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Abstract—There are only a few learning algorithms applicable of these publications, the authors tend to assume that #ie re
to stochastic dynamic teams and games which generalize Maok  objective of the agenibis for some reason to find and play an
decision processes to decentralized stochastic control gislems equilibrium strategy (and sometimes this even requirestage

involving possibly self-interested decision makers. Learing in ¢ h ticul ilibri trat d
games is generally difficult because of the non-stationaryngi- '© SOMENOW agree on a partcuiar equilibrium stra egy), an

ronment in which each decision maker aims to learn its optima  NOt necessarily to pursue their own objectives. Anotheossr
decisions with minimal information in the presence of the oher issue is that the multi-agent algorithms introduced in mahy

decision makers who are also learning. In stochastic dynami these recent papers are not scalable since each agent oeeds t
games, leaming is more challenging because, while learinthe  aintain estimates of its Q-factors for each stateljoirtioac

decision makers alter the state of the system and hence the . S .
future cost. In this paper, we present decentralized Q-learing pair and compute an equilibrium at each step of the algorithm

algorithms for stochastic games, and study their convergeze for  Using the updated estimates, assuming that the actions and
the weakly acyclic case which includes team problems as anobjectives are exchanged between all agents.

important special case. The algorithm is decentralized in hat Standard Q-learning, which enables an agent to learn how

each decision maker has access to only its local informatioithe . . . _ - serb
state information, and the local cost realizations; furthemore, it to play optimally in a single-agent environment, has al €

is completely oblivious to the presence of other decision rkars. aPplied to very specific multi agent applications [4], [Serd,
We show that these algorithms converge to equilibrium polies €ach agent runs a standard Q-learning algorithm by ignoring
almost surely in large classes of stochastic games. the other agents, and hence information exchange between
agents and computational burden on each agent are substan-
tially lower than aforementioned multi-agent extensiohQe
|. INTRODUCTION learning algorithm. Also, standard Q-learning in a mutjieat

This paper aims at developing new learning a|gorithn@1vironment makes sense from individual bounded ratiynali
with desirable convergence properties for certain clasgespoint of view. However, no analytical results exist regagli
stochastic games, which are discrete-time dynamic gameghg properties of standard Q-learning in a stochastic game
which the history can be summarized by a “staie” [1]. Morg&etting.
specifically, we focus on weakly acyclic stochastic games th We should also mention several attempts to extend a well-
can be used to model cooperative systems. The chief meritk#pwn learning algorithm called Fictitious Play (FP) [6]] [
the paper lies in the fact that learning takes place in sttizha to stochastic games|[8]LI[9]._[L0]. The joint action leagin
games, which are truly dynamic games, as opposed to learn@gorithm presented in_[8] would be computationally pro-
in repeated games in which the same single-stage gam@ilgtive quickly as the number of agents/states/actiorsvgr
played in every stage. In stochastic games, the policiestsel The algorithms presented in! [8] are claimed to be convergent
by the decision makers not only impact their immediate co an equilibrium in single-state single-stage commonréese
but also alter the stage-games to be played in the fut@@mes but without a proof. The extension of FP considered in
through the state dynamics. Hence, our results are appical®] requires each agent to calculate a stationary policyaahe
to a significantly broader set of applications. step in response to the empirical frequencies of the sttjon

The existing literature on learning in stochastic games R®licies calculated and announced by other agents in the pas
very small in comparison with the literature on learning iff he main contribution of [9] is to show that such FP algorithm
repeated games. As the method of reinforcement learnil§gnot convergent even in the simplest 2x2x2 stochastic game
gained popularity in the context of Markov decision probgemWhere there are two states and two agents with two moves for
a surge of interest in generalizing the method of reinforeeim €ach agent. The version of FP used[inl [10] is applicable only
learning, in particular Q-learning algorithl [2], to stactic t0 zero-sum games (strictly adversarial games).
games has led to a set of publications primarily in the comput  Other related work includes [L1], [12]. [13]. In [11], a miult
science literature; se€l[3] and the references therein.anym agent version of an actor-critic algorithrn [14] is shown to

be convergent to generalized equilibria in a weak sense of

Part of this paper is presented at the IEEE Conference onsibacand convergence, whereas iE[lZ] a policy iteration algorithm i
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[13] uses the policy iteration algorithm given i _[12] in Over the past half-century, there have been many appli-
conjunction with certain approximation methods to deahwitcations of stochastic games on control problems; see Chap-
a large state-space in a specific card-game without rigoraas XIV in [15] as an early reference. At the present time,
results. the control theory literature includes a large number of pa-
We should emphasize that our viewpoint is individugbers employing the theory of stochastic games and their
bounded rationality and strategic decision making, that isontinuous-time counterparts called “differential gah{@s).
agents should act to pursue their own objectives even Many papers in this body of work study a zero-sum game
the short term using localized information and reasonabietween a controller which aims to optimize the system
algorithms. It is also desired that agent strategies cgeveiperformance and an adversary which controls certain system
to an agreeable solution in cooperative situations wheestagparameters and inputs to make the system performance as poor
objectives are aligned with system designer’s objectivenevas possible. We selectively cite [17] for robust control and
though agents do not necessarily strive for converging tonainimax estimation problems, [18] for flow control in queue-
particular strategy. ing networks,[[10] for control of hybrid systems, and][20t fo
The rest of the paper is organized as follows.§Ifj the robustness, security, and resilience of cyber-physicatrob
model is introduced. Ir§ [l the specifics of the learning systems. The case of nonzero-sum games in which the decision
paradigm and the standard Q-learning algorithm is discljssenakers do not always have diametrically opposed objectives
followed by the presentation of our first Q-learning algamit has also received significant attention; see for exampled21
for stochastic games and its convergence properties. Geneddmission, service, and routing control in queueing system
izations of our main results iglare presented iglV] Thisis [22] on transmission control in cognitive radio systems3][2
followed by a simulation study ifiVl The paper is concluded on network security, and [24] on formation control.
with some final remarks ifVI] Appendices contain the proofs We should also mention the work on team decision problems
of the technical results in the paper. where all DMs share a common long-term objective albeit with
access to different information variables; see €.a/, [28]. In
this paper, differently from the usual team decision protde
in the literature, even though each DM has access to the state
Consider the (discrete-time) networked control systensill information, it does not have access to global information
trated in Figurdll where, is the state of the system at timeon the other DMs, and even their presence. We also note
t, u! is the input generated by controllerat time¢, andw; that the emergence of distributed control systems requires
is the random disturbance input at timeSuppose that eachthe formulation of “team problems” within a game-theoretic
framework where local controllers are tasked to achieve one
system level objective without centralized coordinatisee for

Il. STOCHASTIC DYNAMIC GAMES

———— disii?g:rrlrées PR examplel[27] on distributed model predictive control. Tiyise
&u: W, )// of team problgms an_d its generalizatiqns where the. ob';px:tiv
. e of DMs are aligned in some sense with a team objective are
Xy =f (x‘,ui ..... u;\’,w[) the primary focus of our work though the class of games
: _ : considered in this paper is more general and it even includes
. U L . some zero-sum stochastic games.
* Controller i *

A. Discounted Stochastic Dynamic Games

Fig. 1. A networked control system. A (finite) discounted stochastic game has the following
ingredients; seé [1].

