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Distributed Stochastic MPC of Linear Systems with
Additive Uncertainty and Coupled Probabilistic

Constraints
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Abstract—This paper develops a new form of distributed
stochastic model predictive control (DSMPC) algorithm for a
group of linear stochastic subsystems subject to additive un-
certainty and coupled probabilistic constraints. We provide an
appropriate way to design the DSMPC algorithm by extending a
centralized SMPC (CSMPC) scheme. To achieve the satisfaction
of coupled probabilistic constraints in a distributed manner, only
one subsystem is permitted to optimize at each time step. In addi-
tion, by making explicit use of the probabilistic distribution of the
uncertainties, probabilistic constraints are converted into a set of
deterministic constraints for the predictions of nominal models.
The distributed controller can achieve recursive feasibility and
ensure closed-loop stability for any choice of update sequence.
Numerical examples illustrate the efficacy of the algorithm.

Index Terms—Distributed control, model predictive control
(MPC), probabilistic constraints, stochastic systems.

I. INTRODUCTION

IN recent years, stochastic model predictive control (SMPC)
has attracted much attention since it is an alternative MPC

scheme to deal with uncertain systems. Different from robust
MPC (RMPC), SMPC takes into account the stochastic char-
acteristics of the uncertainties and allows constraint violations
to occur with a frequency below a prespecified threshold,
i.e. probabilistic constraints. Probabilistic constraints enable
SMPC to directly incorporate the tradeoffs between the satis-
faction of constraints and control performance, and therefore
alleviate the inherent conservatism of RMPC [1]–[4].

Distributed MPC (DMPC) is a further development of MPC
technique for large-scale systems, such as chemical plants [5],
process control [6], or teams of vehicles [7]. Compared with
centralized MPC scheme, DMPC is more attractive in the
context of computation and communication. For large-scale
systems with the uncertainties, it is natural to develop RMPC
or SMPC to the distributed framework, namely distributed
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RMPC (DRMPC) or distributed SMPC (DSMPC). This paper
aims to establish some fundamental results on DSMPC by
promoting the current SMPC technique to the distributed case
in a more systematical way. These fundamental results include
the key points in SMPC, such as the treatment of probabilis-
tic constraints, recursive feasibility, and closed-loop stability.
Next we will compare the existing SMPC algorithms for a
single system and inherit some ideas of them to develop our
DSMPC algorithm by proposing some distributed techniques.

Nowadays, three representative approaches for SMPC of
a single system include stochastic tube approaches [8], [9],
approaches based on affine parameterization of the control
policy [10], [11], and sample-based approaches [12], [13].
From the perspective of computational complexity and the
establishment of theoretical results, stochastic tube approaches
are more possibly scalable to the distributed manner than
other two approaches. Particularly, the recent work [9] adopted
the stochastic tube methodology to address the probabilistic
constraints and ensured recursive feasibility and closed-loop
stability. A sufficient and necessary condition was proposed
to ensure the satisfaction of probabilistic constraints, thereby
incurring no additional conservatism. However, the results of
[9] were restricted to the case of a single system. In the
presence of coupling among several subsystems, additional
techniques are needed to promote the results of [9] to a
distributed case while guaranteeing recursive feasibility and
closed-loop stability of the whole systems.

The handling of the coupling in DMPC mainly depends on
the choice of update strategy. In this paper, we will formulate
the coupling among subsystems in a general form of coupled
probabilistic constraints. Some approaches in DRMPC have
been investigated to ensure that the distributed actions satisfy
coupled constraints, see [14]–[16]. One of these approaches is
the sequential solution scheme adopted in [16], which required
to optimize all the subsystems sequentially at one time step.
Using the similar method to [16], the satisfaction of coupled
constraints was guaranteed in [17] by local subsystems up-
dating plans one at a time, without iteration. In [17], the
subsystems can be updated in any choice of update sequence
rather than in a prescribed sequence as in [18]. Under these
update strategies, all the aforementioned DRMPC can ensure
recursive feasibility and closed-loop stability. Compared with
DRMPC, few DSMPC methods are available. Particularly,
when subsystems share coupled probabilistic constraints, the
existing methods (e.g., [19]) cannot ensure recursive feasibility
and closed-loop stability.
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Motivated by above discussion, this paper proposes a dis-
tributed form of the recently developed SMPC in [9] for a team
of linear stochastic subsystems with independent dynamics but
coupled probabilistic constraints. We mainly use the idea of
[17] that, at each time step, a single subsystem is permit-
ted to optimize, while other subsystems ‘freeze’ their plans.
Apart from this, the controller structure and the stochastic
disturbances considered here are significantly different from
those of [17]. From the perspective of the SMPC theory, the
contributions of this paper are listed below. First, by making
explicit use of the probabilistic distribution of the uncertainties
and using a distributed way, deterministic constraints are con-
structed to provide coupled probabilistic constraint satisfaction
non-conservatively, in the sense that the specified violation
value can be reached tightly. Second, under the assumption
that the additive uncertainty is finitely supported, the initial
feasibility of the optimization problem implies the feasibility
at all times. Third, closed-loop stability of the overall system
is guaranteed for any choice of update sequence. Finally, two
different aspects between this paper and our recent work [20]
need clarification. Compared with the results of this paper,
(i) the cooperation scheme in [20] brought in a better global
control performance but resulted in higher computation and
communication; (ii) the closed-loop stability of [20] depended
on an additional assumption (Assumption 1 in [20]).

