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Energy Based Limit Cycle Control

of Elastically Actuated Robots
Gianluca Garofalo and Christian Ott, Member, IEEE

Abstract—A new control law for elastic joint robots that allows
to regulate an energy function of the system to a desired value is
presented in this paper. Being able to either remove energy from
the system or inject into it, oscillations can be both damped out
and induced. The proposed nonlinear dynamic state feedback
controller forces the system to evolve on a submanifold of the
configuration space. The reduced dynamics of the system and of
the controller itself are similar to a single elastic joint, for which
an asymptotically stable limit cycle is obtained regulating an
energy function to a positive desired value. When the desired
value of the energy function is chosen to be zero, then the
asymptotically stable limit cycle reduces to an asymptotically
stable equilibrium point. In this case the oscillations are damped
out and the desired task-space configuration is reached. The
design of the controller extensively uses the concept of conditional
stability, so that the limit cycle can be designed for a lower
dimensional dynamical system, although it will result to be a
limit cycle for the whole system.

Index Terms—Robotics; Stability of NL systems; Limit cycle
control; Nonlinear systems.

I. Introduction

ELASTIC joint robots have been lately the focus of nu-

merous researchers because of the capability to perform

highly dynamical, explosive and cyclic motions. The energy

stored in the elastic elements can be exploited to increase

performances, although the underactuation problem makes

the controller design more challenging. This is why joint

elasticity was originally treated as a disturbance of the rigid-

body dynamics [1], [2]. However, novel drive concepts like

series elastic actuators [3] or variable impedance actuators

[4] deliberately introduce elasticity for implementing torque

control, increasing physical robustness, or reaching high output

velocities.

The focus of our research is to find new and efficient

methods to produce periodic motions that can be used in

general and in particular for locomotion [5]–[7]. As shown

in [8], [9] walking and running can be effectively described as

periodic tasks. In these cases it is more important to stay on

a prescribed orbit in the state space, rather than following an

exact trajectory in time [5], [10]. Therefore, in this paper we

consider the problem of orbital stabilization for elastic joint

robots without considering strong simplifying hypothesis, like

singular perturbation [11]. The method presented here extends
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the results of our previous work [12], in order to be able to

produce a limit cycle for a robot with an arbitrary number of

elastic joints. The result is achieved using a strategy similar to

what we proposed in [6] and which is conceptually sketched

in Fig. 1. The idea consists in forcing the system to reach

a subset of the state space and then producing a limit cycle

by regulating an energy function to a desired value [6]. The

problem of orbital stabilization for rigid joint robots has been

addressed for example in [6], [13]–[17]. In [13], [14] a passive

control action is designed which allows to decouple the motion

along a vector field from the remaining motion. The system

is then forced to follow an integral curve of this vector field

via a passive control law. In case of a closed integral field, the

system thus converges to a closed orbit in the configuration

space. In [15] additionally a non-passive control action is

proposed to achieve regulation of the final velocity along the

vector field. In [16], [17] the concepts of virtual constraint and

feedback linearization are used to obtain a closed loop system

that generates its own periodic stable motion. In [6], as well

as in this extension for the elastic joint case, the problem is

formulated based on the null space decomposition introduced

in [18] and used for nullspace compliance control in [19], [20].

In contrast to [13]–[15], we produce an asymptotically stable

limit cycle in the state space by regulating an energy function

in a submanifold of the state space. Additionally, compared to

[6], [7], here we consider elastically actuated robots instead

of rigidly actuated ones. Therefore, we utilize the physical

potential energy of the compliant actuation instead of a virtual

potential energy introduced by the controller. This suggests

that energy efficient motion can be achieved. Compared to

[16] we take advantage of the passivity property of the system

and do not completely alter the original dynamics of the

system through feedback linearization. Moreover, in [16], [17]

a different underactuated problem is considered, as compared

to this work. There the underactuation is not due to the elastic

joints, but to the lack of one input variable in a rigidly actuated

robot. As a consequence, in [16], [17] the challenge is to

design virtual constraints which render the zero dynamics

stable, while we completely separate the problem of producing

the limit cycle from the virtual constraints. The latter, are only

responsible for the subspace in which the system will oscillate.

Finally, it is worth to notice that the same control law can be

used to regulate the robot to a desired task-space configuration

setting to zero the desired value of the energy function, without

requiring a tracking of a desired nullspace torque [19], [21].

II. Motivating example

In this section we illustrate the main idea behind the control

laws based on the regulation of an energy function.
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Fig. 1: Conceptual illustration of the main idea. The limit cycle

Ld is generated regulating an energy function, after that the

system has been forced to evolve on a submanifold A of the

state space.

