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Dynamic Attack Detection in Cyber-Physical Systems
with Side Initial State Information

Yuan Chen, Soummya Kar, and José M. F. Moura

Abstract—This paper studies the impact of side initial state information
on the detectability of data deception attacks against cyber-physical
systems. We assume the attack detector has access to a linear function
of the initial system state that cannot be altered by an attacker.
First, we provide a necessary and sufficient condition for an attack
to be undetectable by any dynamic attack detector under each specific
side information pattern. Second, we characterize attacks that can be
sustained for arbitrarily long periods without being detected. Third, we
define the zero state inducing attack, the only type of attack that remains
dynamically undetectable regardless of the side initial state information
available to the attack detector. Finally, we design a dynamic attack
detector that detects detectable attacks.

I. INTRODUCTION

Cyber-physical systems (CPS) monitor and regulate many crit-
ical large-scale infrastructures such as the power grid and water
distribution systems. Events such as the Maroochy Shire Council
Sewage control incident and the Stuxnet malware attack have brought
increased awareness to the issue of securing large scale systems [1],
[2]. Smaller applications such as robotic platforms and the modern
commercial automobile [3] are also equipped with intercommuni-
cating sensor, computation, and actuator components for a variety
of control tasks and can fall suspect to cyber attack. A malicious
attacker can hijack the communication channels between the sensor,
computation, and actuator components, modify the data values sent
between components, and manipulate the system’s behavior [4].

To ensure proper operation of CPS, it is necessary to design and
implement security measures against attacks. One important aspect of
security is attack detection that allows the system to take corrective
actions and mitigate damaging behavior. Static attack detectors check
the consistency of the system output at a single time step [5], [6],
but are unable to detect any attacks on the actuators since they do
not consider system dynamics [7]. Reference [7] describes dynamic
attack detectors that use the system dynamics, sensing topology, and
the history of actuator inputs and sensor outputs to determine whether
or not a data deception attack has occurred in a given time window.
There are certain attacks, called stealthy or undetectable attacks, that
no dynamic detector can detect. Stealthy dynamic attacks change the
system output in such a way that the output of the system could arise
from the system when it is not under attack [7].

There are several methods to implement attack detection. In [8]
and [9], the authors analyze dynamic attacks that go undetected by
detectors of bad data (e.g., data resulting from sensor failures) for
dynamical systems with process and sensor noise. References [10]
and [11] provide algorithms to both detect and reconstruct the dy-
namic attack. The authors of [12] use sparse optimization techniques
to detect and identify deception attacks in electric power systems.
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Our previous work [13] uses geometric control techniques to analyze
the limitations of detecting sparse sensor attacks. A different class
of attack detectors, known as active attack detectors, determine the
presence of a deception attack by randomly perturbing the system’s
input and measuring the output [14]. Reference [15] surveys fault
detection techniques in dynamic systems that are related to attack
detection in CPS. While previous work in attack detection [4], [7],
[8], [9], [16] focuses on detectability of attacks, this note precisely
clarifies how attack detector performance is sensitive to available
information (specifically initial state information) and time horizons.

We present four main contributions. First, we derive a necessary
and sufficient condition for an attack to be undetectable when the
detector has side initial state information given by an uncorrupted
linear function of the initial system state. When the detector has initial
state information, an attack is undetectable if and only if it induces a
state in the intersection of the system’s weakly unobservable subspace
and the null space of the side information matrix. Second, we show
that an undetectable attack can be maintained if and only if the sum of
the change in state produced by the attack and the zero input evolution
of the state induced by the attack belong to the system’s weakly
unobservable subspace. An attack that is undetectable to a certain
time point may become detectable at a future time as the detector
obtains new sensor measurements. Undetectable attacks that can be
maintained indefinitely are a greater security concern than attacks
that become detectable after a finite time period. Third, we introduce
the zero state inducing attack that is undetectable regardless of the
detector’s initial state information. We show that such an attack exists
if and only if the intersection of the system’s output-nulling reachable
subspace over one time-step and its weakly unobservable subspace
is nonzero. While access to initial state information improves the
performance of attack detectors, it is practically important to identify
the existence of attacks that are undetectable regardless of the
detector’s initial state information. Finally, we design a dynamic
attack detector that uses side initial state information, has no false
alarms, and only misses undetectable attacks.

The rest of this note is organized as follows. In Section II,
we specify the system and attack model, review attack detection,
introduce side information, and formally state the problem. Section III
contains our main technical contributions. Section IV gives the
proofs of our main results, section V provides a numerical example
illustrating the performance of detectors with side information, and
we conclude in Section VI.

