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Robust Kalman Filtering under Model

Perturbations

Mattia Zorzi

Abstract

We consider a family of divergence-based minimax approaches to perform robust filtering. The

mismodeling budget, or tolerance, is specified at each time increment of the model. More precisely, all

possible model increments belong to a ball which is formed by placing a bound on the Tau-divergence

family between the actual and the nominal model increment. Then, the robust filter is obtained by

minimizing the mean square error according to the least favorable model in that ball. It turns out that

the solution is a family of Kalman like filters. Their gain matrix is updated according to a risk sensitive

like iteration where the risk sensitivity parameter is now time varying. As a consequence, we also extend

the risk sensitive filter to a family of risk sensitive like filters according to the Tau-divergence family.

Index Terms

Robust Kalman filtering, Tau-divergence family, minimax problem, risk sensitive filtering.

I. INTRODUCTION

Kalman filter is ubiquitous in many applications. The main reason is due by its iterative

structure, allowing its implementation very simple. On the other hand, this filter is designed

with respect to a linear state space model. The latter is often inadequate to describe phenomena,

accordingly the resulting Kalman filter does not perform well in the practice. Since the beginning,

therefore, it was clear the importance to develop robust versions of the standard Kalman filter.

Robust filtering can be performed according to the risk sensitive approach, [14], [13], [1],

[7], [12], [10]. Here, the robust estimator is designed according to the nominal model but in
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such a way to avoid large errors. The sensitivity to large errors is tuned by the so called risk

sensitivity parameter. It is worth noting this approach has been interpreted as a minimax problem

[2], [15], [4], [5], [6]. The appealing aspect of the risk sensitive approach is that the solution is

a Kaman like filter. On the other hand, the risk sensitive parameter is not explicitly connected

to the discrepancy between the actual and the nominal model. Recently, a divergence-based

minimax approach has been proposed in [8], [9], [20]. More precisely, in [8] the robust static

estimation problem of a signal given noisy observations has been considered. Here, all possible

models belong to a ball which is formed by placing a bound on the Kullback-Leibler divergence

between the actual and the nominal model. This bound, say tolerance, represents the mismodeling

budged. Then, the robust filter is obtained by minimizing the mean square error according to

the least favorable model in this ball. It turns out that the Bayes estimator is robust under

model uncertainty characterized by this ball. In [9], a dynamic extension to this problem (i.e.

a robust filtering problem) has been considered. More precisely, drawing inspiration from [3],

[11], the mismodeling budged is specified to each time increment of the model, that is the model

uncertainty is expressed in an incremental way. Roughly speaking, the idea is to iterate the Bayes

estimator with the least favorable statistics found in [8]. It turns out the robust estimator has a

Kalman like structure. More precisely, it is a risk sensitivity like filter, where the risk sensitivity

parameter is now time varying.

In [19], the robust static estimation problem proposed in [8] has been extended, in the Gaussian

case, to a family of uncertainty classes. The latter is formed by placing a bound on a set of

divergences (called τ -divergence family, [17]) between the actual and the nominal model. This

particular divergence family is chosen because, in contrast to the alpha and the beta family [18],

[16], [21], it allows to characterize uncertainty balls for which the Bayes estimator is still robust.

The contribution of this paper is to extend the robust Kalman filter in [9] to a family of robust

Kalman filters parametrized by the τ -divergence family using the results in [19]. This family

of filters is characterized by a time varying risk sensitive parameter. Therefore, by adopting the

perspective given in [2], we also extend the risk sensitive filter to a family of risk sensitive like

filters parametrized by the τ -divergence family, say τ -risk sensitive filters. Finally, we present a

simulation study which shows that parameter τ tunes how conservative the robust filter is.

In the paper we will use the following notation. ‖x‖ denotes the Euclidean norm of x ∈ Rn.