Consider a simple mass-spring system with dynamic equa-

tion given by

mq̈ + kq = u , (1)

with mass m > 0, stiffness constant k > 0, state χ = (q, q̇) and

input u. If we choose u = 0, the system has an equilibrium

point in χ∗ = (0, 0). For any initial condition χ0 = (q0, q̇0),

the resulting trajectory will be a closed orbit around χ∗, that

is the level set L0 of the Hamiltonian H(χ) = 1
2

(

mq̇2
+ kq2

)

,

defined as L0 =
{

χ | H(χ) = H(χ0)
}

.

The difference between these closed orbits and limit cycles

is that they are not isolated. If we force the system to always

reach a desired value of the Hamiltonian Hd > 0, then we will

obtain a limit cycle Ld =
{

χ | H(χ) = Hd

}

. This is possible by

choosing u = −KH H̃(χ)q̇, obtaining the closed loop system

mq̈ + KH H̃(χ)q̇ + kq = 0 , (2)

where KH > 0, H̃(χ) = H(χ)−Hd. While in the examined case

the set Ld is an isolated closed1 orbit in the state space (cor-

responding to a limit cycle), for higher dimensional systems

this is not true and therefore ensuring that the Hamiltonian

H(χ)→ Hd is not enough to conclude the existence of a limit

cycle. For this reason, in addition to the regulation of an energy

function, in the following we will force the system to evolve

on a subset of the state space.

In the remainder of the paper, with an abuse of notation,

we will always indicate with χ the state of the system and

with H(χ) the “energy-like” function which we will regulate

to the desired value Hd, in order to obtain the limit cycle Ld,

although their definition is different from the one given in this

section.

III. Preliminaries

A. Model

In what follows we will consider elastically actuated robots

with linear springs in the joints. Assuming to have negligible

1It is the level set of a positive definite and radially unbounded function.

coupling inertias between motor and link side (a typical

assumption which is fulfilled in presence of high gear ratios

[22]), they can be modeled as

M(q)q̈ + C(q, q̇)q̇ + g(q) = K
(

θ − q
)

(3a)

Bθ̈ + K
(

θ − q
)

= τm , (3b)

where θ, q, θ̇, q̇ ∈ Rn constitute together the state of the

system, being θ the motor position and q the link position,

τm ∈ R
n is the input to the system provided by the motors,

M(q) ∈ Rn×n is the symmetric positive definite inertia matrix,

C(q, q̇) ∈ Rn×n is a Coriolis matrix satisfying Ṁ = C + CT ,

g(q) = ∇qUg(q) ∈ Rn is the gravity torque vector2 and Ug(q)

the gravitational potential. Finally, B ∈ Rn×n is the constant,

diagonal, and positive definite matrix of motor inertias, K ∈

Rn×n is a positive definite diagonal matrix which collects the

stiffness constants Ki, i = 1, ..., n of the springs connecting the

motors to the links. The total potential energy of the system

is given by U(θ, q) = Ug(q) + Uk(θ − q), where Uk(θ − q) is

the stiffness potential energy.

In case the robot contains not only rotational joints, we will

always consider a subset Q ⊂ Rn in which all the prismatic

joints are kept bounded. In this case it is well known that the

following proposition holds [23]

Proposition 1. For every matrix norm there exists a value β

such that
∥

∥

∥

∥

∥

∥

∂2Ug(q)

∂q2

∥

∥

∥

∥

∥

∥

< β, ∀q ∈ Q . (4)

In addition, the following assumption is made:

β < min
i

Ki i = 1, ..., n , (5)

which, as explained in [19], states that the robot should be

designed properly, meaning that the joint stiffness should be

sufficiently high to prevent the robot from falling down under

the load of its own weight.

B. Coordinate transformation

We introduce a function x = x(q), x : Rn → Rn−1, with full

rank Jacobian matrix J(q) ∈ R(n−1)×n in order to obtain a 1 -

dimensional submanifold of the link configuration space de-

fined by x(q) = 0 [24], as mentioned in the introduction. This

allows us to write the dynamics of the system with a new set

of coordinates, as in [18], [20]. We first compute a nullspace

base matrix3 Z(q) ∈ R1×n to derive a dynamically consistent4

nullspace projector N(q) =
(

Z(q)M(q)ZT (q)
)−1

Z(q)M(q) ∈

R1×n. The latter will be part of the extended Jacobian matrix

JN(q) ∈ Rn×n, such that
[

ẋ

v

]

= JN(q)q̇ =

[

J(q)

N(q)

]

q̇ , (6)

2With the symbol ∇x(·) we are indicating
(

∂(·)
∂x

)T
in order to ease the

notation.
3I.e. it fulfills the condition J(q)ZT (q) = 0.
4I.e. it fulfills the condition J(q)M−1(q)NT (q) = 0.
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where v is an additional nullspace velocity. One can show that

by this choice the extended Jacobian JN(q) is non singular and

q̇ = J−1
N (q)

[

ẋ

v

]

=

[

J+M (q) ZT (q)
]

[

ẋ

v

]

, (7)

where J+M (q) = M−1(q)JT (q)
(

J(q)M−1(q)JT (q)
)−1

is the

dynamically consistent weighted pseudo inverse.

