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Abstract—In this note, the coordination of linear discrete-time multi-
agent systems over digital networks is investigated with unmeasurable
states in agents’ dynamics. The quantized-observer based communication
protocols and Certainty Equivalence principle based control protocols
are proposed to characterize the inter-agent communication and the
cooperative control in an integrative framework. By investigating the
structural and asymptotic properties of the equations of stabilization
and estimation errors, which are nonlinearly coupled by the finite-level
quantization scheme, some necessary conditions and sufficient conditions
are given for the existence of such communication and control protocols to
ensure the inter-agent state observation and cooperative stabilization. It is
shown that these conditions come down to the simultaneous stabilizability
and the detectability of the dynamics of agents and the structure of the
communication network.

Index Terms—Multi-agent system, Cooperatability, Finite-level quan-
tization, Quantized observer

I. INTRODUCTION

In recent years, the coordination of multi-agent systems has at-
tracted lots of attention by the systems and control community due
to its wide applications. For the coordination of multi-agent systems
with digital networks, the inter-agent communication, which aims
at obtaining neighbors’ state information as precise as possible, is
usually the foundation of designing the cooperative control laws.
In real digital networks, communication channels only have finite
capacities and the communication between different agents is a
process which consists of encoding, information transmitting and
decoding. For this case, the instantaneously precise communication is
generally impossible and one may seek encoding-decoding schemes
to achieve asymptotically precise communication.

The most basic coordination of multi-agent systems is distributed
consensus or synchronization, which is also called cooperative sta-
bilization [1]. Quantized consensus and consensus with quantized
communication can be dated back to [2] and [3] with the static
quantization. Carli et.al. [4] proposed a dynamic encoding-decoding
scheme for distributed averaging. They proved that with infinite-
level logarithmic quantization, the closed-loop system can achieve
exact average-consensus asymptotically. Li et.al. [5] proposed a dy-
namic encoding-decoding scheme with vanishing scaling function and
finite-level uniform quantizers. They proved that the exact average-
consensus can be achieved exponentially fast based on merely one-bit
information exchange per communication between neighbors. This
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algorithm was then further generalized to the cases with directed and
time-varying topologies ([6]-[7]), the case with time delays ([8]),
the case with general linear agent dynamics with full measurable
states ([15]) and the case with second-order integrator dynamics with
partially measurable states ([12]). Recent works in this direction can
be found in [9] for ternary information exchange, the continuous-time
dynamics ([10]) and consensus over finite fields ([11]).

All the above literature ([2]-[12]) focused on designing specific
communication and control protocols and analyzing the closed-loop
performances for specific systems. However, a fundamental problem
of the coordination of multi-agent systems over digital networks is for
what kinds of dynamic networks, there exist proper communication
and control protocols which can guarantee the objectives of the inter-
agent communication and cooperative control jointly. The coordi-
nation of digital multi-agent networks consists of two fundamental
factors, one is the inter-agent state observation by communication
among agents, and the other one is the cooperative control by each
agent to achieve given coordination objectives. The inter-agent state
observation is the objective of the inter-agent communication and is
the basis of designing the cooperative control laws. This is similar in
spirit to that the state observation is the basis of the feedback control
design for single-agent systems with unmeasurable states. It is of
theoretical and practical significance to characterize the inter-agent
state observation and the cooperative control of multi-agent systems
in an integrative framework. In this framework, one needs to first
give the conditions for the existence of communication and control
protocols to ensure both the communication and control objectives.
For the case with precise communication, the consentability of linear
multi-agent systems were studied. The concept of consentability was
first proposed by [13]-[14]. It was shown that the controllability of
agent dynamics and the connectivity of the communication topology
graph have a joint influence on the consentability. You and Xie
[15] and Gu et.al. [16] studied the consentability of single-input
linear discrete-time systems and sufficient conditions were given with
respect to (w. r. t.) relative state feedback control protocols in [15]
and w. r. t. filtered relative state feedback control protocols in [16],
respectively.

In this note, motivated by [12]-[15], we consider the cooperatability
of linear discrete-time multi-agent systems with unmeasurable states
and finite communication data rate. We propose a class of commu-
nication protocols based on quantized-observer type encoders and
decoders and a class of control protocols based on the relative state
feedback control law and the Certainty Equivalence principle. The
closed-loop dynamics of the cooperative stabilization and the state
estimation errors are coupled by the nonlinearities generated by the
finite-level quantization scheme. By investigating the structural and
asymptotic properties of the overall closed-loop equations, we give
some necessary conditions and sufficient conditions for achieving
inter-agent state observation and cooperative stabilization jointly w.
r. t. the proposed classes of communication and control protocols. It
is shown that the cooperatability of multi-agent systems is related to
the simultaneous stabilizability and the detectability of the dynamics
of agents and the structure of the communication graph.

Different from [15] for the case with fully measurable states, we
consider the case with unmeasurable states and the finite commu-
nication data rate. The quantized-observer type encoding/decoding
scheme proposed for second-order integrators in [12] is generalized
for the case with general linear dynamics. Compared with [15]
and [16] which focused on sufficient conditions, we show that the
simultaneous stabilizablility of (A, λi(L)B), i = 2, · · · , N and the
detectability of (A,C) are sufficient, and also necessary in some
sense, for the cooperatability of the linear multi-agent systems over
digital networks, where A, B and C are the system matrix, the
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input matrix and the output matrix, respectively, of each agent and
λi(L), i = 2, · · · , N , are nonzero eigenvalues of the Laplacian
matrix L of the communication graph. We also show that the
stabilizability of (A,B)(detectability of (A,C)) is necessary for the
cooperative stabilization (inter-agent state observation), regardless of
whether the inter-agent state observation (cooperative stabilization)
is required.

