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Lyapunov functions for persistently-excited cascaded time-varying systems:
application to consensus

Mohamed Maghenem1 Antonio Lorı́a2

Abstract—We present some results on stability of linear time-varying
systems with particular structures. Such systems appear in diverse prob-
lems, which include the analysis of adaptive systems, persistently-excited
observers and consensus of systems interconnected through time-varying
links. The originality of our statements rely in the fact that we provide
smooth strict Lyapunov functions hence, our proofs are constructive
and direct. Moreover, we establish uniform global exponential stability
with explicit stability and decay estimates. For illustration we address a
brief but representative case-study of consensus of Lagrangian systems
interconnected through unreliable links.

I. INTRODUCTION

The problem of establishing uniform global exponential stability
for linear time-varying systems under conditions of persistency of
excitation was initially motivated by the analysis of adaptive control
systems. A considerable bulk of literature is available, some of which
is nicely presented, e.g., in [1]. Beyond the pure question of stability
and convergence, lays that of performance. Specifically, to determine
explicit exponential estimates that relate the property of persistency
of excitation to the overshoot and convergence rates. For so-called
“gradient” systems explicit bounds were independently provided in
[2] and [3]. For more complex cases, such as that of model-reference
adaptive control systems see [4]. It is to be noted, however, that the
methods of proof in these references is rather intricate since they do
not rely on the construction of strict Lyapunov functions.

As far as we know, the first Lyapunov functions for systems
with a structure reminiscent of model-reference adaptive control
appeared in [5], [6]. The method consists in constructing a strict
Lyapunov function starting from a non strict one that satisfies
V̇ (t, x) ≤ −q(t)V (t, x) where q(t) is a positive persistently exciting
signal. Our study in this note starts with this inequation.

Persistency of excitation also plays a fundamental role in control
design, as for instance, in systems in which the control input is
multiplied by a time-varying function –see [7]. Such is the case of
certain systems in aerospace engineering applications –see e.g., [8],
[9], and [10]. In [7] and [11] uniform global asymptotic stability
is established via the construction of a non-strict control Lyapunov
function.

Another interesting case-study in which stability analysis tools for
linear time-varying systems are useful is that of consensus under the
assumption that communication links are time-varying and the graph
has a spanning tree. In this scenario, stating conditions of persistency
of excitation on the communication channels is particularly useful
[12]. The aim is to guarantee the so-called semistability property
[13], which covers that of set asymptotic stability [14] for systems
having a continuum of equilibria E, in which each solution initially
close to some equilibrium point remains close to one of the equilibria
in E. Although Lyapunov analysis of semistability does not lead
to an intuitive construction of Lyapunov functions, these methods
are useful to address consensus problems where the communication
topology switches between a finite number of time invariant graphs
with certain connectivity property, and over a certain dwell time –see
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e.g., [15], [16]. In [17] the consensus problem for networks whose
topologies switch among time-varying graphs was addressed, that is,
over two time scales.

In much of the existing literature, however, the study of consensus
under time-varying communication links makes use of trajectory
based approaches by means of a non differentiable Lyapunov func-
tions to establish the contraction of trajectories. See for instance the
seminal work of Moreau [18] in which the communication signals
take arbitrarily positive values. Similar problems are treated, for
example, in [19] and [20] under relatively relaxed conditions on
communication signals and on the graph topologies.

In this paper we present several constructions of strict Lyapunov
functions for linear time-varying systems under persistency of ex-
citation conditions that apply in different contexts. In Section II,
we present a preliminary statement for a scalar positive system that
serves as basis for our main results: these hold for cascaded non-
autonomous systems and are presented in Section III. Together with
the comparison lemma, our results may be used to make straight-
forward statements for systems that appear in applications ranging
from state-estimation via Luenberger-type observers to consensus
under time-varying interconnections and with a directed spanning-
tree topology –see Section IV.