II. BACKGROUND

A. System Model

The cyber-physical system is modeled by

x(k + 1) = Ax(k) +Bu(k) +Ba(k),

y(k) = Cx(k) +Du(k) +Da(k),
(1)

where: x ∈ Rn is the system state, y ∈ Rp is the system output, k ∈
Z is the time index, u ∈ Rm is the known input, and a(k) ∈ Rs is the
unknown attack. Since the input u(k) is known, its contribution to the
output y(k) is also known, and therefore, u(k) can be ignored. Thus,
for the remainder of the paper, unless otherwise stated, we consider
the case of u(k) ≡ 0, ∀k = 0, 1, . . . , without loss of generality.
Accordingly, we modify the system model to be

x(k + 1) = Ax(k) +Ba(k),

y(k) = Cx(k) +Da(k).
(2)

The matrices B and D describe the capabilities of the attacker.
We provide details on the attacker in Section II-C. We use the
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notation Σ = (A,B,C,D) to represent the system1 in equation (2).
Throughout, we make the following assumption.

Assumption 1. The pair (A,C) is observable.

Equation (2) with Assumption 1 is a standard model used in the
cyber-physical security literature, e.g., [10], [16].

We consider the following sequences: the output sequence (or
system output trajectory)

Y (T ) =
[
y(0)T y(1)T · · · y(T )T

]T
, (3)

and the unknown attack sequence

E(T ) =
[
a(0)T a(1)T · · · a(T )T

]T
, (4)

with T ≥ n − 1. An attack occurs when E(T ) 6= 0. The output
trajectory for the deterministic system (1) is

Y (T ) = OTx(0) +MTE(T ), (5)

where x(0) is the system’s initial state, OT is the extended observ-
ability matrix,

OT =


C
CA

...
CAT

 , (6)

and MT is the input-output matrix,

MT =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

. . .
. . .

...
CAt1B CAt2B · · · CB D

 , (7)

where ti = T −i. In our results, we will also work with the extended
controllability matrix CT :

CT =
[
ATB AT−1B · · · B

]
. (8)

The change in state produced by an attack E(T ) is CTE(T ).
We now consider side initial state information. The detector knows

the side initial state information

yΩ = Ωx(0), (9)

where yΩ ∈ Rq and Ω ∈ Rq×n. We call Ω the side information
matrix. The matrix Ω having full column rank corresponds to the
case in which yΩ gives full information about x(0), i.e., assuming
that we know Ω, we can exactly determine x(0) from yΩ when Ω
is full rank. The matrix Ω being the zero matrix corresponds to the
case in which yΩ gives no information about x(0).

The side information yΩ captures knowledge of the initial state
x(0) from the physical description of the system. For example,
consider a remotely controlled vehicle whose state consists of its
position and velocity. At t = 0 the initial velocity is known to be
0, since, by definition, the system was not running before t = 0.
We consider the initial position to be unknown since the vehicle is
remotely controlled. We emphasize that the side information yΩ does
not rely on sensor measurements. For this reason, the attacker cannot
modify the side information yΩ.

1The term “system” refers to the cyber-physical system and attacker
collectively. The cyber-physical system gives the A and C matrices of Σ,
while the attacker gives the B and D matrices of Σ.

B. Extended System Subspaces

Throughout this note, we use properties of the system’s extended
observability and reachability subspaces (defined in [17] and [18]) to
derive our results. We review their definitions here.

Definition 1 (Weakly Unobservable Subspace V(Σ) [17]). The
weakly unobservable subspace of a system Σ, V(Σ), is the subspace
of all x ∈ Rn such that, for a system with initial condition x(0) = x,
there exists an input sequence E(n−1) so that the output trajectory
is Y (n− 1) = 0.

A state x(0) belongs to the weakly unobservable subspace of Σ if
and only if there exists an input sequence E(T ) such that [17], [18]

MTE(T ) +OTx(0) = 0 for any T = 0, 1, 2, . . .

References [18], [17], [19], [20] present approaches to calculate a
basis for V(Σ).

Another extended system subspace of interest is the output-nulling
reachable subspace over k steps.

Definition 2 (Output-nulling Reachable Subspace Wk [18]). The
output-nulling reachable subspace over k steps, Wk, is the subspace
of all states x ∈ Rn such that there exists an input (attack) sequence
E(k − 1) that brings the system from x(0) = 0 to x(k) = x while
producing the output sequence Y (k − 1) = 0.

The output-nulling reachable subspace over k steps is the subspace
of all states x ∈ Rn for which there exists E(k − 1) ∈ Rsk such
that Ck−1E(k − 1) = x and Mk−1E(k − 1) = 0.