controlleri is an autonomous decision maker (DM) interested , A finite set of DMs with thei—th DM referred to as DN

in minimizing its own long-term cost forie{1,...,N}
. a finite setX of states
; finite setU’ of control decisions for each DM
E i 1N e a - ot | ed /
;C (e up, o) « a cost function* for each DM determining DM'’s cost
= c(z,ut,...,u") at each state € X and for each joint
whereci(z;,ul, ..., ul) is the cost incurred by controllérat decision(u’,...,u") € U' x ... UY

time ¢, and E[-] denotes the expectation given a collection of  a discount factop’ € (0,1) for each DM
control policies (which will be specified later in the paper) ~  a random initial state:y € X

a probability spacé®, F, P). Although controlleri can only e a transition kernel for the probability[2' |z, u', ..., u™]
choose its own decisiong, i, .. ., its cost generally depends ~ Of each state transition from € X to 2’ € X for each
on the decisions of all controllers through its single-stagst joint decision(u?, ..., u™) € U' x ... UN.

as well as the state dynamics. This dynamic coupling betweerSuch a stochastic game induces a discrete-time controlled
self-interested DMs with long-term objectives naturayad Markov process where the state at tims denoted byr; € X

to the framework of stochastic gamegd [1] which generaliztarting with the initial stater,. At any timet¢ > 0, each
Markov decision problems. DM® makes a control decision: € U’ (possibly randomly)



based on the available information. The state and the called the potential function, decreases whenever a sijle
joint decisions(u}, ...,ul¥) together determine each DM decreases its own cost by unilaterally switching from one

cost c(xy,u;,...,ul¥) at time ¢t as well as the probability deterministic policy to another one. In this class of games,
distribution P[ - | x¢,u},...,ulY] with which the next state the deterministic policies minimizing the potential fuioct are
41 1S selected. equilibrium policies. As such, we are primarily interesiad

A policy for a DM is a rule of choosing an appropriateéhe set of deterministic equilibrium policies denoted Iy,
control decision at any time based on the DM's history ofherell., C II.
observations. We will focus on stationary policies of thenfo ~ We next formally introduce the set of games considered in
where a DM’s decision at time is determined solely basedthis paper.
on the stater,. Such policies for each DMare identified
by mappings from the state spaée to the setP(U?) of
probability distributions onU?. The interpretation is that a
DM? using such a policyr® : X — P(U?) makes its decision
ui at any timet by choosing randomly fronU? according

B. Weakly Acyclic Games

Let IT’ _, denote DM's set of (deterministic) best replies
toanyr—' e A7, ie,

to 7 (2;). We will denote the set of such policies Yy for M= {# €Il : J(#,7%) = min Jy(a', 77",
each DM. We will primarily be interested in deterministic " mEA!
(stationary) polici&denoted byIT? for each DM, where each for all x}

policy 7 € II* is identified by a mapping frorX to U
The objective of each DMis to find a policyr? € A that
minimizes its expected discounted cost

DM?s best replies to any—* € A~* can be characterized by
its optimal Q—factorstr,i satisfying the fixed point equation

QL (z,u") =FE (g [ci(:c, u',u™")
Jh(rt, ... 7TN) =F, Z(ﬁi)tci (xt, up, ..., uiv) Q) + B¢ Z Plz'|z,u’,u”"] min Q;,i(:c’, vz)]

t>0 @' €X viel

for all x € X, whereE,. denotes the conditional expectation 2)
given zp = z. Since DMs have possibly different cosffor all z,u’, where E i, denotes the expectation with
functions and each DM’s cost may depend on the contrspect to the joint distribution of~* given by 7' (z) =
decisions of the other DMs, we adopt the notion of equilibriu 7! (z) x - - - x 771 (z) x 71 (z) x - - - x 7V (x). The optimal
to represent those policies that grerson-by-person optimal Q-factor Q _, (z,u’) represents DKs expected discounted
For ease of notation, we denote the policies of all DMsost to go from the initial state assuming that D¥linitially
other than DM by 7. For future reference, we also definehoosesu’ and uses an optimal policy thereafter while the
% = x .17 and A~ := x;,AJ as well asll := x;II/  other DMs user ‘. One can then writdl’ _; as
and A := x;A7. Using this notation, we write a joint policy
(wt, ..oy as(rt, 7% and Ji(xt, ... 7N) as Ji(wt, m ).

Definition 1: A joint policy (7*%,...,7*Y) € A constitutes for all z}.
an (Markov perfect) equilibrium if, for all, x,

Il = {7 ell': Q' _i(z,7'(z)) = Ume%l QL_i(z,v"),

S _ o _ The set of (deterministic) joint best replies is denoted by
Ji(r*t ) = ﬂmelg Jo(mt, 7). I, ==L, x -~ x N . Any best replyz’ € II._, of
_ L _ DM? is called astrict best replywith respect to(r, 7—¢) if
It is known that any finite discounted stochastic game pos- o T
sesses an equilibrium policy as defined above [28]. Jo (', m7") < Jy(n',m"), for somew.

Although the minimum above can always be achieved kg/uch a strict best reply’ achieves DNI's minimum cost given
a deterministic policy inII* (since each DMs problem is , o . o
.~ * for all initial states and results in a strict improvemengiov

a stationary Markov decision problem when the policies Ofi tor at least one initial state
the other DMs are fixed at*~%), a deterministic equilibrium - . 9 -

. o . . Definition 2: We call a (possibly finite) sequence of deter-
policy may not exist in general. However, many mterestml%i

N : ~ . Ministic joint policies ... astrict best reply pattif, for
classes of games do possess equilibrium in deterministic J P GRINES Py P

o . o edchk, m, andm,o, differ in exactly one DM position, say
policies. In particular, large classes of games arisingnfro_ PR : .
S . . M*, andr;_ , is a strict best reply with respect tq..
applications where all DMs benefit from cooperation possess-, .. ... b . .
o . S L : Definition 3: A discounted stochastic game is calledakly
equilibrium in deterministic policies. The primary examspl . . L . )
. acyclic under strict best replies if there is a strict best reply
of such games of cooperation are team problems where a . L : ;
. ath starting from each deterministic joint policy and ewdi
DMs have the same cost function. In team problems, t S e .
L e S . -art a deterministic equilibrium policy.
deterministic policies minimizing the common cost funatio ™ _. .
Figure[2 shows the strict best reply graph of a game where

arg_cl_early gqu!llbr|um_p_oI|C|es although_ non-optimal efet the nodes represent the deterministic joint policies ara th
ministic equilibrium policies may also exist. A more gerlera

set of games of cooperation are those in which some 1‘uncti(gllre(:te(.j (_ad_ges re_p_re;ent the_ sm_gle-DM strict best I’E[EI&" S
eterministic equilibrium policy is represented by a sing,,

2When it is not clear from the context, a “policy” will mean ateleninistic & nOde_ with no o_utg(_)ing edges’ in such a Qraph- NOte_that the
policy. game illustrated in Figurld 2 is weakly acyclic under striest



Iteratek_z 0 _
If m, eII* _,
T

i
Tht1 = Tk
Else

) 7T]i€ w.p. \?
T T anyat eIl wp. (1 )\i)/‘er,i
End ’ ’

Fig. 2. The strict best reply graph of a stochastic game.

On the one hand, if the joint policyy, := (7i,...,7) is
an equilibrium policy at any stefp, then the policies will never
?hange in the subsequent steps. On the other hand, regardles
ot what the joint policyry, := (mi,..., ) is at any stepk,
o7 the joint policy m 1, In L steps later will be an equilibrium
in Figure[2. . . .. - .