From a theoretical viewpoint our consensus result per se is covered
in the literature. However, as far as we know, we provide for the
first time a strict smooth Lyapunov function. The importance of
this can hardly be overestimated; strict Lyapunov functions are a
fundamental step for analysis and design of robust control under
realistic conditions, such as delays and sampling [21]. From a
technical viewpoint, our constructions are inspired by [6], but we
also use the results in [22] and [23], mainly for the strictification of
Lyapunov functions with a non-positive persistently-exciting bounds
on the time derivatives. In Section IV we also provide a concise but
representative example of mutual synchronization of Lagrangian sys-
tems [24] interconnected through a spanning-tree topology. Finally,
some concluding remarks are provided in Section V.

II. A POSITIVE COMPARISON SYSTEM

We start with a simple preliminary statement that, in addition to
setting the basis for our main results, is interesting in its own right.
Consider the differential equation

v̇ = −q(t)v, v ∈ R (1)

where q : R≥0 → R≥0. Invoking standard results on adaptive control
–see e.g., [1], one may conclude that the origin is uniformly globally
exponentially stable if q is continuous and persistently exciting that
is, if there exist T , µ > 0 such that∫ t+T

t

q(s)ds > µ ∀ t ≥ 0. (2)

Remark 1: The requirement that q(t) ≥ 0 is not necessary –see
[25, Lemma 1]. •
The following statement presents a strict Lyapunov function which
establishes this, otherwise well-known, result –cf. [25].
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Lemma 1: Let q : R≥0 → R≥0 be essentially bounded and let
inequality (2) hold. Under these conditions, for the system (1), under
condition (2), the function W : R≥0 × R→ R≥0, defined by

W (t, v) =
1

2

[
1 + 2q̄T +

2

T
p(t)

]
v2 (3a)

p(t) := −
∫ t+T

t

∫ m

t

q(s)ds dm (3b)

is a strict Lyapunov function hence, {v = 0} is uniformly globally
exponentially stable. �

Remark 2: The function t 7→ p in (3b) was first introduced in [6]
under the equivalent form

p(t) =

∫ t+T

t

(s− t− T ) q(s)ds, (4)

which is obtained by changing the order of integration. •
Proof of Lemma 1: Let q̄ be such that |q(t)| ≤ q̄ for all t ≥ t0 and
define pM := q̄T 2. Since, moreover, q(t) ≥ 0, we have −pM ≤
p(t) ≤ 0, |p(t)| ≤ pM for all t ≥ 0 hence,

1

2
v2 ≤W (t, v) ≤

[1

2
+ q̄T

]
v2. (5)

The derivative of W along the trajectories of (1) yields

Ẇ (t, v) = −
[
q(t)

[
1 + 2q̄T +

2

T
p(t)

]
− ṗ

T

]
v2

where, by definition, q̄T + 1
T
p(t) ≥ 0 and, after the fundamental

theorem of calculus, the derivative of p in (3b) yields

ṗ(t) = Tq(t)−
∫ t+T

t

q(s)ds, ∀ t ≥ 0. (6)

Hence,

Ẇ ≤ −
[

1

T

∫ t+T

t

q(s)ds

]
v2 ∀t ≥ 0 (7)

and, in view of (2), we obtain

Ẇ (t, v) ≤ − µ
T
v2 (8)

for all t ≥ t0 and v ∈ R. Now, in view of (5), we obtain

Ẇ (t, v) ≤ − 2µ

(1 + 2q̄T )T
W (t, v) (9)

which, by integrating along the trajectories, yields

|v(t)| ≤
√

1 + 2q̄T |v(t◦)|exp
[
− µ(t− t◦)

(1 + 2q̄T )T

]
∀t ≥ t0. (10)

�
The simplicity of Lemma 1 should not eclipse its utility in stability

analysis. For instance, along with the comparison theorem, it may be
used to establish uniform global asymptotic stability, with guaranteed
convergence rates, for certain nonlinear time-varying systems. To see
this, consider the equation

ż = f(t, z) (11)

and let V : R≥0 × Rn → R≥0 be positive definite, proper and
decrescent, that is, assume that there exist α1, α2 ∈ K∞ such that

α1(|z|) ≤ V (t, z) ≤ α2(|z|). (12)

Assume, further, that there exists a globally Lipschitz continuous
function q : R≥0 → R≥0, satisfying (2),

V̇ (t, z) ≤ −q(t)V (t, z). (13)

