any events that can be executed within an instance whose state includes such a partial

deadlock are therefore necessarily restricted to an acyclic subgraph of the instance that

does not include the input node. Such behavior would arguably be considered undesirable

or pathological in many applications (In our traffic network example, this amounts to trains

continually moving back and forth along one of the routes). In such cases, Theorem 1 provides

a necessary and sufficient condition for the existence of a reachable total deadlock.

Consider the traffic network example. The dependency graph (Figure 3(a)) of this PCN

has four full consistent subgraphs that represent states if its instances. Figure 3 parts (b)

and (c) shows two of these subgraphs that represent states of the top loop of the network.

Full, consistent subgraphs of this dependency graph represent states of instances of the

PCN with odd numbers of spaces in the top or bottom routes (See Remark 3). According to

Theorem 2(a) these states are partial deadlocks of the traffic network. In fact, this is one of

those cases in which events cannot occur indefinitely in an acyclic subgraph of an instance

that does not include the input node. Therefore, when the network is in these states, it will

eventually enter a total deadlock. According to Theorem 2(b) the network is free of total

deadlock if the lengths of the top and bottom routes are both even.

VI. Conclusion

The deadlock analysis of a parameterized-chain discrete event network was addressed in

this paper. We developed the dependency graph to cover possible interaction scenarios and

to verify the potential occurrence of generalized circular waits as formalized via the notion

of full, consistent subgraphs of the dependency graph.

We showed that the existence of such a circular wait is a necessary condition for the

existence of a reachable total deadlock of an instance of the network, and a sufficient

condition for the existence of a reachable partial deadlock that includes the unique ‘input’

subprocess of the network. Under such a partial deadlock, executable events are confined to

an acyclic subgraph that does not contain the input subprocess. In applications in which

such behavior cannot occur, the necessary condition for total deadlock becomes a sufficient

one. We emphasize that this work relates to parameterized networks – that is, to infinite

families of finite-state network instances. Thus, the total state set under consideration is

infinite.

Bherer et al. have proposed a control synthesis procedure for parameterized networks [15]

without addressing blocking issues. Our long-term goal is to develop nonblocking supervisor

synthesis methods for tractable subclasses of parameterized networks.

References

[1] L. Zuck and A. Pnueli, “Model checking and abstraction to the aid of parameterized systems (a survey),”

Computer Languages, Systems and Structures, pp. 139–169, 2004. Analysis and Verification.

[2] M. Zibaeenejad and J. Thistle, “Weak invariant simulation and its application to analysis of parameterized

networks,” Automatic Control, IEEE Transactions on, vol. 59, no. 8, pp. 2024–2037, 2014.

[3] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized verification with automatically computed

inductive assertions?,” in Computer Aided Verification, vol. 2102 of Lecture Notes in Computer Science, pp. 221–

234, Springer Berlin Heidelberg, 2001.

[4] E. A. Emerson and V. Kahlon, “Model checking large-scale and parameterized resource allocation systems,” in

Proceedings of the 8th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pp. 251–265, Springer Berlin Heidelberg, 2002.

[5] K. S. Namjoshi and R. J. Trefler, “Parameterized compositional model checking,” in Proceedings of the 22th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 251–265,

Springer Berlin Heidelberg, 2016.

[6] W. Wang, R. Su, and L. Lin, “On analysis of deadlock and blocking freeness in isomorphic module systems,” in

American Control Conference (ACC), pp. 923–928, 2013.

[7] M. Zibaeenejad and J. Thistle, “Weak invariant simulation: properties and algorithms,” in American Control

Conference (ACC), pp. 911–916, 2013.

[8] Z. Li, N. Wu, and M. Zhou, “Deadlock control of automated manufacturing systems based on petri nets; a

literature review,” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

vol. 42, no. 4, pp. 437–462, 2012.

[9] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts. New York, NY, USA: John Wiley &

Sons, Inc., 6th ed., 2001.

[10] H. Cho, T. Kumaran, and R. Wysk, “Graph-theoretic deadlock detection and resolution for flexible manufac-

turing systems,” Robotics and Automation, IEEE Transactions on, vol. 11, no. 3, pp. 413–421, 1995.

[11] M. Zibaeenejad and J. Thistle, “Dependency graph: an algorithm for analysis of generalized parameterized

networks,” in American Control Conference (ACC), pp. 696–702, 2015.

[12] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & digraphs. CRC Press, 2010.

[13] W. M. Wonham, “Lecture notes on supervisory control of discrete event systems,” 2012.

[14] R. Milner, Communication and concurrency. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[15] H. Bherer, J. Desharnais, and R. St-Denis, “Control of parameterized discrete event systems,” Discrete Event

Dynamic Systems, vol. 19, pp. 213–265, 2009.