‖x‖A denotes the weighted Euclidean norm with A symmetric and positive definite.
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II. ROBUST STATIC ESTIMATION

We review the robust static estimation problem under model uncertainty characterized by the

τ -divergence family introduced in [19]. Let x ∈ Rn and y ∈ Rp be two jointly Gaussian random

vectors. Let z :=
[
xT yT

]T . Its joint nominal probability density f is

f(z) =
1√

(2π)p+n detKz

exp

(
−1

2
(z −mz)

TK−1
z (z −mz)

)
where the mean vector mz ∈ Rn+p and the covariance matrix Kz ∈ Qn+p

+ are known. We

conformably partition the mean vector and the covariance matrix of z according to x and y:

mz =

 mx

my

 , Kz =

 Kx Kxy

Kyx Ky

 .
Let f̃ denote the actual joint probability density of z

f̃(z) =
1√

(2π)p+n det K̃z

exp

(
−1

2
(z −mz)

T K̃−1
z (z −mz)

)

where the mean vector m̃z ∈ Rn+p and the covariance matrix K̃z ∈ Qn+p
+ are unknown. Since

both f and f̃ are Gaussian, the deviation between f and f̃ may be directly measured by the

deviation between (mz, Kz) and (m̃z, K̃z) through the τ -divergence, [19]:

Dτ (f̃‖f) =

‖∆mz‖2
K−1
Z

+ tr
(
− log(K̃zK

−1
z )

+K̃zK
−1
z − In+p

)
, τ = 0

‖∆mz‖2
1

1−τK
−1
Z

+ tr
(
− 1
τ(1−τ)

(L−1
z K̃zL

−T
z )τ

+ 1
1−τ K̃zK

−1
z + 1

τ
In+p

)
, 0 < τ < 1

δ∞(∆mz) + tr
(
L−1
z K̃zL

−T
z log(L−1

z K̃zL
−T
z )

−K̃zK
−1
z + In+p

)
, τ = 1

(1)

where Lz is such that Kz = LzL
T
z , ∆mz = m̃z −mz, and

δ∞(v) :=

 0 if v = 0

∞ otherwise.

Note that, Dτ (f̃‖f) ≥ 0 and equality holds if and only if f̃ = f . This divergence takes root in

the prediction theory. Let eN = L−1
z (z−mz) with z ∼ f̃ . eN can be understood as a normalized
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prediction error, where mz represents the minimum variance prediction of z based on f . If

f̃ = f , then eN has zero mean and covariance matrix I . Hence, this divergence measures the

discrepancy between eN and the Gaussian random vector with zero mean and covariance I . We

consider the closed ball centered on f :

Bτ := {f s.t. Dτ (f̃‖f) ≤ c} (2)

where c ∈ R+ is a fixed tolerance. Accordingly, Bτ represents the set of all possible probability

densities of z consistent with the allowed mismodelling budget.

The robust estimator of x given y is designed according to the minimax point of view [8], [6].

More precisely, whenever we seek to design an estimator minimizing a suitable loss function,

an hostile player, say “nature”, conspires to select the worst possible probability density in Bτ .

Let g(y) denote an estimator of x based on the observation vector y. The optimal robust filter

is solution to the following minimax problem

min
g∈G

max
f̃∈Bτ

J(f̃ , g) (3)

where

J(f̃ , g) = Ef̃ [‖x− g(y)‖2] =

∫
Rn+p
‖x− g(y)‖2f̃(z)dz

denotes the mean square error and G denotes the set of all estimators g(y) such that Ef̃ [‖g(y)‖2]

is finite for any f̃ ∈ Bτ .

Theorem 2.1: Let 0 ≤ τ ≤ 1. The least favorable probability density f̃ ◦ has mean vector

m̃◦z = mz and covariance matrix with the following structure

K̃◦z =

 K̃x Kxy

Kyx Ky

 (4)

wherein only the covariance of x is perturbed with respect to the nominal covariance matrix.