Then, let us define v(t) := V (t, z(t)), so that v̇(t) ≤ −q(t)v(t)
for all t ≥ 0. In view of the monotonicity properties of V and the
comparison theorem, Lemma 1 directly establishes uniform global
asymptotic stability of the origin, {z = 0}, with an explicit decay

estimate. Indeed, from (10), (12) and the comparison Lemma, we
obtain

|z(t)| ≤ α−1
1

(
kvα2(|z◦|)e−λv(t−t◦)

)
(14a)

λv :=
µ

k2vT
, kv :=

√
1 + 2q̄T . (14b)

A. Example: nonlinear observer design

To illustrate further the utility of Lemma 1, consider the problem
of designing an observer for a bilinear system

ẋ = A(u, y)x+B(u, y) (15a)

y = Cx. (15b)

Since the system is linear in the unmeasured variable, we may pro-
ceed with a “Luenberger-like” design –see, e.g., [26] and references
therein. To that end, let x̂ denote the state estimate and let us define
its dynamics through the equation

˙̂x = A(u, y)x̂+B(u, y)− L(u, y)C(u, y)[x̂− x] (16)

where the observer gain, L, is to be designed in order to ensure
that the origin of the estimation-errors system is uniformly globally
exponentially stable. This may be accomplished by imposing a
condition of persistency of excitation along the trajectories [27], [28].

Proposition 1: Consider the system (15) and the observer (16). Let
L be continuous, and let u, y be such that there exist a continuously-
differentiable function P : R≥0×Rn → R≥0, a continuous function
qm : R≥0 → R≥0 and positive constants pm, pM , µ and T such
that:

(i) defining A(t) := A(u(t), y(t)) − L(u(t), y(t))C(u(t), y(t))
and Q(t) := −Ṗ (t)− P (t)A(t)−A(t)>P (t), we have

Q(t) ≥ qm(t)I ≥ 0 ∀ t ≥ 0;

(ii) qm is persistently exciting uniformly in y(t) and u(t) i.e., it
satisfies (2) with µ and T independent of the initial conditions;

(iii) the matrix P (t) is uniformly positive definite and bounded, i.e.,

pmI ≤ P (t) ≤ pMI.

Then, the estimation errors z(t) satisfy the bound

|z(t)| ≤ kv
√
pM
pm
|z◦|e−λv(t−t◦) (17)

where kv and λv are defined in (14b). �
Proof: Let the estimation errors be defined as z := x̂−x hence,

ż = A(t)z. (18)

Then, consider the function V : R≥0 × Rn → R≥0 defined by
V (t, z) := z>P (t)z. This function satisfies (12) with α1(s) := pms

2

and α2(s) := pMs
2. Moreover, defining q(t) := qm(t)

pM
, a direct

computation shows that the time derivative of V along the trajectories
of (18) satisfies (13). Therefore, by Lemma 1, we see that

W(t, z) :=
1

2

[
1 + 2q̄T +

2

T
p(t)

]
[z>P (t)z]2

is a Lyapunov function for the estimation error dynamics (18) and
(14a) holds which, in this case, is equivalent to (17).

The statement of Proposition 1 generalizes some results that rely
on a uniform complete observability condition, e.g., the choice:

Ṗ = −εP −
[
A(u, y)>P + PA(u, y)] + 2C>C (19a)

L := P−1C>, P (t◦) ≥ pmI, (19b)

commonly used in observer design for bilinear systems –cf. [26],
guarantees that P (t), hence Q(t) := εP (t), is positive definite and
bounded, for all t ≥ T . The persistency of excitation condition
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on Q, imposed in Proposition 1, is less restrictive than positivity;
moreover, the gain L(t) as defined in (19b) may reach very high
values [26]. Yet, the advantage of this choice is that it leads directly to
an exponential-convergence estimate and provides a strict Lyapunov
function for the estimation error-system. That is, this construction
naturally lends itself for output-feedback high-gain designs, notably
for systems with Lipschitz non-linearities –see e.g., [29]. On the other
hand, for such systems, notably chaotic oscillators, the main result in
[28] provides an observer of the type of (16), under the less restrictive
persistency of excitation condition on Q(t). Thus, the statement of
Proposition 1 covers all the previously mentioned results by providing
an explicit stability bound under the weaker condition of persistency
of excitation.