C. Dynamic Attack Detection: Preliminaries

A dynamic attack detector, ψ, examines the system output Y (T )
and side initial state information yΩ to determine whether or not an
attack has occurred:

ψ : Rp(T+1) × Rq → {Attack,No Attack} , (10)

where “Attack” means that an attack has occurred. We make the
following assumptions.

Assumption 2. The detector ψ knows the matrices A and C in (2)
a priori. The detector ψ does not know the matrices B and D in (2)
a priori. The detector ψ a priori does not know x(0) but knows the
matrix Ω in (9).

If we do not impose further restrictions on the detector, then, trivially,
we can consider a detector ψ that maps any input to the “Attack”
output. For this particular detector, every attack is detectable, but
clearly this is not interesting. We restrict our focus to consistent attack
detectors.

Definition 3 (Consistent Attack Detector [7]). An attack detector ψ
is consistent if ψ (OT θ,Ωθ) = No Attack for all θ ∈ Rn.

Consistency is a desired property of attack detectors: consistent attack
detectors do not produce false alarms. Another desired property of
attack detectors is soundness.

Definition 4 (Sound Attack Detector). A consistent attack detector ψ
is sound if ψ (Y (T ), yΩ) = No Attack for some Y (T ) and yΩ, then,
for any other consistent detector ψ̃, ψ̃ (Y (T ), yΩ) = No Attack.

An sound consistent detector is one that detects all possible attacks
without violating the consistency property.

We now provide assumptions on the attacker.
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Assumption 3. The matrix
[
B
D

]
is injective2.

Assumption 4. The attacker knows the matrices A,B,C,D and Ω
and the system initial state x(0) a priori.

Assumption 5. The attacker cannot modify yΩ.

Let E(T ) be an attack, let Y (T ) be the output of the system Σ
under attack E(T ), and let yΩ be the side initial state information.
Considering only consistent detectors, we define undetectable attacks
as follows:

Definition 5 (Undetectable Attack). An attack E(T ) is unde-
tectable if, for every consistent detector ψ and any x(0) ∈ Rn,
ψ (Y (T ), yΩ) = No Attack, where Y (T ) = OTx(0) +MTE(T ).

A detectable attack is any attack that is not undetectable. We partition
the set of all possible attacks (including E(T ) = 0), Rs(T+1), into
a set of undetectable attacks and a set of detectable attacks.

Definition 6 (Set of Undetectable Attacks UΩ,T ). The set UΩ,T is
the union of set of all attacks E(T ) ∈ Rs(T+1) such that E(T ) is
undetectable and the set that only contains E(T ) = 0.

When the system is not under attack (i.e., E(T ) = 0), consistent
detectors report “No Attack”, so 0 ∈ UΩ,T .

Define an extension of an attack as follows:

Definition 7 (Extension of an Attack). An extension of E(T ),
E(T ) 6= 0, is an attack of the form

Ê(T ′) =
[
E(T )T a(T + 1)T · · · a(T ′)T

]T
, (11)

for T ′ > T .

The attack sequence a(T + 1), . . . , a(T ′) is allowed to be the zero
sequence. We provide a necessary and sufficient condition for which
an undetectable attack E(T ) has undetectable extensions Ê(T ′) for
all T ′ > T so that the attack sequence never becomes detectable
(even as the attack detector obtains new sensor measurements at each
time step). If E(T ) does not have an undetectable extension for all
times T ′ > T , then, at some time T ′ > T , regardless of the attack
sequence a(T + 1), . . . , a(T ′), Ê(T ′) is detectable.

Reference [7] provides a necessary and sufficient condition for an
attack sequence E(T ) to be undetectable when Ω = 0.

Lemma 1 ([7]). The attack E(T ) is undetectable if and only if

OTx(0) +MTE(T ) = OTx
′(0)

for some initial states x(0), x′(0) ∈ Rn.

One particular form of attack that is undetectable against systems
with no side initial state information is known as the zero dynamics
attack.

Definition 8 (Zero Dynamics Attack [4]). A zero dynamics attack is
an attack E(T ) =

[
a(0)T · · · a(T )T

]T
with

a(k) = λkg, (12)

where g 6= 0 and λ ∈ C satisfy[
λI −A −B
C D

] [
θ
g

]
= 0. (13)

A zero dynamics attack exists if and only if there exists λ ∈ C
for which there is a nonzero solution to (13) [4], [7]. Since, by

2If this matrix is not injective, we can remove the redundant columns to
construct an injective matrix. In doing so, we do not change the capabilities
of the attacker. Thus, this assumption is made without loss of generality.

Assumption 3, the matrix
[
BT DT

]T is injective, and g 6= 0,
we have that θ 6= 0. By construction, a zero dynamics attack satisfies

MTE(T ) +OT θ = 0.