The following notation will be used. Denote the column vectors
or matrices with all elements being 1 and 0 by 1 and 0, respectively.
Denote the identity matrix with dimension n by In. Denote the sets of
real numbers, positive real numbers and conjugate numbers by R, R+

and C, respectively, and Rn denotes the n-dimensional real space.
For any given vector X ∈ Rn or matrix X = [xij ] ∈ Rn×m, its
transpose is denoted by XT , and its conjugate transpose is denoted by
X∗. Denote the Euclidean norm of X by ‖X‖ and the infinite norm
of X by ‖X‖∞. Denote the kth element of vector X by [X]k. Denote
the spectral radius of square matrix X by ρ(X). Define Bn×m

r =
{X ∈ Rn×m|‖X‖ < r} and Bn

r = {X ∈ Rn|‖X‖∞ < r}, r ∈
R+⋃{+∞}. The Kronecker product is denoted by ⊗.

II. PROBLEM FORMULATION

The dynamics of each agent is given by{
xi(t+ 1) = Axi(t) +Bui(t),

yi(t) = Cxi(t),
t = 0, 1, · · · , (1)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Here, xi(t), yi(t)
and ui(t) are the state, the output and the control input of agent i.
The overall communication structure of the network is represented
by a directed graph G = {V, E ,A }, where V = {1, · · · , N} is the
node set and each node represents an agent; E denotes the edge set
and there is an edge (j, i) ∈ E if and only if there is a communication
channel from j to i, then, agent i is called the receiver and agent j
is called the sender, or i’s neighbor. The set of agent i’s neighbors
is denoted by Ni = {j ∈ V |(j, i) ∈ E }. We denote A = [aij ] ∈
RN×N as the weighted adjacent matrix of G , aij > 0 if and only
if j ∈ Ni. Here we assume aii = 0. Denote degi =

∑N
j=1 aij as

the in-degree of node i and D = diag(deg1, · · · , degN ) is called
the degree matrix of G . The Laplacian matrix L of G is defined
as L = D − A , and its eigenvalues in an ascending order of real
parts are denoted by λ1(L) = 0, λi(L), i = 2, · · · , N . The agent
dynamics (1) together with the communication topology graph G is
called a dynamic network1 and is denoted by (A,B,C,G ).

For real digital networks, only finite bits of data can be transmitted
at each time step, therefore, each agent needs to first quantize
and encode its output into finite symbols before transmitting them.
Each pair of adjacent agents uses an encoding-decoding scheme
to exchange information: For each digital communication channel
(j, i), there is an encoder/decoder pair, denoted by Hji = (Θj ,Ψji),
associate with it. Here, Θj denotes the encoder maintained by agent j
and Ψji denotes the decoder maintained by agent i. For the dynamic
network (A,B,C,G ), the set {Hji, i = 1, · · · , N, j ∈ Ni|Hji =
(Θj ,Ψji)} of encoder-decoder pairs over the whole network is called
a communication protocol, and the collection of such communication
protocols is denoted by the communication protocol set H .

In this note, we propose the following communication protocol set:

H (%, LG) =
{
H(γ, α, αu, L, Lu, G), γ ∈ (0, %), α ∈ (0, 1],

αu ∈ (0, 1], L ∈ N, Lu ∈ N, G ∈ Bn×p
LG

}
,

(2)

1The concept of dynamic network of agents without output equations was
defined in [17].

where H(γ, α, αu, L, Lu, G) = {Hji, i = 1, · · · , N, j ∈ Ni|Hji =
(Θj ,Ψji), }. Here the constants LG ∈ R+⋃{+∞}, % ∈ (0, 1] are
given parameters of the communication protocol set, while γ, α, αu,
L, Lu and G are parameters of a specific communication protocol.
For each digital channel (j, i), the encoder is given by

Θj =



x̂j(0) = x̂j0, ûj(0) = ûj0,

sj(t) = Qα,L

(
yj(t− 1)− Cx̂j(t− 1)

γt−1

)
,

x̂j(t) = Ax̂j(t− 1) + γt−1Gsj(t) +Bûj(t− 1),

ûj(t) = ûj(t− 1) + γt−1su,j(t),

su,j(t) = Qαu,Lu

(
uj(t)− ûj(t− 1)

γt−1

)
.

(3)

and the decoder is given by

Ψji =


x̂ji(0) = x̂j0, ûji(0) = ûj0,

x̂ji(t) = Ax̂ji(t− 1) + γt−1Gsj(t) +Bûji(t− 1),

ûji(t) = ûji(t− 1) + γt−1su,j(t),

(4)

where Qp,M (·) with p ∈ (0, 1] and M = 1, 2, ... is a finite-level
uniform quantizer. For vector inputs, the definition is applied to each
component.

Qp,M (y) =


ip, ip− p

2
≤ y < ip+

p

2
, i = 0, 1, ...,M − 1

Mp, y ≥Mp− p

2
,

−Qp,M (−y), y < −p
2
.

At each time step t, agent j generates the symbolic data sj(t) and
su,j(t) by the encoder Θj and sends them to agent i through the
channel (j, i). After sj(t), su,j(t) are received, by the decoder Ψji,
agent i calculates x̂ji(t) as an estimate of xj(t). Denote Eji(t) =
xj(t)−x̂ji(t) as the state estimation error. From (3) and (4), we have
Eji(t) = xj(t)− x̂j(t), and is denoted by Ej(t) for short. Here, we
say that the dynamic network achieves inter-agent state observation
if

lim
t→∞

(xj(t)− x̂ji(t)) = 0, i = 1, · · · , N, j ∈ Ni.

