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Convergence and State Reconstruction of Time-varying

Multi-agent Systems from Complete Observability Theory

Brian D. O. Anderson, Guodong Shi, and Jochen Trumpf∗

Abstract

We study continuous-time consensus dynamics for multi-agent systems with undirected switching

interaction graphs. We establish a necessary and sufficient condition for exponential asymptotic consen-

sus based on the classical theory of complete observability. The proof is remarkably simple compared

to similar results in the literature and the conditions for consensus are mild. This observability-based

method can also be applied to the case where negatively weighted edges are present. Additionally, as a

by-product of the observability based arguments, we show that the nodes’ initial value can be recovered

from the signals on the edges up to a shift of the network average.

1 Introduction

1.1 Motivation

Distributed consensus algorithms [1, 2, 3, 4] of multi-agent systems have become the foundation of many

distributed solutions to in-network control and estimation [5, 6], signal processing [7], and optimization

[8, 9]. Convergence conditions of consensus dynamics often play a key role in the performance of such

distributed designs, which are relatively well understood under discrete-time network dynamics when the

underlying interaction graph is either time-invariant [2, 3, 14] or time-varying [11, 13].

Continuous-time consensus dynamics, however, is difficult to analyze with switching interaction graphs.

For piece-wise constant graph signals with dwell time, we can treat the continuous-time flow by investigat-

ing the node state evolution along a selected sequence of time instants and then work on the discrete-time

evolution at the sampled times [1, 4]. For graphs that vary in structure and edge weights in a general

manner, the problem becomes much more challenging. Under such circumstances the maximum node state

difference serves as one major tool for convergence analysis [20, 12, 15].

In this paper, we study the convergence of continuous-time consensus dynamics with undirected and

switching interaction graphs from the classical theory on uniformly complete observability of linear time-

varying systems [17, 19]. It turns out that the complexity of the convergence analysis can be drasti-

cally reduced in view of these classical results even under mild conditions. Interestingly enough, this
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observability-based method can also be used to analyze consensus dynamics over networks with both pos-

itively and negatively weighted edges [21, 22], where methods based on maximum node state difference

function are no longer applicable.

1.2 The Model

Consider a multi-agent network with N nodes indexed in the set V = {1, . . . , N}. Each node i holds a

state xi(t) ∈ R for t ∈ R
≥0. The dynamics of xi(t) are described by

d

dt
xi(t) =

N
∑

j=1

aij(t)
(

xj(t)− xi(t)
)

, (1)

where the aij(t) = aji(t) are, for the moment, assumed to be nonnegative numbers representing the weight

of the edge between node i and j. For the weight functions aij(t), we impose the following assumption as

a standing assumption throughout our paper.

Weights Assumption. (i) Each aij(t) is regulated in the sense that one-sided limits exist for all t ≥ 0;

(ii) The aij(t) are almost everywhere bounded, i.e., there is a constant A∗ > 0 such that |aij(t)| ≤ A∗ for

all i, j ∈ V and for almost all t ≥ 0.

The underlying interaction graph of (1) at time t is defined as an undirected (weighted) graph Gt =

(V,Et), where {i, j} ∈ Et if and only if aij(t) > 0. We introduce the following definition on the connectivity

of the time-varying graph process {Gt}t≥0.

Definition 1 The time-varying graph {Gt}t≥0 is termed jointly (δ, T )-connected if there are two real

numbers δ > 0 and T > 0 such that the edges

{i, j} :

∫ s+T

s

aij(t)dt ≥ δ, i, j ∈ V (2)

form a connected graph over the node set V for all s ≥ 0.

Along the system (1), it is obvious to see that the average of the node states

xave(t) :=

∑N
j=1 xj(t)

N

is preserved over time. Therefore, if a consensus, i.e., all nodes asymptotically reaching a common state, is

achieved, then all the node states will converge to xave(t0) where t0 ≥ 0 is the system initial time. Denote by

1n the n-dimensional all one vector and x(t) = (x1(t) · · · xN (t))T. We can therefore conveniently introduce

the following definition.

Definition 2 Exponential asymptotic consensus is achieved if there are two constants α > 0 and β > 0

such that

|xi(t)− xave(t0)| ≤ β‖x(t0)− xave(t0)1N‖e−α(t−t0)

for all i ∈ V, all x(t0), and all t ≥ t0.
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1.3 Main Results

First of all we present a necessary and sufficient condition for exponential asymptotic consensus of the

system (1).

Theorem 1 Exponential asymptotic consensus is achieved for the system (1) if and only if there are δ > 0

and T > 0 such that the graph {Gt}t≥0 is jointly (δ, T )-connected.