Therefore, a zero dynamics attack satisfies the condition given in
Lemma 1, where θ = x(0) − x′(0). We consider T ≥ n − 1, so
OT is injective since (A,C) is observable. Since θ 6= 0, a zero
dynamics attack produces a nonzero change to the output of the
system. Zero dynamics attacks are also related to malicious attacks
against distributed function calculation [21].

We introduce the zero state inducing attack:

Definition 9 (Zero State Inducing Attack). An attack sequence E(T )
is called a zero state inducing attack if it satisfies MTE(T ) = 0.

The name zero-state inducing attack refers to the property that such
an attack does not change the system sensor output, i.e., the change in
output is equal to the response of the system when its initial state is
x(0) = 0. We show that the zero state inducing attack is undetectable
regardless of the detector’s side information matrix Ω. It is the only
type of attack to remain undetectable even if Ω is full rank.

D. Problem Statement

Consider a system Σ = (A,B,C,D) over a time interval
0, 1, . . . , T , T ≥ n − 1, with initial state x(0) and side initial state
information yΩ = Ωx(0). We consider the following four main prob-
lems: 1) find the set of all undetectable attacks, UΩ,T ; 2) determine
which attacks E(T ) ∈ UΩ,T have undetectable extensions up to any
time T ′ > T ; 3) determine if there exists an arbitrarily long zero
state inducing attack against Σ and; 4) design a consistent detector
that uses side information and detects all detectable attacks.

III. MAIN RESULTS

A. Initial State Information and Undetectable Attacks

First, we find a necessary and sufficient condition for an attack
to be undetectable, when the attack detector has side initial state
information yΩ. Let N (Ω) be the null space of Ω.

Theorem 1 (Undetectable Attacks with Side Initial State Informa-
tion). An attack E(T ) is undetectable (E(T ) ∈ UΩ,T ) if and only if
there exists θ ∈ N (Ω) ∩ V(Σ) for which MTE(T ) = −OT θ.

Theorem 1 states that an attack E(T ) is undetectable over the time
interval 0, . . . , T if and only if the output contributed by the attack
(i.e., MTE(T )) equals the negative of the output of the system
operating without attack from an initial state θ, where θ belongs
to the intersection of the system’s weakly unobservable subspace,
V(Σ), and the null-space of the side information matrix, N (Ω). We
call θ the state induced by the attack. If N (Ω) has dimension strictly
less than n (i.e., if the side initial state information is non-trivial),
then, by using the side initial state information yΩ, an attack detector
may be able to detect attacks that would otherwise be undetectable
(in the absence of side information).

Theorem 1 is valid for any side information matrix Ω.

Corollary 1 (No Initial State Information: Ω = 0). An attack E(T )
is undetectable if and only ifMTE(T ) = −OT θ for some θ ∈ V(Σ)
when Ω = 0.

By construction, a zero dynamics attack E(T ) satisfiesMTE(T ) +
OT θ = 0, where θ 6= 0 and g 6= 0 (which is used to define E(T )) is
a solution to equation (13). There may be other undetectable attacks
aside from zero dynamics attacks when Ω = 0.
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Corollary 2 (Full Initial State Information: Ω has full column rank).
An attack E(T ) is undetectable if and only if MTE(T ) = 0 when
Ω has full column rank.

According to Corollary 2, the only type of attack that is undetectable
when the initial state is completely known to the detector is the zero
state inducing attack. Figure 1 illustrates the results of Theorem 1 and
its corollaries. Undetectable attacks presented in the literature [7],
[10], [11] rely on the fact that the initial state is unknown to
the detector in order to be stealthy. As Theorem 1 and Figure 1
show, however, that even when the detector knows the initial state
completely, there may still be undetectable attacks. For the special
case of Ω = 0, Theorem 1 is consistent with the results presented
in [7].

Rs(T+1)UΩ,T

ZS ZD

(a) Ω = 0

Rs(T+1)UΩ,T

ZS ZD

(b) Ω 6= 0, Ω is not full rank

Rs(T+1)UΩ,T

ZS ZD

(c) Ω is full rank

Fig. 1: The set of all undetectable attacks UΩ,T depends on the side
initial state information available to the attack detector. ZS and ZD
are the set of all zero state inducing attacks and the set of all zero
dynamics attacks, respectively.

B. Extensions of Undetectable Attacks

Second, we provide a necessary and sufficient condition for an
undetectable attack E(T ) (with T ≥ n− 1) to have an undetectable
extension Ê(T ′). Consider an attack E(T ) ∈ UΩ,T , E(T ) 6= 0.