Let

P = Kx −KxyK
−1
y Kyx

V = K̃x −KxyK
−1
y Kyx (5)

denote the nominal and the perturbed a posteriori covariance matrix of x given y. Then,

V =

 LP
(
In − θ(1− τ)LTPLP

) 1
τ−1 LTP , 0 ≤ τ < 1

LP exp
(
θLTPLP

)
LTP , τ = 1

(6)
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where LP is such that P = LPL
T
P . Here θ−1, with θ−1 > (1 − τ)‖P‖, is the unique Lagrange

multiplier satisfying the relation c = γτ (P, θ) where

γτ (P, θ) =
− log det(In − θP )−1 + tr((In − θP )−1 − In), τ = 0

tr(− 1
τ(1−τ)

(In − θ(1− τ)LTPLP )
τ
τ−1

+ 1
1−τ (In − θ(1− τ)LTPLP )

1
τ−1 + 1

τ
In), 0 < τ < 1

tr(exp(θLTPLP )(θLTPLP − In) + In), τ = 1

(7)

The optimal robust estimator is the Bayes estimator

g◦(y) = G◦(y −my) +mx (8)

with G◦ = KxyK
−1
y .

Theorem 2.1 shows that the Bayes estimator is robust with respect to the uncertainty class,

parametrized by τ , in (2). Clearly, this optimality holds in the Gaussian case. Without this

assumption, the least favorable probability density could be more different than the one in

Theorem 2.1.

Corollary 2.1: Let θ > 0 be a priori fixed and such that θ−1 > (1 − τ)‖P‖. Consider the

minimax problem

min
g∈G

max
f̃∈Bτ

Ef̃ [‖x− g(y)‖2]− θ−1Dτ (f̃‖f)

where Bτ = {f̃ s.t. Dτ (f̃‖f) < ∞} and G is the set of all estimators such that Ef̃ [‖g(y)‖2] is

finite for any f̃ ∈ Bτ . Then, the least favorable probability density f̃ ◦t has mean vector m̃◦z = mz

and covariance matrix K̃◦z as in (4). The perturbed a posteriori covariance matrix V of x given

y is in (5). Moreover, its relation with P is given by (6) where θ now has been a priori chosen.

The optimal estimator is the Bayes estimator (8).

III. ROBUST FILTERING PROBLEM

We consider a nominal Gauss-Markov state space model of the form

xt+1 = Atxt +Btvt

yt = Ctxt +Dtvt (9)
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where xt ∈ Rn is the state process, yt ∈ Rp is the observation process, and vt ∈ Rm is WGN

with unit variance, i.e. E[vtv
T
s ] = Imδt−s where δt denotes the Kronecker delta function. We

assume that the noise vt is independent of the initial state, whose nominal distribution is given

by f0(x0) ∼ N (x̂0, V0). Let zt =
[
xTt+1 y

T
t

]T
. Model (9) is characterized by the nominal

transition probability density of zt given xt:

φt(zt|xt) ∼ N

 At

Ct

xt,
 Bt

Dt

[ BT
t DT

t

] . (10)

As noticed in [9], when entropy-like indexes are used to measure the proximity of statistical

models, all the relations between dynamic variables or observations should be uncertain, other-

wise those indexes take infinite value. To avoid such a situation, we assume that the noise vt

affects all the components of the dynamics and observations in (9), possibly with a very small

variance for relations which are viewed as almost certain. Therefore, the covariance matrix

Kzt|xt =

 Bt

Dt

[ BT
t DT

t

]
is positive definite. Moreover, the matrix Γt =

[
BT
t D

T
t

]T has full column rank, and without

loss of generality we can assume Γt is square and invertible, so that m = n+ p. Otherwise, we

can compress the column space of Γt and remove noise components which do not affect model

(9).