For the case with precise communication, Olfati-Saber and Murray
[17] proposed a class of relative state feedback control protocols :

ui(t) = K

N∑
j=1

aij(xj(t)− xi(t)), i = 1, · · · , N. (5)

Based on (5) and the Certainty Equivalence principle, we propose the
following control protocol set: U (LK) = {U(K),K ∈ Bm×n

LK
},

where

U(K) =
{
ui(t), t = 0, 1, · · · , i = 1, ..., N |

ui(t) = K
∑
j∈Ni

aij(x̂ji(t)− x̂i(t))
}
.

(6)

The constant LK ∈ R+⋃{+∞} is the given parameter of the control
protocol set and the gain matrix K is the parameter of a control
protocol to be designed.

We say that the dynamic network (A,B,C,G ) is locally coop-
eratable if for any given positive constants C1, C2, C3, there exist
communication and control protocols H ∈H and U ∈ U , such that
for any xi(0) ∈ Bn

C1
, x̂i0 ∈ Bn

C2
, and ûi0 ∈ Bm

C3
, i ∈ 1, · · · , N ,

the closed-loop system achieves inter-agent state observation and
cooperative stabilization. that is,

(a) lim
t→∞

Ej(t) = 0, j = 1, · · · , N.
(b) lim

t→∞
(xi(t)− xj(t)) = 0, i, j = 1, · · · , N.
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The dynamic network is called globally cooperatable if there exist
communication and control protocols H ∈ H and U ∈ U , such
that for any given initial condition, the closed-loop system achieves
inter-agent state observation and cooperative stabilization.

Remark 1. Different from [15] and [16], we consider the coop-
eratability of linear multi-agent systems with unmeasurable states
and finite data rate. A quantized-observer based encoding-decoding
scheme is proposed to estimate neighbors’ states while decoding.
From (4), the decoder has a similar structure as the Luenberger
observer. For the case with precise communication, the quantizers
degenerate to identical functions and the decoders degenerate to the
Luenberger observers.

Remark 2. (i) Our quantized observer is based on the quantized
innovation of yi(t) but not yi(t) itself. This type of observer
is also called differential pulse code modulation (DPCM) in the
communication community, which can save the bandwidth of the
communication channel significantly [5], [12]. (ii) In a single-agent
system, the controller and observer are usually located on the same
side, which means the exact value of the control input can be used
to design the observer directly. However, for the inter-agent state
observation of multi-agent systems, the observers for neighbors’
states are located faraway from the neighbors’ controllers, which
means the exact values of neighbors’ control inputs are not available.
Therefore, the estimations of neighbors’ control inputs are added
into our encoding-decoding schemes. (iii) For second-order integrator
agents, the special dynamic structure makes it feasible to reconstruct
neighbors’ control inputs by differencing the delayed positions and
velocities without explicitly estimate neighbors’ control inputs ([12])
However, for general linear dynamics, the method in [12] can not be
used here. Here, we propose the Luenberger form decoders (4) with
explicit estimations of neighbors’ control inputs.

Remark 3. Here, as a preliminary research, the definition of cooper-
atability focus on the ability of multi-agent systems to achieve inter-
agent state observation and cooperative stabilization. The cooperative
stabilization (synchronization) is the most basic cooperation of multi-
agent systems and forms the foundation of many other kinds of
cooperative controls, such as formation and distributed tracking.
The concept of cooperatability can be further expanded for more
general coordination behaviors. One may wonder that to achieve
synchronization, why we do not use the decentralized state feedback
control law ui(t) = −Kxi(t) for each agent, then all agents’ states
will go to zero without any inter-agent communication. We do not
use the decentralized state feedback control law but (6) mainly for
two points. (i) The decentralized state feedback control law leads to
the trivial case, i. e. all agents’ states will go to zero. Here, the
closed-loop system can achieve more general behavior. One may
see that all agents’ states will approach the weighted average initial
values multiplied by the exponent of the system matrix under the
control protocol (6) (see also Remark 4). This gives more flexibility
to achieve complex coordination behavior by adjusting control and
system parameters. (ii) The control protocol (6) is more flexible than
the decentralized state feedback control law. One may further extend
it for the formation control based on relative state vectors ([18]):

ui(t) = K
∑
j∈Ni

aij(x̂ji(t)− x̂i(t)− bij), i = 1, ..., N, (7)

or the distributed tracking problem:

ui(t) = K1

∑
j∈Ni

aij(x̂ji(t)− x̂i(t))

+K2bi0(x̂0i(t)− x̂i(t)), i = 1, ..., N. (8)

III. MAIN RESULTS

In this section we give some necessary conditions and sufficient
conditions which ensure (A,B,C,G ) to be cooperatable. The fol-
lowing assumptions will be used.

A1) There exists K ∈ Rm×n such that the eigenvalues of A −
λi(L)BK, i = 2, · · · , N are all inside the open unit disk of the
complex plane.

A2) (A,C) is detectable.

Denote ∆j(t − 1) =
yj(t−1)−Cx̂j(t−1)

γt−1 − sj(t) and

∆u,j(t − 1) =
uj(t)−ûj(t−1)

γt−1 − su,j(t) as the quantization er-
rors of Qα,L(·) and Qαu,Lu(·), respectively. Denote ∆(t) =
(∆T

1 (t), · · · ,∆T
N (t))T , ∆u(t) = (∆T

u,1(t), · · · ,∆T
u,N (t))T . Denote

X(t) = (xT1 (t), · · · , xTN (t))T , X̂(t) = (x̂T1 (t), · · · , x̂TN (t))T ,
U(t) = (uT1 (t), · · · , uTN (t))T , Û(t) = (ûT1 (t), · · · , ûTN (t))T .
Denote E(t) = X(t) − X̂(t), H(t) = U(t) − Û(t), X̄(t) =
( 1
1T π

1πT ⊗ In)X(t), δ(t) = X(t) − X̄(t), where πT is the
nonnegative left eigenvector w. r. t. the eigenvalue 0 of L and it can be
verified that πT has at least one nonzero element. Here, δ(t) is called
the cooperative stabilization error. Denote the lower triangular Jordan
canonical of L by diag(0, J2, · · · , JN ) where Ji is the Jordan chain
with respect to λi(L). We know that there is Φ ∈ RN×N , consisting
of the left eigenvectors and generalized left eigenvectors of L, such
that ΦLΦ−1 = diag(0, J2, · · · , JN ). Let Φ = (π, φ2, · · · , φN )T .
Denote J̄(K) = IN−1 ⊗ A − diag(J2, · · · , JN ) ⊗ BK, J(G) =
diag(A−GC, · · · , A−GC)nN×nN .