Theorem 2 (Extensions of Undetectable Attacks). There exists an
undetectable extension Ê(T ′) of E(T ) for all T ′ > T if and only if(
CTE(T ) +AT+1θ

)
∈ V(Σ), where θ satisfiesMTE(T ) = −OT θ

and θ ∈ N (Ω) ∩ V (Σ).

Theorem 2 states that an undetectable attack E(T ) has an unde-
tectable extension Ê(T ′) for any T ′ > T if and only if the sum
of the change in state produced by the attack (CTE(T )) and the
zero-input state response of the state induced by the attack (AT+1θ)
belongs to the system’s weakly unobservable subspace (V (Σ)). If
an attack E(T ) satisfies the conditions given in Theorem 2, then
for any time T ′ > T , there exists a particular sequence of attacks
a(T + 1), . . . , a(t) such that Ê(T ′) is undetectable at time T ′. Con-
versely, if an attack E(T ) does not satisfy the above condition, then
at some time T ′ > T , all extensions Ê(T ′) of E(T ) are detectable.
In this case, all extensions Ê(T ′) are detectable by time T ′ because

the detector obtains sensor measurements y(T + 1), . . . , y(T ′ + 1)
(even though E(T ) was undetectable).

C. Zero State Inducing Attack

Third, we provide a necessary and sufficient condition for the
existence of a zero state inducing attack that can be maintained for
a arbitrarily long time. We restrict our focus to zero state inducing
attacks that begin at time 0. This is to prevent trivial lengthening by
appending a fixed length zero state inducing attack E(T ) to a zero
vector3.

Theorem 3 (Arbitrarily Long Zero State Inducing Attacks). There
exists an attack E(T ) against the system Σ that begins at time 0 such
thatMTE(T ) = 0 for any T = 0, 1, . . . if and only ifW1∩V(Σ) 6=
{0}, where W1 is the output-nulling reachable subspace over one
time step.

Theorem 3 states that there exists an arbitrarily long zero state
inducing attack against a system Σ if and only if the intersection
of the system’s weakly unobservable subspace, V(Σ) and its output-
nulling reachable subspace over one step, W1 is nonzero.

D. Attack Detection With Side Information

We design a consistent dynamic attack detector that detects all
attacks E(T ) that do not belong to UΩ,T . Our dynamic detector
operates sequentially: at every time instant k (with the exception of
an initialization period), the detector collects new sensor outputs y(k)
and makes a decision on whether or not the system was attacked in
the time period up to time k. Our detector only uses a finite window of
sensor measurements in each time interval, which offers advantageous
in implementation over detectors that use the entire history of sensor
measurements.

First, define Y (k) as the l-length window of sensor measurements
ending at time k, where k ≥ l − 1:

Y (k)=
[
y(k − l + 1)T y(k − l + 2)T · · · y(k)T

]T
. (14)

The attack detector makes a decision at every time instant starting at
l − 1. Second, define Ŷ (k), the input to the attack detector at time
k, as follows:

Ŷ (k) =

{ [
yTΩ Y (k)T

]T
, k = l − 1

Y (k), k = l, l + 1, . . .
. (15)

Third, define the orthogonal projection (operator) onto the range
space of a matrix K (where K has full column rank) as

ΠK = K
(
KTK

)−1

KT . (16)

We construct the detector ψ as

ψ
(
Ŷ (k)

)
=

{
No Attack, Ŷ (k) = ΠK(k)Ŷ (k)
Attack, Otherwise

, (17)

where

K(k) =

{ [
ΩT OT

l−1

]T
, k = l − 1

Ol−1, k = l, l + 1, . . . ,
. (18)

The detector decides that no attack has occurred in the time interval
0, . . . , T if ψ

(
Ŷ (l − 1)

)
= ψ

(
Ŷ (l)

)
= · · · = ψ

(
Ŷ (T )

)
=

No Attack.

3This is not a restriction on the definition of the zero state inducing attack.
An attack E(T ) with nonzero first attack time can still be a zero state inducing
attack if MTE(T ) = 0.
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Theorem 4 (Consistency and Soundness of ψ). For l ≥ n + 1,
where n is the dimension of the system state space, ψ

(
Ŷ (l − 1)

)
=

ψ
(
Ŷ (l)

)
= · · · = ψ

(
Ŷ (T )

)
= No Attack if and only if Y (T ) =

OTx(0) and yΩ = Ωx(0) for some x(0) ∈ Rn.

The detector ψ is consistent and sound when the window length l is
sufficiently long. The novelty of our detector is its use of the available
side information yΩ. Detectors that do not use side information (e.g.,
fault detectors such as those presented in [15]) may still detect some
attacks, but, following Theorem 1, such detectors may not be sound.
That is, there are certain attacks that are only detectable if the detector
uses side information yΩ.