From (6) and (7) it is straightforward to rewrite (3a) in the

extended velocity coordinates as

Λ(q)

[

ẍ

v̇

]

+ Γ(q, q̇)

[

ẋ

v

]

= J−T
N (q)

[

K
(

θ − q
)

− g(q)
]

, (8)

with the matrices Λ(q) and Γ(q, q̇) given by5

Λ(q) =

[

Λx(q) 0

0 Λn(q)

]

Λx(q) =
(

J(q)M−1(q)JT (q)
)−1

Λn(q) = Z(q)M(q)ZT (q)

and (omitting the dependences)

Γ(q, q̇) =

[

Γx(q, q̇) Γxn(q, q̇)

Γnx(q, q̇) Γn(q, q̇)

]

Γx = Λx

(

J M−1C − J̇
)

J+M Γxn = Λx

(

J M−1C − J̇
)

ZT

Γnx = −Γ
T
xn Γn = Λn

(

NM−1C − Ṅ
)

ZT .

Note that the change of coordinates does not alter the passivity

property of the robot dynamics, i.e. Λ̇ = Γ + ΓT [19], [25],

which will be used in the time differentiation of the Lyapunov

functions introduced later on in the paper.

IV. Elastically actuated robot

In this section we present the main result of the paper. As

in [6], [7], the limit cycle is generated regulating an energy

function and forcing the system to evolve on a submanifold.

Therefore, we will need to define an “energy-like” function,

which in this case will take into account the physical potential

energy stored in the springs. Compared to our previous works,

the controller is itself a nonlinear dynamic system. Loosely

speaking, the additional dynamics of the controller is used to

regulate the energy of the system, while the motor dynamics

is used to satisfy the virtual constraints. The latter is achieved

through the input function τd, introduced later, which has the

meaning of a desired input to the link side equation. For this

reason, it is similar to the control torque designed in [6], [7].

Before presenting the control law, it is necessary to extend

some results to take into account that the system will be forced

to evolve on a submanifold.

A. The functions q̄ and q̄x

The linearity of the springs and (5) imply that a static

mapping between motor and link positions exists, which

provides for any motor position, the link position where the

elastic elements in the joints compensate for the gravity term

[12]. This link position is provided by the function q̄, defined

5Notice that using a dynamically consistent nullspace projector the matrix
Λ(q) is block diagonal.

in [21], where it is shown that q̄ exists, is unique and a

diffeomorphism.

The function q̄ can be generalized to take into account

constraints on the allowed configurations of the robot. This

is exactly what happens when the system is forced to evolve

on a submanifold. To this end, we first provide an alternative

definition of the function q̄:

q̄(θ) = arg min
q

U(θ, q) . (9)

Notice that the necessary condition for optimality of the

minimization problem coincides with the definition of q̄(θ) in

[21]. At this point the constraint is taken into account simply

modifying the problem as

q̄x(θ) = arg min
q

U(θ, q)

s.t. x(q) = 0 .
(10)

The necessary condition for optimality obtained using the

Lagrange multipliers λ is

∇qU(θ, q) + JT (q)λ = 0 , (11)

so that pre-multiplying by the nullspace base matrix Z(q) we

obtain n(q) = 0, where n(q) is defined as

n(q) := Z(q)∇qU(θ, q) = Z(q)
[

g(q) − K
(

θ − q
)]

and can be seen as a local nullspace coordinate [26]. Conclud-

ing, q̄x(θ) is the unique link configuration with coordinates

x(q̄x(θ)) = 0, n(q̄x(θ)) = 0. This suggests that, from a

computational point of view, the optimization problem can

be solved setting up an inverse kinematic problem and finding

q̄x(θ) with a standard closed loop inverse kinematic scheme

[25].

Proposition 2. The function q̄x(θ), in a similar manner to

q̄(θ), satisfies the properties

• U(θ, q) ≥ U(θ, q̄x(θ)) ∀θ, q ∈ Q : x(q) = 0

• U(θ, q) = U(θ, q̄x(θ))⇔ q = q̄x(θ) ∀θ, q ∈ Q : x(q) = 0

• U̇(θ, q̄x(θ)) = θ̇
T

K
(

θ − q̄x(θ)
)

Proof. While the first two properties are a direct consequence

of how the function is defined, for the third the following

must be taken into account. By definition x(q̄x(θ)) = 0 and

therefore J(q̄x(θ)) ˙̄qx(θ) = 0, ∀θ(t) ∈ Rn. Using the chain rule

it is possible to write:

U̇(θ, q̄x(θ)) = θ̇
T
∇θU(θ, q)

∣

∣

∣

(θ,q̄x(θ))
+ ˙̄qT

x (θ)∇qU(θ, q)
∣

∣

∣

(θ,q̄x(θ))
.