Appendix

In this section we present all of the intermediate results used in proofs of Theorems 1 and

2.

We first present some properties of PCN defined in our framework. The next proposition

expresses that under synchronization of shared events, a weak invariant simulation of Gi by

Gi−1 with respect to shared events between them is preserved.

Proposition 1. [2] Consider two arbitrary generators Gk = (Xk,Σk, ξk, x0k), k ∈ {i, i + 1},

and a synchronous product Gi‖Gi+1 = (X,Σ, ξ, x0). For all (xi, xi+1) ∈ X, and ∀s ∈ Σ∗, we

have

[(xi, xi+1) ∈ Vi+1 & (x′
i, x′

i+1) ∈ξ((xi, xi+1), s)]

⇒ (x′
i, x′

i+1) ∈ Vi+1, (12)

where Vi+1 is a weak invariant simulation relation of Gi+1 by Gi w.r.t. Σi ∩ Σi+1.

We imposed restrictions on input and output subprocesses of each cycle by (4-6). The

next proposition expresses two properties of input and output subprocesses.

Part (a) of the proposition expresses that whenever states of two neighbors in a cycle

are in the weak invariant simulation relation of assumption (6), then these states belong to

another weak invariant simulation relation in the isolated cycle; however, part (b) indicates

that assumption (5) is essentially preserved for the restricted subprocesses of the isolated

cycle.

Proposition 2. Consider a cycle GN and an isolated cycle ĜN .

(a) Let j ∈ J , where J is the index set of output subprocesses of GN , and let Qj+1 be a

weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\Σj−1. Then the restriction of Qj+1

to pairs of states of Ĝj and Ĝj+1 is a weak invariant simulation of Ĝj+1 by Ĝj w.r.t.

Σj ∩ Σj+1.

(b) Let R̂ be the state set of the synchronous product Ĝ1‖Ĝ2. For all (x1, x2) ∈ R̂, (x1Ŵx2),

where Ŵ is a weak invariant simulation of Ĝ2 by Ĝ1 w.r.t. all shared events of G1.

Proof. (Part (a)) Assume (xj, xj+1) ∈ Qj+1. We show that (xj, xj+1) ∈ V̂j+1, where V̂j+1 is

a weak invariant simulation of Ĝj+1 by Ĝj w.r.t. Σj ∩ Σj+1. Since (xj, xj+1) ∈ Qj+1, by the

definition of weak invariant simulation, for any lj+1 ∈ Σ∗
j+1 with ξj+1(xj+1, lj+1) Ó= ∅, there

exists string lj ∈ Σ∗
j such that ξj(xj, lj) Ó= ∅,

PΣSj
\Σj−1

(lj) = PΣSj
\Σj−1

(lj+1), (13)

and for any x′
j ∈ ξj(xj, lj) and x′

j+1 ∈ ξj+1(xj+1, lj+1), (x
′
j, x′

j+1) ∈ Qj+1. But lj+1 ∈ Σ∗
j+1,

therefore

PΣSj
\Σj−1

(lj+1) = PΣj∩Σj+1
(lj+1). (14)

Therefore by (13), lj contains no event shared with any other direct successor of Gj in

an instance; therefore ξ̂j(xj, lj) Ó= ∅ and PΣSj
\Σj−1

(lj) = PΣj∩Σj+1
(lj). By (13) and (14),

PΣj∩Σj+1
(lj) = PΣj∩Σj+1

(lj+1). Note that because the pair (x′
j, x′

j+1) is also member of Qj+1,

we conclude that the restriction of Qj+1 to pairs of states of Ĝj and Ĝj+1 is a suitable V̂j+1.

(Part(b)) By the fact that R̂ ⊆ R, where R is the state set of the synchronous product

G1‖G2 and the definition of weak invariant simulation. Details are omitted due to similarity

to proof of part(a).

The following proposition expresses that state set of synchronous product of any two

neighboring subprocess in an isolated cycle are in weak invariant simulation w.r.t. shared

events between them.

Proposition 3. Consider cycle GN = (X,Σ, ξ, x0) of an instance of a PCN satisfying (1-6).

For all (xi, xi+1) ∈ R̂i + 1, where R̂i+1 is the state set of synchronous product Ĝi‖Ĝi+1,

(xi, xi+1) ∈ V ′
i+1. (15)

where V ′
i+1 is a weak invariant simulation of Ĝi+1 by Ĝi w.r.t. Σi ∩ Σi+1.