III. CASCADED SYSTEMS

In this section, using Lemma 1, we establish a more general result
which applies to cascades of persistently-excited systems. To start
with, consider the 2nd-order system:

ẋ1 = −a1(t)x1 + a2(t)x2 (20a)

ẋ2 = −a2(t)x2 (20b)

under the assumption that a1 and a2 are continuous, uniformly
bounded, and persistently exciting, functions taking non-negative
values.

For this system, exponential stability of the origin {x1 = x2 = 0}
may be assessed following a direct cascades argument. Indeed, this
follows, e.g., from the results in [30] observing that, by Lemma 1,
the respective origins of

ẋ1 = −a1(t)x1 ẋ2 = −a2(t)x2 (21)

are uniformly globally exponentially stable and a2(t) is bounded
hence, the solutions x1(t) of equation (20a) are uniformly globally
bounded. The statement also follows from the fact that (20a) is
input-to-state stable with Lyapunov function W (t, x1) defined by
(3) and input x2. However, even though the cascades argument
is straightforward for the case of two interconnected systems, the
argument is hard to extend to cascades of n > 2 time-varying
systems,

Σ′n :



ẋ1 =− a1(t)x1 + a2(t)x2

ẋ2 =− a2(t)x2 + a3(t)x3

...

ẋn−1 =− an−1(t)xn−1 + an(t)xn

ẋn =− an(t)xn,

(22)

relying purely on converse Lyapunov theorems. Our next statement
removes this difficulty by providing a strict Lyapunov function.

Theorem 1: Consider the system (22) under the following hy-
potheses:
A1 (Non-negativity): ai(t) ≥ 0 for all i ≤ n and all t ≥ 0.
A2 (Boundedness): There exists ā > 0 such that |ai(t)| ≤ ā for all

t ≥ 0 and all i ≤ n.
A3 (Persistency of Excitation): There exist µ, T > 0 such that∫ t+T

t

ai(s)ds > µ ∀i ≤ n, ∀ t ≥ 0. (23)

Then, defining β1 = 0 and, for each i ≤ n,

βi ≥
T

2µ

[
1 + āT

]2
+
T ā2

2µ
βi−1, ∀i ≥ 2,

pi(t) := −
∫ t+T

t

∫ m

t

ai(s)ds dm, (24)

the function Vn : R≥0 × Rn → R≥0, defined as

Vn(t, x) := x>P (t)x (25)

with
P (t) :=

1

2
diag

[
1 + 2āT +

2

T
pi(t) + βiā

]
,

is a strict Lyapunov function. Consequently, the origin is uniformly
globally exponentially stable. �

Proof: The proof is constructed based upon that of Lemma 1.
We show that the Lyapunov function candidate Vn is positive definite,
proper and its total derivative satisfies

V̇n(t, x) ≤ − µ

2T

n∑
i=1

x2i . (26)

Firstly, note that

−āT 2 ≤ pi(t) ≤ 0, ∀ i ≤ n, t ≥ 0 (27)

therefore,

1

2
diag

[
1 + βiā

]
≤ P (t) ≤ 1

2
diag

[
1 + 2āT + βiā

]
.

Next, we proceed by induction and using Lemma 1. For n = 1
the system (22) corresponds to

Σ′1 : ẋ1 = −a1(t)x1

and
V1(t, x1) =

1

2

[
1 + 2āT +

2

T
p1(t)

]
x21 (28)

is a strict Lyapunov function for Σ′1. The latter follows by mimicking
the proof of Lemma 1 to obtain

V̇1(t, x1) ≤ − µ
T
x21 (29)

–cf. Eq. (8). Actually, later we shall use the fact that, for any index i ≥
1, the derivative of the right-hand side of (28) along the trajectories
of ẋi = −ai(t)xi satisfies an inequality similar to (29), i.e., V̇i ≤
−(µ/T )x2i .