IV. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

First, we provide an intermediate result by modifying Lemma 1
to account for attack detectors with side information yΩ. Consider a
system Σ = (A,B,C,D) equipped with an attack detector that has
side information matrix Ω.

Lemma 2. An attack E(T ) against the system Σ is undetectable if
and only if MTE(T ) +OTx(0) = OTx

′(0) and Ωx(0) = Ωx′(0)
for some initial states x(0), x′(0) ∈ Rn.

We use the above Lemma to prove Theorem 1
Proof (Theorem 1): (If) Let x(0) be the initial state of the

system. Let E(T ) be an attack such that MTE(T ) = −OT θ for
θ ∈ N (Ω) ∩ V (Σ). Let x′(0) = x(0) − θ. Then MTE(T ) +
OTx(0) = OTx

′(0). In addition, since θ ∈ N (Ω), Ωx′(0) =
Ω (x(0)− θ) = Ωx(0). Thus, for any x(0), there exists x′(0)
such that MTE(T ) + OTx(0) = OTx

′(0) and Ωx(0) = Ωx′(0),
which means, by Lemma 2, E(T ) is an undetectable attack. Thus,
E(T ) ∈ UΩ,T .

(Only If) Let x(0) be the initial state of the system. Let E(T ) ∈
UΩ,T . Then, by Lemma 2, there exists x′(0) ∈ Rn such that
MTE(T ) + OTx(0) = OTx

′(0) and Ωx(0) = Ωx′(0). Let θ =
x(0) − x′(0). Substituting for θ we have that MTE(T ) = −OT θ
and Ωθ = 0. Thus, MTE(T ) = −OT θ for θ ∈ N (Ω) ∩ V(Σ).

B. Proof of Theorem 2

Proof: (Only If) We show that if there exists an unde-
tectable extension Ê(T ′) for all T ′ > T , then, necessarily,(
CTE(T ) +AT+1θ

)
∈ V(Σ). Let

Ê(T ′) =
[
E(T )T a(T + 1)T · · · a(T ′)T

]T
be an undetectable extension of E(T ). Since Ê(T ′) is undetectable,
then, by Theorem 1, it must satisfy MT ′Ê(T ′) + OT ′θ′ = 0 for
some θ′ ∈ N (Ω) ∩ V (Σ).

We first show that θ′ = θ. We partition the matrixMT ′ as follows:

MT ′ =

[
MT 0
QT

T ′ MT ′−T−1

]
, (19)

where QT
T ′ = OT ′−T−1CT . Substituting for the partitioned versions

of MT ′ and partitioning OT ′ , we have[
MT 0 OT

QT
T ′ MT ′−T−1 OT ′−T−1A

T+1

][
Ê(T ′)
θ′

]
= 0. (20)

From the first block row of equation (20), we have MTE(T ) +
OT θ

′ = 0, and, from the definition of E(T ), we have MTE(T ) +
OT θ = 0. Thus, OT θ

′ = OT θ. Since T ≥ n−1 and Σ is observable,
OT is injective, and θ′ = θ.

Substituting θ = θ′, the second block row of equation (20) gives

OT ′−T−1

(
CTE(T ) +AT+1θ

)
+MT ′−T−1

 a(T + 1)
...

a(T ′)

 = 0.
(21)

Since there exists an undetectable extension Ê(T ′) of E(T ) for
all T ′ > T , equation (21) must be satisfied for all T ′ > T . In
particular, equation (21) is true for T ′ = T + n, which shows that(
CTE(T ) +AT+1θ

)
∈ V(Σ).

(If) If
(
CTE(T ) +AT+1θ

)
∈ V(Σ), then, for all T ′ > T , there

exists an attack sequence
[
a(T + 1)T · · · a(T ′)T

]T such that
equations (21) is satisfied. For all T ′ > T , we construct Ê(T ′) by
appending

[
a(T + 1)T · · · a(T ′)T

]T to E(T ). By definition
of E(T ), we haveMTE(T )+OT θ = 0, where θ ∈ N (Ω)∩V (Σ).

Combining this fact with equation (21), we see that
[
Ê(T ′)
θ′

]
satisfies equation (20) with θ′ = θ. Thus, we have

MT ′Ê(T ′) +OT ′θ = 0,

which shows that Ê(T ′) is an undetectable extension of E(T ).