From (1), (3), (4) and (6), we have

X(t+ 1) = (IN ⊗A)X(t)− (L ⊗BK)X̂(t). (9)

and

E(t+ 1) = (IN ⊗ (A−GC))E(t) + (IN ⊗B)H(t)

γt(IN ⊗G)∆(t).
(10)

Note that πTL = 0, from (9) it is known that X̄(t + 1) = (IN ⊗
A)X̄(t). Thus, from (9), the definition of E(t), δ(t) and noting that
L1 = 0, we have

δ(t+ 1) = (IN ⊗A− L⊗BK)δ(t) + (L ⊗BK)E(t). (11)

Denote F (t) = U(t+1)−Û(t)
γt

. By (3) and the definition of H(t), we
have

H(t+ 1) = U(t+ 1)− Û(t)− γtQαu,Lu

(
U(t+ 1)− Û(t)

γt

)
= γt(F (t)−Qαu,Lu(F (t))) = γt∆u(t).

(12)
From (6), (10) and (11) we can see that

F (t) = (L ⊗K − L⊗KA+ L2 ⊗KBK)
δ(t)

γt

+ (L ⊗K(A−GC)− L2 ⊗KBK − L⊗K)
E(t)

γt

+ (ImN + L ⊗KB)
H(t)

γt
+ (L ⊗KG)∆(t)

(13)
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Thus, we have the following equations:

E(t+ 1) = (IN ⊗ (A−GC))E(t) + (IN ⊗B)H(t)

+ γt(IN ⊗G)∆(t),

δ(t+ 1) = (IN ⊗A− L⊗BK)δ(t) + (L ⊗BK)E(t),

H(t+ 1) = γt(F (t)−Qαu,Lu(F (t))),

F (t) = (L ⊗K − L⊗KA+ L2 ⊗KBK)
δ(t)

γt

+ (L ⊗K(A−GC)− L2 ⊗KBK − L⊗K)
E(t)

γt

+ (ImN + L ⊗KB)
H(t)

γt
+ (L ⊗KG)∆(t).

(14)
We have the following theorems. The proofs of Theorems 1, 2, 4

and 5 are put in Appendix.

Theorem 1. For the dynamic network (A,B,C,G ), LG = +∞,
% = 1 and LK = +∞, suppose that Assumptions A1) and
A2) hold. Then, for any given positive constants Cx, Cx̂ and
Cû, there exist a communication protocol H(γ, α, αu, L, Lu, G) ∈
H (%, LG) and a control protocol U(K) ∈ U (LK) such that
for any X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈ BmN

Cû
, the

dynamic network (A,B,C,G ) achieves inter-agent state observation
and cooperative stabilization under H and U , and there exist
positive constants W and Wu independent of γ, α, αu, L, Lu,
G and K, such that supt≥0 max1≤j≤N ‖∆j(t)‖∞ ≤ W and
supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ ≤Wu.

Remark 4. It can be verified that X̄(t+ 1) = (IN ⊗A)X̄(t), t =
0, 1, 2, · · · . Since limt→∞ δ(t) = 0, we have

lim
t→∞

[
xi(t)−At

(∑N
i=1 πixi(0)∑N

i=1 πi

)]
= 0, i = 1, · · · , N.

So all agents’ states will finally approach the trajectory
At
(∑N

i=1 πixi(0)∑N
i=1 πi

)
. If the control protocol (6) is replaced by

ui(t) = K1xi(t) +K2

∑
j∈Ni

aij(x̂ji(t)− x̂i(t)),

t = 0, 1, · · · , i = 1, ..., N. (15)

which combines the decentralized state feedback and the distributed
quantized relative output feedback, then the closed-loop states ap-
proach (A + BK1)t

(∑N
i=1 πixi(0)∑N

i=1 πi

)
. For this kind of control pro-

tocols, one may choose K1 to achieve more complex coordination
behavior.

Remark 5. Intuitively, Assumption A1) contains the requirement on
the agent dynamics (A,B) and the communication topology graph
G . If ρ(A) < 1, cooperative stabilization can be achieved by taking
K = 0 (leading to a trivial case), which makes A−λi(L)BK = A,
i = 2, · · · , N all stable even G has no spanning tree (λ2(L) = 0).
If ρ(A) ≥ 1, then Assumption A1) requires that λ2(L) 6= 0, which
implies that G contains a spanning tree [19].

For single input discrete-time systems, [15] gave a necessary and
sufficient condition to ensure A1) if all of A’s eigenvalues are on or
outside the unit circle of the complex plane, which was a intuitional
explanation of A1). In fact, for single input agents, a sufficient
condition to ensure A1) can be given:

A1
′
) (A,B) is stabilizable and∏
j

|λuj (A)| < 1

infω∈R maxj∈{2,··· ,N} |1− ωλj(L)| .

Here, λuj (A), 1 ≤ j ≤ n denote the unstable eigenvalues of A.
If ρ(A) < 1, then

∏
j |λ

u
j (A)| is defined as 0. What’s more, if

the communication topology graph is undirected, it was shown in
[15] that 1

infω∈R maxj∈{2,··· ,N} |1−ωλj(L)|
= 1+λ2/λN

1−λ2/λN
and thus the

eigenvalue-ratio λ2/λN plays an important part in the cooperatability
of linear multi-agent systems.