The second term can be shown to be always zero since:

˙̄qT
x (θ) JT

N(q̄x(θ))J−T
N (q̄x(θ))∇qU(θ, q)

∣

∣

∣

(θ,q̄x(θ))
=

[

0 ˙̄qT
x (θ) NT (q̄x(θ))

] [

∇T
q U(θ, q)

∣

∣

∣

(θ,q̄x(θ))
J+M (q̄x(θ)) 0

]T
,

where we have used J(q̄x(θ)) ˙̄qx(θ) = 0 and n(q̄x(θ)) = 0. The

proof is concluded considering that only the potential energy

due to the springs depends on θ in the expression of the total

potential U(θ, q). �
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Robot

Controller(η, η̇)

τm

(θ, q, θ̇, q̇)

(3)

(13)

(12a)

τd
(12b)

Fig. 2: Closed loop system.

B. Main result

Given the positive scalars KH , α ∈ R and the symmetric,

positive definite matrices Kτ, Dτ, Kη, Dη ∈ R
n×n and Kx, Dx ∈

R(n−1)×(n−1), the proposed nonlinear dynamic state feedback

controller is

Bη̈ + KH H̃K
(

q̄x(η) − q
)

+ Dηη̇ + Kηη̃ = 0 (12a)

τm = K
(

θ − q
)

− KH H̃K
(

q̄x(η) − q
)

− Dηη̇ − Kηη̃

+ BK−1
(

τ̈d − Dτ
˙̃τ − Kττ̃

) , (12b)

where η, η̇ ∈ Rn is the state, τm ∈ R
n is the controller output

function and τ̃ = K
(

θ − η
)

− τd being τd ∈ R
n the controller

input function. The latter is computed based on the state of

the system and of the controller itself and it is given by

τd = JT
N(q)













J+MT (q)
[

g(q) − K
(

η − q
)]

− Kxx(q)

0













+ JT
N(q)

[

−Dx Γxn(q, q̇) − αẋv

−ΓT
xn(q, q̇) + αvẋT O

] [

ẋ

v

]
, (13)

where η̃ = η − ηd, ηd ∈ R
n is a constant and

H(χ) :=
1

2
q̇T Mq̇ + U(η, q) − U(η, q̄x(η)) . (14)

Interconnecting the system (3) with the controller (12) as

in Fig. 2, we obtain the closed loop system:

M(q)q̈ + C(q, q̇)q̇ + g(q) = K
(

η − q
)

+ τd + τ̃ (15a)

¨̃τ + Dτ
˙̃τ + Kττ̃ = 0 (15b)

Bη̈ + KH H̃K
(

q̄x(η) − q
)

+ Dηη̇ + Kηη̃ = 0 , (15c)

where (12b) has been replaced in (3b). Using the state vector

χ = (q, ẋ, v, τ̃, ˙̃τ, η, η̇), the input function (13) and the coordi-

nate transformation in Section III, the closed loop system can

be rewritten as (omitting the dependences):

q̇ = J+M ẋ + ZT v (16a)

Λx ẍ +
(

Γx + Dx + αv2I
)

ẋ + Kxx = J+MT τ̃ (16b)

Λnv̇ +
(

Γn − αẋT ẋ
)

v + Z g = Z
[

K
(

η − q
)

+ τ̃
]

(16c)

¨̃τ + Dτ
˙̃τ + Kττ̃ = 0 (16d)

Bη̈ + KH H̃K
(

q̄x(η) − q
)

+ Dηη̇ + Kηη̃ = 0 . (16e)

The stability properties of the system are summarized in the

following theorem.

Theorem 1. Given (5), the nonlinear autonomous system (16)

has an asymptotically stable solution consisting of

Ld is a.s.

Ld is a.s.

Ld is a.s.

Step 3

Step 2

Step 1

A3

A2

(16)

(23)

(17)

in
w

ar
d

o
u
tw

ar
d

Fig. 3: Flow of the argumentation used in the proof.

(a) the equilibrium point χ∗ = (q̄x(ηd), 0, 0, 0, 0, ηd, 0) for

Hd = 0

(b) the limit cycle defined by

Ld =

{

χ | H̃(χ) = 0, x(q) = ẋ = 0, η̃ = η̇ = τ̃ = ˙̃τ = 0
}

for Hd > 0.