. . . olicy with positive probabilityp,,;, > 0 where L is the
Weakly acyclic games constitute a fairly large class &ore ;
: : maximum length of the shortest strict best reply path from

games. In the case of single-stage games, all potentialgyjame

; ny policy to an equilibrium policy ang,,;, depends only
as well as dominance solvable games are examples of weaillﬁythe inertias\!,... . AN, and L. This readily implies that

acycl!c_ games, see[[12_9]. We note that the concept of WERS best reply process with inertia will reach an equilibriu
acyclicity introduced in this paper is with respect to theOIiC in finite number of steps w.d. [20)], i.e
stationary Markov policies for stochastic games, and donst 'Y ps W.H. T

tutes a generalization of weak acyclicity introduced [in][30 Pl = «*, for somer* € I, and all largek < oo] = 1.
for single-stage games. The primary examples of weakly

acyclic games in the case of stochastic games are the teamie now note that each updating DMt stepk needs to
problems with finite state and control sets where DMs ha¥@mpute its best repliesl’ _,, which can be done by first
identical cost functions and discount factors. Clearlynyna T

other cl_asses OT stochastic games are Weakly_ acyclic, & solve[(R), for example through value iterations, prestid
appropriate multi-stage generalizations of potential ggand ; L -

. . . that DM* knows the state transition probabilitigs and the
dominance solvable games restricted to the stationary dark

- . = "policies; * of the other DMs to evaluate the expectations in
policies are weakly acyclic for the same reason that thdesmgp Tk P

. (2). In most realistic situations, DMs would not have acdess
stage versions of these games are weakly acyclic [29] such information and therefore would not be able to compute

their best replies directly. In the next section, we introelour
C. A Best Reply Process for Weakly Acyclic Games learning paradigm in which DMs would be able to learn their
. . . . . fear best replies with minimal information and adjust their

Consider a policy adjustment process in which only one DM . . . .

. : o : policies (approximately) along the strict best reply pathsn
updates its policy at each step by switching to one of itgtstri 2
. . ... .the best reply process with inertia.
best replies. Such a process would terminate at an equitibri

policy if the game has no cycles in its strict best reply graph

and the process continues until no DM has strict best replies [1. Q-L EARNING IN STOCHASTIC DYNAMIC GAMES

A weakly acyclic game may contain cycles in its strict best ) ) ) _
reply graph but there must be some edges leaving each cytleL€arning Paradigm for Stochastic Dynamic Games

because otherwise there would not be a path from each nodehe learning setup involves specifying the informatiort tha
to a sink. Therefore, as long as each updating DM considgs#s have access to. We assume that each Bidws its own
each of its strict best replies with positive probabilithet setU? of decisions and its own discount factgft. In addition,
adjustment process would terminate at an equilibrium poligefore choosing its decision! at any timet, each DM has

in a weakly acyclic game with probability (w.p.) one. Thighe knowledge of

adjustment process would require a criterion to deterntiee t
updating DM at each step and the DMs would have to a, past and current state realizations - and
priori agree to this criterion. An equilibrium policy can be . its own past cost realizations Tt
reached through a similar adjustment process without a pre-
game agreement on the selection of the updating DM, if all
DMs update their policies at each step but with some inertia.
Consider now the following policy adjustment process, WwhicEach DM has access to no other information such as the state
is the best reply process with memory length of one and mertransition probabilities or any information regarding thiber

replies since there is a path from every node to a sinpkaf
m10). Note also that a weakly acyclic game may have cycles
its strict best reply graph, for example, — 74 — 712 — 79

solving the fixed point eq’aatiorEI(Z) for— = m,'. DM’

« its own past decisions), ..., u;_,, and

Ci(x07ugvuai)7 R Ci(Itflvuifla u;jl)

introduced in Sections 6.4-6.5 of [30]. DMs (not even the existence of the other DMs). In effect,

Best Reply Process with Inertia (for DM the problem of decision making from the perspective of each

Set parameters DM appears to be a stationary Markov decision problem. It
A€ (0,1): inertia is reasonable that each DMWith this view of its environment

Initialize 7 € IT° (arbitrary) would use the standard Q-learning algoritim [2] to learn its



optimal Q-factors and its optimal decisions. This woulddleadecisions of its opponent DM and chooses a nearly optimal

to the following Q-learning dynamics for each DM response (with some experimentation) based on the in¢orrec
i P i for all i i assumption that DM’ will choose its decisions according to
Qi (@, u.) =Qi(z,u ?’ or all (z,w ) # (2e,ut) the empirical frequencies of its past decisions
Q;#»l(xtvu;) :Q;(Ita uzlf) + O‘zlf [Cl(xtvugvu;l) 1 t—1
i - i i i i —ig —iy _ ) —i
+5 Ufglellfjli Qi (wiy1,0") Qt(ﬂct,ut)] q "(u") = " ICZ%I{U;Z:U,?;}, for all u
wherea; € [0, 1] denotes DMs step size at time. whereI(, is the indicator function and

If only one DM, say DM, were to use Q-learning and

the other DMs used constant policies?, then DM would Plui = | 7] = e~ M)/
asymptotically learn its corresponding optimal Q-factoss., t ¢ _Zvieui e~ Mi(w)/T
PlQi— Q. =1 M (u') =Yg (u ) (u,u).

provided that all state-control pairs «’ are visited infinitely
often and the step sizes are reduced at a proper rate. T ;
follows from the well-known convergence of Q-learning i and SFP dynamics, the convergence of Q-learilhg{4)-(5)

. : : established in zero-sum games as well as in partnership
a stationary environment; see [31]. To exploit the learnt Q- . ] "
factors while maintaining exploration, the actual degcisiare ames with two DMs; see Proposition 4.2 LJ32). It may

often selected with very high probability as be possible to extend this convergence result to multi-DM
potential games [34][[35], but this is currently unresdlve
uj € argmin,: ¢y Q} (4, v") However, given the nonconvergence of FP (where DMs choose
_ . . - exact optimal responses with no experimentation, +¢€,0)
and with some small probability any decisionlih is exper- ;. some coordination games [36], the prospect of estabiishi

imented. One common way of achieving this for D8 10 yhe convergence of Q-learning even in all two-DM weakly
select any decision’ € U* randomly according to (Boltzman acyclic games does not seem promising.

.gsing the connection between Q-learning dynamids (4)-

action selection) It is possible to employ additional features such as the-trun
, , e—Qi(zeu') /T cation of the observation history or multi-time-scale feag
Pluy = u'|F] = to obtain learning dynamics that are convergentin all regzba

> e € Qi | . -
weakly acyclic games; see our own previous work [37] and the

where 7 > 0 is a small constant called the temperaturethers[[38],[30],[[39],[[4D]. However, the question of Ity
parameter, and; is the history of the random events realize@n equilibrium policy in stochastic games is an open questio
up to the point just before the selection @f, ..., uM). The only relevant reference considering the stochasticegas

However, when all DMs use Q-learning and select their d§t1] where each DM uses value learning coupled with policy
cisions as described above, the environment is non-stagionsearch at a slower time-scale. The results[in [11] apply to
for all DMs, and there is no reason to expect convergenal stochastic games and therefore they are necessarilg qui
in that case. In fact, one can construct examples where DMgak. Loosely speaking, the main result inl[11] shows that
using Q-learning are caught up in persistent oscillatisess the limit points of certain empirical measures (weightethwi
Section 4 in [[32] for the non-convergence of Q-learning ithe step sizes) in the policy space constitute “generalizsh
Shapley’s game. However, the convergence of Q-learning meguilibria”, which in particular does not imply convergenaf
still be possible in team problems, coordination-type gameearning to an equilibrium policy. In the next subsectiore w
or more generally in weakly-acyclic games. It is instruette  propose a simple variation of Q-learning which converges to

first consider the repeated games. an equilibrium policy in all weakly acyclic stochastic gasne
Here, there is no state dynamics (the ¥etf states is a
singleton) and the DMs have no look-ahead & -+ 3% = B Q.Leaming in Stochastic Dynamic Games