We adopt the minimax approach proposed [9, Section III] to characterize the robust filter. Let

φ̃s(zt|xt) be the least favorable transition probability density of zt given xt. Let f̃t(xt|Yt−1) be the

a priori probability density of xt conditioned on the observations Yt−1 = {ys, 0 ≤ s ≤ t− 1}

and based on the least favorable model. We introduce the marginal probability densities

f̄t(zt|Yt−1) =

∫
φt(zt|xt)f̃t(xt|Yt−1)dxt (11)

f̃t(zt|Yt−1) =

∫
φ̃t(zt|xt)f̃t(xt|Yt−1)dxt. (12)

Note that, f̄t(zt|Yt−1) can be viewed as the pseudo-nominal density of zt conditioned on Yt−1

computed from the conditional least favorable density f̃t(xt|Yt−1) and the nominal transition

probability density φt(xt|zt). As in [9], we assume that

f̃t(xt|Yt−1) ∼ N (x̂t, Vt). (13)

October 11, 2016 DRAFT



DRAFT 7

In this way the conditional probability density f̄t(zt|Yt−1) is Gaussian. We make the additional

assumption that φ̃(zt|xt) is such that f̃t(zt|Yt−1) is Gaussian. In [9], the latter assumption was

not made. However, it is worth noting that the least favorable solution found is such that (12)

is Gaussian, see Remark 3.2. Therefore, we can measure the deviance between φ̃t and φt as

deviance between f̃t(zt|Yt−1) and f̄t(zt|Yt−1) using the τ -divergence (1). Then, we assume that

φ̃t belongs to the closed ball about φt: Bt,τ = {φ̃t(zt|xt) s.t. Dτ (f̃t‖f̄t) ≤ ct} where ct ∈ R+

is the tolerance specified at each time step. Let Gt denote the class of estimators with finite

second-order moments with respect all densities φ̃t(zt|xt)f̃t(xt|Yt−1) such that φ̃t(zt|xt) ∈ Bt,τ .

The the robust filter is characterized by the following minimax problem

(g◦t , φ̃
◦
t ) = arg min

gt∈Gt
max
φ̃t∈Bt,τ

Jt(φ̃t, gt) (14)

where

Jt(φ̃t, gt) = Ef̃t [‖xt+1 − gt(yt)‖2|Yt−1]

=

∫ ∫
‖xt+1 − gt(yt)‖2φ̃t(zt|xt)f̃t(xt|Yt−1)dxtdzt

denotes the mean square error of the estimator x̂t+1 = g◦t (yt) of xt+1 evaluated with respect to

the transition density φ̃t in Bt,τ . It is worth noting that x̂t+1 depends on Yt, and not only on yt,

but this dependency is suppressed to simplify the notations.

Remark 3.1: In the minimax problem (14) we require that f̃t(zt|Yt−1) defined in (12) is a

conditional probability density, that is∫ ∫
φ̃t(zt|xt)f̃t(xt|Yt−1)dztdxt = 1, (15)

but we do not require that φ̃t(zt|xt) is a transition probability density for each xt. Therefore,

the a priori conditional probability density f̃t(xt|Yt−1) is not required to coincide with the a

posteriori one computed from φ̃t(zt|xt)f̃t(xt|Yt−1).

Remark 3.2: In [9], φ̃t(zt|xt) is not required to be such that (12) is Gaussian. The constraint

on φ̃t(zt|xt) is that DKL(f̃t‖f̄t) ≤ ct where DKL is the Kullback-Leibler divergence among

probability densities. On the other hand, the solution φ̃◦t (zt|xt) to the corresponding minimax

problem is such that (12) is Gaussian, see [9, Formula (16)]. Hence, the corresponding f̃ ◦t (zt|Yt−1)

is Gaussian. Note that, DKL(f̃t‖f̄t) = D0(f̃t‖f̄t) when f̃t, f̄t are Gaussian. We conclude that,

for τ = 0, the solution to (14) coincides with the one in [9].
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IV. ROBUST KALMAN FILTERS

We show that the optimal robust estimator solution to the minimax problem (14) is a Kalman

like filter parametrized by τ . In this way, we obtain a parametric family of robust Kalman filters.

First, Problem (14) can be reformulated as the static minimax problem (3). Consider the ball

B̄t,τ = {f̃t(zt|Yt−1) s.t. Dτ (f̃t‖f̄t) ≤ ct} which is the set of all probability densities having

structure (12) with φ̃t ∈ Bt,τ . The equivalent minimax problem is

(f̃ ◦t , g
◦
t ) = arg min

gt∈Gt
max
f̃t∈B̄t,τ

J̄t(f̃t, gt)

where

J̄t(f̃t, gt) =

∫
‖xt+1 − gt(yt)‖2f̃t(zt|Yt−1)dzt.