Proof. The proof is split in three parts, since we will use twice

Theorem 3 reported in the Appendix. We will use a semidefi-

nite Lyapunov function V3(χ) to carry on the stability analysis

of (16). Therefore, we consider the system conditionally to the

largest invariant set within the set where V̇3 = 0, i.e. (23). Once

again, we will use a semidefinite Lyapunov function V2 to

carry on the stability analysis of (23). Therefore, we consider

the system conditionally to the largest invariant set within the

set where V̇2 = 0, i.e. (17). We will start considering the most

inner system and then go outwards till (16) after two steps.

The flow of the argumentation used in the proof is shown in

Fig. 3.

1) Step 1: We first show that the nonlinear autonomous

system

q̇ = ZT v (17a)

Λnv̇ + Γnv + Z g = ZK
(

η − q
)

(17b)

Bη̈ + KH H̃K
(

q̄x(η) − q
)

+ Dηη̇ + Kηη̃ = 0 (17c)

with χ ∈ A2 =

{

χ | τ̃ = ˙̃τ = 0, x(q) = ẋ = 0
}

, will always

reach the set Ld and therefore

• has an asymptotically stable equilibrium point in χ∗ for

Hd = 0

• has an asymptotically stable limit cycle defined by Ld for

Hd > 0.

This is proven showing invariance, stability and finally attrac-

tiveness of Ld.

Invariance: Given the properties of q̄x, H(χ) is an

“energy-like” function for (17). Additionally, computing the

time derivative of H̃ along the flow of (17), results in

˙̃H(χ) = Ḣ(χ) = η̇T
[

K
(

η − q
)

− K
(

η − q̄x(η)
)]

. (18)

Since η̇ = 0 =⇒ ˙̃H = 0, we conclude that Ld is an invariant

set for (17), because, starting from Ld, H̃ will not change.

Stability: The C1 function of the state

V1(χ) =
1

2

(

KH H̃2(χ) + η̇T Bη̇ + η̃T Kηη̃
)

, (19)
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is such that














V1(χ) = 0 ∀χ ∈ Ld

V1(χ) > 0 ∀χ < Ld

and therefore it is a candidate Lyapunov function to prove the

stability of Ld for (17). Computing its derivative along the

flow of the system (17), leads to V̇1(χ) = −η̇T Dηη̇ ≤ 0, which

ensures the stability of Ld for the system (17).

Using LaSalle’s invariance principle we can conclude that

the positive limit set for the solutions of (17) is given by

M1 =
{

χ∗,Ld

}

, because M1 is the largest positive invariant set

within the set E1 =
{

χ | η̇ = 0
}

, i.e. the set where V̇1(χ) = 0.

This will be shown in two subsequent steps, starting from the

condition η̇ = 0.

Invariant set: First we show that η̇ = 0 ⇒ η̃ = 0. From

η̇ = 0 we can directly conclude that η = η0 and, because

of (18), also H(χ) = H0, where η0 and H0 are constants.

Moreover, from (17c) we get

−KH

(

H0 − Hd

)

K
(

q̄x(η0) − q
)

− Kη

(

η0 − ηd

)

= 0 , (20)

from which two cases are possible















H0 = Hd

H0 , Hd .

While from the first we can directly conclude η0 = ηd, in the

second case we conclude that q = q0, where q0 is constant,

since all the quantities in (20) are constants. This implies that

v = 0 and therefore from (17b) we get

Z(q0)
[

g(q0) − K
(

η0 − q0

)]

= 0 .

In addition, we know that x(q0) = 0, or in other words q0 =

q̄x(η0) and therefore from (20) also in this case η0 = ηd.

Now we finally prove that η̇ = η̃ = 0 ⇒ M1 =
{

χ∗,Ld

}

. In

addition to the previous conditions we have η = ηd, therefore

from (17c) it follows that

−KH

(

H0 − Hd

)

K
(

q̄x(ηd) − q
)

= 0 . (21)

If H0 = Hd we get Ld by definition, while in case H0 , Hd

then q = q̄x(ηd) and consequently ẋ = 0, v = 0 or in other

words χ = χ∗.

Asymptotic stability: Since Ld is stable and attractive, we

conclude that Ld is asymptotically stable. Additionally, since

H(χ) = 0⇐⇒ q = q̄x(η), v = 0 (22)

∀χ ∈ A2, it can be easily verified that Ld coincides with

χ∗ when Hd = 0, which becomes the only positive limit set

and therefore result (a) is obtained. On the other hand, when

Hd > 0, the set Ld is uniquely determined by one parameter,

e.g. the value of n(q), and therefore it is a closed6 orbit in the

state space, i.e. a limit cycle, proving result (b).

Given this result, in the reminder of the proof we will simply

refer to the stability property of the set Ld, with the conditions

(a) and (b) arising naturally depending on the value of Hd.

6It is the level set of a positive definite and radially unbounded function.