0). The only dynamics in this case is due to Q-learning which

: . The discussion in the previous subsection reveals that the
reduces to the averaging dynamics

standard Q-learnin@(4J4(5) can lead to robust oscillaieven
Qi1 (u) = Qj(u"), forall u' # uj (3) inrepeated coordination games. The main obstacle to conver
L) = Qi) + o [ (il ut) — Qi (ul 4) 9ence of Q—Iearnlng_m games is due_to the presence of maultipl

() = Qi) + i [y ) — Qiw)] - (4) active learners leading to a non-stationary environmenéalio
where o learners. To overcome this obstacle, we use some inspiratio
Plut = ui|F)] = e~ Qi(u)/T ) from our previous work[[37] on repeated games and modify

¢ ! S vicus e—Qiwh)/T’ the Q-learning for stochastic games as follows. In our viama

The long-term behavior of these averaging dynamics is anga{x— Q-learning, we allow DMs fo use constant policies for

: .extended periods of time callekploration phases
lyzed in [32] and strongly connected to the long-term betravi As iIIustFr)ated in Figuré1d thefth explofation phase runs
of the well-known Stochastic Fictitious Play (SFP) dynaﬂ:ni(‘Throu h timest — ¢ ¢ T 1 where
[33] in the case of two DMs; see Lemma 4.1 [in][32]. In two- 9 TR Tkl

DM SFP, each DNitracks the empirical frequencies of the past ther =t + T (with ¢ = 0)




Algorithm [I mimics the best reply process with inertia in
; JI-Clarbitrarily closely with arbitrarily high probabilitunder
(ni,...,nkN) E certain conditions. The key difference here is that each DM
: using Algorithm[l approximately learns its optimal Q-fasto
. T, § during each exploration phase with limited observations. A
— cordingly, each DM updates its (baseline) policy to one of
t Lo its near best replies with inertia based on its learnt Qefact
Hence, Algorithn{L can be regarded as an approximation to
the best reply process with inertia§i-C} see [41] where best
replies are obtained based on rewards that must be estimated
using noisy observations.
Assumption 1:For all (2/, ), there exists a finite integer
H > 0 and joint decisiongig, . .., ay such that

k - th exploration phase

Fig. 3. An illustration of thek—th exploration phase.

for some integerT;, € [1,00) denoting the length of the
k—th exploration phase. During the—th exploration phase,
DMs use some constant policies, ..., 7. as their baseline
policies with occasional experimentation. The essencéef t Plry ., =2’ | (2, uo,...,uny) = (z, 7o, ...,ug)] > 0.

main idea is to create a stationary environment over each ) ) )
exploration phase so that DMs can accurately learn theirASSumptiorllL ensures that the step sizes satisfy the well-

optimal Q-factors corresponding to the constant policesdu known conditions of the stochastic approximation theordj [3

during each exploration phase. Before arguing why this woufluring each exploration phase.

lead to an equilibrium policy in all weakly acyclic stochast _ ASSHmpti.O” 2For alli, 0 < 6" < 6 and0 < p’ < p, where
games, let us introduce our variation of Q-learning moreandp (which depend only on the parameters of the game at
precisely. hand) are defined in AppendiX B.

Algorithm 1 (for DM): Assu_mptlonl:l; requires that .the tolerance IeveI; for sub-
optimality used in the computation of near best replies dt we
Set parameters

; . i asthe experimentation probabilities be nonzero but safftty
Q': some compact subset of the Euclidian sp&ee<U'| P P affity

il . i small.
Where|X x U] is the number of pairgr, ‘) Theorem 1:Consider a discounted stochastic game that
{T:}r>0: sequence of integers i, o)

i € (0,1): experimentation probabili is weakly acyclic under strict best replies. Suppose that
ili (07 1)'_ in(l.ortia P y each DM updates its policies by Algorithiig 1. Let Assump-

5" € (0,00): tolerance level for sub-optimality t|or.1|]] and.2 hold. L~ ~ .
{ai }50: Sequence of step sizes where (i) Foranye > 0, there existl’ < oo, k < oo such that if

a; c [Ol, 1, Zn a; ~ o, Zn (a;)2 < % min, Ty > T, then

(e.9.,a;, = 1/n" wherer € (1/2,1]) Plrp €lleg) >1—¢,  forall k> k.

Initialize 7} € IT* (arbitrary),Q} € Q' (arbitrary) .
Receiveaco0 0 (i) If T}, — oo, then
lteratek > 0 _ Pmy € eq] — 1.

(k—th exploration phase) .

lteratet = t, ..., tpe1 — 1 (i) There exists finite integergT} }.>o such that if7j, >

i m(ae),  wp.l—pf Ty, for all k, then
Uy =

anyu' € U’,  w.p.p'/[U’]

A - P|\m, — n*, for somern* € II.,| = 1.
Receivec' (x4, uj, u; ') [ ’ a]

Receiver,, (selected according t&| - | =, uf, u; ']) Proof: See AppendikB. [
n; = the number of visits tqz;, u;) in the k—th Let us discuss the main idea behind this result. Since all
~ exploration phase up tb DMs use constant policies throughout any particular explo-
Q1 (ze,up) =(1 _Oéil:’)Q%(xtvu%) ration phase, each DM indeed faces a stationary Markov
"‘O‘f@ [ci(xt,u};,ufi)—k B min,: Q(ze41,0")] decision problem in each e_xploration phase. Therefore, if
Qiyy (2, u') = Qi ul), for all (z,u’) # (w4, ul) the Iength of ea_lch explorg.n.on phaseN is long enough and
End the experimentation prqbab|l|t|¢é, o, ptare sma_lll enough
Hiﬂ _ {Wl c 1T - Qim(x’ﬁi(x)) (but non-zero), each DMcan learn its corresponding optimal

Q-factors in each exploration phase with arbitrary acourac
with arbitrarily high probability. This allows each DMo
accurately compute its near best replies to the other DMs’

_ _ < min,: @y, (z,v")+4", for all z}
If m, €1Il}

Elsng — T policies 7, * at the end of thet—th exploration phase. Intu-
i mh, W.p. A itively, allowing each DM to update its policyr; to its near
Th+1 { anym €10},  w.p. (1= \)/[IT | best replies (tor, ‘) at the end of thé—th exploration phase

End with some inertia\* € (0,1) results in a policy adjustment

ResetQj@k+1 to anyQ‘ € Q° (e.g., projech;k+1 ontoQ?) process that approximates the best reply process withidanert

End in gI=Cl



Remark 1:0ne may also wish to find explicit lower-  (k—th exploration phase)

bounds onTj, to achieve almost sure convergence based on lteratet = ty, ..., tp41 — 1 _
the convergence rates of the standard Q-learning with desing ui — m(z),  wp.1l-p
DM; we refer the reader td [42] for bounds on the convergence P anyu' €U, wp. pt /U]
rates for standard Q-learning. Receivec! (z, ut, u; ")
Receiver;, (selected according tB| - | x,u}, u; ‘])
IV. GENERALIZATIONS ni = the number of visits tdx,, u}) in the k—th

A. Learning in Weakly Acyclic Games under Strict Better i epr?ratlon phaise uip o i
Rep”es Qt+1(xt7ut) - (1 - Oén; )_Qt(xtvut)