The outline of this paper is as follows. Section II presents
the problem statement for a team of subsystems with cou-
pled probabilistic constraints. Section III reviews SMPC by
applying it in a centralized fashion to the problem of Section
II. Section IV develops a DSMPC algorithm, which can
ensure recursive feasibility and stability. Section V presents the
results from numerical simulations and compares the global
performance of the new algorithm with that of a related
DRMPC algorithm. Finally, conclusions are drawn in Section
VI.

Notation: Let N , {0, 1, 2, . . .}; for a symmetric matrix X ,
X ≻ 0 and X ≽ 0 mean that X is a positive definite matrix
and a positive-semidefinite matrix, respectively; for a vector
x, xi is the ith component of x; the inequality sign ≤ and
the absolute value | · | apply elementwise to vectors; ∥x∥2W =
xTWx; (k + i|k) indicates a prediction of a variable i steps
ahead from time k; Pr is the probability, E is the expectation,
and I is the identity matrix with proper dimension.

II. PROBLEM STATEMENT

Consider a system of Np linear time-invariant, discrete-time
subsystems which are assumed to be stabilizable,

xp(k + 1) = Apxp(k) +Bpup(k) +Gpwp(k),

∀k ∈ N, ∀p ∈ P , {1, 2, . . . , Np}, (1)

where xp ∈ RNx,p , up ∈ RNu,p , and wp ∈ RNw,p are the state,
the control input, and the disturbance acting on subsystem
p, respectively. It is assumed that the complete state xp(k)
is available at each time k. Assume that {wp(0), wp(1), . . .}
is independent and identically distributed (i.i.d.) for each
subsystem p, that the elements of wp(k) have mean zero, and

that the distribution of the ith element of wp(k) has the form

Pr{wp,i(k) ≤ ηp,i} = Fp,i(ηp,i),

Fp,i(ηp,i) =

{
1 for ηp,i ≥ αp,i

0 for ηp,i < −αp,i
, (2)

where αp,i > 0 and the distribution functions Fp,i are assumed
to be continuous. A consequence of (2) is that wp(k) is
assumed to lie in the orthotope wp(k) ∈ Wp , {wp | |wp| ≤
αp}, αp = [αp,1 αp,2 · · ·αp,Nw,p ]

T .
Remark 2.1: Since the disturbances derived from physi-

cal processes are finite, the assumption of finitely supported
uncertainties matches the real world more closely than the
practically unrealistic Gaussian assumption. And this assump-
tion is necessary to assert recursive feasibility and stability.

Each subsystem is assumed to be subject to one local
probabilistic constraint on an output yp(k)

yp(k) = Cpxp(k) +Dpup(k), yp(k) ∈ R, (3)
Pr{yp(k) ≤ hp} ≥ lp, ∀k ∈ N, ∀p ∈ P. (4)

There are also Nc coupled probabilistic constraints across
multiple subsystems, each of which applies to the sum of
the coupled output scp, c ∈ C , {1, 2, . . . , Nc}, from each
subsystem

scp(k) = Ecpxp(k) + Fcpup(k), scp(k) ∈ R, (5)

Pr
{ Np∑

p=1
scp(k) ≤ bc

}
≥ pc, ∀k ∈ N, ∀c ∈ C. (6)

The row vectors Cp, Dp, Ecp, Fcp, fixed scalars hp, bc, and
thresholds lp ∈ [0, 1], pc ∈ [0, 1] are all chosen by the
designer. The form of (6) is very general, which permits
coupling to exist between any number of subsystems. The
case of several local probabilistic constraints of one subsystem
can be treated similarly by deriving the online constraint for
each individual constraint. And the case of hard constraints is
treated simply by setting lp = 1 and pc = 1 in (4) and (6).

The predicted control input at time k is made up of a linear
state feedback and a perturbation

up(k + i|k) = Kpxp(k + i|k) + cp(k + i|k), (7)

where Kp is calculated offline such that Ap+BpKp is strictly
stable for each subsystem (Ap, Bp). Given a finite prediction
horizon N , cp(k + i|k) ∈ RNu,p , i = 0, 1, . . . , N − 1, are
optimization variables and cp(k + i|k) = 0 for i ≥ N . Then
we decompose the state trajectories predicted at time k into
two components: the nominal one zp(k+i|k) = E[xp(k+i|k)]
and the uncertain one ep(k + i|k), which are formulated as

xp(k + i|k) = zp(k + i|k) + ep(k + i|k), (8)
zp(k + i+ 1|k) = Φpzp(k + i|k) +Bpcp(k + i|k), (9)
ep(k + i+ 1|k) = Φpep(k + i|k) +Gpwp(k + i|k), (10)

where Φp = Ap + BpKp and initial conditions pertaining to
i = 0 are zp(k|k) = xp(k) and ep(k|k) = 0 (since the state
at time k is known by assumption).

To facilitate the illustration of the coupling structure be-
tween subsystems, as in [17], define Pc , {p ∈ P |
[Ecp Fcp] ̸= 0} as the set of subsystems involved in coupled
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constraint c and Cp , {c ∈ C | [Ecp Fcp] ̸= 0} as the set
of coupled constraints involved in subsystem p. Then define
Qp , (

∪
c∈Cp

Pc)\{p} as the set of all other subsystems
coupled to subsystem p. The following standing assumption
shall be applied to the subsequent analysis.

Assumption 2.1: Each subsystem p has a priori knowl-
edge of static model parameters for subsystems q ∈ Qp. These
will be used later to enable each subsystem p to construct
outputs of subsystems q ∈ Qp given the states xq(k) and the
sequences of perturbations.

