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Abstract—A priori state vector and error covariance compu-
tation for the Unscented Kalman Filter (UKF) is described. The
original UKF propagates multiple sigma points to compute the
a priori mean state vector and the error covariance, resulting in
a higher computational time compared to the Extended Kalman
Filter (EKF). In the proposed method, the posterior mean state
vector is propagated and then the sigma points at the current
time step are calculated using the first-order Taylor Series
approximation. This reduces the computation time significantly,
as demonstrated using two example applications which show
improvements of 90.5% and 92.6%. This method shows the
estimated state vector and the error covariance are accurate
to the first-order Taylor series terms. A second method using
Richardson Extrapolation improves prediction accuracy to the
second-order Taylor series terms. This is implemented on the
two examples, improving efficiency by 85.5% and 86.8%.

I. I NTRODUCTION

The Kalman Filter is a long-established state estimation
technique and many variants of this filter are widely used
in numerous engineering applications, for example: object
tracking, navigation, computer vision, economics and many
more. The classical Kalman Filter was designed to address
the estimation problem for linear systems [1]. NASA Ames
Research Centre applied this optimal estimation formula for
estimating the position and the velocity of a space vehicle.
As the dynamics of a space vehicle are non-linear, the system
was linearised using a first-order Taylor series approximation
around an operating region to calculate the conditional error
covariance and the Kalman gain [2], [3]. This is known as
the Extended Kalman Filter (EKF) and is now widely used
for numerous non-linear estimation problems. However this
approach leads to a suboptimal solution to the non-linear
estimation problem [4], [5] and requires an additional process
noise covariance matrix for convergence of the solution [6].
Athans et al. proposed a second-order approximation technique
to improve the estimation performance [5]. This second-order
filter requires calculation of both Jacobian and Hessian of
the non-linear system under consideration and proved to be
computationally expensive. Then Nφrgaard et al. presented an
approximate derivative calculation procedure using Stirling’s
interpolation formula to avoid analytical calculation of the
Jacobian and the Hessian for the second-order filter [7].
This method provides good estimation results for non-linear
systems, yet the solution is not exact. A theoretical solution to
the non-linear filtering problem requires solving the Fokker-
Planck Equation (FPE) which expresses the evolution of the

conditional probability density function of the state vector in
the form of a partial differential equations [8]. Daum and
Benes discussed the exact solution of non-linear estimation
without directly solving the FPE in [9] and [10]. However
these methods are difficult to implement for high dimensional
systems due to computational complexity [6].

Julier and Uhlmann in their seminal work on non-linear
filters, showed a new approach to predict the mean state
vector and the error covariance using deterministic sampling
[6], [11]–[13]. This approach is known as the Unscented
Transformation (UT) and the filter which uses the UT in the
prediction step is widely referred as the Unscented Kalman
Filter (UKF). The UKF ensures an accuracy of at least the
second-order Taylor series approximation without Jacobian
and Hessian calculation. Application of the UKF can be
found in satellite navigation, attitude determination andcontrol
[14]–[16], GPS/INS integration for Unmanned Areal Vehicles
[17], indoor positioning [18], target tracking [19], [20] and
in various other estimation problems. Unlike the EKF, the
UKF does not require an additional process noise matrix and
subsequent tuning to compensate for the linearisation. Instead
a UKF requires propagation of multiple sampled state vectors
which are known as sigma points [6] to calculate thea priori
state vector at every time step. For a system withn state
elements,2n+1 sigma points must be propagated. If the exact
difference equation is available for a non-linear system, this
propagation of multiple state vectors is not computationally
burdensome and the computational effort is comparable to
the EKF. But most physical systems are described using non-
linear continuous-time differential equations and the system
description in the form of difference equations is an ap-
proximation of these differential equations. For accuratestate
propagation, performing a numerical integration is inevitable.
From this point of view, multiple numerical integrations must
be performed at each UKF prediction stage to calculate thea
priori state vector, whereas, for the EKF, only one numerical
integration operation is required at each step. Due to this
reason, implementation of a UKF for a continuous-time system
is more computationally expensive than for an EKF.

The most obvious strategy for reducing the computation
time of a UKF is reducing the number of sigma points. From
this perspective, several contributions have discussed methods
to improve the computational efficiency of the UKF. Julier and
Uhlmann showed that at leastn+1 sigma points are required
to capture the uncertainty associated with the system [21].
The Spherical Simplex Unscented Transform (SSUT) was
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introduced in their later work. The UKF with SSUT is referred
to as the Spherical Simplex Unscented Kalman Filter (SSUKF)
in this paper. The SSUT requiresn + 2 sigma points,n + 1
of which lie on a hypersphere [22]. However this reduction
can lead to a degraded estimation performance [23] and the
reduction in the computational time is intuitively less than 50%
of the same if the UT is used. Chang suggested the Marginal
Unscented Transformation (MUT) to reduce the number of
sigma points in [23]. The MUT can be applied to a special
type of non-linear function containing linear substructures. It
was suggested that, ifna state elements out of then state
elements are mapped non-linearly then the number of sigma
points can be reduced to2na + 1.

Unlike the previously mentioned methods, this paper ex-
plores a possibility of reducing the computational time sig-
nificantly without reducing the number of sigma points. A
new approach to the state vector propagation for the UKF
prediction stage is presented with the aim of reducing the
computational effort. In this method, thea posteriori state
vector of the previous time step is propagated to the current
time step and the other2n sigma points at the current step
are calculated approximately from the information of the
previous step using a first-order Taylor series approximation.
This approach requires propagation of one state vector instead
of 2n+1. The UKF with this strategy is referred as the Single
Propagation Unscented Kalman Filter (SPUKF) in the rest of
the paper. It is shown in the next section of the paper that the
error in thea priori state computation using the new method
of the order of the second-order terms of the Taylor series
expansion and leads to a lower estimation accuracy for the
SPUKF compared to the classical UKF. To reduce the error
in the a priori state prediction, a second method inspired
by Richardson Extrapolation is adopted. In the subsequent
sections of the paper a UKF with the aforementioned state
propagation strategy and the multidimensional extrapolation
method is referred to as the Extrapolated Single Propagation
Unscented Kalman Filter (ESPUKF). The estimation accuracy
and computational effort of the EKF, UKF, SPUKF and the
ESPUKF were compared using a non-trivial non-linear re-
entry vehicle tracking problem previously used as a benchmark
in [5]–[7] and [24].