Theorem 1 is established in view of the classical complete observability theory for linear time-varying

systems [18, 19]. A by-product of such observability-based analysis is a state reconstruction theorem, which

indicates that node states can be recovered from the signals on the edges up to a shift of the network

average. We recall the following definition.

Definition 3 ([17]) A linear time-varying system

ẋ = F (t)x (3)

y = DT(t)x (4)

is uniformly completely observable if there are some positive α1, α2 and δ such that

α1I ≤
∫ s+δ

s

ΦT(t, s)D(t)DT(t)Φ(t, s)dt ≤ α2I (5)

for all s ≥ 0. Here Φ(·, ·) is the state transition matrix for system (3).

If the system (3) and (4) is uniformly completely observable, then

x(s) =
(

∫ s+δ

s

ΦT(t, s)D(t)DT(t)Φ(t, s)dt
)−1

∫ s+δ

s

ΦT(t, s)D(t)y(t)dt. (6)

In this way, x(s) is uniformly recovered from the signal y(t) : t ∈ [s, s+ δ].

Theorem 2 Assume full knowledge of {Gt}t≥0 with the edge weights. The shifted node state xi(s) −
xave(0), i ∈ V can be uniformly recovered from the signals xj(t)− xi(t), {i, j} ∈ Et over the edges if there

are two constants δ > 0 and T > 0 such that the graph {Gt}t≥0 is jointly (δ, T )-connected.

1.4 Generalizations

We now present a few direct generalizations of the above established convergence results.

1.4.1 Robust Consensus

Further consider the system (1) subject to noises:

d

dt
xi(t) =

N
∑

j=1

aij(t)
(

xj(t)− xi(t)
)

+ wi(t), i ∈ V, (7)

where wi(t) is a piecewise continuous function defined over R≥0 for each i ∈ V. We introduce the following

notion of robust consensus.
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Definition 4 The system (7) achieves ∗-bounded robust consensus if for all w(t) := (w1(t) . . . wN (t))T

satisfying

∫ s+ζ

s

wT(t)w(t)dt ≤ B0 (8)

for some ζ > 0, some B0 ≥ 0, and all s ≥ 0, there exists C(ζ,B0) > 0 such that

‖xi(t)− xave(t)‖ ≤ C(ζ,B0), ∀i ∈ V,∀t ≥ t0 (9)

when x1(t0) = x2(t0) = · · · = xN (t0).

The following robust consensus result holds.

Theorem 3 The system (7) achieves ∗-bounded robust consensus if and only if there are δ > 0 and T > 0

such that the graph {Gt}t≥0 is jointly (δ, T )-connected.

1.4.2 Signed Networks

Up to now we have assumed that all the aij(t) are non-negative numbers. In fact, the complete observability

analysis can be easily extended to the case when some of the aij(t) are negative. The motivation1 of

studying the effect of possibly negative aij(t) comes from the modelling of misbehaved links in engineering

network systems, as well as opinion dynamics over social networks with mistrustful interactions represented

by negative edges [22].

Although conventionally, the graph Laplacian is considered only for graphs with non-negative edges,

for any t ≥ 0, we continue to define the (weighted) Laplacian of the graph Gt as

LGt = DGt −AGt

with A(Gt) = [aij(t)] and D(Gt) = diag(
∑N

j=1 a1j(t), . . . ,
∑N

j=1 aNj(t)). Note that although the aij(t) can

now be negative, LGt remains symmetric with at least one zero eigenvalue with 1N being a corresponding

eigenvector. Introduce the following assumption.

Negative-Link Assumption. The Laplacian LGt is positive semi-definite for all t ≥ 0.

This negative-link assumption requires that the influence of the negative links can be reasonably over-

come by the positive links for any t ≥ 0. The following result holds.

Theorem 4 Consider the system (1) with possibly negative aij(t). Assume the Negative-Link Assumption.

Then Theorems 1 and 3 continue to hold.

1.5 Some Remarks

Theorems 1 and 3 are based on a direct application of the classical complete observability theory for linear

time-varying systems [18, 19], after some useful properties of the Laplacian of the time-varying network

1Another definition for a negative link between i and j is to replace xj by −xj in the system (1) [23]. The difference of

the two definitions of negative links was discussed in [22] from a social network point of view.
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have been established. The theorems recover the results in [1, 20, 15] for undirected graphs under weaker

weight and noise assumptions. We would also like to emphasize that the applicability of the complete

observability theory relies heavily on undirected node interactions, and hence we believe that it will be

difficult to extend the analysis to the directed case.

Moreover, Theorem 4 illustrates that if the effect of the negative links is somewhat moderated by the

positive links, i.e., as in the Negative-Link Assumption, then the convergence property is not affected by

the negative links. This point, however, cannot be seen from the max state difference analysis used in

prior work [20, 15] because obviously the max state difference function is no longer non-increasing in the

presence of negative links, regardless of how small their weights are compared to the positive ones.