III. REVIEW OF CENTRALIZED SMPC

This section reviews SMPC in [9] with application to
the problem of Section II. To devise a centralized SMPC
(CSMPC) strategy, at time k, minimize the cost function of
the whole system

Jk(C(k)) =

Np∑
p=1

∞∑
i=0

E[xT
p (k + i|k)Qxp(k + i|k)

+uT
p (k + i|k)Rup(k + i|k)− Lp], (11)

subject to the constraints (4) and (6), where

Lp = lim
i→∞

E[xT
p (k + i|k)Qxp(k + i|k)

+uT
p (k + i|k)Rup(k + i|k)] (12)

and Q ≻ 0 and R ≻ 0 are two known weighting matrices.
The decision variable C(k) , [cT1 (k) c

T
2 (k) · · · cTNp

(k)]T with
cp(k) = [cTp (k|k) cTp (k+1|k) · · · cTp (k+N−1|k)]T ∈ RNu,pN

for any p ∈ P .
Remark 3.1: Due to the existence of the additive uncer-

tainty in (1), the stage cost E[xT
p (k + i|k)Qxp(k + i|k) +

uT
p (k+ i|k)Rup(k+ i|k)] converges to a finite, non-zero limit

Lp so that the summation of each stage cost is infinite over the
infinite prediction horizon. To obtain a finite cost, we define
the cost function (11) in terms of the deviation of the stage
cost from the limit value Lp, which can be precomputed using
a similar method as in [21].

To ensure the satisfaction of (4) and (6) in closed-loop
operation, the first step is to guarantee that the constraints
are satisfied over the entire prediction horizon at time k for
all subsystems. The following theorem provides necessary and
sufficient conditions for this.

Theorem 3.1: [9] At time k, probabilistic constraints (4)
and (6) are satisfied by predictions of (1) for each subsystem
p ∈ P if and only if for i = 1, 2, . . ., cp(k) satisfies

ΨpΦ
i
pzp(k|k) + (ΨpH

i
p +DpE

i+1
p )cp(k)

≤ hp − γi
p, ∀p ∈ P, (13)

Np∑
p=1

∆cpΦ
i
pzp(k|k) +

Np∑
p=1

(∆cpH
i
p + FcpE

i+1
p )cp(k)

≤ bc − ξic, ∀c ∈ C, (14)

where Ψp = Cp + DpKp, ∆cp = Ecp + FcpKp, Hi
p =

[Φi−1
p Bp · · ·Bp 0 · · ·0], Ei+1

p cp(k) = cp(k+ i|k), and γi
p and

ξic are respectively defined as the minimum values such that
Pr{Ψp[Φ

i−1
p Gpwp(k|k)+. . .+Gpwp(k+i−1|k)] ≤ γi

p} = lp

and Pr
{∑Np

p=1 ∆cp[Φ
i−1
p Gpwp(k|k) + . . . + Gpwp(k + i −

1|k)] ≤ ξic
}
= pc.

The detailed proof of Theorem 3.1 is omitted here. The
interested reader is referred to [9].

Remark 3.2: We usually cannot find the exact val-
ues of γi

p and ξic, since the distribution function Fp of
Φi−1

p Gpwp(k|k)+. . .+Gpwp(k+i−1|k) involves a multivari-
ate convolution integral with enormous computation for a long
prediction horizon and a large dimensional system. Instead, we
first discretize the probability density function of wp,i based
on q equi-spaced points on its domain. Then perform discrete
scalar convolutions to compute a discrete approximation of
the probability density function of Φi−1

p Gpwp(k|k) + . . . +

Gpwp(k + i− 1|k). Finally the discrete approximation F̂p to
Fp is calculated by using trapezoidal integration and further
the values of γi

p and ξic can be approximated at reasonable
computational cost. Note that the calculations of γi

p and ξic do
not depend on the system state and can be performed offline.

To ensure recursive feasibility, define Tcp(k) = [cTp (k +
1|k) · · · cTp (k + N − 1|k) 0]T , where T is the shift matrix
with the identity matrix on its super-diagonal blocks and zeros
elsewhere. Supposing that cp(k) is a feasible solution at time
k, the future feasibility at time k + j, j = 1, 2, . . ., is then
considered. Based on the information available at time k + j
and under the assumption that the vector of the perturbations
at time k + j is cp(k + j) = T jcp(k), the prediction of the
system state at time k + j + i is given as

xp(k + j + i|k + j)

= Φi+j
p zp(k|k) +Hi+j

p cp(k) + Φi
pep(k + j|k + j) +

Φi−1
p Gpwp(k + j|k + j) + . . .+Gpwp(k + j + i− 1|k + j)

(15)

This provides the following predictions yp(k + j + i|k + j)

and
∑Np

p=1 scp(k+ j+ i|k+ j) based on information available
at time k

yp(k + j + i|k + j)

= ΨpΦ
i+j
p zp(k|k) + (ΨpH

i+j
p +DpE

i+j+1
p )cp(k)

+ΨpΦ
i
pep(k + j|k + j) + Ψp[Φ

i−1
p Gpwp(k + j|k + j)

+ . . .+Gpwp(k + j + i− 1|k + j)] (16)

and

Np∑
p=1

scp(k + j + i|k + j)

=

Np∑
p=1

∆cpΦ
i+j
p zp(k|k) +

Np∑
p=1

(∆cpH
i+j
p +

FcpE
i+j+1
p )cp(k) +

Np∑
p=1

∆cpΦ
i
pep(k + j|k + j) +

Np∑
p=1

∆cp[Φ
i−1
p Gpwp(k + j|k + j) + . . .+

Gpwp(k + j + i− 1|k + j)]. (17)
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Note that xp(k+j+i|k+j) in (15) is expressed in terms of
ep(k+j|k+j) rather than ep(k). This is because ep(k+j|k+j)
depends on wp(k), wp(k + 1), . . . , wp(k + j − 1), which,
given that xp(k + j + i|k + j) is conditioned on information
available at time k + j, cannot be considered to be random
variables. Instead it is necessary to consider the worst-case
value for ep(k + j|k + j) over the class of allowable additive
uncertainty.