The remainder of the paper is organised as follows: section
II establishes the problem statement. Section III derives the
mathematical formulation for the new state propagation strat-
egy, the error in thea priori and thea posteriorimean state
vectors and error covariances. The extrapolation technique is
also derived. In section IV the computation complexity analy-
sis of the SPUKF and the ESPUKF is shown. The two methods
are then verified with the re-entry vehicle tracking problem
in section V. The state estimation error and computational
time for the SPUKF and the ESPUKF are compared with
the EKF, UKF and SSUKF. In Section VI the EKF, UKF,
SSUKF, SPUKF and ESPUKF are applied to a multi-GNSS
based satellite position determination problem and the result is
discussed. Section VII concludes the paper with a discussion
of the possibility of real-time application of Unscented Filters
using the proposed methods when computational resources are
limited.

II. PROBLEM STATEMENT

Consider a continuous-time non-linear stochastic dynamical
system

Ẏ (t) = f(t,Y (t),ν(t)) (1)

Z(k) = h(Y (k)) +w(k) (2)

Here,t denotes continuous time,k is the discrete equivalent of
t, Y is an-dimensional state vector to be estimated from the
discrete measurementZ(k). f andh are non-linear functions,
ν(t) is the process noise andw(k) is the measurement noise.
The uncertainty ofY is modelled as a probability distribution.
In a Kalman Filter framework, the dynamic model of the
system is utilized to compute thea priori mean and the error
covariance of the probability distribution ofY . To reduce the
error in prediction due to model uncertainties, measurement
Z is used to estimate thea posteriori mean state vector
and the error covariance ofY . To apply a classical UKF to
this estimation problem, the continuous-time system equation
must be converted to a discrete-time difference equation [6]
as shown below.

Y (k + 1) = F (k,Y (k),ν(k)) (3)

HereF is a non-linear function and the discrete time equiva-
lent of f . In the UKF framework the UT is used to calculate
the predicted mean state vector and the error covariance. Inthe
UT 2n+1 weighted samples or sigma points are calculated at
thekth time step from the estimated mean state vectorŶ +(k)
and the error covarianceP+

Y Y (k) [6]. The ith sigma pointYi

and the corresponding weightWi are [6]

Yi(k) =

{
Ŷ +(k) , (i = 0)

Ŷ +(k) + ∆Yi , (i = 1, 2, 3...2n)
(4)

Wi =

{ κ
n+κ , (i = 0)

1
2(n+κ) , (i = 1, 2, 3...2n)

(5)

and
∆Yi = (

√
(n+ κ)P+

Y Y (k))i for i = 1, 2, 3....n

∆Yi = −(
√
(n+ κ)P+

Y Y (k))i for i = n+ 1, 2, 3....2n

Here (
√
(n+ κ)P+

Y Y (k))i is the ith column of the matrix√
(n+ κ)P+

Y Y (k). κ is a parameter that can be used for
‘fine tuning’ and if the noise is considered Gaussian, then
heuristicallyκ can be selected in such a way thatn+ κ = 3
[11]. The sigma points are propagated to the(k + 1)th time
step using (3). The predicted mean̂Y − at the(k + 1)th time
step can be computed as [6]

Ŷ −(k + 1) =
2n∑

i=0

WiYi(k + 1)

=

2n∑

i=0

WiF (k,Yi(k),ν(k)) (6)

and the predicted covariance [6]

P−

Y Y (k + 1) =
2n∑

i=0

Wi

[
Yi(k + 1)− Ŷ −(k + 1)

]

×
[
Yi(k + 1)− Ŷ−(k + 1)

]T
(7)
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The predicted measurement is calculated from the computed
measurements corresponding to theith propagated sigma point
and can be expressed as [6]

Zi(k + 1) = h(Yi(k + 1)) (8)

Then the predicted measurementẐ− at (k+1)th time step is
[6]

Ẑ−(k + 1) =
2n∑

i=0

WiZi(k + 1) (9)

The innovation covariance i.e. the error covariance of the
predicted measurement, is [6]

S =
2n∑

i=0

Wi

[
Zi(k + 1)− Ẑ−(k + 1)

]

×
[
Zi(k + 1)− Ẑ−(k + 1)

]T
+R (10)

where,R is the measurement noise covariance matrix. The
cross covariance matrix is calculated by [6]

PY Z =

2n∑

i=0

Wi

[
Yi(k + 1)− Ŷ −(k + 1)

]

×
[
Zi(k + 1)− Ẑ−(k + 1)

]T
(11)

The measurement update of the estimation can be performed
by the standard Kalman Filter equations

K = PY ZS
−1

P+
Y Y = P−

Y Y −KSKT

∆Z = Z(k + 1)− Ẑ−(k + 1)

Ŷ +(k + 1) = Ŷ −(k + 1) +K∆Z

As previously mentioned, the implementation of the UT re-
quires system representation in the form of difference equa-
tions. However, the rigorous mathematical models of most
physical systems are expressed in the form of differential
equations and the difference equation forms of such systems
are predominantly first order Taylor series approximations. For
example, consider the mathematical process of converting the
differential equation (1) to a difference equation. (1) canbe
expressed as

lim
δt→0

Y (t+ δt)− Y (t)

δt
= f(t,Y (t),ν(t)) (12)

This can be approximated as

Y (t+ δt) ≈ Y (t) + f(t,Y (t),ν(t))δt (13)

If we consider the time intervalδt in a manner thatt/δt = k
where, k is a positive integer, then the above approximate
equation becomes a difference equation

Y (k + 1) = Y (k) + f(k,Y (k),ν(k))δt (14)

which is fundamentally a first order Taylor series approxima-
tion of Y (t) aroundt. In the UKF framework, propagation
of sigma points requires2n + 1 evaluations of the function
f . Use of a difference equation for sigma point calculation
results in almost the same order of computational efficiency

Fig. 1: Propagation of sigma points using conventional UT

as an EKF depending on the complexity of the system. But
this simple approximation can lead to huge prediction errorfor
a highly non-linear system. To avoid this computation error,
the differential equation must be used. (1) can be rewrittenas

Y (t+ δt) = Y (t) +

∫ t+δt

t

f(τ,Y (τ),ν(τ))dτ

= F (t,Y (t),ν(t)) (15)