For n = 2, the cascaded system Σ′2 corresponds to (20), for which
we define the function V2 : R≥0 × R2 → R≥0 as

V2(t, x̄12) = V1(t, x1) +
1

2

[
1 + 2āT +

2

T
p2(t)

]
x22 +

1

2
β2āx

2
2 (30)

with x̄1j := [x1 · · ·xj ]> and, according to (24),

β2 ≥
T

2µ

[
1 + 2āT

]2
. (31)

Furthermore, using the bound ā ≥ ai(t) ≥ 0, following the proof-
lines of Lemma 1, we see that the time derivative of V2 satisfies

V̇2(t, x̄12) ≤ V̇1(t, x1)− β2a2(t)2x22 −
µ

T
x22 (32)

and, along the trajectories of (20a), V̇1 satisfies

V̇1(t, x1) ≤ − µ
T
x21 +

[
1 + 2āT +

2

T
p1(t)

]
x1a2(t)x2.

In turn, this implies that

V̇2(t, x) ≤ − µ

2T
(x21 + 2x22) + φ2(t, x̄12, β2)

φ2(t, x̄12, β2) := − µ

2T
x21 − β2a2(t)2x22

+
[
1 + 2āT +

2

T
p1(t)

]
x1x2a2(t).

Now, notice that φ2 ≤ 0 if β2 satisfies (31). To show this, we
introduce

ε2 :=
µ

T
[
1 + 2āT

] (33)
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and we use the triangle inequality

x1a2(t)x2 ≤
1

2
ε2x21 +

1

2ε2
a2(t)2x22 ∀ ε 6= 0, (34)

as well as the fact that pi(t) ≤ 0, to obtain

φ2(t, x̄12, β2) ≤− x21
2

[ µ
T
− ε2

[
1 + 2āT

]]
− x22a2(t)2

[
β2 −

1

2ε2
[
1 + 2q̄T

]]
∀ε 6= 0.

From (33) and (31) it follows that φ2 ≤ 0 hence, we conclude that

V̇2(t, x̄12) ≤ − µ

2T

(
x21 + x22

)
− µ

2T
x22. (35)

Next, we proceed by induction. For any j ∈ (2, n], let Vj be a
strict Lyapunov function for Σ′j –cf. (22), and let it be defined as

Vj(t, x̄1j) = Vj−1(t, x̄1j−1) +
1

2

[
1 + 2āT +

2

T
pj(t)

]
x2j +

1

2
βj āx

2
j .

(36)
To evaluate its total time-derivative along the trajectories of Σ′j we
first see that

V̇j−1(t, x̄1j−1) ≤ − µ

2T

j−1∑
i=1

x2i −
µ

2T
x2j−1 +

∂Vj−1

∂xj−1
ajxj

and, in view of (36),

∂Vj−1

∂xj−1
=
[
1 + 2āT +

2

T
pj−1(t) + βj−1ā

]
xj−1. (37)

Hence, it follows that

V̇j(t, x̄1j) ≤ −
µ

2T

j∑
i=1

x2i −
µ

2T
x2j + φj(t, x̄1j , βj , βj−1)

where

φj(t, x̄1j , βj , βj−1) = − µ

2T
x2j−1 − βjaj(t)2x2j

+

[
1 + 2āT +

2

T
pj−1(t)

]
aj(t)xjxj−1

+ βj−1āaj(t)xjxj−1. (38)

Now, in view of (27), the factor of aj(t)xjxj−1 is non-negative
hence, applying the triangle inequality to the last two terms on the
right-hand side of (38), we obtain that, for any ε, σ 6= 0,

φj(t, x̄1j , βj , βj−1) ≤− µ

2T
x2j−1 − βjaj(t)2x2j

+
[
1 + 2āT +

2

T
pj−1

][aj(t)2
2ε2

x2j +
1

2
ε2x2j−1

]
+ βj−1

[1

2
σ2aj(t)

2x2j +
ā2

2σ2
x2j−1

]
which, in turn, since pi(t) ≤ 0, implies that

φj(t, x̄1j ,βj , βj−1) ≤ −
x2j−1

2

[
µ

T
− ā2

σ2
− ε2

[
1 + 2āT

]]
− x2jaj(t)2

[
βj −

1

2ε2

[
1 + 2āT

]
− σ2

2
βj−1

]
for all σ 6= 0, ε 6= 0. To render non-positive the factors of x2j and
x2j−1 above, we choose

σ2 =
2T ā2

µ
.