2) Step 2: Given the nonlinear autonomous system

q̇ = J+M ẋ + ZT v (23a)

Λx ẍ +
(

Γx + Dx + αv2I
)

ẋ + Kxx = 0 (23b)

Λnv̇ +
(

Γn − αẋT ẋ
)

v + Z g = ZK
(

η − q
)

(23c)

Bη̈ + KH H̃K
(

q̄x(η) − q
)

+ Dηη̇ + Kηη̃ = 0 , (23d)

with χ ∈ A3 =

{

χ | τ̃ = ˙̃τ = 0
}

, let us consider the C1 function

of the state

V2(χ) =
1

2

(

ẋT
Λx(q)ẋ + xT (q)Kxx(q)

)

, (24)

such that














V2(χ) = 0 ∀χ ∈ A2

V2(χ) > 0 ∀χ < A2 .

Since Ld ⊂ A2, V2(χ) is a candidate semidefinite Lyapunov

function to prove the stability of Ld for (23). Computing its

derivative along the flow of the system, leads to V̇2(χ) =

−ẋT
(

Dx + αv2I
)

ẋ ≤ 0. The set A2 is the largest positively

invariant set within E2 =
{

χ | ẋ = 0
}

, i.e. the set where

V̇2(χ) = 0. In fact, if x(q) , 0 then we leave E2 as it can

be seen from (23b). Finally, since Ld is asymptotically stable

conditionally to A2 (which is exactly what we have proven

in Paragraph IV-B1), then by Theorem 3 Ld is asymptotically

stable for (23).

3) Step 3: Let us consider for the system (16) the C1

function of the state

V3(χ) =
1

2

(

˙̃τT ˙̃τ + τ̃T Kττ̃
)

, (25)

such that














V3(χ) = 0 ∀χ ∈ A3

V3(χ) > 0 ∀χ < A3 .

Since Ld ⊂ A3, V3(χ) is a candidate semidefinite Lyapunov

function to prove the stability of Ld for (16). Computing its

derivative along the flow of the system, leads to V̇3(χ) =

− ˙̃τT Dτ
˙̃τ ≤ 0. The set A3 is the largest positively invariant

set within E3 =

{

χ | ˙̃τ = 0
}

, i.e. the set where V̇3(χ) = 0. In

fact, if τ̃ , 0 then we leave E3 as it can be seen from (16d).

Finally, since Ld is asymptotically stable conditionally to A3

(which is exactly what we have proven in Paragraph IV-B2),

then by Theorem 3 Ld is asymptotically stable for (16). �

C. Controller discussion

It is possible to recognize different contributions in τd: the

torque responsible for forcing the system to evolve on the

constraint submanifold, the one compensating for the coupling

terms in the Coriolis matrix and the one shifting energy from

the constraint space to the nullspace (i.e. the terms depend-

ing on α). Only the part of the gravitational torque which

causes the system to go off the submanifold are compensated

compared to [6], [7], since the gravitational potential energy

itself is used to produce the oscillation. Additionally, the limit

cycle is produced involving directly the springs in the joints.

The torque that they produce is split in the one necessary to

keep the system to evolve on the submanifold and the one that
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Fig. 4: Starting configuration of the robot ed equilibrium

configuration (lighter color).

can be used to produce the limit cycle. This is achieved via

the control state, which by mimicking the motor dynamics, is

acting as a rest length adjustment.

The output function (12b) of the controller requires up to the

second derivative of the input function τd. Since the latter is

a function of q, q̇ and η, in addition to the state, it is required

the knowledge of the link acceleration q̈, the jerk q(3) and

η̈. While the signal η̈ is easily computed, i.e. through (16e),

since the model of the controller can be reasonably assumed

to be known, the same is not true for the link acceleration

and jerk. One can compute these signals based on the model

equations or alternatively, directly through acceleration sensors

and appropriate filtering techniques. From an implementation

prospective, this is a weak point, which is although shared by

all the control laws that use the motors to make the torque

produced by the springs track a desired one (i.e. using the

rigid case as an intermediate design step [19, Chapter 6]). In

our approach, this aspect is less problematic since the torque

τd that needs to be tracked is responsible only to guarantee

the convergence to the invariant set of the state space and not

for the regulation of the energy, as it will be clear with the

results shown in Section V.

Although the proposed controller is model based, an anal-

ysis in case of uncertainties is beyond the scope of this

work. Nevertheless, preliminary results on adaptive friction

compensation can be found in [7].

V. Simulations

In this section we report some simulation results, to validate

the proposed control approach. The simulation implements the

model in (3) and uses the algorithm and formulas from [27]

both to compute the control law and for the forward dynamics.

No additional control input constraints are included.

As case study we will consider a 3 - link robotic arm, with

each link having the properties reported in Table I. The robot

starts from the configuration shown in Fig 4.