To determine thea priori mean and the error covariance using
the UT, 2n+ 1 sigma points must be propagated using (15).
The UT approach is shown graphically in Fig. 1. Most of
the time a numerical integration technique is adopted for the
state propagation using a differential equation, and in this case
the computation time for the UT will be much higher. Let
us consider a case where a 4th order Runge-Kutta numerical
integration method is adopted for the state propagation. Let
Ŷ +(t) be thea posteriori estimate of the state andP+

Y Y be
the estimated error covariance at timet. Using the Runge-
Kutta technique at timet+ δt the first propagated sigma point
will be,

Y0(t+ δt) = Ŷ +(t) +
δt

6
(k1 + 2k2 + 2k3 + k4) (16)

where

k1 = f(t, Ŷ +(t),ν(t))

k2 = f(t+
δt

2
, Ŷ +(t) +

1

2
k1δt,ν(t+

δt

2
))

k3 = f(t+
δt

2
, Ŷ +(t) +

1

2
k2δt,ν(t+

δt

2
))

k4 = f(t+ δt, Ŷ +(t) + k3δt,ν(t+ δt))

The above-mentioned operations must be performed2n + 1
times to propagate all the sigma points. As a result, in every
prediction step the functionf must be evaluated4(2n + 1)
times. However, for accuracy, ifδth (h ∈ N) step size is chosen
to propagate the state vector from timet to t + δt then, the
functionf must be evaluated4h(2n+1) times. To account for
the process noise in the UKF, the state vector is augmented
with the process noise terms [11],

Ya(t) =

[
Y (t)
ν(t)

]
(17)

and the sigma points for the UT are calculated from [11],

Ŷa(t) =

[
Ŷ +(t)
0q×1

]
(18)
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Fig. 2: Approximate sigma point propagation

and

Pa(t) =

[
P (t) PY ν(t)
PY ν(t) Q(t)

]
(19)

HerePY ν is the cross covariance matrix ofY (t) and ν(t),
q is the number of elements inν(t). The dimension of the
augmented state vector ism = n + q. Then the number of
sigma points to be propagated will be increased to2m + 1.
This puts a substantial computational burden on the processor.
Computation time is one of the major constraints of any real-
time system. Also, for many real-time applications, the compu-
tation power is limited due to several constraints. This makes
the UKF difficult to implement in many real-time applications
and the EKF remains the first choice of engineers regardless of
the fact that UKF can provide a more accurate solution without
adding fudge factors in theQ matrix. Prior work on improving
the computational efficiency of the UKF involves reducing the
number of sigma points, compromising the solution accuracy.
Therefore, the underlying problem in implementation of the
UKF for real-time application is the absence of a sigma point
propagation method which is computationally efficient as well
as capable of producing an estimation accuracy comparable to
the original UKF. In this paper this problem is targeted and
a different approach is suggested to significantly improve the
computational efficiency of a generic UKF without reducing
the number of sigma points. To reduce the computation time
we propose to propagate thea posteriori state vector of the
previous time step to the current time step using numerical
integration as per the EKF and then approximate the other
2n (or 2m) sigma points at the current time step. Fig. 2
shows the hypothesised approach graphically. For approximate
calculation of sigma points at the current time step, the
deviations of the corresponding sigma points from thea
posteriori state vector at previous time step are used in the
Taylor series expansion.

III. E STIMATION ALGORITHMS BASED ON THE

APPROXIMATE SIGMA POINT PROPAGATION

A. Single Propagation Unscented Kalman Filter

The sigma points at timet are

Yi(t) = Ŷ +(t) + ∆Yi, (i = 1, 2, 3, ...2n)

The ith (i 6= 0) sigma point using the UT at timet+δt will
be

Yi(t+ δt) = F (t,Yi(t),ν(t))

= F (t, Ŷ +(t),ν(t)) +D∆Yi
F

+
D2

∆Yi
F

2!
+

D3

∆Yi
F

3!
+ .... (20)

HereD∆Yi
F = ∂F

∂Y

∣∣
Ŷ +(t)

∆Yi is the total differential ofF .
If a first order approximation is considered for (20) then

Yi(t+ δt) ≈ F (t, Ŷ +(t),ν(t)) +D∆Yi
F

= Y0(t+ δt) +
∂F

∂Y

∣∣∣∣
Ŷ +(t)

∆Yi (21)

One can easily evaluate∂F
∂Y

as [25]

∂F

∂Y
= eJ δt (22)

where,J is the Jacobian off evaluated atY = Ŷ +(t). By
evaluating the Jacobian off once per step, all the sigma points
can be propagated over time. Therefore, in this method, instead
of evaluating the functionf 4h(2n+ 1) times, all the sigma
points at the current time step are computed by evaluating
the function f 4h times, the Jacobian matrix and matrix
exponential once in each step. Section IV will verify that
the processing time decreases significantly using this method
because of the reduction of the number of evaluation of the
functionf . In the SPUKF, this prediction strategy is used. The
steps for measurement prediction, Kalman gain computation,
the mean state vector and the error covariance calculation is
same as the UKF.

1) Error in the Mean and the Covariance:In this subsec-
tion, the error incurred due to the approximation mentionedin
section III-A is assessed. Hereafter, the sigma points and mean
calculated using the proposed approximation will be denoted
as Ỹi and Ỹ respectively.

Let Yi(t) be propagated using a 4th order Runge-Kutta
numerical integration from (15). Then, from (20) and (21) the
error due to approximation for each sigma point (neglecting
the truncation and round off error) is

Yi(t+ δt)− Ỹi(t+ δt) =
D2

∆Yi
F

2!
+

D3

∆Yi
F

3!
+ .... (23)

which is denoted asei. The mean state vector using the
original UT [6]

Ŷ −(t+ δt) =
1

n+ κ

[
κY0(t+ δt) +

1

2

2n∑

i=1

[Yi(t+ δt)]

]

= Y0(t+ δt) +
1

2(n+ κ)

×

2n∑

i=1

[
D∆Yi

F +
D2

∆Yi
F

2!
+

D3

∆Yi
F

3!
+ ....