Then, the factor of x2j−1 equals to zero if (33) holds, while the factor
of −x2jaj(t)2 is non-negative if

βj ≥
T

2µ
[1 + 2āT ]2 +

T ā2

µ
βj−1

for all j ∈ (2, n] –cf. (24). It follows that φj ≤ 0 and, consequently,

V̇j(t, x̄1j) ≤ −
µ

2T

j∑
i=1

x2i −
µ

2T
x2j . (39)

The latter holds for any integer j ∈ [3, n] hence, together with (29)
and (35), the inequality (26) follows.

Remark 3: From the previous proof it also follows that the trajec-
tories of (22) satisfy

|x(t)|2 ≤ αM |x◦|2e−(µ/2TαM )(t−t◦) ∀t ≥ t◦
where αM := 1 + (2T + βn)ā. To see this, we observe that the
Lyapunov function Vn satisfies (since βn > βn−1 > · · ·β1 = 0)

(1/2)αM |x|2 ≥ Vn(t, x) ≥ (1/2)|x|2.

•
An interesting extension of Theorem 1 relies on the use of the
comparison theorem, applied this time in a manner reminiscent of
vector Lyapunov functions, to obtain the following statement for
cascaded linear-time-varying persistently-excited systems

ẋ1 =A1(t)x1 +B1(t)x2

...

ẋn−1 =An−1(t)xn−1 +Bn−1(t)xn

ẋn =An(t)xn, xi ∈ Rm,

(40)

under the following hypotheses:
A4 (Boundedness) There exists B̄ > 0 such that1 ‖Bi‖∞ ≤ B̄.
A5 (Lyapunov Equation) There exist positive definite matrices Pi(t)

and positive semi-definite matrices Qi(t), verifying:

Ṗi +A>i Pi + PiAi = −Qi (41)

A6 (Persistency of excitation) There exists a positive constants PiM ,
Pim, µ, T and a function qim : R≥0 → R≥0 such that:

0 < PimIn ≤ Pi(t) ≤ PiMIn (42)

0 ≤ qim(t)In ≤ Qi(t) (43)∫ t+T

t

qim(s)ds > µ ∀t ≥ 0. (44)

Theorem 2: Under assumptions A4, A5 and A6 there exists a
quadratic strict differentiable Lyapunov function for (40). �
Sketch of Proof. For each i ≤ n, let us define Vi(t, x) = x>i Pi(t)xi.
The derivative of each Vi along the trajectories of (40), satisfies

V̇1 ≤− x>1 Q1(t)x1 + 2x>1 P1B1(t)x2

...

V̇n−1 ≤− x>n−1Qn−1(t)xn−1 + 2x>n−1Pn−1Bn−1(t)xn

V̇n ≤− x>nQn(t)xn.

(45)

Then, consider the modified Lyapunov function Wi : R≥0×Rnm →
R≥0 defined by Wi(t, x) = φi(t)Vi(t, x) with

φi(t) = αi −
1

T

∫ t+T

t

∫ m

t

qim(s)ds dm

where αi are constants such that φi ≥ PiM + 1. Then, defining
νi : R≥0 → Rn×n such that Pi(t) = νi(t)

>νi(t) and Mi(t) =

φi(t)νi(t)Biνi+1(t)−1, β1 = 1, βi+1 = 6T2

µ2 ‖Mi‖2∞ βi, we see
that

W(t, x) =

n∑
i=1

βiWi(t, xi)

constitutes a strict Lyapunov function for (40). �

1We use ‖Bi‖∞ := supt≥0 ‖Bi(t)‖ where ‖Bi(t)‖ denotes the induced
L2 norm of Bi(t) or any other congruent matrix norm.
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IV. ISS CONSENSUS UNDER SPANNING TREE

To illustrate the utility of our main results we consider now a
classical tracking consensus problem concerning n agents intercon-
nected in a spanning-tree topology with time-varying interconnection
gains. That is, each agent communicates only with two neighbors.
Even though here we consider that each agent communicates always
with the same neighbours, in general, this does not need to be the
case –cf. [17]. We limit our case-study to this topology because in
concrete cases of formation control, or follow-the-leader tracking
control for that matter, using such communication topology excludes
communication redundancy. From a strictly theoretical viewpoint,
however, our main stability statement per se in this section is covered
by, e.g., [14]. On the other hand, as far as we know, we provide for
the first time a strict smooth Lyapunov function which, in turn, leads
to establish input-to-state stability (ISS).