C. Proof of Theorem 3

Proof: (If) We construct a zero state inducing attack E(T )
that begins at time 0 against Σ of arbitrary length T under the
condition that W1 ∩ V(Σ) 6= {0}. The initial state of the system
Σ, x(0), does not affect its extended observability and reachability
subspaces, so, without loss of generality, let the system have initial
state x(0) = 0. If W1 ∩ V(Σ) 6= {0}, there exists an attack
a(0) 6= 0 such that x(1) = Ba(0), y(0) = Da(0) = 0, and
x(1) ∈ V(Σ). Since x(1) ∈ V(Σ), for any T , there exists a sequence
of attacks

[
a(1)T a(2)T · · · a(T )T

]T such that the output[
y(1)T y(2)T · · · y(T )T

]T is 0. Thus, for any T , there
exists an attack E(T ) =

[
a(0)T a(1)T · · · a(T )T

]T with
a(0) 6= 0 such that MTE(T ) = 0.

(Only If) We show that if there exists a zero state inducing attack
that begins at time 0 for any T against the system Σ, then W1(Σ)∩
V(Σ) 6= {0}. Such an attack exists for any T , so it exists for T = n.
Let

E(n) =
[
a(0)T a(1)T · · · a(n)T

]T
be a zero state inducing attack with a(0) 6= 0. Since E(n) induces the
zero state, we have MnE(n) = 0, which implies that Da(0) = 0.

Since
[
B
D

]
is injective and Da(0) = 0, we have x(1) = Ba(0) 6=

0 and x(1) ∈ W1. The sequence[
a(1)T a(2)T · · · a(n)T

]T
is an input sequence over n steps such that a system with state x(1) =
Ba(0) produces zero output over the time period 1, . . . , n. Since such
an input sequence exists, x(1) ∈ V (Σ) and x(1) ∈ W1∩V(Σ). Since
x(1) 6= 0, W1 ∩ V(Σ) 6= {0}.

D. Proof of Theorem 4

Proof: (If) Let Y (T ) = OTx(0) and yΩ = Ωx(0) for some
x(0) ∈ Rn. Then, by construction of Ŷ (k),

Ŷ (k) = K(k)Ak−l+1x(0). (22)

for all k = l − 1, l, . . . , T , which means that

ΠK(k)Ŷ (k) = Ŷ (k), (23)
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for all k = l − 1, l, . . . , T . Thus,

ψ
(
Ŷ (l − 1)

)
= ψ

(
Ŷ (l)

)
= · · · = ψ

(
Ŷ (T )

)
= No Attack.

(Only If) We resort to induction.
Base Case: In the base case, we show that if

ψ
(
Ŷ (l − 1)

)
= ψ

(
Ŷ (l)

)
= No Attack,

then Y (l) = Olx(0) and yΩ = Ωx(0) for some x(0) ∈ Rn. Since
ψ
(
Ŷ (l − 1)

)
= No Attack, we have

Ŷ (l − 1) = ΠK(l−1)Ŷ (l − 1), (24)

which means that

Ŷ (l − 1) = K(l − 1)x(0), (25)

=

[
Ω
Ol−1

]
x(0), (26)

for some x(0) ∈ Rn. Since ψ
(
Ŷ (l)

)
= No Attack, we have

Ŷ (l) = Ol−1x
′(0). (27)

for some x′(0) ∈ Rn. From equation (26), we have[
y(1)T · · · y(l − 1)T

]T
= Ol−2Ax(0), (28)

and from equation (27), we have[
y(1)T · · · y(l − 1)T

]T
= Ol−2x

′(0). (29)

The pair (A,C) is observable and l ≥ n+ 1, so the matrix Ol−2 is
injective. Thus, combining equations (28) and (29), we have x′(0) =
Ax(0). By definition of Ŷ (l) and substituting x′(0) = Ax(0) into
equation (27), we have that y(l) = CAlx(0). Note that Y (l) =[
Y (l − 1)T y(l)T

]T
. Thus, Y (l) = Olx(0) and yΩ = Ωx(0)

for some x(0) ∈ Rn.
Induction Step: In the induction step, we assume that if

ψ
(
Ŷ (l − 1)

)
= · · · = ψ

(
Ŷ (T − 1)

)
= No Attack,

then Y (T−1) = OT−1x(0) and yΩ = Ωx(0) for some x(0) ∈ Rn.
We show that if ψ

(
Ŷ (T )

)
= No Attack as well, then Y (T ) =

OTx(0) and yΩ = Ωx(0) for some x(0) ∈ Rn.
Since ψ

(
Ŷ (T )

)
= No Attack, we have

Ŷ (T ) = Ol−1x
′(0), (30)

for some x′(0) ∈ Rn. From the induction hypothesis, we have that
Y (T − 1) = OT−1x(0), which means that[

y(T − l + 1)T · · · Y (T − 1)T
]T
=Ol−2A

T−l+1x(0). (31)

From equation (30), we have[
y(T − l + 1)T · · · Y (T − 1)T

]T
= Ol−2x

′(0). (32)

The pair (A,C) is observable and l ≥ n + 1, so the matrix Ol−2

is injective. As a result, x′(0) = AT−l+1x(0). Substituting θ′ =
AT−l+1 into equation (32), we have y(T ) = CATx(0). Note that
Y (T ) =

[
Y (T − 1)T y(T )T

]T . Thus, Y (T ) = OTx(0) and
yΩ = Ωx(0) for some x(0) ∈ Rn.