We present another Q-learning algorithm with provable . +a"§ [e (xt’ut’?t )Aj B Cit(xt“’ﬂk(x”lm
convergence to equilibrium in discounted stochastic games Qi (e, up) = (1 —ap)Qi (e, uy)

i
t

that are weakly acyclic under strict better replies. Fos,thi +O‘f¢ [ (@e, ulyuy ) + B'Qi(wag1, T (w111))]
we first introduce the notion of Weak acyclicity under strict Q};H(x,ui) = Qi(z,u"), for all (z,u?) # (x¢,ul)
better replies. Given any = (7, 77') € A, let T7 denote Qngl(x’ui) = Qi(x,u"), for all (z,u’) # (24, ul)
DM®s set of (deterministic) better replies with respectato End
i.e., If (Qi,,, (z,7.(x) < Qf, ., (z,m.(x)) + ', for all z)
. " . i . . . d
Y= {7 eIl J (7%, 77" < J(a',n70), forall 2} ,oand .
{ _ _ y _ } (th+1(I,7Tk(x)) < th+1(I,7Tk(.§C)) —¢°, for somex)
Any better replyr® € Y. of DM® is called astrict better reply ; T, Wp. A
(with respect tor) if Thel = &L wp.1— A
S S Else
Jo (7w < Jy(n',m7"), for somex. i
Tht1 = Tk
End o
Definition 4: We call a (possibly finite) sequence of deter- 7}, = any policyx* € II'\{m; ., } with equal
ministic joint policiesmo, 71, ... a strict better reply pathf, probability o
for eachk, m, and ., differ in exactly one DM position, ResetQ;, , . @;,,, toanyQ",Q" € Q'

say DM, andn} ,, is a strict better reply with respect tg.. End _ _ _

Definition 5: A discounted stochastic game is called weakly Since any policy except the baseline policy can be chosen
acyclic under strict better replies if there is a strict beteply as an experimental policy (with equal probability), each DM
path starting from each deterministic joint policy and ewyi can switch to any of its strict better replies with positive
at a deterministic equilibrium policy. probability. In contrast, each DM using Algoritiith 1 can only

Since every strict best reply path is also a strict bettelyrepsWitch to one of its strict best replies. As a result, each DM
path, the set of games weakly acyclic under better repli#§ing Algorithm[2 can escape a strict best reply cycle by
contain (in fact, strictly) the set of games weakly acychelar SWitching to a strict better reply (if one exists); whereasy
best replies. DM using Algorithm[1 cannot. This flexibility comes at the

Itis straightforward to introduce a policy adjustment psg COSt of running two Q-learning recursions, one for the bhasel
analogous to the one ifil=Clwhere, at each step, each DM policy and the other for the experimental policy, insteadmd.
switches to one of its strict better replies with some irerti However, this flexibility also leads to convergent behavior
see Sections 6.4-6.5 in [30]. Such a process would clearly c@ strictly larger set of games. We cife [43] as a reference to
verge to an equilibrium in games that are weakly acyclic undan earlier use of the idea of comparing two strategies and
strict better replies. We next introduce a learning algonit Selecting one according to the Boltzman distribution.
which allows each DM to learn the Q-factors corresponding The counterpart of Theorefd 1 can be obtained for Algo-
to two policies, a baseline policy and a randomly selectéihm [2 in games that are weakly acyclic under strict better
experimental policy, during each exploration phase. If tH&Plies. o ,
learnt Q-factors indicate that the experimental policyéstér  ASsumption 3For alli, 0 < ¢* < ¢ and0 < p* < p, where
than the baseline policy within a certain tolerance levetnt ¢ @ndp (which depend only on the parameters of the game at
the baseline policy is updated to the experimental poligjwihand) are defined in AppendiX C. _
some inertia at the end of each exploration phase. Thisilgarn, 1heorem 2:Consider a discounted stochastic game that
algorithm enables DMs to adijust their policies with muctsledS Weakly acyclic under strict better replies. Suppose that
information (as indllIA), and follow (approximately) along each DM updates its policies by Algorithia 2. Let Assump-

the strict better reply paths that the adjustment procekms. tion [ and8 hold.

Algorithm 2 (for DM): () Foranye > 0, there existl’ < oo, k < oo such that if
Set parameters as in Algorithh 1 A min, Ty > T, then
Initialize 7§, 7§ € TI° (arbitrary except # m3), Qf, Qf € Q° Pl €] > 1 — ¢, k> k.
(arbitrary)

Receiver (ii) If T — oo, then
lteratek > 0 Plmy € Tog) — 1.



(iii) There exists finite integerﬁ“k}kzo such that if7;, > V. A SIMULATION STUDY: PRISONER S DILEMMA WITH A
Ty, for all &, then STATE

We consider a discounted stochastic game with two DMs
whereX = U! = U? = {1,2}. Each DM’s utility (to be
m maximized) at each time¢ > 0 depends only on the joint
decisions(u; ,u?) of both DMs as

P[m, — m*, for somer* € Iloq| = 1.

Proof: See AppendiX L.

B. Learning in Weakly Acyclic Games under multi-DM Strict DM—i
Best or Better Replies 1

C

b

S

. .. . i 1
The notion of weak acyclicity can be generalized by allow- DM* 3

ing multiple DMs to simultaneously update their policiesain
strict best or better reply path.

Definition 6: We call a (possibly finite) sequence of dewe assumeé > ¢ > 0 > a. The state evolves as
terministic joint policiesm, my,... a multi-DM strict best L
(better) reply pathif, for eachk, 7, and ., differ for at Plegr =1 (u,uf) = (L)) =1-+
least one DM and, for each deviating DMr; , , is a strict Plaip =2 (ug,uf) # (1,1)] =1—1
best (better) reply with respect to,.

Definition 7: A discounted stochastic game is called WeakIVher67 < (0,1) and Plzo = 1] = 1/2. ,
acyclic under multi-DM strict best (better) replies if tber Th,e S|_ngle-stage game gorresppnds to the well-known pris-
is a multi-DM strict best (better) reply path starting fronf€r's dilemma where the_—thiprlsoneir (DM) cooperates
each deterministic joint policy and ending at a determinist(4€f€cts) at time by choosingu; =1 (uj = 2). The single-
equilibrium policy stage game has a unique equilibrim', u?) = (2,2), i.e.,

This generalization leads to a strictly larger set ofgarhaSt!OOtE DMs :e[f)e'\jl:t' Iea(gjmg t(.) lrev;ards),%). The d|Iernmal_
are weakly acyclic. To see this, consider a single—stageega}'ﬁ 1t a2t e_ac can do st.rl[gt.y etter by cooperating, I.€.,
characterized by the cost matrices in Figlie 4 WherelDM“ Jut) = (1’_1) (not an equili r|um).. ,

In the multi-stage game, the state indicates, w.pl — ~,

chooses a row, DR chooses a column, and Dithooses a , ;

matrix, simultaneously. Assume> 0. There is no strict best whether or not both DMs cooperated in the previous stage. It
turns out that cooperation can be obtained as an equilibofum

the multi-stage game if the DMs are patient, i.e., the distou

ol [N

Fig. 5. DM''s single-stage utility.