Thus, let us consider n dynamical systems defined by

żi = fi(t, zi) + ui, zi ∈ Rm, i ≤ n (46)

which are required to follow a reference trajectory z∗ : R≥0 → Rm
generated by an exogenous system ż∗ := f∗(t, z∗). We assume
that only the controller for the nth agent has access to the refer-
ence trajectory. Then, the ith agent receives information from the
i+ 1st, thereby establishing a spanning-tree topology, albeit through
unreliable channels.

To recast this consensus-tracking problem into a stabilization one
we introduce the error system with state variables xi := zi − zi+1

for all i ≤ n, with zn+1 := z∗ and fn+1 := f∗. That is,

ẋi = fi(t, xi + zi+1(t))− fi+1(t, zi+1(t)) + ui − ui+1 (47a)

ẋn = fn(t, xn + z∗(t))− f∗(t, z∗(t)) + un. (47b)

The consensus problem boils down to stabilizing the origin {x = 0},
with x := [x1, · · · , xn]>, for the system non-autonomous system
(47). For this, we use the control inputs

ui := −γai(t)[zi − zi+1] + wi, ai(t) ≥ 0, ∀ t ≥ 0 (48)

where the functions ai are assumed to be bounded and persistently
exciting, γ > 0 is the interconnection strength, and wi denote
“additional” inputs to be defined. Then, the closed-loop system is

ẋi = −γai(t)xi + γai+1(t)xi+1 + ψi(t, xi) + vi (49a)

ẋn = −γan(t)xn + ψn(t, xn) + vn (49b)

with vi := wi − wi+1 and

ψi(t, xi) := fi(t, xi + zi+1(t))− fi+1(t, zi+1(t)), i ≤ n. (50)

Note that the system (49) may be regarded as a “perturbed” version of
(22) hence, the following statement, which implies robust consensus-
tracking of (46), follows as a useful corollary of Theorem 1.

Lemma 2: Consider the system (49) under assumptions A1–A3.
For each i ≤ n, let vi be measurable functions, let ψi : R≥0×Rm →
Rm be such that there exist once-continuously-differentiable class
K∞ functions Li such that

|ψi(t, xi)| ≤ Li(|xi|). (51)

Let Ri be such that for all xi ∈ BRi , BRi := {xi ∈ R : |xi| ≤ Ri},∣∣∣∂Li
∂s

(
|xi|
)∣∣∣ ≤ `i

and the interconnection strength γ is such that
µγ

2T
> 2`i

[
1 + ā(2T + βi)

]
.

Then, the system (49) is input-to-state-stable from the input v :=
[v1, · · · , vn]>, for all initial conditions t◦ ≥ 0 and xi◦ ∈ Rn which
produce complete trajectories satisfying xi(t, t◦, xi◦) ∈ BRi . �

Sketch of proof: Following the proof of Theorem 1 the Lyapunov
function Vn defined in (25) is found to satisfy

V̇n(t, x) ≤ −
n∑
i=1

[µγ
2T
−`i
[
1+ā(2T+βi)

] ]
x2i+

[
1+ā(2T+βi)

]
xivi

(52)
for all xi ∈ BRi . Then, we see that |vi| ≤ `i|xi| implies that

V̇n(t, x) ≤ −
n∑
i=1

[µγ
2T
− 2`i

[
1 + ā(2T + βi)

] ]
x2i . (53)

It follows that Vn is an input-to-stable Lyapunov function for all
xi ∈ BRi and each i ≤ n. Hence, the system is input-to-state stable
for all initial conditions t◦ ≥ 0, xi◦ ∈ BRi generating complete
trajectories that satisfy |xi(t, t◦, xi◦)| ≤ Ri for all t ≥ t◦ ≥ 0 and
all i ≤ n. �

A. Example

For the sake of illustration let us consider the following case-study
of consensus-tracking control of Lagrangian systems,

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, τi, qi ∈ Rp. (54)

The functions Di, Ci and gi are, respectively, the inertia matrix, the
Coriolis matrix and the potential forces vector. The control torques
are denoted by τi.