Proof. By assumption, (x0i , x0i+1) ∈ Vi+1, where Vi+1 is a weak invariant simulation of Gi+1 by

Gi w.r.t. Σi ∩Σi+1. But according to the PCN structure only input and output subprocesses

are affected by the isolation operation and Ĝi and Gi are the same for i /∈ J ∪ {1}, where

J is the index set of output subprocesses. The proof for weak invariant simulation of Ĝi+1

by Ĝi for i /∈ J ∪ {1} follows from Proposition 1 and the fact that (Σi ∩ Σi+1) ⊆ Σi+1. For

i ∈ J , the proof is by Proposition 2(a). For i = 1, we use the result of Proposition 2(b). By

this proposition, for all (x1, x2) ∈ R̂2, (x1Ŵx2), where Ŵ is a weak invariant simulation of

Ĝ2 by Ĝ1 w.r.t. all shared events of G1. By definition weak invariant simulation, this implies

that (x1V̂ ′
2x2).

The following lemma expresses an important property of our proposed network: let ĜN

be an isolated cycle of an instance a PCN satisfying (1-6). Then in any reachable state of

an instance of the PCN, all the shared events of a given subprocess Ĝi, 1 < i ≤ N , with

the neighbor of ‘lower’ index, namely Ĝi−1, can eventually be executed via a string whose

execution does not change the states of subprocesses Ĝi+1 to ĜN .

Lemma 1. Consider cycle GN of an instance of a PCN satisfying (1-6) and let ĜN =

(X̂,Σ, ξ̂, x0) be the isolated version of GN . For all x ∈ X̂ and all 1 < i ≤ N , we have

(∀σi−1 ∈ Σi−1 ∩ Σi)[(ξ̂i(xi, σi−1) Ó= ∅)

⇒ (∃s ∈ (Σ \
N
⋃

k=i

Σk)
∗)(ξ̂(x, sσi−1) Ó= ∅)], (16)

Proof. ĜN has the topology of a ring network. Let x ∈ X be a global state such that for

some i Ó= 1 and σi−1 ∈ Σi−1 ∩ Σi,

ξi(x̂i, σi−1) Ó= ∅. (17)

According to Proposition 3, (xi−1, xi) ∈ V ′
i, where V ′

i+1 is a weak invariant simulation of

Ĝi+1 by Ĝi w.r.t. Σi∩Σi+1. Therefore by (17) and the definition of weak invariant simulation,

there exists a string li−1 ∈ (Σi−1 \ Σi)
∗ such that χi−1(σi−1) ∈ ξ̂i−1(xi−1, li−1). If li−1 has

no events shared with Gi−2 (consists of local events only); χi−1(σi−1) can be reached in the

global model by a local string of Gi−1. This satisfies (16).

For the case that li−1 contains shared events with Gi−2, the proof of reachability of

χi−1(σi−1) in Gi−1 within the global model is by induction on subprocess indices. To form

the base case of the induction, let i = 2. By Proposition 2(b), for all x ∈ R̂, x1Ŵx2,

where Ŵ is a weak invariant simulation of Ĝ2 by Ĝ1 w.r.t. all shared events of G1 and R̂

is the state set of the synchronous product Ĝ1‖Ĝ2. By (17), we have ξ̂2(x2, σ1) Ó= ∅; then,

according to the definition of weak invariant simulation, there exists string l1 ∈ (ΣL1
)∗ such

that ξ̂1(x1, l1σ1) Ó= ∅. Since l1 consists of only local events of G1, we have l1 ∈ (Σ \
⋃N

j=2Σj)
∗

and satisfies (16). This forms the base case of the induction. s

For the induction hypothesis, assume (16) holds when i is replaced with some k > 1;

we will show that (16) holds for k + 1. Suppose that for some event σk ∈ Σk ∩ Σk+1,

we have ξ̂k+1(xk+1, σk) Ó= ∅. Then by the same reasoning as above, there exists a string

lk ∈ (Σk \ Σk+1)
∗ such that χk(σk) ∈ ξ̂k(xk, lk). The only possible shared events of lk are

with Gk−1. Let αk−1 be the first shared event of lk with Gk−1. According to the induction

hypothesis, there exists string s ∈ (Σ\
⋃N

j=k Σj)
∗ such that ξ̂(x, sαk−1) Ó= ∅. Therefore shared

event αk−1 can be executed within the global model by a string s that contains no event in
⋃N

j=k Σj. The proof for reachability of the rest of the shared events of lk within the global

network is similar. Since (Σ \
⋃N

j=k Σj) ⊆ (Σ \
⋃N

j=k+1Σj), we conclude that there exists

a string ŝ ∈ (Σ \
⋃N

j=k+1Σj)
∗ such that PΣk

(ŝ) = lk and ŝ can be executed within the

global model. Since χk(σk) ∈ ξ̂k(xk, lk) and ξ̂k+1(xk+1, σk) Ó= ∅, σk can be executed and this

completes the proof.