From (16)-(17), Theorem 3.1 can be modified by deriving
the conditions for feasibility of cp(k+ j) = T jcp(k) in (13)-
(14) at time k + j for all j ≥ 1.

Theorem 3.2: [9] Probabilistic constraints (4) and (6) are
satisfied at time k, if cp(k), p ∈ P , satisfies for i = 1, 2, . . .,

ΨpΦ
i
pzp(k|k) + (ΨpH

i
p +DpE

i+1
p )cp(k)

≤ hp − βi
p, ∀p ∈ P, (18)

Np∑
p=1

∆cpΦ
i
pzp(k|k) +

Np∑
p=1

(∆cpH
i
p + FcpE

i+1
p )cp(k)

≤ bc − ζic, ∀c ∈ C, (19)

where βi
p and ζic, i = 1, 2, . . ., are defined respectively as the

maximum elements of the ith columns of the matrices
γ1
p γ2

p γ3
p · · ·

0 γ1
p + a1p γ2

p + a2p · · ·
0 0 γ1

p + a1p + a2p · · ·
0 0 0 · · ·
...

...
...

. . .

 (20)

and 
ξ1c ξ2c ξ3c · · ·
0 ξ1c + d1c ξ2c + d2c · · ·
0 0 ξ1c + d1c + d2c · · ·
0 0 0 · · ·
...

...
...

. . .

 (21)

with

aip = max
wp∈Wp

ΨpΦ
i
pGpwp = |ΨpΦ

i
pGp|αp,

dic = max
wp∈Wp

Np∑
p=1

∆cpΦ
i
pGpwp =

Np∑
p=1

|∆cpΦ
i
pGp|αp.

Furthermore, if conditions (18)-(19) are feasible at time k,
then (18)-(19) will remain feasible at all times k + j, j ≥ 1.
The interested reader is referred to [9] for the detailed
proof of Theorem 3.2. The CSMPC optimization problem
PC(x1(k), . . . , xNp(k)) is formulated as

min
C(k)

Jk(C(k)) in (11)

subject to for i = 1, 2, . . .:

ΨpΦ
i
pzp(k|k) + (ΨpH

i
p +DpE

i+1
p )cp(k)

≤ hp − βi
p, ∀p ∈ P,(22)

Np∑
p=1

∆cpΦ
i
pzp(k|k) +

Np∑
p=1

(∆cpH
i
p + FcpE

i+1
p )cp(k)

≤ bc − ζic, ∀c ∈ C. (23)

After the optimization problem is solved at each time step,
the following input is applied to each subsystem p ∈ P ,

up(k) = Kpxp(k) + cp(k|k).

Under this control, the CSMPC optimization problem is re-
cursively feasible (due to Theorem 3.2) and the closed-loop
system is stable (for details, see [22], Theorem 10) satisfying

lim
r→∞

1

r + 1

r∑
k=0

Np∑
p=1

E[xT
p (k)Qxp(k)

+uT
p (k)Rup(k)] ≤

Np∑
p=1

Lp. (24)

To derive a DSMPC algorithm only involving a finite
number of constraints in Section IV, we next show how to
compute upper-bounds on βi

p and ζic which hold for all i ≥ 1.
These bounds also enable the constraint parameters in the
online DSMPC optimization problem to be computed offline.

Define symmetric positive-definite matrix Sp ∈ RNx,p×Nx,p

and scalar ρp ∈ (0, 1) as the solution of the semi-definite
program [22]

(ρp, Sp) = arg min
0<ρp<1

Sp=ST
p ≻0

ρp (25)

subject to

ΦpSpΦ
T
p ≼ ρ2pSp (26)

∥ Gpwp ∥S−1
p

≤ 1, ∀wp ∈ Wp. (27)

Note that the convexity of (27) and the strict stability of Φp

ensure the existence and uniqueness of the optimal solution of
(25)-(27).

Lemma 3.1: The sequences β1
p , β

2
p , . . . and ζ1c , ζ

2
c , . . . are

monotonically non-decreasing and converge to β̄p and ζ̄c
respectively, which are bounded by

β̄p ≤ γ1
p +

vp−1∑
j=1

ajp +
ρ
vp
p

1−ρp
∥ ΨT

p ∥Sp , ∀p ∈ P, (28)

ζ̄c ≤ ξ1c +
µc−1∑
i=1

dic +
Np∑
p=1

ρµc
p

1−ρp
∥ ∆T

cp ∥Sp , ∀c ∈ C, (29)

for any integers vp > 1 and µc > 1.
Proof: The lemma is an extension of Corollary 4 in [9] to

a case of multiple subsystems. In addition to local constraints,
this paper also considers coupled constraints amongst several
subsystems. Bounds on ζ̄c are derived so as to cater for coupled
probabilistic constraints.

Remark 3.3: Provided that vp and µc are sufficiently
large, the upper-bounds on β̄p and ζ̄c in (28)-(29) can be made
arbitrarily tight.