In view of (10) and (13), the pseudo-nominal density is Gaussian

f̄t(zt|Yt−1) ∼ N

 At

Ct

 x̂t, Kzt

 (16)

where the conditional covariance matrix Kzt is given by

Kzt =

 Kxt+1 Kxt+1,yt

Kyt,xt+1 Kyt


=

 At

Ct

Vt [ ATt CT
t

]
+

 Bt

Dt

[ BT
t DT

t

]
. (17)

Applying Theorem 2.1 with f 7→ f̄t, f̃ 7→ f̃t and g 7→ gt, the least favorable conditional

density f̃ ◦t (zt|Yt−1) is such that

f̃ ◦t (zt|Yt−1) ∼ N

 At

Ct

 x̂t, K̃◦zt
 (18)

where the least favorable conditional covariance matrix is

K̃◦zt =

 K̃xt+1 Kxx+1yt

Kytxt+1 Kyt

 .
Let

Pt+1 = Kxt+1 −Kxt+1,ytK
−1
yt Kyt,xt+1

Vt+1 = K̃xt+1 −Kxt+1,ytK
−1
yt Kyt,xt+1

October 11, 2016 DRAFT
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denote the nominal and the least favorable conditional covariance of xx+1 given Yt. Then,

Vt+1 = LPt+1

(
In − θt(1− τ)LTPt+1

LPt+1

) 1
τ−1 LTPt+1

, 0 < τ < 1

LPt+1 exp
(
θtL

T
Pt+1

LPt+1

)
LTPt+1

, τ = 1

where LPt+1 is such that Pt+1 = LPt+1L
T
Pt+1

and θ−1
t > (1− τ)‖Pt+1‖ is the unique solution to

ct = γτ (Pt+1, θt) where γτ has been defined in (7). The optimal robust estimator takes the form,

x̂t+1 = g◦t (yt) = Atx̂t +Gt(yt − Ctx̂t) (19)

with gain matrix Gt = Kxt+1,ytK
−1
yt . From (17), we obtain

Gt = (AtVtC
T
t +BtD

T
t )(CtVtC

T
t +DtD

T
t )−1

Pt+1 = AtVtA
T
t −Gt(CtVtC

T
t +DtD

T
t )GT

t +BtB
T
t . (20)

Algorithm 1 shows the iterative scheme of the optimal robust estimator we found for the

case 0 ≤ τ < 1. The algorithm for the limit case τ = 1 is the same with the exception that the

updating of Vt+1 is different. It is clear that the robust filter has the same iterative structure of the

Kalman filter with the exception that Pt is applied a distortion through matrix Vt. In particular,

Gt is governed by a Riccati-like equation.

Algorithm 1: Robust Kalman filter at time t
Input : ct, x̂t, Vt, yt

Output: x̂t+1, Vt+1

1 Gt = (AtVtCt +BtD
T
t )T (CtVtC

T
t +DtD

T
t )−1

2 x̂t+1 = Atx̂t +Gt(yt − Ctx̂t)

3 Pt+1 = AtVtA
T
t −Gt(CtVtC

T
t +DtD

T
t )GT

t +BtB
T
t

4 Find θt such that ct = γτ (Pt+1, θt)

5 Compute Vt+1 = LPt+1

(
In − θt(1− τ)LTPt+1

LPt+1

) 1
τ−1 LTPt+1

It remains to characterize the least favorable transition density φ̃◦t (zt|xt). It is not difficult to

October 11, 2016 DRAFT
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prove that, [19, Theorem 2.1],

K−1
zt =

 In 0

−GT
t Ip

 P−1
t+1 0

0 K−1
yt

 In −Gt

0 Ip


(K̃◦zt)

−1 =

 In 0

−GT
t Ip

 V −1
t+1 0

0 K−1
yt

 In −Gt

0 Ip

 .
Accordingly

K−1
zt − (K̃◦zt)

−1 =

 In

−GT
t

Φt

[
In −Gt

]
where Φt = P−1

t+1− V −1
t+1 which is positive definite. Let et = xt− x̂t denote the estimation error.