The next proposition gives an important property of output subprocesses of a PCN. It

expresses that regardless of the evolution of a PCN, the state of any output subprocess

weakly invariantly simulates the state of one of its direct successors w.r.t all shared events

of the output subprocess that are not shared with its direct predecessor.

Proposition 4. Consider an instance of a PCN satisfying (1-6). Let Gj be an arbitrary

output subprocess and Gj−1 be its direct predecessor in the instance. For any reachable

state x of this instance of the PCN, there exists a direct successor Gj+1 of Gj, such that

(xj, xj+1) ∈ Qj+1, where xj and xj+1 are the states of Gj and Gj+1, and Qj+1 is a weak

invariant simulation of Gj+1 by Gj w.r.t. all the shared events of Gj that are not shared

with Gj−1. ; and (b) for any direct successor Gj+1 such that xj is in-sync with the state

xj+1 of Gj+1, we have (xj, xj+1) ∈ Qj, where Qj is a weak invariant simulation of Gj+1 by

Gj w.r.t. all the shared events of Gj that are not shared with Gj−1.

Proof. Let Gk = (Xk,Σk, ξk, x0k), k = j − 1, j, j+1. Thus the set of shared events of Gj that

are not shared with Gj−1 is ΣSj
\ Σj−1, where ΣSj

is the set of shared events of Gj.

Let s label a path from the initial state of the instance of the PCN to state x. If string s has

no event that belongs to ΣSj
\ Σj−1, the desired property holds, by (6) and the definition

of weak invariant simulation. In case the string s contains an event in ΣSj
\ Σj−1, let σ

be the last such shared event symbol in s. Let Gj+1 be the direct successor of Gj that

shares event σ with Gj. Assume rσ is the longest prefix of s ending in σ, and rj+1 is the

projection of r onto the alphabet of Gj+1. Then χj+1(σ) ∈ ξj+1(x
0
j+1, rj+1), where χj+1(σ) is

the unique companion state of σ in Gj+1 (uniqueness is by (2)). By (6), (x
0
j , x0j+1) ∈ Qj+1.

By construction, rj+1 has no symbols shared with any other direct successors of Gjl; so by

the definition of weak invariant simulation there must exist a string labeling a path from

x0j to χj(σ) in Gj that contains no event shared with other direct successors of Gj (recall

χj(σ) is the companion state of σ in Gj). Therefore (χj(σ), χj+1(σ)) ∈ Qj+1. This in turn

means that for any x̂j ∈ ξj(χj(σ), σ) and x̂j+1 ∈ ξj+1(χj+1(σ), σ), (x̂j, x̂j+1) ∈ Qj+1. By

assumption, σ is the last event symbol in ΣSj
\ Σj−1 that occurs in s; therefore, by the

definition of weak invariant simulation (xj, xj+1) ∈ Qj+1.

The next proposition establishes properties of a state of a cycle represented by the

dependency graph of a PCN. It uses these properties to show that state of any cycle

represented by a consistent subgraph of the dependency graph is a forward-dependent state

of that cycle.

Proposition 5. Consider cycle GN = ‖N
i=1Gi = (X,Σ, ξ, x0) of an instance of a PCN

satisfying (1-6), and let ĜN = (X̂,Σ, ξ̂, x0) be the isolated version of GN . Let x ∈ X1×X2×

... × XN be represented by a consistent subgraph of the dependency graph D and J be the

index set of output subprocesses of GN . (a) For any j ∈ J , (xj, xj+1) ∈ Qj+1, where Qj+1 is

the weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1. (b) For any xj, j ∈ J , there

exists an event σj ∈ Σj ∩ Σj+1 such that ξ̂j(xj, σj) Ó= ∅, where ξ̂j is the transition function

of Ĝj. (c) Any such state x is a forward-dependent state of GN .

Proof. (a) By assumption x is represented by a consistent subgraph of the dependency

graph D . Therefore consider an arc (xj, xj+1), j ∈ J in the dependency graph belonging to

that subgraph. By the construction of the dependency graph and the definition of forward-

dependency, (xj, xj+1) is reachable in the synchronous product of Ĝj‖Ĝj+1, where Ĝj and

Ĝj+1 are the isolated versions of Gj and Gj+1 in isolated cycle ĜN (because Gj+1 cannot be

input or output subprocess). Therefore by (6) and the definition of weak invariant simulation,

(xj, xj+1) ∈ Qj+1 (18)

where Qj+1 is the weak invariant simulation of Gj+1 by Gj w.r.t. ΣSj
\ Σj−1.