The following theorem shows that Assumption A1
′
) implies A1).

Theorem 2. For single input agents, if Assumption A1
′
) holds, then

Assumption A1) holds.

Theorem 1 shows that Assumptions A1) and A2) are sufficient
conditions for the cooperatability of (A,B,C,G ). Furthermore, we
find that they are also necessary conditions if % < 1.

Theorem 3. For (A,B,C,G ) and LG > 0, LK > 0 and
% ∈ (0, 1), suppose that for any given positive constants Cx, Cx̂ and
Cû, there exist a communication protocol H(γ, α, αu, L, Lu, G) ∈
H (%, LG) and a control protocol U(K) ∈ U (LK), such
that for any X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈

BmN
Cû

, the closed-loop system achieves inter-agent state observa-
tion and cooperative stabilization under H and U , and the quan-
tization errors satisfy supt≥0 max1≤j≤N ‖∆j(t)‖∞ ≤ W and
supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ ≤ Wu, where W and Wu are
positive constants independent of γ, α, αu, L, Lu, G and K. Then
Assumptions A1) and A2) hold.

Proof: We will use reduction to absurdity. Suppose that for
any positive Cx, Cx̂, Cû, there exist a communication proto-
col H(γ, α, αu, L, Lu, G) ∈ H (%, LG) and a control pro-
tocol U(K) ∈ U (LK) such that under these protocols,
for any X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈

BmN
Cû

, the closed-loop system satisfies limt→∞E(t) = 0,
limt→∞ δ(t) = 0, supt≥0 max1≤j≤N ‖∆j(t)‖∞ ≤ W and
supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ ≤Wu, however, A1) or A2) would
not hold. Select a constant a satisfying

a >
4Wu‖B‖

√
mN

1− % +
4LGW

√
nN

1− % . (16)

Take Cx >
√
n(2N − 1)a‖Φ−1‖, Cx̂ >

√
nNCx + a

√
nN and

Cû > supK∈BLK
‖L ⊗ K‖Cx̂

√
nN . Now we prove that if A1)

or A2) would not hold, then for such Cx, Cx̂ and Cû, there exist
X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈ BmN

Cû
such that under

any communication protocol in (2) and control protocol in (6), the
dynamic network can not achieve inter-agent state observation and
cooperative stabilization jointly, which leads to the contradiction.

Denote δ̃(t) = (Φ ⊗ In)δ(t). Denote Φ̄ = (φ2, · · · , φN )T , and
denote δ̃2(t) = (Φ̄⊗ In)δ(t). From (14), it follows that

(
E(t+ 1)

δ̃2(t+ 1)

)
= A(K,G)

(
E(t)

δ̃2(t)

)
+

(
InN
0

)
(IN ⊗B)

·H(t) +

(
InN
0

)
(IN ⊗G)γt∆(t),

(17)

where A(K,G) =

(
J(G) 0

(Φ̄⊗ In)(L ⊗BK) J̄(K)

)
. Since A1)

and A2) would not hold simultaneously, we have ρ(A(K,G)) ≥ 1
under any communication protocol in (2) and control protocol in (6).
Transform A(K,G) to its Schur canonical, that is, select a unitary
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matrix P (P ∗ = P−1) such that

P ∗A(K,G)P

=

 λ1(A(K,G)) 0

×
. . .

× × λ(2N−1)n(A(K,G))

 .

Here, λ1(A(K,G)), · · · , λ(2N−1)n(A(K,G)) are eigenvalues of
A(K,G) with |λ1(A(K,G))| = ρ(A(K,G)), and × represents the
elements below the diagonal of the Schur canonical.

Denote Z(t) = P ∗[ET (t), δ̃T2 (t)]T . From (17) we know that

[Z(t+ 1)]1

= λt+1
1 (A(K,G))[Z(0)]1

+

t∑
i=1

λt−i1 (A(K,G))
[
P ∗[InN ,0

T ]T (IN ⊗B)H(i)
]
1

+

t∑
i=0

λt−i1 (A(K,G))γi
[
P ∗[InN ,0

T ]T (IN ⊗G)∆(i)
]
1

+ λt1(A(K,G))
[
P ∗[InN ,0

T ]T (IN ⊗B)H(0)
]
1
.

(18)

Let P = [PT1 , P
T
2 ]T with P1 ∈ RnN×n(2N−1) and P2 ∈

Rn(N−1)×n(2N−1). Take X(0) = (Φ−1 ⊗ In)[0T ,aTPT2 ]T where
a = a1 ∈ Rn(2N−1) and 0 ∈ Rn, then ‖X(0)‖∞ ≤√
n(2N − 1)a‖Φ−1‖‖P2‖. Note that ‖P2‖ ≤ ‖P‖ = 1, we have

‖X(0)‖∞ ≤
√
n(2N − 1)a‖Φ−1‖ < Cx, implying X(0) ∈ BnN

Cx
.

Take X̂(0) = X(0)− P1a and Û(0) = −(L ⊗K)X̂(0). Similarly,
one can see that X̂(0) ∈ BnN

Cx̂
and Û(0) ∈ BmN

Cû
. By the definition

of δ(t) and some direct calculation, we have δ̃(0) = [0T ,aTPT2 ]T ,
and δ̃2(0) = P2a. By the definition of E(t) and H(t), we know
that E(0) = X(0) − X̂(0) = X(0) − (X(0) − P1a) = P1a, and
H(0) = U(0)−Û(0) = −(L⊗K)X̂(0)+(L⊗K)X̂(0) = 0. Since
Z(0) = P ∗[E(0)T , δ̃T2 (0)]T , we have Z(0) = a and [Z(0)]1 = a.