IV. DSMPC ALGORITHM

To distribute PC(x1(k), . . . , xNp(k)) amongst subsystems
as local optimization problems, we first adopt the update
strategy as in [17]. At each time k, only a single subsystem,
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defined as pk, is permitted to optimize for a new plan, while
each remaining subsystem uses the feasible candidate plan

c̃q(k) , Tc∗q(k − 1)

= [c∗q
T (k|k − 1) · · · c∗q

T (k +N − 2|k − 1) 0]T (30)

that is the tail of the previous solution c∗q(k − 1) augmented
with 0. The order in which subsystems’ plans are optimized
is determined by the update sequence {p1, . . . , pk, pk+1, . . .},
which is chosen by the designer.

Then at time k, with the plans for subsystems q,
q ∈ Qpk

, fixed by (30), the local optimization problem
PD

p (xp(k);Z
∗
p (k)) for optimizing subsystem p = pk is for-

mulated as

min
cp(k)

Jk
p (cp(k)) =

∞∑
i=0

E[xT
p (k + i|k)Qxp(k + i|k)

+uT
p (k + i|k)Rup(k + i|k)− Lp] (31)

subject to (22) for subsystem p only and the constraints, for
i = 1, 2, . . .,

∆cpΦ
i
pzp(k|k) + ∆cpH

i
pcp(k) + FcpE

i+1
p cp(k) +∑

q∈Pc\{p}

[∆cqΦ
i
qz

∗
q (k) + (∆cqH

i
q + FcqE

i+1
q )c∗q(k)]

≤ bc − ζic, ∀c ∈ Cp. (32)

Note that the values of cq(k) and zq(k), ∀q ∈ Qp, are not
affected by the decision variable cp(k), so they appear as fixed
values in (32), denoted by ∗.

Next, to ensure that (22) and (32) are satisfied over an
infinite prediction horizon, a terminal constraint is designed
below. Since cp(k + i|k) = 0 for i ≥ N , (22) and (32) for
i ≥ N can be rewritten as

ΨpΦ
j
pzp(k +N |k) ≤ hp − βN+j

p , j = 0, 1, 2, . . . , (33)

∆cpΦ
j
pzp(k +N |k) ≤ bc − ζN+j

c

−
∑

q∈Pc\{p}

∆cqΦ
j
qz

∗
q (k +N |k), j = 0, 1, 2, . . . . (34)

Following [23], define the maximal admissible set at time k as
S
∞|k
p , which is the subset of RNx,p containing all zp(k+N |k)

such that (33)-(34) hold for all j ≥ 0. The upper-bounds on
βi
p and ζic imply conditions for the existence of S∞|k

p .
Lemma 4.1: If the thresholds lp and pc are such that

hp > β̄p and bc > ζ̄c +
∑

q∈Pc\{p} b̄
∗
cq(k), ∀c ∈ Cp, with

b̄∗cq(k) = maxj=0,1,... ∆cqΦ
j
qz

∗
q (k + N |k), then the maximal

admissible set S∞|k
p is non-empty.

Proof: Since Φq is strictly stable by assumption, z∗q (k +
N + j|k) = Φj

qz
∗
q (k + N |k) converges to zero as j → ∞

and z∗q (k + N + j|k) is uniformly bounded for any k ≥ 0.
Therefore the term ∆cqΦ

j
qz

∗
q (k + N |k) remains bounded.

Using β̄p, ζ̄c, and b̄∗cq(k) to respectively bound βN+j
p , ζN+j

c ,
and ∆cqΦ

j
qz

∗
q (k + N |k) for j = 0, 1, . . . in (33)-(34), the

conditions in Lemma 4.1 therefore ensure that S∞|k
p contains

the origin, which implies that S∞|k
p is non-empty.

Because the exact values of β̄p and ζ̄c are unknown, the
conditions in Lemma 4.1 may be modified by using the bounds

in (28)-(29)

hp > γ1
p +

vp−1∑
j=1

ajp +
ρ
vp
p

1− ρp
∥ ΨT

p ∥Sp (35)

and

bc > ξ1c +

µc−1∑
i=1

dic +

Np∑
p=1

ρµc
p

1− ρp
∥ ∆T

cp ∥Sp +∑
q∈Pc\{p}

b̄∗cq(k). (36)

The result in [23] provides a method to compute an inner
approximation of S

∞|k
p . Replace βN+j

p and ζN+j
c by the

bounds in (28)-(29) beyond a horizon j = N̂ and define the
terminal set SN̂ |k

p as follows

SN̂ |k
p , {z | ΨpΦ

j
pz ≤ hp − βN+j

p , ∆cpΦ
j
pz ≤ bc −

ζN+j
c −

∑
q∈Pc\{p}

∆cqΦ
j
qz

∗
q (k +N |k),

∀c ∈ Cp, j = 0, 1, . . . , N̂ ;

ΨpΦ
j
pz ≤ hp − γ1

p −
vp−1∑
j=1

ajp −
ρ
vp
p

1− ρp
∥ ΨT

p ∥Sp
,

∆cpΦ
j
pz +

∑
q∈Pc\{p}

∆cqΦ
j
qz

∗
q (k +N |k) ≤ bc − ξ1c −

µc−1∑
i=1

dic −
Np∑
p=1

ρµc
p

1− ρp
∥ ∆T

cp ∥Sp
, ∀c ∈ Cp, j > N̂}.(37)

The inner approximation can be made arbitrarily tight to S
∞|k
p

by using a sufficiently large value of N̂ . Furthermore, it can
be shown that there exists an integer n∗ such that SN̂ |k

p is in
fact determined by only the first N̂ + n∗ inequalities, i.e., the
constraints from j = N̂ + n∗ + 1 to j = ∞ can be removed
without effect, whenever S

∞|k
p is bounded. We denote the

terminal set which involves a finite number of inequalities by
S
N̂,n∗|k
p . The smallest allowable value of n∗ can be determined

by solving a finite number of linear programming problems
(for details, see [23]).