(b) By (1) and the fact that Gj and Gj+1 share events, there exists a string lj+1 ∈ Σ∗
j+1

such that ξj+1(xj+1, lj+1) Ó= ∅ and PΣj
(lj+1) Ó= ǫ. Therefore by (18), there must exist a

string lj ∈ Σ∗
j such that ξj(xj, lj) Ó= ∅ and PΣSj

\Σj−1
(lj+1) = PΣSj

\Σj−1
(lj). By definition of

forward-dependence, there is no local event enabled from xj, therefore the first event of lj

is in Σj ∩ Σj+1.

(c) In order for x to be a forward dependent state of GN , we have to show the reachability

of (x1, x2) in Ĝ1‖Ĝ2 and (xj−1, xj) in Ĝj−1‖Ĝj, for j ≤ J . Note that only input and output

subprocesses are affected by isolation of a cycle. Therefore, we only have to show the

reachability of (xi−1, xi) in Ĝi−1‖Ĝi for i ∈ {1} ∪ J . For i = j ∈ J , by part (b), there

exists an event σj ∈ Σj ∩ Σj+1 such that ξ̂j(xj, σj) Ó= ∅. Consider string kj+1 ∈ Σ∗
j+1 such

that ξj+1(x
0
j+1, kj+1σj) Ó= ∅. Then by (6) there exists kj ∈ Σ∗

j such that ξj(x
0
j , kjσ) Ó= ∅ and

PΣSj
\Σj−1

(kj+1) = PΣSj
\Σj−1

(kj). Therefore kj contains no event shared with the rest of the

direct successors of Gj.

On the other hand, by construction of the dependency graph, the pair (xj−2, xj−1) is

also forward-dependent within some isolated cycle. Therefore, the only events enabled from

xj−1 are shared with Gj. For simplicity assume that βj is the only such event (some such

event exists by strong connectivity). Because (xj−1, xj) is reachable in Gj−1‖Gj, therefore,

by Proposition 1, (xj−1, xj) ∈ Vj, where Vj is a weak invariant simulation w.r.t. Σj−1 ∩ Σj.

Therefore βj is the only event in Σj−1 ∩ Σj that is executable from xj via a string in

(Σj \ Σj−1)
∗. By (3), (x0j−1, x0j) ∈ Vj. Since xj is reachable from x0j by kj (by assumption

(2)), there must exist a string kj−1 labeling a path from x0j−1 to some state x′
j−1 such that

(x′
j−1, xj) ∈ Vj. Since βj is the only event in Σj−1 ∩ Σj executable from xj via a string in

(Σj \Σj−1)
∗, there must exist a string sj−1 labeling a path from x′

j−1 to a companion state

of βj in Gj−1 such that sj−1 contains no event in Σj−1 ∩ Σj. But by (2), xj−1 is the unique

companion state of βj in Gj−1. Therefore xj−1 can be reached from x0j−1 by a string kj−1sj−1

such that PΣj−1∩Σj
(kj−1sj−1) = PΣj−1∩Σj

(kj). Therefore (xj−1, xj) is reachable in Ĝj−1‖Ĝj.

To show the reachability of (x1, x2) in Ĝ1‖Ĝ2, note that because (xN , x1) belongs to the

dependency graph, the only events enabled from x1 in Ĝ1 are shared with G2 (note that

by (1) some such event exists). By (4), there is no other shared event enabled from x1 in

G1. For simplicity assume that α1 ∈ Σ1 ∩ Σ2 is the only event enabled from x1. By (5),

(x1, x2) ∈ W, where W is a weak invariant simulation w.r.t. ΣS1
. Therefore α1 is the only

event in ΣS1
that is executable from x2 by a string in (Σ2 \ ΣS1

)∗.

By (5), (x01, x02) ∈ W . Let k2 be a string labeling a path from x02 to x2; there must exist

a string k1 labeling a path from x01 to some state x′
1 such that (x

′
1, x2) ∈ W. Since α1 is

executable from x2 by a string in Σ2 \ΣS1
, there must exist a string k′

1 ∈ (Σ1 \ΣS1
)∗ labeling

a path from x′
1 to a companion state of α1 in G1. But by (2), x1 is the unique companion

state of α1 in G1. Therefore (x1, x2) is reachable in Ĝ1‖Ĝ2.

Hence, we conclude that x is in fact a forward dependent state of GN .

We shall show that any state xd ∈ Xd that satisfies the forward-dependency property is

reachable in ĜN . This in turn means that xd is reachable in GN . The next proposition is

the first step in proving this reachability. It states that in GN , if there exists xd ∈ Xd and

a reachable state x ∈ X̂ of ĜN such that for some k, 1 ≤ k ≤ N , xdk
and xk are one and

the same, then there exists an executable string l that takes Gk−1 from xk−1 to xdk−1
and

contains no event from alphabets of subprocesses Gk to GN .