Define

m̂zt = Eft [zt|Yt−1] = Ef̃◦t [zt|Yt−1] =
[
ATt CT

t

]T
x̂t.

Therefore,

(zt − m̂zt)
T (K−1

zt − (K̃◦zt)
−1)(zt − m̂zt)

= (zt − m̂zt)
T

 In

−GT
t

Φt

[
In −Gt

]
(zt − m̂zt)

= ‖xt+1 − (Atx̂t +Gt(yt − Ctx̂t))‖2
Φt

= ‖xt+1 − x̂t+1‖2
Φt = ‖et+1‖2

Φt .

By (18) and (16), we have

f̃ ◦t (zt|Yt−1) ∼ exp

(
1

2
‖et+1‖2

Φt

)
f̄t(zt|Yt−1).

By (11), we obtain

f̃ ◦t (zt|Yt−1) ∼
∫

exp

(
1

2
‖et+1‖2

Φt

)
φt(zt|xt)f̃t(xt|Yt−1)dxt.

and by (12) we conclude that

φ̃◦t (zt|xt) =
1

Mt(Φt)
exp

(
1

2
‖et+1‖2

Φt

)
φt(zt|xt) (21)

where the normalizing constant Mt(Φt) is such that (15) holds. It is worth noting that in the

case τ = 0, i.e. the case considered in [9], the distortion is a radial function of the estimation

error et+1, because Φt = θ−1
t In for τ = 0. On the contrary, in the case τ 6= 0 such distortion is

nonradial.
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V. LEAST-FAVORABLE MODEL

For simulation and performance evaluation purposes, in particular for choosing parameters ct

and τ , it is important to characterize the least favorable model which is the solution to (14). The

idea is to characterize it through (21). Note that, there is a one to one correspondence between

zt and vt, given xt, through the relation

vt = Γ−1
t

zt −
 At

Ct

xt


because matrix Γt is invertible. Accordingly, we can characterize the least favorable model with

model (9) where the distortion has been moved now in noise vt. Applying the same arguments

used in [9], see also [6, Section 17.7], it is not difficult to prove that the least favorable probability

density of vt depends on et and is distributed as ψ̃t(vt|et) ∼ N (Htet, K̃vt) where K̃vt = (In+p−

(Bt −GtDt)
T (Ω−1

t+1 + Φt)(Bt −GtDt))
−1 and Ht = K̃vt(Bt −GtDt)

T (Ω−1
t+1 + Φt)(At −GtCt).

Matrix Ω−1
t+1 is computed from the backward recursion

Ω−1
t = (At −GtCt)

T (Ω−1
t+1 + Φt)(At −GtCt) +HT

t K̃
−1
vt Ht (22)

where the final point can be initialized with Ω−1
T+1 = 0 and T is the simulation horizon. The

backward recursion is due by the fact that integrating φ̃◦t (zt|xt) over zt we obtain a positive

function of et, therefore the “nature” has the opportunity to change retroactively the least

favorable density of xt. It is not difficult to see that the least favorable model admits a state

space representation with matrices

Ãt =

 At BtHt

0 At −GtCt + (Bt −GtDt)Ht

 (23)

B̃t =

 Bt

Bt −GtDt

Lt, C̃t =
[
Ct DtHt

]
, D̃t = DtLt

and the input is WGN with unit variance. Note that, to construct the least favorable model,

first we generate the gains Gt performing a forward sweep of the robust filter (19)-(20) over

interval [0, T ], then we generate the matrices Ωt through a backward sweep over interval [0, T ].