A revised form of PD
p (xp(k);Z

∗
p (k)) is now obtained

min
cp(k)

Jk
p (cp(k)) in (31)

subject to (22) for subsystem p and (32) for i = 1, 2, . . . , N−
1, and the terminal constraint zp(k +N |k) ∈ S

N̂,n∗|k
p .

Remark 4.1: Given the distribution of wp, the cost func-
tion Jk

p (cp(k)) in (31) can be written as a quadratic function
of cp(k) (see [22], Remark 9). In addition, (22) and (32)
are affine constraint functions of cp(k) and S

N̂,n∗|k
p is a

polyhedron with cp(k). The problem PD
p (xp(k);Z

∗
p (k)) can

therefore be cast as a quadratic program (QP), which can be
solved efficiently.

In optimization problem PD
p (xp(k);Z

∗
p (k)), Z

∗
p (k) denotes

the collection of information about other subsystems’ states
z∗q (k) and the vectors of perturbations c∗q(k) required by p to
evaluate constraint (32). It can be seen that to evaluate (32),
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subsystem p must have knowledge of c∗q(k) for each subsystem
q ∈ Qp. Denote by k̂q the last step, before the current step, at
which subsystem q is updated [17]

k̂q , max
k′∈{k′<k|pk′=q}

k′.

Then the vectors of perturbations c∗q(k) appearing in (32) can
be expressed as c∗q(k) = T k−k̂qc∗q(k̂q), ∀q ∈ Qp, for all k ≤
k̂q +N − 1. For greater values of k, c∗q(k) = 0. Hence, one
strategy to achieve the information requirements for Z∗

p (k) is
provided as follows. At each time k, all subsystems in Qp

sample the current states and transmit them to the optimizing
subsystem p. After solving PD

p (xp(k);Z
∗
p (k)), the new plan

of the optimizing subsystem p must be communicated to all
subsystems q ∈ Qp. This strategy is adopted in the following
algorithm, which is executed by all subsystems in parallel.

Algorithm 1 (DSMPC Algorithm):
Offline. Determine vp, µc, and horizons N̂ and n∗. Compute

βi
p and ζic, i = 1, 2, . . . , N + N̂ , in (20)-(21). Compute γ1

p ,
ξ1c , ajp, j = 1, 2, . . . , vp − 1, and dic, i = 1, 2, . . . , µc − 1, to

complete the definition of SN̂,n∗|k
p .

Online.
(i) Initialization: Wait for a feasible solution c∗p(0) and

information Z∗
p (0) from the central initializing controller

for ∀p ∈ P . If a solution cannot be found, stop.
(ii) All subsystems p: Apply u∗

p(k) = Kpxp(k) + c∗p(k).
(iii) All subsystems p: Update k and sample xp(k).

Subsystems q ∈ Qpk
: Transmit xq(k) to subsystem pk.

(iv) Update plan:
Subsystem p = pk:
a) Solve PD

p (xp(k);Z
∗
p (k)) to obtain new plan c∗p(k).

b) Transmit the new plan to subsystems q, q ∈ Qp.
c) Set k̂p = k.

Subsystems p ̸= pk: Construct new plans c∗p(k) =

T k−k̂pc∗p(k̂p) with zero update.
(v) Go to step (ii).

The following theorem states the main result of this paper.
Theorem 4.1: If there exists a feasible

(but not necessarily optimal) solution c∗p(0) =

[c∗p
T (0|0) c∗p

T (1|0) · · · c∗p
T (N − 1|0)]T , p ∈ P , to the

optimization problem PC(x1(0), . . . , xNp(0)) at time k = 0,
and the system is controlled according to Algorithm 1, then
all subsequent optimization problems PD

p (xp(k);Z
∗
p (k)) are

feasible for k > 0. Furthermore, for any choice of update
sequence, the closed-loop stability of the entire system is
guaranteed, which satisfies

lim
r→∞

1

r + 1

r∑
k=0

Np∑
p=1

E[xT
p (k|k)Qxp(k|k) +

uT
p (k|k)Rup(k|k)] ≤

Np∑
p=1

Lp. (38)

Proof: From the conditions of Theorem 3.2, if there
exists initial feasible solutions {c∗p(0)}p∈P to the problem
PC(x1(0), . . . , xNp(0)), {Tc∗p(0)}p∈P are feasible solutions
to PC(x1(1), . . . , xNp(1)). It is easy to see that, at time 1,

for optimizing subsystem p1, Tc∗p1
(0) directly satisfies (22).

Meanwhile, by choosing z∗q (1) = xq(1), c∗q(1) = Tc∗q(0),
zp1(1) = xp1(1), and cp1(1) = Tc∗p1

(0), (32) is equivalent to
(23) when PC(x1(1), . . . , xNp(1)) adopts {Tc∗p(0)}p∈P , then
Tc∗p1

(0) satisfies (32). Hence, Tc∗p1
(0) is a feasible solution

to PD
p1
(xp1(1);Z

∗
p1
(1)).