TABLE I: Properties of one of the three modules of the robot.

Link Spring Motor

Length Mass Inertia Stiffness Inertia

0.4 m 5 kg 0.2 kgm2 200 Nm/rad 0.6325 kgm2

The function x(q) is chosen as

x1(q) = z(q) − 0.8

x2(q) = ψ(q) ,

t [s]

x̃ 2
[r

ad
]

x̃ 1
[m

]

0 1 2 3 4 5 6 7 8 9 10
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Fig. 5: Convergence to zero of the two components of the

constraint function x(q).
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Fig. 6: Energy function (14) (solid line) and desired value

(dashed line).

where z(q) is the vertical position and ψ(q) the orientation

of the end - effector which, given the definition of x(q), is

required to stay at a height of 0.8 m from the floor and to

keep the orientation parallel to it. The convergence of x(q) to

zero is shown in Fig. 5.

The desired value of the energy is switched from Hd = 1 J to

zero in order to show how the oscillation can be produced and

then damped out. Given the definition of x(q), the resulting

motion will be an horizontal oscillation when Hd > 0 while the

robot will stop at the equilibrium when Hd = 0. The evolution

of the energy function is shown in Fig. 6. As it can be seen,

the energy is effectively regulated to the desired value, whose

sudden variation has no influence on x(q).

In order to highlight the role of α appearing in τd, in

Fig. 7 and Fig. 8 we show the total kinetic energy and its two

contributions (i.e. the kinetic energy in the constraint space

and nullspace) for α = 0 and α = 30 respectively. As it can be

noticed, in the second case the kinetic energy in the constraint

space converges more rapidly to zero, while the one in the

nullspace increases faster.

Table II collects the values of all the gains used in the

simulation.

TABLE II: Gains used in the simulation. When only the i - th

entry is shown, then the others have the same value.

Kx1
Dx1

Kx2
Dx2

400 N/m 36 N/ms 400 Nm/rad 36 Nms/rad

Kτi
Dτi

Kηi
Dηi

KH

1600 1/s2 64 1/s 100 Nm/rad 16 Nms/rad 0.3 s2/kgm2

Before concluding the section, the control law proposed in

Section IV is compared to a cascaded design [19, Chapter

6], in which the desired torque is chosen as in [6], with a
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Fig. 7: Total kinetic energy (black line) and its two compo-

nents, i.e. kinetic energy in the constraint space (dark-grey

line) an in the nullspace (light-grey line), in case α = 0.
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Fig. 8: Total kinetic energy (black line) and its two compo-

nents, i.e. kinetic energy in the constraint space (dark-grey

line) an in the nullspace (light-grey line), in case α = 30.

virtual potential given by U(ηd, q) − U(ηd, q̄x(ηd)). In this

case similar performances can be achieved at the price of

using considerably larger gains Kτ and Dτ. Obviously, this

can compromise the implementation on a real system. The

results shown in Fig. 9 can be interpreted as follows: in the

control law proposed in Section IV, it is not necessary to

track a desired torque to generate the limit cycle, but only

to force the system to evolve on a submanifold. The latter

is not varying as rapidly as the one necessary to produce the

limit cycle, therefore smaller gains are sufficient. Additionally,

the tracking of the desired torque in the cascaded design has

a more direct effect on the regulation of the energy, since an

imperfect tracking will directly result in the incapability for

the system to reach the desired value of the energy.

t [s]

[J
]

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Fig. 9: Energy function in [6] for Kτi
= 104 1/s2,Dτi

= 160 1/s

(light-grey line), Kτi
= 108 1/s2,Dτi

= 163 1/s (dark-grey line)

and desired value (black line).

VI. Conclusion

In this paper we have presented a new control law for

elastic joint robots capable of utilizing the energy stored by

the springs in order to produce efficiently an asymptotically

stable limit cycle for the closed loop system. At the same time,

by simply setting the desired value of the energy to zero, the

same control law can be used to regulate the robot to a desired

configuration. Since elastic joint robots are underactuated

mechanical systems, there are not enough control inputs to

easily force the system to evolve on the submanifold and

regulate at the same time the energy to the desired value.

Loosely speaking, the issue is solved by introducing additional

dynamics through the controller. As a result, at the end

of our design process we obtain a nonlinear dynamic state

feedback controller. Finally, for the stability analysis, we make

extensively use of the semidefinite Lyapunov theory in order to

reduce the system in subsystems, which are easier to analyze.

As part of the future work, we plan to apply the proposed

control approach on a compliant bipedal robot, with linear

springs in each joint, which is currently under development.

The control law proposed in this paper can be used as a

periodic motion generator, which needs to be combined with

balancing and foot placement strategies to achieve hopping

and running.

Appendix

The results presented here are based on [6], [28], [29].