Proposition 6. Consider cycle GN = ‖N
i=1Gi = (X,Σ, ξ, x0), 1 ≤ i ≤ N , of an instance of a

PCN satisfying (1-6). Let ĜN = ‖N
i=1Ĝi = (X̂,Σ, ξ̂, x0), 1 ≤ i ≤ N , be the isolated version

of GN . Consider state xd ∈ Xd of Definition 6, and a state x ∈ X̂. For any k ∈ {2, 3, ..., N},

if xk and xdk
are one and the same, then there exists a string l ∈ (Σ \

⋃N
r=k Σr)

∗ such that

ξ̂(x, l) Ó= ∅ and xdk−1
∈ ξ̂k−1(xk−1, PΣk−1

(l)), where ξ̂k−1 is the transition function of Ĝk−1.

Proof. From Remark 2, only the distinguished subprocesses G1 and Gj, j ∈ J , where J is

the index set of output subprocesses, are affected by the isolation of cycle GN . By (3), for

all i /∈ {1} ∪ J , we have (x0i , x0i+1) ∈ Vi+1, where Vi+1 is a weak invariant simulation of Ĝi+1

by Ĝi w.r.t. Σi ∩Σi+1. According to Proposition 2(a), (x
0
j , x0j+1) ∈ Vj+1. By Proposition 2(b)

and definition weak invariant simulation, it can easily be shown that Ĝ1V2Ĝ2. Hence for all

i, 1 ≤ i ≤ N ,

(x0i−1, x0i) ∈ Vi (19)

By assumption, xd ∈ Xd; so we have (xdk−1
, xdk

) ∈ R̂k, where R̂k is the state set of syn-

chronous product Ĝk−1‖Ĝk. Therefore, by assumption (3) and Proposition 3, (xdk−1
, xdk

) ∈

Vk; but xk and xdk
are the same states, hence

(xdk−1
, xk) ∈ Vk. (20)

Then again, x is a reachable state in ĜN , so (xk−1, xk) ∈ R̂k, where R̂k is the state set

of synchronous product Ĝk−1‖Ĝk. Therefore, by (19) and Proposition 3, (xk−1, xk) ∈ Vk.

By assumption (1) of the network and the definition of Xd, there exists a shared event

βk−1 ∈ Σk−1 ∩ Σk that is executable in Ĝk from xk = xdk
via a string in (Σk \ Σk−1)

∗.

The pair (xdk−1
, xdk

) satisfies the forward-dependency property (7), therefore any transition

enabled from xdk−1
in Ĝk−1 is shared with Ĝk. Consequently by (20) and the definition of

weak invariant simulation, we have

ξ̂k−1(xdk−1
, βk−1) Ó= ∅. (21)

On the other hand, because βk−1 is accessible from xk via a string in (Σk \ Σk−1)
∗, and

(xk−1, xk) ∈ Vk, by the definition of weak invariant simulation there exists a string l̂k−1 ∈

(Σk−1 \ Σk)
∗ and a state x̃k−1 ∈ χk−1(βk−1) such that

x̃k−1 ∈ ξ̂k−1(xk−1, l̂k−1)

Therefore by assumption (2) of the network and (21), there exists a lk−1 ∈ (Σk−1 \Σk)
∗ such

that

xdk−1
∈ ξ̂k−1(xk−1, lk−1).

However, such an lk−1 may contain events shared with Ĝk−2. According to Lemma 1, for

any i, 1 < i ≤ N , all these shared events can be executed in the ĜN by strings with empty

projection into
⋃N

r=k Σr. By repeating this argument, it can be shown that there exists a

N
G

0

N
x

1
G

2
G

Nd
x

0

1
x

1
d
x

1
v

1

0

2
x

1

2
w

1
v

1
v

2
k

1
k

N

N

N
k

Fig. 5. Subprocesses GN and G1 and the weak invariant simulation relation between them in the proof of Lemma 2.

global string l ∈ (Σ \ (
⋃N

r=k−1Σr))
∗ such that PΣk−1

(l) = lk−1 and lk−1 can be executed in

Gk−1 within ĜN .

Now, using the above proposition, the next lemma shows that any state in the state set

of a cycle of our proposed network that satisfies forward-dependency property of Definition

6 is reachable within the isolated cycle, and hence in the global PCN.

Lemma 2. Consider cycle GN = (X,Σ, ξ, x0) of an instance of a PCN satisfying (1-6), and

let ĜN = (X̂,Σ, ξ̂, x0) be the isolated version of GN . All the members of the state set Xd in

Definition 6 are reachable in ĜN .