Next, we assume that feasible solutions {c∗p(k −
1)}p∈P are available at time k − 1. By Algorithm 1,
at time k, all subsystems q ̸= pk renew their plan-
s to be {Tc∗q(k − 1)}q ̸=pk

. For optimizing subsystem
pk, solving PD

pk
(xpk

(k);Z∗
pk
(k)) is equivalent to solving

PC(x1(k), . . . , xNp(k)) constrained to take c∗q(k) = Tc∗q(k−
1) for q ̸= pk. From recursive feasibility of CSMPC optimiza-
tion problem in Theorem 3.2, {Tc∗p(k − 1)}p∈P are feasible
for PC(x1(k), . . . , xNp(k)), and Tc∗pk

(k− 1) is also feasible
for PD

pk
(xpk

(k);Z∗
pk
(k)). By recursion, a feasible solution

to PC(x1(0), . . . , xNp(0)) implies that all subsequent opti-
mization problems PD

pk
(xpk

(k);Z∗
pk
(k)), k > 0, are feasible

regardless of the choice of update sequence.
To consider closed-loop stability, the global cost is de-

fined as the summation of the local cost of each subsystem
J (k) ,

∑Np

p=1 J
k
p (cp(k)). Assume that {c∗p(k)}p∈P are

feasible solutions at time k and the corresponding local cost
is Jk

p (c
∗
p(k)) for subsystem p ∈ P . By Algorithm 1, at time

k + 1, the optimizing subsystem pk+1 obtains its solution
c∗pk+1

(k + 1) by solving PD
pk+1

(xpk+1
(k + 1);Z∗

pk+1
(k + 1)),

while all other subsystems q ̸= pk+1 adopt their respective
candidate solutions c∗q(k+1) = Tc∗q(k). Thus, the global cost
at time k + 1 is given as

J ∗(k + 1) , Jk+1
pk+1

(c∗pk+1
(k + 1)) +

∑
q ̸=pk+1

Jk+1
q (Tc∗q(k)).

(39)
Taking expectation on both sides of (39), it follows that

E[J ∗(k + 1)] = E[J̃ (k + 1)] + E[Jk+1
pk+1

(c∗pk+1
(k + 1))−

Jk+1
pk+1

(Tc∗pk+1
(k))], (40)

where J̃ (k + 1) is the global cost associated with each
subsystem adopting their respective candidate plans Tc∗p(k).
Since Tc∗pk+1

(k) is a known feasible solution at time k + 1
for subsystem pk+1, the cost associated with Tc∗pk+1

(k) is
an upper-bound on the optimal cost Jk+1

pk+1
(c∗pk+1

(k + 1)) ≤
Jk+1
pk+1

(Tc∗pk+1
(k)). The last term of (40) is therefore less than

or equal to zero, leaving

E[J ∗(k + 1)] ≤ E[J̃ (k + 1)]. (41)

Since Tc∗p(k) is a feasible solution at time k + 1, so that

Jk
p (c

∗
p(k)) = E[Jk+1

p (Tc∗p(k))] + xT
p (k)Qxp(k)

+uT
p (k)Rup(k)− Lp. (42)

Summing (42) over p = 1, 2, . . . , Np and taking expectation
on both sides, we obtain

E[J ∗(k)] = E[J̃ (k + 1)] +

Np∑
p=1

E[xT
p (k)Qxp(k) +

uT
p (k)Rup(k)− Lp]. (43)
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Following the above equality, (41) is equivalent to

E[J ∗(k + 1)] ≤ E[J ∗(k)]−
Np∑
p=1

E[xT
p (k)Qxp(k) +

uT
p (k)Rup(k)− Lp]. (44)

Summing (44) over k = 0, 1, . . . , r leads to

r∑
k=0

Np∑
p=1

E[xT
p (k)Qxp(k) + uT

p (k)Rup(k)− Lp] ≤

E[J ∗(0)]− E[J ∗(r + 1)]. (45)

Because of the finite J ∗(0) by assumption and the lower
boundedness of E[J ∗(r + 1)] by the quadratic form of
Jk
p (c

∗
p(k)) (see Remark 4.1), (38) can be implied by (45),

which completes the proof.

V. NUMERICAL EXAMPLES

A. Example 1: Homogeneous subsystems

Consider a set of three identical subsystems, of which the
model parameters are given as follows (see [8] and [24])

Ap =

[
1 0.0075

−0.143 0.996

]
, Bp =

[
4.798
0.115

]
,

Gp =

[
1 0
0 1

]
, ∀p ∈ P = {1, 2, 3}.

There are four probabilistic constraints with

Cp =
[
1 0

]
, Dp = 0, hp = 2, lp = 0.8,

Ecp =
[
1 0

]
, Fcp = 0, bc = 5.5, pc = 0.8,

∀p ∈ P, ∀c ∈ C = {1}.

Each element wp,i(k) is truncated from a Gaussian distribution
with mean zero and variance 1

252 and satisfies |wp,i(k)| ≤
0.075 for i = 1, 2. The feedback gain Kp is taken as Kp =
−[0.286 −0.491], which is the LQ-optimal gain for the given
plant model. The prediction horizons N and N̂ over which
constraints are handled explicitly are chosen as N = 8 and
N̂ = 9. For the chosen N and N̂ , the set SN̂,n∗|k

p is given with
n∗ = 1. The update sequence employed is {1, 2, 3, 1, 2, 3, . . .}.
The weights in the cost are Q = diag{1, 10} and R = 1.