Therefore, increasing the simulation interval beyond [0, T ] requires performing a new backward

sweep of recursion (22). Then, we can evaluate the performance of an arbitrary estimator

x̂′t+1 = Atx̂
′
t +G′t(yt − Ctx̂′t) (24)

October 11, 2016 DRAFT
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applied to the the least favorable model. Let

Πt = E

 e′t

et

[ (e′t)
T eTt

]
where et is the estimation error of the optimal filter (19) and e′t is the estimation error of filter

(24). Then, it can be proven that Πt obeys to the Lyapunov equation, [9],

Πt+1 =

Ãt −
 G′t

0

 C̃t
Πt

Ãt −
 G′t

0

 C̃t
T

+

B̃t −

 G′t

0

 D̃t

B̃t −

 G′t

0

 D̃t

T

(25)

where Π0 = I2 ⊗ V0.

VI. RISK SENSITIVE FILTERING

Consider the robust Kalman filter we presented in Section IV with τ = 0. If we replace θt

with a constant value θ we recognize immediately that we obtain the risk sensitive filter, [13],

[1], [14]. This suggest us that the risk sensitive filter can extended using the τ -divergence family.

Consider the Markov-Gauss state space model (9). Let f̄t(zt|Yt−1) be the conditional density of

zt given Yt−1 based on the model (9) and defined in (16). The classic risk sensitive estimator g◦t
at time t is defined as

g◦t = argmin
gt∈Gt

Ef̄t [exp(θ‖xt+1 − gt(yt)‖2) |Yt−1] (26)

where Gt is the set of estimators for which the objective function in (26) is finite. θ > 0 is the

risk sensitivity parameter. More precisely, the larger θ is the more the objective function in (26)

penalizes estimators with large errors. In [2], it has been shown that the risk sensitive estimator

is solution to the following minimax problem

g◦t = argmin
gt∈Gt

max
f̃t∈Bt

Ef̃t [‖xt+1 − gt(yt)‖2 |Yt−1]

− θ−1DKL(f̃t‖ft) (27)

where Bt = {f̃t s.t. DKL(f̃t‖ft) < ∞}. The second term in the objective function in (27)

is always nonpositive because DKL(f̃t‖ft) ≥ 0. For small values of θ, it takes large negative

values for conditional densities not close to the nominal one. Therefore, the maximizer is obliged
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to choose a conditional density close to the nominal one. On the contrary, for large values of θ,

it takes (negative) values close to zero for some conditional densities not close to the nominal

one. In such a situation, the maximizer has the possibility to choose those conditional densities.

Note that, this behaviour does not change if we replace DKL with another divergence measure.

In our setting f̄t(zt|Yt−1) is Gaussian by assumption. In addition, if we assume that f̃t(zt|Yt−1)

is Gaussian, then DKL(f̃t‖ft) = D0(f̃t‖ft) where D0 has been defined in (1). It is then natural

to extend the minimax problem (27) to the τ -divergence family:

g◦t = argmin
gt∈Gt

max
f̃t∈Bt

Ef̃t [‖xt+1 − gt(yt)‖2 |Yt−1]

− θ−1Dτ (f̃t‖ft)

By applying Corollary 2.1, the optimal τ -risk sensitive estimator takes the form of (19)-(20)

where

Vt+1 = LPt+1

(
In − θ(1− τ)LTPt+1

LPt+1

) 1
τ−1 LTPt+1

, 0 < τ < 1

LPt+1 exp
(
θLTPt+1

LPt+1

)
LTPt+1

, τ = 1.
(28)

It is worth noting that, for the case 0 ≤ τ < 1, Vt+1 is defined provided that 0 < Pt+1 <

(θ(1 − τ))−1In, while for the case τ = 1, it is well defined whenever Pt+1 is positive definite.

The algorithmic scheme is similar to Algorithm 1: the unique difference is that Step 4 is now

removed. Finally, while the risk sensitivity parameter of the robust filter of Section IV is time

varying, and its evolution is governed by ct, now it is constant.