1 _a710,0 0, 5,0 0, _2, s factors are sufficiently high, and the error probabilityis
2 a,0,0 —a,—a,0 a,0,0 sufficiently small . Note that each DMhas four different
3 LO=a—a | 040 —a,0,—a policies of the form#® : X — U‘ For large enough
1 B, 5%, and small enoughy, the multi-stage game has two
1 0, _; — 0,(?70 07370 (Markov perfect) equilibria. In one equilibrium, calledeth
2 a,0,0 —a,0,—a —a,—a,—a cooperation equilibrium, each DM cooperatesrif= 1 and
3 L =4,-a0 0,0,0 0,0,0 defects otherwise. In the other equilibrium, called theedgbn

2

equilibrium, both DMs always defect. Furthermore, from any

joint policy in II' x II2, there is a strict best reply path to
one of these two equilibria, which implies that the mulags
(or better) reply path to an equilibrium from the joint déoiss game is weakly acyclic under strict best replies.
(1,1,1), (1,3,1), (3,3,1), (3,1,1), (1,1,2), (3,1,2), if only We setb = 2, ¢ = 1, a = —1, v = 0.3. We simulate
a single DM can update its decision at a time. Therefore, thidgorithm [ with the following parameter valueg?! = 0.1,
game is not weakly acyclic under strict best (or better)iespl \' = 0.5, 6' = 0, o} = 1/k%!, for all i,k. We keep the
in the sense of Definitioll3 (or Definition 5). However, iflengths of the exploration phases constants,fie= T, for
multiple DMs are allowed to switch to their strict best (oall k. We consider different values fdf since the lengths
better) replies simultaneously, then it becomes possible df the exploration phases appear to be most critical for the
reach the equilibrium(2,3,2) from any joint decision. For behavior of the learning process. For each valué ofve run
example, if DM and DM® switch to their strict best (or Algorithm[ and the best reply process with inertia§iRC) in
better) replies simultaneously from the joint decis{dnl, 1), parallel, with1000 policy updates starting from each of thé
then the resulting joint decision would &, 3,2). This would initial joint policies inII. We initialize all the learnt Q-factors
subsequently lead to the equilibriui, 3,2) if DM ! switches at 0 for each simulation run; however, we do not reset the
to its strict best (or better) reply frorfi, 3, 2). learnt Q-factors at the end of any exploration phase duniryg a
All learning algorithms introduced in the paper allow multisimulation run. We letr, and7;, denote the policies generated
ple DMs to simultaneously update their policies with pesiti by Algorithm[d and the best reply process with inertigiRCl
probability. In view of this, it is straightforward to seeath respectively. For each value @f, Table[M shows the fraction
our main convergence results TheorEm 1 (Thedrém 2) halfitimes at whichr; visits an equilibrium and the fraction
in games that are weakly acyclic under multi-DM strict begif times at whichr;, agrees withr,, during the1000 policy
(better) replies. updates (averaged uniformly over &8 initial policies in II).

Fig. 4. Cost matrices of a single-stage game with three DMs.



The results in Tablé_V reveals that, g5 increases,r;, us assume that a single DM using a stationary random policy
visits an equilibrium and agrees with, more often. This is 7 € A updates its Q-factors as: for> 0,
consistent with Theorem 1 since DMs are expected to learn
their Q-factors more accurately with higher probability fo Quri(w,v) = Qe(w,w),  forall (z,u) # (ze,u) (6)
larger values ofl’. WhenT is sufficiently large, the polices Q.1 (xs,u) = Q¢ (x4, us) + am, (C(It,ut)
m, are at equilibrium and agrees witty, nearly all of the
time regardless of the initial policy. In a typical simutatirun + Bmin Q¢ (e41,v) — Qulwr, uzs)) (7)
(with a large enough’), the policesr, and 7 transition to

an equilibrium in few steps and stay at equilibrium theresaft where the initial conditior) is given,u; is chosen according

to 7(x), the stater; evolves according t@[ - |x;, u] starting
at xo, n; is the number of visits tdx;, u;) up to timet, and

T 00T ko I{mpert,) D iy J T {an}n>0 iS @ sequence of step sizes satisfying
(averaged overrg € II) (averaged overrg € II)

10 0.2581 0.1254 €01 o = o0 a2 < oco.

25 0.5274 0.3410 n € (0.1, zn: " ’ Xn: "

50 0.7835 0.6170

100 0.9282 0.6301 Lemma 1:Assume that eachr, «) is visited infinitely often
1000 0.9935 0.6879 w.p. 1. For anye > 0 and compac) € R**Ul there exists
10000 0.9978 0.7733 0 h that. f

50000 0.0076 0.0705 - < oo such that, for any € Q,

TABLE | _
THE FRACTION OF TIMES AT WHICHT, VISITS AN EQUILIBRIUM AND P | sup ‘Qt — Q‘OO <e|l>1-¢€
THE FRACTION OF TIMES AT WHICHT,, AGREES WlTHﬁk. tZTs@

where| - |, denotes the maximum norm adglis the unique
fixed point of the mapping” : X x U — X x U defined by

VI. CONCLUDING REMARKS F(Q)(z,u) = Ble(z, u)] +sz[x/|x’u] min Q(«',v)
In this paper, we develop decentralized Q-learning algo- z! Y
rithms and present their convergence properties for sttichatgr gj| 4, .

games under weak acyclicity. This is the first paper, to our  pyoof: Let {Q!} =0 and {Q!' },=0 be the trajectories for
knowledge, that presents learning algorithms with coreetg ihe initial conditionsQ;, and @/, respectively, corresponding

to equilibria in large classes of stochastic games. Thesiteti 14 5 sample patt(x, us, c(z1, u;)) }iso. It is easy to see that,
makers observe only their own decisions and cost realizsitiogr )| ¢+ > 0, -

and the state transitions; they need not even know the presen

of the other decision makers. Qi1 (e, ur) — Q. (e, ue)|
Our approach has a two-time scale flavor; however, unlike < (1 — «a,,, )|Q} (w4, us) — QY (24, ut)| + vn, B|Q} —

the existing work on multi-time-scale learning, it does not . = )

depend on the stochastic approximation theory. Note treat thMiS implies thatM; = supg; greq @i — @l i non-

existing work on multi-time-scale learning, e.g. [11J4[1 ncreasing and therefore convergent. Suppose fiat —

[32], [38], require the stability analysis of some ordinarg/ > 0- There exists some < co such thatmax; 7 M; <

differential equations (ODE) describing the mean behasfor M (1 +1/8)/2. Hence, we have, for all > ¢,

the learning algorithms. Aside from the difficulty of chowgi Q) (@, ur) — QY (4, )|

the step sizes running at multiple time scales, the existioidg

"
¢ loo-

: . : M(1+1
involves nonlinear ODEs whose analysis does not seem to b€ (1 — v, )|Q} (v, ut) — QY (e, ur)| + antﬂ%/m.
within reach even for dynamic team problems. In contrast, -
our approach leads to a considerably simpler analysis for &his leads to: for al(z, ) andt > ¢,
weakly acyclic stochastic games.

yasy J Qi1 (1) = Q' (,w)

APPENDIX A <1 (1 — o) Mo

A UNIFORM CONVERGENCERESULT FOR THESTANDARD + [1 _ H;";éz’“)(l —a,)| BM(1+1/8)/2

Q-LEARNING ALGORITHM WITH A SINGLE DM

Convergence of the standard Q-learning algorithm withhere my (z,u) = 3% I{(z,.u)=(x0)} 1S the number of
single DM is well known [El]_] However, to prove the resultyisits to (I,u) in [O,t]. Since eacf(a:,u) is visited infinitely
of this paper, we need the sample paths generated by €ien w.p.1 and )  as = oo, we have, for each{z,u),
standard Q-learning algorithm to well behave with respeBt™ ("™ (1 — a,) — 0 ast — oo w.p. 1. This implies that
to the initial conditions. Let us now consider a single-DMV < BM (1 +1/3)/2 < M w.p. 1, which is a contradiction.
version of the setup introduced Hill where the DM index Therefore, M; — 0, w.p. 1.