]

(24)

Similarly thea priori mean state vector for the SPUKF is

Ỹ −(t+ δt) =
1

n+ κ

[
κY0(t+ δt) +

1

2

2n∑

i=1

[
Ỹi(t+ δt)

]]

= Y0(t+ δt) +
1

2(n+ κ)

2n∑

i=1

D∆Yi
F (25)
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The error in the prediction due to the approximation is

Ŷ −(t+ δt)− Ỹ −(t+ δt)

=
1

2(n+ κ)

2n∑

i=1

[
D2

∆Yi
F

2!
+

D3

∆Yi
F

3!
+ ....

]
(26)

This mean prediction error is denoted asē. Let us define the
predicted covariance using the original UT as [6]

P−

Y Y (t+ δt) =
1

n+ κ
κ
[
Y0 − Ŷ −

] [
Y0 − Ŷ −

]T

+
1

2(n+ κ)

2n∑

i=1

[
Yi − Ŷ −

] [
Yi − Ŷ −

]T
(27)

and the predicted covariance using the new approximation is

P̃−

Y Y (t+ δt) =

2n∑

i=0

Wi

[
Ỹi − Ỹ −

] [
Ỹi − Ỹ −

]T

=
1

n+ κ
κ
[
Y0 − Ỹ −

] [
Y0 − Ỹ −

]T

+
1

2(n+ κ)

2n∑

i=1

[
Ỹi − Ỹ −

] [
Ỹi − Ỹ −

]T

(28)

Using (23), (26), (27) and (28),

P−

Y Y (t+ δt)

= P̃−

Y Y (t+ δt) +
κ

n+ κ

[
ēēT − ē

[
Y0 − Ỹ −

]T

−
[
Y0 − Ỹ −

]
ēT

]
+

1

2(n+ κ)

2n∑

i=1

[
[ei − ē]

[
Ỹi − Ỹ −

]T

+
[
Ỹi − Ỹ −

]
[ei − ē]T + [ei − ē][ei − ē]T

]
(29)

For the ease of further calculation, the above equation is
rewritten as,

P−

Y Y (t+ δt) = P̃−

Y Y (t+ δt) + PY Ye
(30)

Here,PY Ye
is the error in predicted error covariance calcu-

lation due to the approximation. From the above equations it
can be inferred that the error in the prediction of the mean
and the error covariance with the proposed method is of the
order of the second-order Taylor series terms of the original
the UT.

2) Error in State Estimation:Define Z̃i = h(Ỹi) as the
computed measurement vector corresponding to the sigma
point Ỹi andZ̃− as the predicted measurement vector at time
t+ δt for the SPUKF. Then,

Zi = h(Yi)

= h(Ỹi + ei)

= Z̃i +Dei
h+

D2
ei
h

2!
+ .... (31)

Let, Dei
h+

D2
e
i
h

2! + .... = ezi
. It is to be noted that, the error

term ezi
is of the order of the first order Taylor series terms,

but ei is of the order of the second-order Taylor series terms
of (21). The predicted measurement vector using the UT is

Ẑ− =
2n∑

i=0

WiZi

=

2n∑

i=0

WiZ̃i +

2n∑

i=0

Wiezi

= Z̃− +

2n∑

i=0

Wiezi
(32)

Then, the error in the mean measurement vector prediction
using the SPUKF is̄ez =

∑2n
i=0 Wiezi

. The innovation∆Z
computed using the UKF can be expressed as

∆Z = Z − (Z̃ + ēz)

= ∆Z̃ − ēz (33)

Here,∆Z̃ = Z − Z̃ is the innovation computed using the
SPUKF. The cross covariance matrix at timet+ δt using the
UT is

PY Z =

2n∑

i=0

Wi

[
Yi − Ŷ −

] [
Zi −Z−

]T

=

2n∑

i=0

Wi

[
Ỹi − Ỹ −

] [
Z̃i − Z̃−

]T

+
2n∑

i=0

Wi [ei − ē]
[
Z̃i − Z̃−

]T

+

2n∑

i=0

Wi

[
Ỹi − Ỹ −

]
[ezi − ēz]

T

+

2n∑

i=0

Wi [ei − ē] [ezi − ēz]
T

= P̃Y Z + PeY Z
(34)

Here,
∑2n

i=0 Wi

[
Ỹi − Ỹ −

] [
Z̃i − Z̃−

]T
= P̃Y Z , which is

the cross covariance matrix computed using the SPUKF.PeY Z

is the error in the cross covariance computation. From (23) and
(26), it can be deduced thatPeY Z

is of the order of the second-
order Taylor series terms. Similarly, the innovation covariance
S computed using the UT can also be expressed as,

S = S̃ + Se (35)

Here S̃ is the innovation covariance computed using the
SPUKF andSe is the error in innovation covariance calcu-
lation, which is also of the order of the second-order Taylor
series terms. The Kalman gainK for the original UKF is,

K = PY ZS
−1

= (P̃Y Z + PeY Z
)(S̃ + Se)

−1

= P̃Y Z S̃
−1 + PeY Z

S̃−1

− (P̃Y Z + PeY Z
)[S̃−1Se(Se + SeS̃

−1Se)SeS̃
−1] (36)

Here, P̃Y Z S̃
−1 is the Kalman gaiñK calculated using the

SPUKF. The second and third terms in (36) are the difference
in Kalman gains computed using the UKF and the SPUKF



6

and denoted asKe. The estimated mean state vector using
the UKF is

Ŷ + = Ŷ − +K∆Z

= Ỹ − + ē+ (K̃ +Ke)(∆Z̃ − ēz)

= Ỹ − + K̃∆Z̃ + ē+Ke∆Z̃ − K̃ēz −Keēz (37)

In the above equatioñY − + K̃∆Z̃ is the estimated mean
state vector using the SPUKF. The fourth, fifth and the sixth
terms in the equation can be neglected. This implies that, the
error in state estimation in the SPUKF is predominantly due
to ē. The estimated error covariance using the UKF is

P+
Y Y = P−

Y Y −KSKT

= P̃−

Y Y + PY Ye
− [K̃ +Ke][S̃ + Se][K̃ +Ke]

T

= P̃−

Y Y − K̃S̃K̃T + PY Ye

− [K̃SeK̃
T + K̃S̃KT

e + K̃SeK
T
e +KeS̃K̃

T

+KeSeK̃
T +KeS̃K

T
e +KeSeK

T
e ] (38)

In this equation,P̃−

Y Y − K̃S̃K̃T is the estimated error
covariance using the SPUKF. The remaining terms contributes
to the error in the covariance calculation. ExceptPY Ye

, the
other terms are negligibly small. Hence, the error in estimated
error covariance using the SPUKF isPY Ye

. From this analysis,
it is discerned that, the error in the mean state vector and the
error covariance estimation using the SPUKF is of the order
of the second-order Taylor series terms compared to the UKF.