Theorem 2 discusses the possibility of reconstructing node initial states from signals over the edges.

Naturally one may wonder whether we can recover the nodes’ initial values by observing the state signals

at one or more nodes. By duality this is equivalent to the controllability of the network by imposing control

inputs over one or more anchor nodes. This problem, as shown in [24, 25], is challenging in general for

a full theoretical characterization on general graphs, and in fact, finding the minimum number of nodes

to control to ensure network controllability is a computationally intensive problem for general network

dynamics [26].

2 Proofs of Statements

2.1 Proof of Theorem 1

Consider the following linear time-varying system

ẋ = −V (t)V T(t)x, (10)

where x ∈ R
n and V (·) is a piecewise continuous and almost everywhere bounded matrix function mapping

from R
≥0 to R

n×r. Let Φ(·, ·) be the state transition matrix of the System (10). Our proof relies on the

following result which was proved using complete observability theory in [18].

Lemma 1 System (10) is exponentially asymptotically stable in the sense that there are γ1, γ2 > 0 such

that ‖Φ(t, s)‖ ≤ γ1e
−γ2(t−s) for all t ≥ s ≥ 0, if and only if for some positive α1, α2 and δ, there holds

α1I ≤
∫ s+δ

s

V (t)V T(t)dt ≤ α2I (11)

for all s ∈ R
≥0.

Remark 1 To serve the technical purpose of the proof, we have made a slight variation in Lemma 1

compared to the original Theorem 1 in [18], where we have replaced the lower bound on exponentially

asymptotic stability required in [18] with the almost everywhere boundedness of V (·) adopted in the current

paper.

The system (1) can be written into the following compact form

ẋ = −LGtx. (12)
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Since LGt is positive semi-definite for all t ≥ 0 [16], we can easily construct V (t) so that the system (12)

can be re-written into the form of (10). Although any construction of V (t) would do, we use the incidence

matrix HGt. We make the following definition.

Definition 5 The N × N(N−1)
2 weighted incidence matrix of Gt, denoted as HGt, with rows indexed by

the nodes v ∈ V and columns indexed by the edges {i, j} (abbreviated as {ij}), i < j ∈ V, is defined as

HGt = [Hv−{ij}(t)] where
2

Hv−{ij}(t) =















−
√

aij(t), if v = i;
√

aij(t), if v = j;

0, otherwise.

(13)

We can now write (12) as

ẋ = −LGtx = −HGtH
T
Gt

x. (14)

Define y(t) = (I − 1N1TN/N)x(t). Then we have

ẏ = (I − 1N1TN/N)ẋ(t)

= −(I − 1N1TN/N)LGtx(t)

a)
= −(LGt + 1N1TN/N)(I − 1N1TN/N)x(t)

= −(LGt + 1N1TN/N)y(t)

b)
= −

(

HGt +
1N1Tr√
rN

)(

HGt +
1N1Tr√
rN

)T
y(t), (15)

where r = N(N − 1)/2, a) follows from the equations that (I − 1N1TN/N)LGt = LGt(I − 1N1TN/N) and

(1N1TN/N)2 = 1N1TN/N , and b) follows from direct computation in view of LGt = HGtH
T
Gt

.

We can now conclude that the following statements are equivalent.

(i) System (12) achieves exponential consensus;

(ii) System (15) is exponentially asymptotically stable;

(iii) There are some positive α1, α2 and T , such that

α1I ≤
∫ s+T

s

(

HGt +
1N1Tr√
rN

)(

HGt +
1N1Tr√
rN

)T
dt

=

∫ s+T

s

(LGt + 1N1TN/N)dt ≤ α2I; (16)

for all s ∈ R
≥0.

(iv) there are δ, T > 0 such that the graph {Gt}t≥0 is (δ, T )-connected.

2In this definition we have used an orientation for the graph Gt in which i is the tail of an edge {i, j} if i < j. There

always holds LGt
= HGt

HT

Gt
independent of the choice of orientation in the definition of the incidence matrix HGt

[16].
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The equivalence of (i) and (ii) is straightforward. Lemma 1 gives the equivalence between (ii) and (iii).

We only need to show the equivalence between (iii) and (iv).

(iii) ⇒ (iv): If (16) holds, then
∫ s+T

s
(LGt + 1N1TN/N)dt is positive definite. Note that 1N1TN/N has

a unique positive eigenvalue equal to 1 and another eigenvalue equal to zero with multiplicity N − 1.