1 (in the superscript) is dropped (only in AppendiX A) and Theorem 4 in[[31l] shows that, for any initial conditich,
c(z,u) representing the one-stage cost for applying controlQ; — @, w.p.1. Hence, for any); € Q, we have Q}— Q|+
atz is an exogenous random variable with finite variance. Letip,cq |Q; — Q¢ oo — 0, W.p. 1. Thereforesupycq [QF —
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Q| — 0, w.p. 1. This leads to the desired result, i.e., for any  Proof: We have
¢ > 0 and compac) € R¥*UI there existsT® < oo such

that Q:r,ji - Q;,j o F;,;T‘(Q:r;i) - F;,;T‘(Q;;i) -
P |sup sup |Q) —Qloc <e| >1—c = ‘F;,;T(Q:r,j) - F;;(Q;;) -
1278 Q7 €Q i i i i
° +FE(Q )~ FLa(@ )
. k k k k o0
Remark 2:The Q-factors corresponding to a certain deter- <1 H(l — )| x
ministic policy & can be learnt by modifying the recursion - 11 P
©)-(2) as follows: fort > 0, . ”ﬁl‘ . .
i ) F' Q) —F(Q )
Qrr1(x,u) = Qe(z,u), for all (z,u) # (¢, ut) ook o Booleo
Qt-}-l(l'taut) = Qt(iﬂt, ug) + o, (c(we,us) +5 Q”Ei B Qf{i 00

+BQu(weg1, 7 (Tes1)) — Qt(xt,ut)) whereg, " € A~ is some convex combination of the policies
in A—% of the form where each DK j # i, either uses its

where the initial conditionQ, is given andu, is chosen Paseline policyr; € II7 or the uniform d|sf[r|but|(ﬁl Because
') belongs to a finite subset &f* x A~*, an upper

according torr(z;). Hence, the uniform convergence result ih O )
Lemma 1 also holds for the this recursion. bound £ < oo on

Fl(@ )~ Fi.(@Q )
k k k k

APPENDIXB exists, which is uniform in(r;.*, ¢, *). This results in
PROOF OFTHEOREMI[T]

oo

For anym—" € A~ let F’_, denote the self-mapping of ‘er;i - Q%i < [T -+ - fﬁi

X x U’ defined by i
i i i g [ i =i which proves the lemma. [ ]
Frei (@)@, ') =Bros [ (2,0, u™) Let § denote the minimum separation between the entries

+8> Pl |z ut minQ’(z',v")]  of DMs’ optimal Q-factors (with respect to the determirgsti
o Y policies), defined

for all z,u’. It is well-known thatF?_, is a contraction 0 := S min |Q%L—i(x,v") — QL (x,7")].
mapping with the Lipschitz constarit’ with respect to the Bt Bt m el
maximum norm. Recall fron{12) that each DM optimal Q- Qr—i(@0)#Q] _; (2,7")

factorsQ;,i is the unique fixed point of .. We also note \ye considers to be an upper bound on the tolerance levels
that, during thek—th _ez<iplora_t|on phase, each DMctually  for sup-optimality, i.e. 8’ € (0,3), for all i. In that case, we
uses the random policy;, defined as also introduce an upper bourid> 0 on the experimentation
: o o rates such that, ip* < p, for all 4, then
o= (1= p)mj, + p'v? (8) _ _ P _f o
o ) , ) Q' - —Q' -, < -min{é',6—0"}, foralli, k. (9)
where v/ is the random policy that assigns the uniform | "™ i oo 2
distribution onU? to eachz. Such an upper bound > 0 exists due to Lemmil 3.
Lemma 2:For anye > 0, there exists/. < co such that, if ~Lemma 4:Supposey’ € (0,0), p* € (0,p), for all i. For
T, > T., then any e > 0, there existl’ < oo, such that, ifZ;, > 7', then

PlE]>1—¢

P |:|Q,ék+1 B Q;;

L e for all z} >1—e
where Ey, k > 0, is the random event defined as
Proof: Note that thek—th exploration phase starts with
xr, which belongs to the finite state spa€eandQ;, € Q,
where Q" is compact, for alli. Note also that, during each for all z}
exploration phase, DMs use stationary random policies ef th
form (8) and there are finitely many such joint policies. Henc Proof: The desired result follows from Lemrh& 2 afhd (9).

. . 1 o
EL = {w cO: ‘Q;Hl -0 N <§ min{d’, 0 — d'},

Tk

the desired result follows from Lemnid 1 in AppendiX A. u
| 3 : —i i
) ) More precisely, ¢, " = > ;1. Ny @ud, 'y where ay =
Lemma 3:For anye > 0, there existsp. > 0 such that, if 17._, 0 )T 00 00 bt _}\{ ! ] ; ;
i ; J€. J2I 0 T andgy, s € A~ is a policy such thap], ; = 7,
p" < pe, for all 4, then I (=p7) ’ .
for j € Jandg] ; =i for j & JU{i}.
Q. —Q .| <e, for all i, k. *To avoid trivial cases, we assun@ _; (z,v") # Q’ _, («,%") for some
T Tk i, x, 0", 0", w e I
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A. Proof of part (i) B. Proof of part (ii)

Note that For anye > 0, let T' < oo, k < oo be as in part (i). Let
k < oo be such thatmnk>k T, >T. ltis stralghtforward to
see from the proof of part (i) that, for all > & + k, we have
Therefore, we have Plr, €llyg] > 1—e.

P[7T1H_1 = 7T;€|Ek, Tk € Heq] =1, for all k. (10)

1 N
weEkﬁﬂwk:HkH :Hk+1x"'XHk+1-

Since we have a weakly acyclic game at hand, for eachir, C. Proof of part (iii)

there exists a strict best reply path of minimum length< oo Pick a sequencéé, },,>o satisfyingé,, > 0, for all n, and
starting atm and ending at an equilibrium policy. Lét :=
maxyem Ly. There existemi, € (0,1) (which depends only Z(l — Pmin) €n < 00 a7
on A, ..., AN, and L) such that, for allk, n
Plmir € Heq‘Eka ooy Bryro1,mp € eg) > pain. (11) wherepyi, is as in [11). Lemmal4 implies the existence of a

sequencqg T, },,>¢o of finite integers such that if
Pick € € (0, ¢) satisfying a Tndnzo g

(1 — €)pmin ~ - Tor,--- 7T(n+1)L71 > Tn (18)
———— —¢|(1l-¢)>1-¢
€+ (1 — €)Pmin then
Lemmal2 implies the existence af < oo such that, if -
A . >1—¢,.
ming Ty > T, then P[Eng,. Eninyz-1] = 1 - & (19)
P[Eg,...,Epyp ] >1—¢€ forall k. (12) We assume(18) (therefore {19)) holds for=llThis leads to
For the rest of this part, we assumen, 7, > T. From [10), Plrnsyr € Hegq) < (1= pmin) P [nr & Teg) + én.