B. Multi-dimensional Richardson Extrapolation and the ES-
PUKF

As previously discussed, the accuracy of the state estimation
using the UKF is of the order of the second-order Taylor
series terms. To achieve similar accuracy using the new sigma
point propagation, the second-order Taylor series terms must
be included in thea priori state vector computation. This
can be performed by calculating the Hessian for the function
f . Computation of the Hessian matrix for a complex non-
linear system with many state elements is difficult. However,
Richardson Extrapolation method is renowned for improving
the accuracy of a general approximation technique by an order
of the Taylor series terms [26]. To avoid calculation involving
the computation of the Hessian of a non-linear system a
time-varying approximation of the Richardson Extrapolation
method is adopted to include the second-order Taylor series
terms in thea priori state vector computation. Using Taylor
series approximation,

Yi(t+ δt) = F (t,Yi(t),ν(t))

= F (t, Ŷ +(t),ν(t)) +D∆Yi
F |Ŷ +(t)

+

[
D2

∆Yi

2!
+

D3

∆Yi

3!
+ ....

]
F |Ŷ +(t)

= N1(∆Yi)+

[
D2

∆Yi

2!
+

D3

∆Yi

3!
+ ....

]
F |Ŷ +(t)

(39)

here

N1(∆Yi) = F (t, Ŷ +(t),ν(t)) +D∆Yi
F |Ŷ +(t) (40)

The Taylor series expansion can also be performed in two
steps as shown below:

Yi(t+ δt)

= F (t, Ŷ +(t) +
∆Yi

2
+

∆Yi

2
,ν(t))

= F (t, Ŷ +(t) +
∆Yi

2
,ν(t))

+

[
D∆Yi/2 +

D2

∆Yi/2

2!
+

D3

∆Yi/2

3!
+ ....

]
F |

Ŷ +(t)+
∆Y

i

2

= F (t, Ŷ +(t),ν(t)) +D∆Y/2F |Ŷ +(t)

+D∆Y/2F |
Ŷ +(t)+

∆Y
i

2

+

[
D2

∆Yi/2

2!
+

D3

∆Yi/2

3!
+ ....

]
F |Ŷ +(t)

+

[
D2

∆Yi/2

2!
+

D3

∆Yi/2

3!
+ ....

]
F |

Ŷ +(t)+
∆Y

i

2

= N2(
∆Yi

2
) +

[
1

22
D2

∆Yi

2!
+

1

23
D3

∆Yi

3!
+ ...

]
F |Ŷ +(t)

+

[
1

22
D2

∆Yi

2!
+

1

23
D3

∆Yi

3!
+ ...

]
F |

Ŷ +(t)+
∆Y

i

2

(41)

here

N2(
∆Yi

2
) =F (t, Ŷ +(t),ν(t)) +D∆Y/2F |Ŷ +(t)

+D∆Y/2F |
Ŷ +(t)+

∆Y
i

2

(42)

ConsideringF (t, Ŷ +(t),ν(t)) ≈ F (t, Ŷ +(t) + ∆Yi

2 ,ν(t))
and from (39) and (41)

Yi(t+ δt) =2N2(
∆Yi

2
)−N1(∆Yi)

−

[
1

2

D3

∆Yi

3!
+

3

4

D4

∆Yi

4!
+ ...

]
F |Ŷ +(t) (43)

The implication of (43) is: ifYi(t+δt) is approximated using
the method(2N2(

∆Yi

2 ) − N1(∆Yi)), then the error due to
the approximation term will be of the order of the 3rd order
terms of the Taylor series expansion. With this improvement, a
better mean and error covariance propagation is expected and
improved estimation accuracy is anticipated. In the ESPUKF,
this extrapolation method is utilized to obtain better estimation
accuracy. Using the similar approach of section III-A2, it can
be proved that, the error in the state and the error covariance
estimation using the ESPUKF is of the order of the third-order
Taylor series terms.

IV. COMPUTATION COMPLEXITY ANALYSIS

To analyse the computation complexity of the UKF,
the SPUKF and the ESPUKF, times required to perform
mathematical operations are defined as followed:

tf time required to evaluate the functionf
tmm time required to multiply an× n and

a n× n matrix
tm time required to multiply an× n and

a n× 1 matrix
ta time required to add twon× 1 matrix
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tms time required to multiply a scaler with
a n× 1 matrix

tmd time required to divide an× 1 matrix by a scaler
tdiag time required to eigen-decompose an× n matrix
tsa time required to perform scaler addition

or subtraction
tsm time required to perform scaler multiplication
tsd time required to perform scaler division
texp time required to evaluate scaler exponential

Computation complexities of matrix multiplication of
two n × n matrices and matrix multiplication of onen × n
and onen×1 areO(n3) andO(n2) respectively. Computation
complexity of eigen-decomposition isO(n3). Considering
tsa, tsm, tsd, texp as the basic operations, definetmax in a
fashion that it satisfies the following inequalities,

tmax ≥ max{tsa, tsm, tsd, texp} (44)

tmm ≤ n3tmax (45)

tm ≤ n2tmax (46)

tdiag ≤ n3tmax (47)

ta, tms and tmd can be expressed as,

ta = ntsa

≤ ntmax (48)

tms = ntsm

≤ ntmax (49)

tmd = tsd + ntsm

≤ (n+ 1)tmax (50)

If number of basic operations required to evaluate the function
f is j(j ∈ N) then,

tf ≤ jtmax (51)

Here, j reflects the difficulty to evaluate the functionf . By
counting the number of mathematical operations, time required
to compute one step of 4th order Runge-Kutta methodtRK

can be expressed as,

tRK = 4tf + 3tsa + 6tms + 7ta + 2tsd

≤ (13n+ 4j + 5)tmax (52)

Similarly, computation time for Jacobian calculationtJ is,

tJ = ntf + nta + ntmd + ntsa

≤ [2n2 + (j + 2)n]tmax (53)

Computation time to calculate matrix exponential of an× n
matrix te can be expressed as,

te = tdiag + ntexp + 2tmm

≤ (3n3 + n)tmax (54)

Computation time required to propagate2n+ 1 state vectors
using the UKF is

tUKF = h(2n+ 1)tRK (55)

From (52),

tUKF ≤ [26hn2 + (8hj + 23h)n+ 4hj + 5h]tmax (56)

here,h(h ∈ N) is number of steps selected to propagate the
state vectors from timet to time t + δt, i.e. δt/h is the step
size for the Runge-Kutta algorithm.