We consider the problem of tracking and mutual synchronisation
—see [24] in which all systems are required to follow a common
exogenous trajectory t 7→ q∗. Now, we assume that the systems are
interconnected in a spanning-tree topology through unreliable links
hence, on intervals of time the nodes may be isolated.

To each system we apply the preliminary linearizing feedback (this
is possible because D is full rank) τi = Di(qi)ui + Ci(qi, q̇i)q̇i +
gi(qi) so that the equation of each node becomes q̈i = ui. Then,
emulating the unreliability of the communication channel by a square-
pulse function a : R≥0 → {0, ā} the control input becomes

ui = a(t)[−k1(qi − qi+1)− k2(q̇i − q̇i+1) + q̈i+1]

that is, the control is active only when a(t) = ā > 0.
Now, for each i ≤ n, define xi := [q>i q̇>i ]> − [q>i+1 q̇

>
i+1]>. We

see that the error dynamics, in closed loop, takes the form

ẋi = Ai(t)xi +Bi(t)xi+1 + vi(t), i ≤ n− 1

where the perturbation vi, which stems from the fact the “feedfor-
ward” term q̈i+1 in ui is not available all the time, is defined as
vi(t) := [a(t)− 1][q̈i+1(t)− q̈i+2(t)]. Furthermore,

Ai(t) :=

[
0 1

−a(t)k1 −a(t)k2

]
, Bi(t) =

[
0
a(t)

]
and, for i = n we have ẋn = An(t)xn + vn with vn(t) :=
[a(t) − 1]q̈∗(t). By Theorem 2, for vi ≡ 0, the origin is uniformly
exponentially stable and admits a strict smooth Lyapunov function
provided that A4–A6 hold. To verify these assumptions, we follow the
second construction in [7] for double integrators with time-varying
peristently-exciting input gain, ẍ = α(t)u, and define

a(t) :=
α(t)

α(t) + ε
, ε ∈ (0, 1).

In the current example we used k1 = k2 = 1 for all agents but
different arbitrary gains may be used. We chose α(t) as a periodic
pulse function of period T = 40s, with a duty cycle of 70% and ε =
0.01. Hence, a(t) ≈ α(t) is persistently exciting –see the bottom plot
in Figure 1, and the conditions A1–A3 hold. The “nominal” dynamics
ẋi = Ai(t)xi is studied in [7, Proposition 2]. After the proof of
the latter and some numeric computations we see that Assumptions
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A5 and A6 hold with qim(t) ≈ a(t), for the particular choice of
Qi := 0.16255 I . From Theorem 2, with vi(t) ≡ 0, we conclude
uniform global exponential stability hence, formation tracking control
of (54). Input-to-state stability with respect to the disturnace vi also
may be concluded.
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Fig. 1. Mutual synchronization of four Lagrangian systems

Some numerical results are illustrated in Figure 1, for the case in
which all systems follow the reference q∗(t) =sin(t). The steady-
state error depicted in the zoomed portion of the figure illustrates the
ISS statement. It may be diminished at will by increasing k1 and k2.

V. CONCLUSIONS

The novelty of our work lies in the provided strict Lyapunov
functions; indeed, stability statements for more general classes of
systems have been established before by other means. We believe,
however, that our statements may be used as off-the-shelf results
in a variety of problems appearing in adaptive control systems,
state estimation of bilinear systems, and consensus with persistently-
exciting interconnections. This claim is supported through a concise
but representative example concerning consensus of Lagrangian sys-
tems which, we believe, may serve as basis for future work in the
same direction. For instance, more general graphs, beyond spanning-
tree topologies should be considered. Also, while we adopted here
(due to page constraints) the use of an ad hoc preliminary feedback-
linearizing control loop, applying other control methods is desirable.
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