By adopting Algorithm 1 and the unconstrained optimal
control, we carry out 5000 Monte Carlo simulations, starting
from the same initial conditions x1(0) = [3.5 3]T , x2(0) =
[2.5 2]T , and x3(0) = [2.5 2.8]T . Fig. 1 and Fig. 2 show
the closed-loop trajectories {xp(k), k = 0, 1, . . .} for each
subsystem and the sum of states {

∑3
p=1 xp(k), k = 0, 1, . . .}.

With the unconstrained optimal control, the local probabilis-
tic constraints are violated at time k ≤ 3 for every realization
of the uncertainty sequence. For the trajectories obtained under
Algorithm 1, 19.92%, 0%, and 20.17% of the same 5000
realizations violate the local constraints for subsystems 1,
2, and 3 at time k = 1, 20.06%, 0%, and 1.09% at time
k = 2, and 0.92%, 19.95%, and 0.06% at time k = 3. By
Algorithm 1, the observed probability of violating the coupled
state constraint is 19.95% at time k = 1, 0.04% at time k = 2,
and 7.06% at time k = 3, whereas violation rate is 100% at
time k ≤ 3 under the unconstrained optimal control.
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2

 

 

Subsystem1
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Subsystem3

Local constraint

Trajectory 1

Trajectory 2

Fig. 1: Closed-loop trajectories of homogeneous subsystems under Algo-
rithm 1 (Trajectory 1) and unconstrained optimal control (Trajectory 2) for
100 realizations of the uncertainty sequence.
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Fig. 2: Evolution of the sum of states {
∑3

p=1 xp(k), k = 0, 1, . . .} when
the system is controlled by Algorithm 1 (Trajectory 1) and unconstrained
optimal control (Trajectory 2) for 100 realizations of the uncertainty sequence.

Moreover, the performance of Algorithm 1 is also com-
pared with that of the unconstrained optimal control. The
performance measured in this instance is the weighted sum
of local costs over the duration of simulation. Algorithm 1
produces the cumulative cost (three subsystems, 15 samples)
for closed-loop operation averaged over 5000 simulations of
558.06, as compared with the average cost of 410.20 for the
unconstrained optimal control. As expected, the unconstrained
optimal control achieves a lower value of the average cost at
the expense of violating the probabilistic constraints.

B. Example 2: Heterogeneous subsystems

Consider three different subsystems, which are modeled by

A1 =

[
1.6 1.1
−0.7 1.2

]
, B1 =

[
1
1

]
,

A2 =

[
1.5 1.1
0 1.2

]
, B2 =

[
0.8
0.9

]
,

A3 =

[
1.4 1.2
−0.3 1.1

]
, B3 =

[
1.2
0.8

]
,

Gp =

[
1 0
0 1

]
, ∀p ∈ P = {1, 2, 3}.

Each element wp,i(k) is truncated from a Gaussian distribution
with mean zero and variance 1

122 such that |wp,i(k)| ≤ 0.5,
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i = 1, 2. Let the update sequence be {1, 2, 3, 1, 2, 3, . . .}, N =
6, N̂ = 7, Q = I , and R = 1. The constraint parameters are

C1 =
[
1 1.3

]
, C2 =

[
1.4 0.6

]
, C3 =

[
0.9 0.4

]
,

Dp = 0, lp = 0.8, h1 = 15, h2 = 8.4, h3 = 9,

Ecp = Cp, Fcp = 0, bc = 33, pc = 0.8, ∀p ∈ P.

In Fig. 3, a comparison result between Algorithm 1 and
the unconstrained optimal control is shown for three differ-
ent subsystems with initial conditions x1(0) = [−6 25]T ,
x2(0) = [−3 45]T , and x3(0) = [−6 60]T . Under Algorithm 1,
for 5000 realizations of the uncertainty sequence, the observed
probabilities of violating the local constraints are 20.72%,
20.24%, and 19.50% for subsystems 1, 2, and 3 at time k = 1,
respectively, whereas for the unconstrained optimal control,
the trajectories suggest that the violation rate is 100% at time
k = 1. From the simulation results, under Algorithm 1, the
system states always converge to a neighborhood of the origin
with the guarantee of constraint satisfaction despite the action
of unknown but bounded disturbances.

Compare the performances of DSMPC and DRMPC (as-
suming lp = 1 and pc = 1) in terms of the achieved
costs. The cumulative costs (three subsystems, eight samples)
for closed-loop operation averaged over 5000 simulations are
89.63 and 125.71 under DSMPC and DRMPC respectively. As
expected, the proposed DSMPC algorithm achieves an average
improvement in the closed-loop performance of 40.24% with
respect to DRMPC by allowing constraint violations to occur.
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Fig. 3: Closed-loop trajectories of heterogeneous subsystems under Algorith-
m 1 and unconstrained optimal control for 100 realizations of the uncertainty
sequence.

VI. CONCLUSION

In this paper, a DSMPC algorithm is proposed for a team
of linear stochastic subsystems with additive uncertainty and
probabilistic constraints. Coupled probabilistic constraints are
handled non-conservatively in a distributed way. Recursive
feasibility is guaranteed with respect to both local and coupled
probabilistic constraints. The closed-loop stability of the whole
system is ensured in the presence of stochastic disturbances.

On-going research is developing a DSMPC strategy for
a group of stochastic subsystems with both additive and
multiplicative uncertainty. One possible future direction is to
account for the event-based MPC for uncertain systems and
further promote it to the distributed case.
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tubes in model predictive control with probabilistic constraints,” IEEE
Trans. Autom. Control, vol. 56, no. 1, pp. 194-200, 2011.

[9] B. Kouvaritakis, M. Cannon, S. V. Raković, and Q. Cheng, “Explicit use
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