A. Computation complexity of the SPUKF

By observing (21), the computation time required to prop-
agate2n+ 1 state vectors using the SPUKF is

tSP = htRK + tJ + te + 2ntm + 2nta (57)

Similar to the UKF, it is assumed that, the Runge-Kutta
method usesδt/h step size for state propagation. Using (46),
(48), (52), (53) and (54)

tSP ≤ [5n3 + 4n2 + (13h+ j + 3)n+ 4hj + 5h]tmax (58)

tUKF and tSP can be written as

tUKF = [26hn2 + (8hj + 23h)n+ 4hj + 5h]tmax

− δUKF , δUKF ≥ 0 (59)

tSP = [5n3 + 4n2 + (13h+ j + 3)n+ 4hj + 5h]tmax

− δSP , δSP ≥ 0 (60)

The termsδUKF andδSP contain the low level details of the
matrix operations if each of the scaler addition, multiplication,
division and the scaler exponential operations is considered
as one unit operation. Hence, the values ofδUKF and δSP

entirely depend on the choice of the algorithms for matrix
operations. To make the computation complexity analysis of
the Kalman Filters independent of the algorithms used for
matrix operations,δUKF and δSP can be neglected. This
assumption leads to comparison of the maximum possible
value of tUKF and tSP for a given estimation problem.

In the SPUKF framework, only the state propagation
method is different to the UKF and the computation time
required to generate sigma points at the current time, the com-
putation of the predicted error covariance and the computation
of the a posteriorimean and error covariance for the SPUKF
and the UKF are equal. The reduction in computation time
for the SPUKF will be only due to the reduction in compu-
tation time for the state propagation. Hence, the difference
in computation time between the UKF and the SPUKF is
tUKF−tSP . For computation time reduction,tUKF−tSP > 0.
The computation time reduction of the SPUKF as a percentage
of the computation time of the UKF can be defined as,

CSP =
tUKF − tSP

tUKF
× 100% (61)

here,CSP is the percentage computation time reduction for
the SPUKF with respect to the UKF. From (59) and (60) and
neglectingδUKF andδSP ,

CSP

=
(26h− 4)n2 + (8hj + 10h− j − 3)n− 5n3

26hn2 + (8hj + 23h)n+ 4hj + 5h
× 100%

(62)

This equation implies that, for the computation time of the
SPUKF to be reduced compared to the UKF, the numerator
of CSP has to be greater than0. This limits the number of
state elementsn that can be estimated using the SPUKF to
result in a reduced computation time. Exceeding the limit will
result in a higher computation time than the UKF. The limit
of n is the real positive root of the polynomial5n3 − (26h−
4)n2− (8hj+10h− j− 3)n, because at5n3− (26h− 4)n2−
(8hj + 10h− j − 3)n = 0, tSP = tUKF . For different values
of h and j, CSP vs. n is shown in Fig. 3. Fig. 3 shows that,
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Fig. 3: Computation efficiency improvement of the SPUKF
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Fig. 4: Limit of n for which the SPUKF is more efficient than
the UKF

using the SPUKF more than90% computation time reduction
is possible. With increasingn, the computation time reduction
increases rapidly and after a certain value ofn the reduction
decreases slowly. The maximum possible computation time
reduction increases with increase inj or h. Fig. 4 shows that,
with increasingj and h the limit of n also increases. This
implies that, for a higher complexity of the system functionf
and a higher number of integration stepsh, the computation
time of the SPUKF remains less than that for the UKF at a
larger range ofn, the number of state variables.

B. Computation complexity of the ESPUKF

From section III-B, the computation time required to prop-
agate2n+ 1 state vectors using the ESPUKF is

tESP = tN1 + 2ntN2 + 2ntms + 2nta (63)

where, tN1 and tN2 are the computation time required to
calculateN1(∆Yi) and N2(

∆Yi

2 ). If δt/h is the step size
chosen for the Runge-Kutta method, then from (40),

tN1 = tSP
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Fig. 5: Computation efficiency improvement of the ESPUKF
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Fig. 6: Limit of n for which the ESPUKF is more efficient
than the UKF

and, from (42),

tN2 = tmd + ta + tm + tJ + te

≤ [3n3 + 3n2 + (j + 5)n+ j + 1]tmax (64)

From (48), (49), (50), (64), (64) and (63)

tESP ≤ [6n4 + 11n3 + (2j + 18)n2

+ (13h+ 3j + 4)n+ 4hj + 5h]tmax (65)

tESP can be written as,

tESP = [6n4 + 11n3 + (2j + 18)n2

+ (13h+ 3j + 4)n+ 4hj + 5h]tmax

− δESP , δESP ≥ 0 (66)

δESP contains the low level details of the matrix operations
and as discussed in IV-A, this can be neglected for the purpose
of generality. Similar to the SPUKF, the difference in the
computation time of the UKF and the ESPUKF is due to
the different state propagation strategy. For reduction ofthe
computation time of the ESPUKF,tUKF − tESP > 0. The
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percentage computation time reduction for the ESPUKF with
respect to the UKF (CESP ) is defined as

CESP =
tUKF − tESP

tUKF
× 100 (67)

From (59) and (66) and neglectingδUKF andδESP ,

CESP =

(26h− 2k − 18)n2 + (8hk + 10h− 3k − 4)n− 6n4 − 11n3

26hn2 + (8hj + 23h)n+ 4hj + 5h

× 100% (68)

For improvement in computation time, the numerator ofCESP

must be greater than0. The real positive root of this polyno-
mial 6n4+11n3−(26h−2k−18)n2−(8hk+10h−3k−4)n
is the limit of n for the ESPUKF to achieve computation time
lower than the UKF. Fig. 5 showsCESP vs n for different
values ofj and h. Depending on the values ofn, j and h,
above80% computation time reduction is possible using the
ESPUKF. The characteristics of the graphs are the same as that
of the SPUKF however, after reaching the maximum value, the
percentage of computation time reduction decreases rapidly
with increase inn and as a result the value ofn at which,
tESP = tUKF is reduced. Fig. 6 shows the limit ofn for
different values ofj andh. It is observed that for the ESPUKF
at a substantially small value ofn than that of the SPUKF,
the computation time becomes equal to the computation time
of the UKF. This indicates a restricted useful range of the
ESPUKF.