(11), (12), we obtain

P [7Tk+L € ch|77k ¢ ch] > pmin(1 - g)v for all k

From this, it is straightforward to obtain

P i1y ¢ 1]
and

P[?Tk+L:~~-:7Tk|7Tk€ch]Zl—g, for all %. (13) S(l_pmm <1+Z pmm )

This leads to the recursive inequalities Due to [T9), we have, fof € {0, ..., — 1},

Pn+1)L = > (1= &)[pnrL + Pmin(1 — pur)] (14)

wherepy, := P [m;, € Ils4], for all k. Note that we have, for
all n, Therefore, for¢ € {0,...,L — 1},

D(nt1)L — PnL = —€. (15)
P [T(ni1ynre ¢ Heq]

We rewrite [I#) as
S (1 - pmln <1 + Z pmln s) + gnJrl-

Plmnrie € Mg > (1= &) P [nz, € Teg] -

~ B (1 — E)pmin
—p > — il |\ = A A, '
Pn+1)L —Pnr = [€+ (1 = €)Pmin] e+ (= pmm M
I From this and[{17), we obtain
pup < L= Dpun s 2 Pl ¢
€+ (1 — 6)pm1n k21

we havep(,.1yr, > pnr + Pmin€. Therefore, whenevep,,r,
satisfiesIII(BJ)r, )it will increase by at least,¢ until it exceeds = L Z [(1 — Pmin) <1 + Z — Pmin) " ° s> + €nt1
the right hand side of[{16), which will happen in a finite n=0
number of steps. In factp,; would increase as long as < 0.
Pnr < % On the other hand, if,,;, > %
pnr, cannot decrease more thgmrecall [I5). Therefore there
existsn < oo such that, for allh > 7,

P > (1 - ~)pmin = .

nLZ T s O From [I7) and[{19), we obtail_ -, P [2\E%] < co. Borel-

(1 - E)pmln . N .
) Cantelli Lemma again implies
Finally, due to[(IB), we have, forall > n, ¢ € {1,...,L—1},

(1 - g)pmin ~ -~
Pt = (E + (1 - E)pmin ‘ ( 6) - ‘

Borel-Cantelli Lemma implies

Pmy, ¢ Ieq, for infinitely many k] = 0. (20)

P[Q\E}, for infinitely manyk] = 0. (21)
Finally, (20) and[(21) imply the desired result.
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APPENDIXC AppendDCB) Becaus(azrk,wk o )belongstoaﬁnlte subset

PROOF OFTHEOREMI[Z| of I x IT* x A~%, an upper bound’ < co on
For anyrm = (n',7~%) € II' x A7, let F! denote the Fi. ., ( i, ) —F, (QZ . )‘
(i) (7}, ") (mh¢r ") (T ) oo

self-mapping ofX x U’ defined by
Fr(@Q")(w,u') =Er—i(ay[¢ (z,u’,u™)
+ B Z P [gg’|$, ui,u_i} Qi(x’,wi(x’))} ‘Q(ﬂ . i

exists, which is uniform ir(w};,w,; o ). This results in

<|1-JJa-¢) a

(G ) _ B

T T, 0o i 1 Bz
for all z,u". It is well-known thatF; is a contraction mapping which leads to the first bound. The second bound can be
with the Lipschitz constang’ with respect to the maximum obtained similarly. ]

norm. Let us denote the unique fixed pointigf by Q% . We Let 6 denote the minimum separation between the entries
also note that, during the—th exploration phase, each DM of DMs’ Q-factors (for deterministic policies), defineddas

actually uses the random policy, defined as . ; ; ; y
6 = mln{‘Q(ﬂ.i_’ﬁfi)(x, ™ (1‘)) - Q(ﬁ,iyﬂ,fi)(x,ﬂ- (ac))’ :

i, 7 eIl n e T,
Jj i i i i i i ~i
where v is the random policy that assigns the uniform Qi iy (2,7 (2)) # Qi oy (2,7 (x))}.
distribution onl? to eachz.
Lemma 5:For anye > 0, there existd. < oo such that, if We considerd to be an upper bound on the tolerance levels

=(1- )7T + PV (22)

T > T, then for sub-optimality, i.e.5* € (0,4), for all 7. In that case, we
‘ ‘ also introduce an upper bourid> 0 on the experimentation
PHQI@,C+1 = Qi 51y =S¢ and rates such that, if* < p, for all i, then
‘Q;k —Q'., .| <eforalli| >1—c¢, forall k. max{‘Qi Yo LA B
+1 (77, o ) (7, .
Proof: Note that each exploration phase starts with, ‘Qlﬂ a9 —-Q ., ﬁ,i)‘ } < %min{éi,g -0}
which belongs to a finite state space, a@f,, Q. € Q' o e 23)

where Q? is compact, for alli. Note also that, during each

exploration phase, DMs use stationary random policies £ allé. k. Such an upper bound> 0 exists due to Lemnid 6.
the form [22) and there are finitely many such joint poli- Lémma 7:Suppose) < ¢" < 0,0 < p' < p, for all i. For
cies. Hence, the desired result follows from LemMa 1 @Y€ > 0, there existl’ < oo, such that, if7; > T then

Appendix[4; see Remail 2. [} P [Ek} >1—¢
Lemma 6:For anye > 0, there existy. > 0 such that, if . ) i
p' < pe, for all 4, then where Yy, k > 0, is the random event defined as
’Qii . iiﬁy < Ek::{wéQ:m&x{‘Q@Hl—Qz —
T Tk ’ o
and‘Qzﬁ.l Qzﬂ_ 7 1) S €, for all 7:, k. ’th+l (ﬂ—kv . 00 }
k’ k" k

1
— mi iy — 6 f .
Proof: We have <3 min{s*, 6 — '}, for a Z}

Proof: The desired result follows from Lemrhh 5 ahd](23).

‘Qiﬁi 71'7 7'r ST, ‘ n
(mh.m), ( )
. . We have
= “F(Zﬂ'7 71'71:) (Qzﬂ'l 71'77:)) - F(Zﬂ” T’rfi) ( (mi o ))’ -
) e ) Rk kTR . o P [7Tk+1 = 7Tk|Ek, T € ch] =1, for all k. (24)
(7o )\ (o7 ) (maﬂk ) ”Mk ) s Since we have a weakly acyclic game at hand, for each
‘Fi - ( i J)) _ F( ( ‘ II, there exists a strict better reply path of minimum length

oo Ly < o0 starting atr and ending at an equilibrium policy. Let
, L := max,crr L. There existgi, € (0,1) (which depends
<|1- H(l —p) | x only on\',..., A\, and L) such that, for allk,

ji - -
‘F (QZ ) i ( i )‘ P[FkJrL eHeq\Ek,...,EHL_l,m €Heq] > Pmin- (25)
(mom )\ (momy (M) N mom) oo Pick € € (0, ¢) satisfying
8| Q) ~ Qrtri o O =Ohmin N1
€+ (1 - 6V)pmin o

where ¢, " € A~" is some convex combination of the joint
policies of the form where each DMj # i, either uses its 5We assumeQE N wi(x)) # Qw ri)(z,ﬁi(m)), for some,
baseline policyr; € IIY or the uniform distribution (as in «, =%, 7% € II?, 7~ € I1*, to avoid trivial cases.



LemmalY jmplies the existence &f < oo such that, if [18]
min, Ty > T, then

PlEy....Byp1] >1-¢ foralk.  (26)

For the rest of the proof, we assumgén, 7, > T'. From [23),
@9), (26), we obtain, for alk,

Plm i € Heg|mi & leq] = Prmin(1 — €)
and P [ﬂ'kJri =... =7Tk|7Tk EHeq] >1—¢

This leads to the recursive inequalities

Pn+1)L > (1 - é)[an +pmin(1 - an)]’ n=0 (27)

wherep;, := P [m; € Il,4]. Note that these inequalities argyg
similar to [I14) and by similar reasoning, there exists: co
such that, for allh > n and? € {1,...,L — 1},

(1 - é)pmin . .
o> ) (1—)>1—e
Prite = (é + (1 - é)pmin ‘ ( 6) N ‘

This proves part (i). The proofs of part (ii)-(iii) are angtmus
to the proofs of part (ii)-(iii) of Theoreml1, respectively.
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