From (16), we know that∣∣∣∣∣
t∑
i=1

λt−i1 (A(K,G))
[
P ∗[InN ,0

T ]T (IN ⊗B)H(i)
]
1

+

t∑
i=0

λt−i1 (A(K,G))g(i)
[
P ∗[InN ,0

T ]T (IN ⊗G)∆(i)
]
1

∣∣∣∣∣
≤
(

2Wu‖B‖
√
mN

1− % +
2LGW

√
nN

1− %

)
|λ1(A(K,G))|t+1

<
a

2
|λ1(A(K,G))|t+1.

(19)
From (18), (19) and noting that H(0) = 0, we have∣∣[Z(t+ 1)]1

∣∣ ≥ ∣∣∣|λ1(A(K,G))|t+1a− a

2
|λ1(A(K,G))|t+1

∣∣∣
=
a

2
|λ1(A(K,G))|t+1.

By the invertibility of P , we know that [ET (t), δT (t)]T does not
vanish as t → ∞. This is in contradiction with that the dynamic
network achieves inter-agent state observation and cooperative stabi-
lization. So, A1) and A2) hold.

Remark 6. Actually, the communication protocol parameter γ can
represent the convergence speed of the cooperative coordination (for
both inter-agent state observation and cooperative stabilization). The
smaller γ is, the faster the convergence will be. The constant % is an
upper bound of γ, so it is a uniform upper bound of the convergence
speed. Theorem 3 shows that if (A,B,C,G ) is locally cooperatable
with a uniform exponential convergence speed, then A1) and A2)
hold.

Remark 7. Sundaram and Hadjicostis ([20]) showed that a linear
system is structurally controllable and observable over a finite field
if the graph of the system satisfies certain properties and the size
of the field is large enough. They also applied this result into the
control of multi-agent systems over finite fields. Compared with
[20], this note has the following differences. (i) [20] focused on the
controllability and observability of linear systems over finite fields,
and the closure property of the finite field plays an important role in
getting their results. In this note we study the quantized coordination
of linear multi-agent systems over real number field, so the closure
and invertible properties can not be used. (ii) The system matrix A
of the linear system in [20] corresponds to the graph structure of the
whole network, and the dynamics of each agent is actually in some
integrator form. What is more, the elements of the system matrices
A, B and C are restricted in finite fields. In this note, the affect of the
graph topology is decided by the Laplacian matrix, and each agent
has the general linear dynamics (see (1)), where the system matrices
A, B and C are arbitrary real matrices.

As preliminary research, this note is concerned with inter-agent
state observation and cooperative stabilization of multi-agent systems
over digital networks. It is an interesting topic for further investigation
that whether our results can be combined with the methodology
of [20] to study the controllability of multi-agent networks under
quantized communication.

At present, we still do not know whether A1) and A2) are
necessary conditions for (A,B,C,G ) to be locally cooperatable
w. r. t. H (1,+∞) and U (+∞). However, we can show that
if (A,B,C,G ) is globally cooperatable, then A1) and A2) are
necessary w. r. t. H (1,+∞) and U (+∞).

Theorem 4. For (A,B,C,G ) and LG = +∞, LK = +∞ and % =
1, if there exist a communication protocol H(γ, α, αu, L, Lu, G) ∈
H (%, LG) and a control protocol U(K) ∈ U (LK), such that for
any X(0) ∈ RnN , X̂(0) ∈ RnN and Û(0) ∈ RmN , the closed-
loop system achieves inter-agent state observation and cooperative
stabilization under H and U , and supt≥0 max1≤j≤N ‖∆j(t)‖∞ <
∞ and supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ <∞, then Assumptions A1)
and A2) hold.

From the following theorems, we can see that the stabilizability
of (A,B) is necessary for (A,B,C,G ) to achieve cooperative
stabilization no matter whether the inter-agent state observation is
required, and similarly, the detectability of (A,C) is necessary for
(A,B,C,G ) to achieve inter-agent state observation regardless of
the cooperative stabilization.

Theorem 5. For (A,B,C,G ), LG = +∞, LK = +∞ and % = 1,
suppose that for any given positive constants Cx, Cx̂ and Cû, there
exist a communication protocol H(γ, α, αu, L, Lu, G) ∈H (%, LG)
and a control protocol U(K) ∈ U (LK), such that for any
X(0) ∈ BnN

Cx
, X̂(0) ∈ BnN

Cx̂
and Û(0) ∈ BmN

Cû
, the closed-loop

system achieves cooperative stabilization under H and U , that is,
limt→∞(xj(t) − xi(t)) = 0, ∀ i, j = 1, 2, ..., N . Then (A,B) is
stabilizable.

Theorem 6. For (A,B,C,G ), LG = +∞, LK = +∞ and % = 1,
suppose that for any given positive constants Cx, Cx̂ and Cû, there
exist a communication protocol H(γ, α, αu, L, Lu, G) ∈H (%, LG)
and a control protocol U(K) ∈ U (LK), such that for any X(0) ∈
BnN
Cx

, X̂(0) ∈ BnN
Cx̂

and Û(0) ∈ BmN
Cû

, the closed-loop system
achieves inter-agent under H and U , then (A,C) is detectable.
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IV. NUMERICAL EXAMPLE

Here, we consider a dynamic network with 4 agents. The state and
measurement equations of each agent are given byxi(t+ 1) =

(
1 0.1
0 0.5

)
xi(t) +

(
1
1

)
ui(t),

yi(t) =
(

1 0
)
xi(t).