V. EXAMPLE APPLICATION

To demonstrate the performance of the SPUKF and the
ESPUKF, a non-trivial non-linear re-entry vehicle problem
was examined. The problem was used in [5]–[7] and [24]
to demonstrate the performance of the respective estimation
schemes and as such is a benchmark for this type of work. In
the problem a body is considered with a high velocity, which
is re-entering the atmosphere at a very high altitude. A radar
is used to measure the range of the body in discrete time. The
measurement is corrupted by Gaussian noise. The direction
of the motion of the body is assumed to be perpendicular to
the local horizon. The altitude of the radar is 100000 ft (H)
and the horizontal distance between the radar and the body
is 100000 ft (M). For convenience of comparison with the
work of Julier and Uhlman on the UKF, Imperial units are
used in this example. The altitudex1(t), velocity x2(t) and
the constant ballistic coefficientx3(t) of the body are to be
estimated. The continuous-time dynamics of the system are:

ẋ1(t) = −x2(t) + w1(t) (69)

ẋ2(t) = −e−λx1(t)x2(t)
2x3(t) + w2(t) (70)

ẋ3(t) = w3(t) (71)

here,w1(t), w2(t) and w3(t) are zero-mean, uncorrelated
noises with covariance given byQ andλ is a constant (5 ×
10−5) that relates the air density and the altitude [6]. These
stochastic dynamical equations are used to generatex1, x2 and
x3 and considered as the true value. The random noises used in
the generation of the true value ofx1, x2 andx3 are considered
as unknown during the estimation. All the estimation errorsare
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Fig. 7: Performance comparison of the SPUKF and ESPUKF
with other estimation algorithms

obtained by subtracting the estimated state element from the
corresponding true state element. The range from the radar at
time t, r(t) is

r(t) =
√
M2 + [x1(t)−H ]2 + ν(t) (72)

hereν(t) is Gaussian noise. The covariance is considered as
104 ft/s. The initial true state is:

x1(0) = 30000 ft
x2(0) = 20000 ft/s
x3(0) = 10−3

The state and the error covariance for the filter initialization
are:

x̂1(0) = 300000 ft
x̂2(0) = 20000 ft/s
x̂3(0) = 3× 10−5

P (0) =




106 0 0
0 4× 106 0
0 0 10−4




The discrete process noise covariance matrix is consideredas

Q =




10−30 0 0
0 10−30 0
0 0 10−30




The elements of theQ matrix are chosen to be very small
value, because arbitrary large values ofQ matrix entries
suppress the approximation error of EKF. For the EKF, UKF,
SSUKF, SPUKF and ESPUKF the same initial conditions and
Q matrix are selected. The state vector is estimated for 1000
seconds using different algorithms separately. Fig. 7 shows the
estimation errors for the EKF, UKF, SPUKF and ESPUKF
for the first 60 seconds of tracking. The altitude errors for
the UKF, SSUKF, SPUKF and ESPUKF, are significantly less
than for the EKF. But due to the approximate sigma point
propagation, the altitude error for the SPUKF is higher than
for the original UKF and the SSUKF. The average steady
state altitude error and the processing time per time step for
different algorithms are presented in Table I. The processing
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TABLE I: Processing time and average altitude error for
different algorithms

Algorithm Processing time Average steady state
per time step (ms) altitude error (ft)

EKF 1.5 27.91
UKF 21.1 1.19

SSUKF 14.98 1.53
SPUKF 2.0 14.69

ESPUKF 3.0 2.04

time of the SPUKF is significantly lower than for the original
UKF and the SSUKF. The average altitude error for the
SPUKF is lower than for the EKF. However, the SPUKF
provides 14.69 ft (4.48 m) of average altitude error where as
the UKF and the SSUKF deliver average altitude errors of 1.19
ft (0.36 m) and 1.53 ft (0.46 m). Estimation using the UKF in
general is accurate to the order of the second-order Taylor
series terms. From the error analysis presented in sections
III-A1, III-A2 and the result for the re-entry vehicle tracking
problem, the first-order Taylor series approximation for the
sigma point propagation is identified as the reason of larger
error in the SPUKF. It is observed that the ESPUKF provides
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algorithms

lower altitude estimation error compared to the SPUKF due to
the elimination of the second-order Taylor series terms. The
altitude estimation error using the ESPUKF is comparable with
the UKF and the SSUKF results. In Fig. 8 processing time vs.
absolute average steady state estimation error is plotted.It is
clear that ESPUKF provides the most desirable performance
as compared to the other algorithms when processing time is
a constraint.

VI. A PPLICATION OF THESPUKFAND THE ESPUKFTO

SATELLITE NAVIGATION

Implementation of a UKF in a real-time on-board satellite
navigation scenario was the primary motivation for developing
a method of reducing the processing time of the UKF. In the
problem under consideration, position of a Low Earth Orbit
(LEO) satellite is to be determined from the Global Positioning
System (GPS) and Galileo measurements. A SPIRENT Global
Navigation Satellite System (GNSS) simulator was used to

simulate the the GPS and Galileo constellations, the signals
to be received by the user LEO satellite from all the GNSS
satellites and the orbital motion of the user LEO satellite.A
University of New South Wales (UNSW) Namuru V3.3 multi-
GNSS receiver was used to acquire the simulated signal. The
pseudo-range measurements are recorded and used to estimate
position of the user satellite using the EKF, UKF, SSUKF,
SPUKF and the ESPUKF.