VII. SIMULATION RESULTS

We consider the time-invariant model (9) with

A =

 0.1 1

0 1.2

 , B =

 0.01 0 0

0 0.01 0


C =

[
1 −1

]
, D =

[
0 0 0.1

]
and x0 ∼ N (0, V0) with V0 = 0.01 ·I2. We consider the following three filters: KF is the standard

Kalman filter; RKF0 is the robust Kalman filter of Section IV with τ = 0; RKF1 is the robust

Kalman filter of Section IV with τ = 1. In Figure 1 we show the evolution of the risk sensitivity
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parameter of RKF0 and RKF1 for c = 10−1. We notice the θt is constant in the steady state, that

is RKF0 and RKF1 coincide with the risk sensitive filters of Section VI with τ = 0, θ ≈ 0.19

and τ = 1, θ ≈ 0.23, respectively, in the steady state.

10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

t

lo
g
θ
t

 

 

RKF
0

RKF
1

Fig. 1. Evolution of the risk sensitive parameter θt with c = 10−1.

In what follows we evaluate the performance of RK, RKF0 and RKF1, which have structure

(24), applied to the least favorable model (23). More precisely, for each filter, applied to (23),

we consider the estimation error e′t = [ e1
t e

2
t ]T . Then, we compute the variance of e1

t and e2
t

through (25). We consider two situations: c large, i.e. nominal and least favorable model are

very different; c small, i.e. nominal and least favorable model are similar.

A. Large tolerance

Here RKF0 and RKF1 have tolerance c = 10−1. In the first experiment, we apply these filters

to the nominal model (9). The variance of e1
t and e2

t are depicted in the first row of Figure 2. As

expected, KF performs better than the others. Moreover, the variances of RKF0 are slightly larger

than the ones of RKF1. In the second experiment, we apply these filters to the least favorable

model (23) with τ = 0 and c = 10−1. The variances of e1
t and e2

t are depicted in the second row

of Figure 2. Obviously, RKF0 is the best estimator because it has been designed with respect to

this model. Although RKF1 has been designed with respect to another model, it performs better

than KF. In the third experiment, we apply these filters to the least favorable model (23) with
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Fig. 2. Variances of e1t and e2t when the filters are applied to the nominal model (first row); to (23) with τ = 0 and c = 10−1

(second row); to (23) with τ = 1 and c = 10−1 (third row). Here RKF0 and RKF1 have c = 10−1.
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τ = 1 and c = 10−1. The variances of e1
t and e2

t are depicted in the third row of Figure 2. In

this case RKF1 is the best estimator because it is optimal with respect to the underlying model.

Also in this case, the worst estimator is KF. From these experiments we can conclude that:

• the smaller τ is, the more conservative the filter is, that is, the smaller τ is, the more the

uncertainty class contains models with larger mean square error. This property has been

noticed also for the static estimation problem in [19].

• the family of robust Kalman filters provide better performances than the standard Kalman

filter, even in the case that the least favorable model belongs to an uncertainty class

parametrized by a different τ .

B. Small tolerance

We perform the same experiment three experiments of before where the unique difference

is the tolerance which now is c = 5 · 10−3, see Figure 3. RKF0 and RKF1 provides the same

performance which is comparable with the one of KF. Therefore, as long as the discrepancy

between the nominal and the least favorable model is not too large, then the performance of KF

applied to (23) does not deteriorate too much.

VIII. CONCLUSIONS

In this paper, we have considered a robust filtering problem under incremental model pertur-

bations characterized by the τ -divergence family. The family of robust estimators we proposed

is the solution to a minimax problem. These robust estimators have an iterative structure similar

to the one of the Kalman filter. We have derived the corresponding least favorable models.

Moreover, we have extended the risk sensitive filter to a family of risk sensitive like filters.

Finally, a simulation study shows that parameter τ tunes how conservative the robust filter is.
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Fig. 3. Variances of e1t and e2t when the filters are applied to the nominal model (first row); to (23) with τ = 0 and c = 5 ·10−3

(second row); to (23) with τ = 1 and c = 5 · 10−3 (third row). Here RKF0 and RKF1 have c = 5 · 10−3.
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