Proof. The transitions and weak invariant simulations that appear in this part of the proof

are shown in Figure 5. Consider an arbitrary xd ∈ Xd. For any i, 1 ≤ i ≤ N , by Definition

6, we have (xdi−1
, xdi

) ∈ R̂i. Therefore by (3) and Proposition 3, we have

(∀i)(xdi−1
, xdi

) ∈ Vi, (22)

where Vi is a weak invariant simulation w.r.t. Σi−1∩Σi. By (5) and reachability of (xd1
, xd2

)

in G1‖G2,

(xd1
, xd2

) ∈ W. (23)

where W2 is a weak invariant simulation w.r.t. ΣS1
.

According to the definition of isolated cycle ĜN , the only subprocesses affected by isolation

are G1 and Gj, j ∈ J , where J is the index set of output subprocesses. Therefore Ĝ2 and

G2 are one and the same. This means that Ĝ2 satisfies (1). By this assumption, there must

exist a path in Ĝ2 from xd2
to a companion state of an event in Σ1 ∩Σ2. Therefore by (23),

and the definition of weak invariant simulation, there exists a transition enabled from xd1
.

But according to (7), the only transitions enabled from xd1
are via events that are shared

transitions with Ĝ2 (if an event enabled from xd1
is a local event or shared event with GN ,

then (xd1
, xd2

) does not satisfy (7)). Let σ1 ∈ Σ1 ∩ Σ2 be such that ξ1(xd1
, σ1) Ó= ∅. By the

definition of Xd, χ2(σ1) is nonempty. Again by (1), there exists a string k2 ∈ Σ∗
2 such that

χ2(σ1) ∩ ξ2(x
0
2, k2) Ó= ∅. By (5), (x01, x02) ∈ W2; therefore by the definition of weak invariant

simulation there exists string k1 ∈ ((Σ1 ∩ Σ2) ∪ ΣL1
)∗ such that χ1(σ1) ∩ ξ1(x

0
1, k1) Ó= ∅.

Therefore by (2) and the fact that k1 ∈ ((Σ1 ∩ Σ2) ∪ ΣL1
)∗, we have xd1

∈ ξ̂1(x
0
1, k1) Ó= ∅. In

other words, xd1
is reachable in Ĝ1. On the other hand, by setting i = 1,

(x0N , x01) ∈ V1. (by (3))

Therefore by the definition of weak invariant simulation, and the fact that k̂1 contains no

event shared with GN ,

(x0N , xd1
) ∈ V1. (24)

By (1), there exists a shared event αN ∈ ΣN ∩Σ1 whose companion state in G1 is accessible

from xd1
via strings in (Σ1 \ ΣN)∗. According to (22), we also have (xdN

, xd1
) ∈ V1, and by

(7) the only transitions enabled from xdN
are shared transitions with G1. Hence

ξN(xdN
, αN) Ó= ∅. (25)

But (x0N , xd1
) ∈ V1, therefore there must exist a string kN ∈ (ΣN \ Σ1)

∗ such that

χN(αN) ∈ ξN(x0N , kN) (by (2) and (25))

But isolation of GN has no effect on GN (because according to network structure, GN is not

an input or output subprocess); therefore (xdN
∈ ξ̂N(x0N , kN)). String kN belongs to the set

(ΣN \Σ1)
∗, in other words it contains no event shared with G1. By Lemma 1, all the shared

events of kN with ĜN−1 can eventually be executed, therefore ĜN can reach xdN
within the

global system.

By Proposition 6, (xdN−1
, xdN

) can be reached in the isolated cycle ĜN . But again, we

use Proposition 6 and the fact that ĜN−1 can reach xdN−1
, to show that xdN−2

,xdN−1
, and

xdN
are simultaneously reachable in ĜN . With the same reasoning and after N − 1 times

j
G

1+jG

1+jP

β α

γ δ

jx

1+jx

1+jy

δ

β

α

γ

2
l

1
l

12

3
4

0

jx

0

1+jy

0

1+jx

Fig. 6. Subprocesses Gj , Gj+1 and Pj+1 in the proof of Proposition 7. The unlabeled transitions in Gj contain only

local events and events shared with Gj−1. In order for xj ,xj+1,yj+1 to be simultaneously reachable in the global

network, there must a path in Gj from state x0
j to xj that contains both γ and δ. This path is shown by solid

transitions. The dotted transition l1l2 in Gj consist of local events and events shared with Gj−1.

application of Proposition 6, it can be shown that state xd ∈ Xd is reachable ĜN . Since ĜN

is the restricted version of GN .

The next proposition expresses that in any reachable state of an instance of a PCN

satisfying (1-6), for any state xj of output subprocess Gj, if the only events enabled from xj

are shared with direct successors of Gj and at least two events shared with direct successors

of Gj are enabled from xj, then state xj is reachable in Gj by a string containing only local

events and events shared with its direct predecessor.