Given χ ∈ X ⊂ Rm and a Lipschitz continuous function

f : X → Rm, the system

χ̇ = f (χ) , (26)

has a unique solution starting at χ0 and evaluated at the time

instant t that we denote with χ(t;χ0). Additionally, given an

invariant set Ω for (26), we define:

a) (Distance): d
(

χ,Ω
)

, miny∈Ω

∥

∥

∥χ − y
∥

∥

∥

b) (Open ball): Bǫ (Ω) ,
{

χ ∈ X | d
(

χ,Ω
)

< ǫ
}

c) (Sphere): S ǫ (Ω) ,
{

χ ∈ X | d
(

χ,Ω
)

= ǫ
}

Theorem 2 (Stability). Let Ω be a bounded, invariant set for

(26), and let V(χ) be a C1 function such that V(χ) ≥ 0, V(Ω) =

0 and V̇(χ) ≤ 0. If Ω is asymptotically stable conditionally to

A =
{

χ | V(χ) = 0
}

, then Ω is stable.

Proof. Suppose by contradiction that Ω is unstable. Then exist

an ǫ such that ν > ǫ > 0, a sequence
(

χ0n

)

n∈N ⊂ Bǫ(Ω),

limn→∞ d(χ0n,Ω) = 0, and a sequence (tn)n∈N ⊂ R
+ in such a

way that














d(χ(t;χ0n),Ω) < ǫ 0 ≤ t < tn

d(χ(tn;χ0n),Ω) = ǫ ∀n ∈ N
(27)

Since S ǫ(Ω) is compact, we can extract a convergent subse-

quence y′n from yn = χ(tn;χ0n) such that y′n → y ∈ S ǫ(Ω) as

n → ∞. Moreover because of the continuity of the solutions

of (26) and the invariance of Ω, tn → ∞ as n→ ∞.

Now we show that V(χ(−t; y)) = 0. Let τ < 0 and N ∈ N be

such that 0 < tn + τ < tn, ∀n ≥ N. Because V is not increasing

along the solutions of (26), we have that

0 ≤ V(χ(tn + τ;χ0n)) ≤ V(χ0n) . (28)
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From limn→∞ d(χ0n,Ω) = 0, V(Ω) = 0 and the continuity of

V , it follows

V(χ(τ; y)) = lim
n→∞

V(χ(τ;χ(tn;χ0n)))

= lim
n→∞

V(χ(tn + τ;χ0n)) = 0 .
(29)

It remains to prove that χ(−t; y) ∈ A and d(y,Ω) = ǫ cannot

hold if Ω is asymptotically stable conditionally to A. Since

Ω is asymptotically stable conditionally to A, ∃ T = T (ǫ) >

0 | d(χ(T ;χ0),Ω) ≤ ǫ
2
, with χ0 ∈ A. If we choose χ0 =

χ(−T ; y) ∈ A, then

ǫ

2
≥ d(χ(T ;χ0),Ω) = d(χ(0; y),Ω) = d(y,Ω) = ǫ .

Since this is a contradiction, we conclude that Ω must be

stable. �

Lemma 1. Let V be a nonnegative function with V̇(χ) ≤ 0,

then A =
{

χ | V(χ) = 0
}

is a positively invariant set and A ⊂

E =
{

χ | V̇(χ) = 0
}

.

Theorem 3. Let Ω be a bounded, invariant set for (26), and

let V(χ) be a C1 function such that V(χ) ≥ 0, V(Ω) = 0 and

V̇(χ) ≤ 0. If Ω is asymptotically stable conditionally to the

largest positively invariant set M within E =
{

χ | V̇(χ) = 0
}

,

then Ω is asymptotically stable.

Proof. In order to prove asymptotic stability we have to show

stability and attractiveness.

From Lemma 1 it follows that A is a positively invariant

set and A ⊂ E, so since Ω is conditionally stable to M and

V(Ω) = 0 i.e. Ω ⊂ A, then it must be conditionally stable to

A, hence by Theorem 2 Ω is stable.

We will prove the attractiveness by contradiction. Since Ω

is stable then ∀ǫ > 0 ∃ δ = δ(ǫ) > 0 such that ∀χ0 ∈ Bδ(Ω)⇒

χ(t;χ0) ∈ Bǫ(Ω), ∀t ≥ 0. Let Ł+ be the positive limit set of the

bounded solution χ(t;χ0). Then Ł+ is a positively invariant set

and Ł+ ∈ Bǫ(Ω)∩M [30]. Now let us assume by contradiction

that Ł+ is not Ω. Since Ω is asymptotically stable conditionally

to M, then limt→∞ d(χ(t;χ0),Ω) = 0 if χ0 ∈ Bǫ(Ω) ∩ M.

Choosing χ0 = y ∈ Ł+ , Ω we reach a contradiction. �
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