(20)

The communication network is a directed 0-1 weight graph given
by Figure 1. We take the initial values of the agents randomly in
the square: [0, 5] × [0, 5]. We take K = (0.2, 0), G = (0.5, 0)T ,
γ = 0.95, α = αu = 1, L = Lu = 20. Figure 2 shows the evolution

1

2

4

3

Fig. 1. The communication topology graph of the dynamic network.

of agents’ states. Figure 3 shows the Euclidean norm of the state
estimation error associated with each digital channel. From Figures
2 and 3, it can be seen that the closed-loop system achieves both
cooperative stabilization and inter-agent state observation.

Fig. 2. The trajectories of agents’ states.

V. CONCLUSION

In this note, we studied the inter-agent state observation and
cooperative stabilization of discrete-time linear multi-agent systems
with unmeasurable states over bandwidth limited digital networks.
We proposed a class of quantized-observer based communication
protocols and a class of Certainty Equivalence principle based control
protocols. We showed that the simultaneous stabilizability condition
and the detectability condition of agent dynamics are sufficient for
the existence of communication and control protocols to ensure
both the inter-agent state observation and cooperative stabilization.
Furthermore, we proved that they are also necessary for the local

Fig. 3. The Euclidean norm of the state estimation errors.

and global cooperatability in some sense. The theoretic results are
also verified by numerical simulations.

As a preliminary research, we focus on the conditions on the
dynamics of agents and the network structure to ensure the existence
of finite data rate inter-agent communication and control protocols.
An interesting topic for future investigation is whether there is a
lower bound, which is independent of the number of agents, for
the communication data rate required just as the small channel
capacity theorems established in [5], [6], [8] and [12]. Note that
the independency of the number of agents implies good scalability
for large scale networks. The problem is more challenging. Also,
Due to the time-delay, link failure or packet dropouts in networks,
how to design communication and control protocols for linear multi-
agent systems to ensure both the cooperative stabilization and inter-
agent state observation with finite data rate, communication delay
and packet dropouts is an interesting and challenging problem.

APPENDIX

Lemma A.1. [15] Assuming A ∈ Rn×n, B ∈ Rn×1, λ2, · · · , λN ,
i = 2, · · · , N are nonzero complex numbers. Assume that all the
eigenvalues of A are on or outside the unit circle of the complex
plane. Then there exists K ∈ R1×n such that ρ(A− λjBK) < 1, ∀
j = 2, · · · , N if and only if:

(a) (A,B) is controllable.
(b)

∏
j |λj(A)| < 1

minω∈R maxj∈{2,··· ,N} |1−ωλj |

Lemma A.2. [21] For any A ∈ Cn×n and ε > 0, we have

‖Ak‖ ≤Mηk, ∀ k ≥ 0,

where M =
√
n(1 + (2/ε))n−1, η = ρ(A) + ε‖A‖.

Proof of Theorem 1: According to whether the state matrix A is
asymptotically stable, we prove the theorem for two cases, respec-
tively.

Case (i) ρ(A) ≥ 1. For this case, since A1) holds, we can see that
0 is a single eigenvalue of the Lapalacian matrix L. Take K ∈ Bm×n

+∞
such that ρ(J̄(K)) < 1. Take G ∈ Bn×p

+∞ such that ρ(J(G)) < 1.
Take ε > 0 and ε̄1 > 0 such that η = ρ(J(G)) + ε‖J(G)‖ < 1
and η̄1 = ρ(J̄(K)) + ε̄1‖J̄(K)‖ < 1. Denote M =

√
nN(1 +

(2/ε))nN−1 and M̄1 =
√
n(N − 1)(1 + (2/ε̄1))n(N−1)−1. Take

γ ∈ (max{η, η̄1}, 1) and α, αu ∈ (0, 1]. Let W (B,K) =
diag(J2, · · · , JN )⊗BK, and denote R(G, γ, Cx, Cx̂, α) =
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max
{√

nNM(Cx + Cx̂), α
√
pNM‖G‖
2(γ−η)

}
,

L(K,G, γ, Cx, Cx̂, Cû, α, αu)

= ‖C‖∞

(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖(

√
Nn‖L ⊗K‖Cx̂ +

√
mNCû)

)
,

and

Lu(K,G, γ, Cx, Cx̂, Cû, α, αu)

= max

{
2Cx
√
nN‖L ⊗K − L⊗KA+ L2 ⊗KBK‖

+
√
nN‖L ⊗K(A−GC)− L2 ⊗KBK − L⊗K‖

·(Cx + Cx̂) +
α
√
pN‖L ⊗KG‖

2
+ ‖ImN + L ⊗KB‖

·
(√

nN‖L ⊗K‖Cx̂ +
√
mNCû

)
, ‖Φ−1‖‖Φ‖‖L ⊗K

−L⊗KA+ L2 ⊗KBK‖Γ(K,G, γ, Cx, Cx̂, Cû, α, αu)
+‖L ⊗K(A−GC)− L2 ⊗KBK − L⊗K‖

·
(
R(G, γ, Cx, Cx̂, α) +

αuM‖B‖
√
mN

2γ(γ − η)
+

1

γ
M‖B‖

·(Cx̂
√
Nn‖L ⊗K‖+ Cû

√
mN)

)
+
αu
√
mN‖ImN + L ⊗KB‖

2γ
+
α
√
pN‖L ⊗KG‖

2

}
,

where

Γ(K,G, γ, Cx, Cx̂, Cû, α, αu)

= max

{
2CxM̄1

√
nN,

M̄1‖W (B,K)‖
(γ − η̄1)

·
(
R(G, γ, Cx, Cx̂, α) +

αuM‖B‖
√
mN

2γ(γ − η)
+

1

γ
M‖B‖

·
(√

Nn‖L ⊗K‖Cx̂ +
√
mNCû

))}
.