V. NUMERICAL EXAMPLE

We illustrate our results with an example of a remotely piloted
aircraft subject to both nonzero state inducing attacks and zero state
inducing attacks. Reference [22] provides a numerical model of the
longitudinal dynamics of a remotely piloted aircraft that accounts
for the aircraft’s physical parameters. We describe the longitudinal
dynamics of the aircraft using four state variables: horizontal velocity
(x1), vertical velocity (x2), pitch rate (x3), and pitch angle (x4). The
aircraft we consider has two actuators: the elevator (u1) and the thrust
(u2). The aircraft also has three sensors: the horizontal velocity sensor
(y1), the vertical velocity sensor (y2), and the pitch angle sensor (y3).

The evolution of the state variables x1, . . . , x4 is determined by
physical principles governing the longitudinal flight of the aircraft
and depends on physical parameters of the aircraft such as its mass
and its pitch moment. The model is linearized about an equilibrium
point, so the state variables x1, . . . , x4 represent values of the internal
states relative to a fixed point (e.g., x1 in the linearized model is the
horizontal velocity of the aircraft relative to an equilibrium horizontal
velocity). The linearized, discretized model for the aircraft gives the
following dynamics and sensing matrices [22]:

A =


0.992 0.030 −0.003 −0.977
0.025 0.684 1.847 −0.041
0.054 −0.100 0.381 −0.025
0.003 −0.006 0.068 0.999

 , (33)

C =

 1 0 0 0
0 1 0 0
0 0 0 1

 . (34)

The pair (A,C) in this example is observable.
We consider an attacker modeled by the following B and D

matrices:

B =


0.001 0.025 0 0
−3.224 −0.035 0 0
−1.995 −0.021 0 0
−0.115 −0.001 0 0

 , (35)

D =

 0 0 1 0
0 0 0 1
0 0 0 0

 . (36)

The attacker can attack both actuators (elevator, u1, and thrust,
u2) and the horizontal velocity (y1) and vertical velocity (y2)
sensors. There exists a zero dynamics attack against the system
Σ = (A,B,C,D).

In this numerical example, we compare the performance of a
detector that does not use side information (i.e., the detector’s side
information matrix is Ω = 0) and the performance of a detector that
uses side information matrix

Ω =
[

1 0 0 0
]
.

The detector with nontrivial side information knows the initial
horizontal velocity x1(0). Both detectors are implementations of the
windowed detector presented in Section III-D; the only difference
between the use of side initial state information.

We construct a zero dynamics attack (as defined in [4] and [7])
against the remotely piloted aircraft. Following equation (12), we
construct the zero dynamics attack component wise as

a(k)=(10)(.9779)k
[
.0324 0 −.6396 .3007

]T
, (37)

where k = 0, . . . , 30. The performance of the two detectors are
shown in Figure 2. The detector without side information is unable
to detect the zero dynamics attack – the detector outputs 0, equivalent
to “No Attack” for all times. The detector with side information is
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Fig. 2: Detector performance without side information (top) and with
side information (bottom) against zero dynamics attack.

able to detect the zero dynamics attack – the detector has an output
of 1, equivalent to “Attack” at time t= 3.

VI. CONCLUSION

In this paper, we studied the effect of side initial state information
on the dynamic detection of data deception attacks against cyber-
physical systems. First, an undetectable attack induces a state in the
intersection of the system’s weakly unobservable subspace, V(Σ),
and the null space of the side information matrix, N (Ω). Second,
an undetectable attack E(T ) has an undetectable extension to any
T ′ > T if and only if the sum of the change in state produced
by the attack, CTE(T ), and the zero-input state response of the
state induced by the attack, AT+1θ, belongs to the system’s weakly
unobservable subspace, V(Σ). Third, there exists an arbitrarily long
zero state inducing attack if and only if the intersection of the
system’s weakly unobservable subspace, V(Σ), and the system’s
output-nulling reachable subspace over one step, W1, is nonzero.
Finally, we designed an attack detector that uses side information
and detects all attacks that are not undetectable.
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