Moreover, for any fixed t ≥ 0, LGt1N1TN/N =
(

1N1TN/N
)

LGt = 0, and the zero eigenvalue of LGt and

the eigenvalue one of 1N1TN/N share a common eigenvector 1N . This implies that the second smallest

eigenvalue of
∫ s+T

s
LGtdt, λ2(

∫ s+T

s
LGtdt), must satisfy λ2(

∫ s+T

s
LGtdt) ≥ α1.

Consider λ2(L), the second smallest eigenvalue of L, where L takes value from

L :=
{

L ∈ R
N×N : L is symmetric; [L]ij ≤ 0, i 6= j;

L1n = 0
}

.

Certainly λ2(·) is a continuous function over the set L . In turn, there must exist δ > 0 (which depends

on α1) such that the edges

{i, j} :

∫ s+T

s

aij(t)dt ≥ δ, i, j ∈ V (17)

form a connected graph over the node set V. In other words, the graph {Gt}t≥0 is (δ, T )-connected.

(iv)⇒ (iii): The matrices
∫ s+T

s
LGtdt, for all s ≥ 0 and all (δ, T )-connected graphs LGt , form a compact set

in L . Therefore, again noticing that λ2(·) is a continuous function over the set L , we can find a constant

α1 > 0 (which depends on δ) such that λ2(
∫ s+T

s
LGtdt) ≥ α1 for all s ≥ 0 and for all (δ, T )-connected

graph {Gt}t≥0. Re-using the above properties of the two matrices LGt and 1N1TN/N we immediately get

the lower bound part of (16). The existence of α2 in (16) is always guaranteed by the Weights Assumption

on the almost everywhere boundedness of the aij(t).

We have now proved Theorem 1 by the equivalence of (i) and (iv).

2.2 Proof of Theorem 2

From the proof of Theorem 1, if there are δ, T > 0 such that the graph G(t) is (δ, T )-connected, then

there are some positive α1, α2 and T , there holds

α1I ≤
∫ s+T

s

(

HGt +
1N1Tr√
rN

)(

HGt +
1N1Tr√
rN

)T
dt ≤ α2I; (18)

for all s ≥ 0. This in turn implies that the following system (see [18])






ẏ = −(LGt + 1N1TN/N)y;

z =
(

HGt +
1N1T

r√
rN

)T
y.

(19)

is uniformly completely observable.

Note that

z(t) =
(

HGt +
1N1Tr√
rN

)T
y(t)

=
(

HT
Gt

+
1r1

T
N√

rN

)

(I − 1N1TN/N)x(t)

= HT
Gt

x(t). (20)

This immediately translates to the desired theorem.
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2.3 Proof of Theorem 3

Again we consider y(t) = (I − 1N1TN/N)x(t). Along the system (7) the evolution of y(t) obeys

d

dt
y(t) = −(LGt + 1N1TN/N)y(t) + (I − 1N1TN/N)w(t). (21)

It is then obvious that system (7) achieves ∗-bounded robust consensus under Definition 4 if system (21)

is bounded*-input, bounded state stable as defined in [17].

If the graph {Gt}t≥0 is (δ, T )-connected, then (15) is exponentially asymptotically stable. This in

turn leads to the conclusion that the system (21) is bounded*-input, bounded state stable based on the

sufficiency part of Theorem 1 (p. 404) in [17]. Therefore, system (7) achieves ∗-bounded robust consensus.

On the other hand, note that there holds

(LGt + 1N1TN/N)(I − 1N1TN/N) = (LGt + 1N1TN/N) (22)

for all t. Consequently, we have

Φ(t, s)(I − 1N1TN/N) = Φ(t, s) (23)

for all t and s, where Φ(t, s) is the state-transition matrix of the system (21) with w(t) ≡ 0. Therefore,

applying the necessity proof of Theorem 1 in [17] we can directly conclude that if system (21) is bounded*-

input, bounded state stable, then (15) is exponentially asymptotically stable. This in turn leads to the

graph {Gt}t≥0 being (δ, T )-connected.

We have now completed the proof.

2.4 Proof of Theorem 4

When the Negative-Link Assumption holds, the construction of (14) can be replaced by

ẋ = −LGtx = −
√

LGt

√

LGtx. (24)

It is then straightforward to see that the remaining arguments in the proofs of Theorems 1 and 3 will not

be affected, leading to the desired result.

3 Conclusions

We have studied continuous-time consensus dynamics with undirected switching interaction graphs in

view of the classical theory of uniform complete observability for linear time-varying systems. A necessary

and sufficient condition for exponential asymptotic consensus was established by much simplified analy-

sis compared to related results in the literature. Interestingly and importantly, this observability-based

method can also be applied to signed networks with both positive and negative edges. We also established

a robust consensus result as well as a state reconstruction result indicating that the nodes’ initial values

can be recovered from signals on the edges up to a shift of the network average.
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