A. System Model

The state vector associated with the satellite motion is:

Xsat =

[
r
v

]
=

[
x y z vx vy vz

]T
(73)

wherer = [x y z]T is the position vector of the satellite in
the Earth Centred Inertial (ECI) frame andv = [vx vy vz ]

T

is the velocity vector of the satellite in the ECI frame.J2,
J3 and J4 zonal harmonics and neglecting the effect of the
Sun and the Moon on the acceleration, the acceleration of
the satellite due to the Earth’s gravity field are considered
in the satellite acceleration model [27], [28]. The differential
equation for the states can be represented as:

Ẋsat =

[
ṙ
v̇

]
+Wsat(t) =

[
v
r̈

]
+Wsat(t) (74)

Here the Wsat vector is the process noise vector which
represents the unmodeled dynamics of the motion. Apart from
the states associated with satellite motion, the receiver clock
biases for GPS and Galileo are separately considered in the
estimable state vector. Although the Namuru V3.3 receiver
uses a single clock for both the GPS and Galileo constellations,
internally an inter-system bias is introduced. For this reason,
two state elements associated with the receiver clock bias are
included. A receiver clock bias model can be represented as a
first order Markov process. The receiver clock biases dynamics
can be represented as [29]:

Ẋclk =

[
wGPS

wGAL

]
(75)

where,Xclk = [δtGPS δtGAL]
T , Wclk = [wGPS wGAL]

T

is a random noise vector.δtGPS is the receiver clock bias for
GPS andδtGAL is the receiver clock bias for Galileo. The
complete state vector and the process noise for the estimation
are:

X =

[
Xsat

Xclk

]
W =

[
Wsat

Wclk

]

B. Measurement model

Pseudo-range measurements of the GNSS are modelled as
[29], [30] :

ρi(t) = ri(t) + c[δtu(t)− δti(t− τ)] + I(t) + ǫρ(t) (76)

here,i is the GNSS satellite index,ρi is the pseudo-range from
the LEO satellite,ρi is the pseudo-range from the LEO satellite
to the navigation satellite,ri is the geometric distance from
LEO satellite to the navigation satellite,δtu is the receiver
clock bias,δti is the clock bias of the navigation satellite,τ is
the signal transmission time,c is the velocity of light,I(t) is
the ionospheric error,ǫρ(t) is the random noise in the pseudo-
range measurement. For a space application the ionospheric
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TABLE II: Processing Time and Average Position Error for
Different Algorithms

Algorithm Processing time Average
per Time Step (ms) position error (m)

EKF 4.4 3.461
UKF 75.9 3.448
SSUKF 45.1 3.450
SPUKF 5.6 3.455
ESPUKF 10 3.455

error is insignificant unless precise position is required.The
ionospheric error is neglected in the measurement simulation
for this reason.

C. Simulation Result

Using the system model described by (74) and (75), the
measurement model equation (76) and the simulated mea-
surements, the position of the user satellite is estimated
using different algorithms. The simulation time span was 120
minutes. The GPS time system was used in the simulation
and the time axis in all the plots represents the seconds of
the GPS week. The initial position of the satellite was fixed
using Least Squares Estimation and used for initializationof
all the filters. In Fig. 9 the norm of the position estimation
errors for different estimation algorithms in the ECI frame
are plotted for 60 seconds from the starting time. It can
be observed that the norm of the estimated position errors
lies within 20m for the EKF, UKF, SSUKF, SPUKF and the
ESPUKF. Compared to the UKF, the SPUKF and ESPUKF
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Fig. 9: Comparison of the estimated position error

requires much less processing time. The processing time for
the SPUKF is reduced by 92.6% compared to the original
UKF. The ESPUKF provides the same average estimation
error and the processing time is reduced by 86.8%. However,

the processing time for the ESPUKF is almost twice of the
processing time of the SPUKF because the propagated sigma
points must be approximated twice. It is to be noted that, the
estimation accuracy of the SPUKF and the ESPUKF for the
re-entry vehicle problem are different, whereas for the GNSS
based satellite navigation problem the estimation accuracies
for both the methods are similar. It is anticipated that, for
the satellite position estimation problem using the SPUKF
the prediction error due to the second-order terms of the
Taylor series expansion is not significant but the same has
a significant effect on the re-entry vehicle tracking problem.
Table II shows the processing time per time step and the
estimation errors for different algorithms. The computational
efficiency of the suggested two methods can be compared with
the established processing time reduction techniques likethe
SSUT and the MUT. State vector prediction using the SSUT
requires propagation ofn+2 sigma points. In this paper it is
shown that, theoretically only thea posterioristate vector can
be propagated to the current time and all the sigma points can
be approximated. The results in sections V and VI confirm
that the approximation works satisfactorily. In view of the
fact that only one state vector is propagated in each time step
for the SPUKF and the ESPUKF, it can be argued that the
computational efficiency of the aforementioned methods are
significantly higher than the SSUKF. The results of the re-
entry vehicle tracking problem and the GNSS based satellite
navigation problem support the argument. A similar argument
can be applied for the comparison with the MUT. Apart from
better computational efficiency, the SPUKF and the ESPUKF
have another advantage over the MUT. These two methods
can be applied to any non-linear system which is continuous
in R

n but the MUT can be applied only to the systems which
contain linear substructures.

VII. C ONCLUSION

In conclusion, two new methods of implementing un-
scented estimation algorithms are presented to reduce the
computational complexity. Reduction in processing time for
the SPUKF and the ESPUKF with respect to the UKF is
summarised in table III. Both the methods have significantly

TABLE III: Processing time reduction by the new algorithms

Algorithm Processing time Processing time reduction
reduction for re-entry for LEO satellite

vehicle tracking position estimation
SPUKF 90.5% 92.6%

ESPUKF 85.5% 86.8%

less processing time than the original UKF. This reduction
in computation time will make the implementation of the
unscented filter easier in a micro-processor with limited
computational power for stand-alone real-time application.
However, the error characteristics of the two methods are
different for the presented two different example applications.
These two example applications indicate the existence of two
different classes of non-linear estimation problems:

1) Non-linear estimation problems for which the UKF
provides better accuracy than the EKF. The SPUKF can
be used to reduce the computation time and the ESPUKF
is required to achieve an estimation accuracy similar to
the UKF.
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2) Non-linear estimation problems, for which the UKF
and the EKF provide similar accuracy. For this class
of problems, the SPUKF and the ESPUKF reduces the
computation time for the UKF implementation, however
the estimation accuracy is the same for the both algo-
rithms.

From the above observation, it can be hypothesised that there
could be a third, intermediate class of non-linear estimation
problems, for which the UKF performs better than the EKF
and the SPUKF not only reduces the computation time of the
UKF but also provides the estimation accuracy similar to the
UKF. With further research, a rigorous classification of the
non-linear estimation problems can be developed which will
facilitate the choice of the estimation algorithm out of the
available non-linear estimation techniques.
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