Proposition 7. Consider an instance of a PCN satisfying (1-6). Let Gj be an output

subprocess, Gj−1 be its direct predecessor. Consider a reachable state of the PCN instance.

In this reachable state, let xj be a state of Gj. Assume the only events enabled from xj are

shared with direct successors of Gj and at least two events shared with direct successors of

Gj are enabled from xj. Then there exists a string r ∈ Σ∗
j containing only local events and

events shared with Gj−1 such that xj ∈ ξj(x
0
j , r).

Proof. Assume events α and β are enabled from xj in Gj, respectively shared with Gj+1 and

Pj+1 (two direct successors of Gj). Let Gk = (Xk,Σk, ξk, x0k), k = j − 1, j, j + 1, and Pj+1 =

(Yj+1,ΣPj+1
, ξPj+1

, y0j+1) and xj+1 and yj+1 be states of Gj+1, and Pj+1 in the reachable state.

By (1), and the fact that α is shared with Gj+1, there exists a string sj+1 ∈ (Σj+1)
∗ such

that ξj+1(x
0
j+1, sj+1α) Ó= ∅. If sj+1 contains no event shared with Gj, then by (6) and (2)

such string r exists. Therefore we assume every such sj+1 contains an event γ ∈ Σj ∩ Σj+1.

Similarly, assume any path from x0Pj+1
to χPj+1

(β) contains an event δ ∈ Σj∩ΣPj+1
(see Figure

6.) By assumption, xj, xj+1 and yj+1 are simultaneously reachable in the PCN instance.

Therefore, there must exist a string l ∈ Σ∗
j such that xj ∈ ξj(x

0
j , l) and l contains local

events and suitable events γ and δ (for the case that l contains multiple events shared with

the direct successors of Gj, the proof is similar). String sj+1 is enabled from x0j+1 in Gj+1;

therefore by (6) there must exist a path from x0j to xj that contains δ but no event in

Σj ∩ ΣPj+1
(does not contain γ). With similar reasoning for Pj+1, there must exist a path

from x0j to xj that contains δ but no event in Σj ∩Σj+1 (hence does not contain γ). Since by

(2) companion states of shared events γ and δ are unique in Gj, there exists a string from

x0j to xj that contains no event in Σj ∩Σj+1 or Σj ∩ΣPj+1
. This is demonstrated in Figure 6.

Consider the state labellings of this figure for the rest of the proof. By (6), (x0j , x0j+1) ∈ Qj+1.

Therefore by the definition of weak invariant simulation, pair (3, xj+1) ∈ Qj+1. Since the

transition between states 3 and 1 consists only of local events and events shared with Gj−1,

therefore (1, xj+1) ∈ Qj+1. Since Gj+1 can reach the companion state of α from xj+1, by (2)

there must exist path l2 from state 1 to xj, containing only local events and events shared

with Gj−1. On the other hand, by (6) Gj weakly invariantly simulates Pj+1 w.r.t. ΣSj
\ΣPj−1

.

Since δ is reachable from initial state of Pj+1, by the definition of weak invariant simulation

and (2), there must exist a path l1 from initial state of Gj to state 1. Containing only local

events and events shared with Gj−1. Therefore l1l2 constitutes a path from initial state of

Gj to xj containing only local events and events shared with Gj−1. fore l1l2 constitutes a

path from initial state of Gj to xj containing only local events and events shared with Gj−1.

As stated above, for the case that l contains multiple events shared with direct successors

of Gj, the proof is similar. Here we show the proof sketch for this general case. Let l contain

events σ1σ2...σn shared between Gj and either Gj+1 or Pj+1. By (6), (x0j , x0j+1) ∈ Qj+1 and

(x0j , x0j+1) ∈ Q′
j+1, where Qj+1 is a weak invariant simulation of Gj+1 by Gj and Q′

j+1 is

a weak invariant simulation of Pj+1 by Gj, both w.r.t. ΣSj
\ Σj−1. Suppose without loss

of generality that σ1 ∈ Σj ∩ Σj+1. Then by the definition of weak invariant simulation the

unique member of χj(σ1) simulates both χj+1(σ1) and y0j+1. It follows that the companion

state χj+1(σ2) simulates the successor of the first occurrence of σ1 and y0j+1; moreover,

simulation of y0j+1, there exists a path in Gj from the first companion state to the next that

contains no events shared with any direct successor of Gj. By replacing this argument for

the rest of the path, one can show that any two successive companion states are linked by

a path that is not labeled by any events shared with direct successors of Gj. It follows that

there exists a path from x0j to xj that is labeled only by local events of Gj and events shared

with Gj−1.