Select the number of quantization levels L >
1
α
L(K,G, γ, Cx, Cx̂, Cû, α, αu) − 1

2
and Lu >

1
αu
Lu(K,G, γ, Cx, Cx̂, Cû, α, αu)- 1

2
. Next we prove that with

the parameters γ, α, αu, L, Lu, G of the communication protocol
and the parameter K of the control protocol selected as above,
the dynamic network will achieve the inter-agent state observation
and cooperative stabilization, and the quantization errors will be
uniformly bounded.

We first prove that by selecting the parameters γ, L, Lu, α,
αu, G of the communication protocol and the parameter K of the
control protocol as above, the quantizers Qα,L(·) and Qαu,Lu(·)
will never be saturate. Denote δ̃(t) = (Φ ⊗ In)δ(t) and Ẽ(t) =
(Φ ⊗ In)E(t). Let δ̃(t) = [(δ̃T1 (t)), (δ̃T2 (t))]T , where δ̃1(t) is the
first n elements of δ̃(t). So δ̃1(t) = (πT ⊗ In)δ(t) = 0. Let
Ẽ(t) = [(ẼT1 (t)), (ẼT2 (t))]T , where Ẽ1(t) is the first n elements
of Ẽ(t). From (14), the definition of J̄(K), W (B,K), J(G), and
H(t+ 1) = γt(F (t)−Qαu,Lu(F (t)) = γt∆u(t), we have

δ̃2(k + 1) = J̄(K)δ̃2(k) +W (B,K)Ẽ2(k)

= (J̄(K))k+1δ̃2(0) +

k∑
i=0

(J̄(K))k−iW (B,K)

· Ẽ2(i), k = 0, 1, ...,

(A.1)

and

E(k + 1) = (J(G))k+1E(0) +

k∑
i=1

(J(G))k−i(IN ⊗B)γi−1

·∆u(i) +

k∑
i=0

(J(G))k−i(IN ⊗G)∆(i) + (J(G))k

· (IN ⊗B)H(0), k = 0, 1, ...
(A.2)

By Lemma A.2, we know that ‖(J(G))i‖ ≤ Mηi, i = 0, 1, ....
Note that U(0) = −(L ⊗ K)X̂(0), ‖Û(0)‖∞ ≤ Cû and H(0) =
U(0) − Û(0), we have ‖H(0)‖ ≤ Cx̂

√
Nn‖L ⊗K‖ +

√
mNCû.

Then from (A.2), we have

‖E(k + 1)‖ ≤Mηk+1
√
nN(Cx + Cx̂) +

k∑
i=1

Mηk−i‖B‖

· γi−1
√
mN‖∆u(i)‖∞ +

k∑
i=0

Mηk−i‖G‖γi

·
√
pN‖∆(i)‖∞ +Mηk‖B‖

(
Cx̂
√
Nn‖L ⊗K‖

+ Cû
√
mN

)
.

(A.3)
At the initial time k = 0, it is known that

‖(IN ⊗ C)E(0)‖∞ ≤ ‖C‖∞‖E(0)‖∞ ≤ ‖C‖∞(Cx + Cx̂).

Then noting that ‖C‖∞(Cx + Cx̂) ≤ ‖C‖∞
√
nNM(Cx + Cx̂)≤

R(G, γ, Cx, Cx̂, α) < αL+ α
2

, we know that Qα,L(·) is not saturate
at the initial time k = 0, which means ‖∆(0)‖∞ ≤ α

2
. It can be

seen that that ‖δ(0)‖∞ ≤ 2Cx. Then from (14), we get that

‖F (0)‖∞ ≤ 2Cx
√
Nn‖L ⊗K − L⊗KA+ L2 ⊗KBK‖

+
√
Nn‖L ⊗K(A−GC)− L2 ⊗KBK − L⊗K‖

· (Cx + Cx̂) +
α
√
pN‖L ⊗KG‖

2
+ ‖ImN + L ⊗KB‖

·
(√

Nn‖L ⊗K‖Cx̂ +
√
mNCû

)
< αuLu +

αu
2
.

Thus we know that Qαu,Lu(·) is also not saturate at k = 0, which
means ‖∆u(0)‖∞ ≤ αu

2
. Assume that Qα,L(·) and Qαu,Lu(·) are

not saturate at k = 0, 1, ..., t, which implies, max0≤k≤t ‖∆(k)‖∞ ≤
α
2

and max0≤k≤t ‖∆u(k)‖∞ ≤ αu
2

. Now consider the time k =
t+ 1. From (A.3), we have∥∥∥∥ (IN ⊗ C)E(t+ 1)

γt+1

∥∥∥∥
∞
≤ ‖C‖∞

‖E(t+ 1)‖
γt+1

≤ ‖C‖∞

(
max

{√
NnM(Cx + Cx̂)

γt+1
,
α
√
pNM‖G‖

2(γ − η)γt+1

}
· γt+1 +

αu
√
mNM‖B‖

2γ(γ − η)
· γ

t − ηt

γt

+
Mηt‖B‖(

√
Nn‖L ⊗K‖Cx̂ +

√
mNCû)

γt+1

)
≤ ‖C‖∞

(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖

(√
nN‖L ⊗K‖Cx̂ +

√
mNCû

))
< αL+

α

2
.

So Qα,L(·) is not saturate at k = t + 1. By (A.3), and noting that
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Qα,L(·) and Qαu,Lu(·) are not saturate at k = 0, · · · , t, we have

‖E(k)‖ ≤ γk
(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖

(√
Nn‖L ⊗K‖Cx̂ +

√
mNCû

))
,

0 ≤ k ≤ t+ 1.

(A.4)

Next we will prove that Qαu,Lu(·) is not saturate at the time k =
t+ 1.

Since max0≤k≤t ‖∆u(k)‖∞ ≤ αu
2

, we have ‖H(k + 1)‖ =

γk‖∆u(k)‖ ≤ γk
√
mN‖∆u(k)‖∞ ≤ αu

√
mNγk

2
, 0 ≤ k ≤ t. Then

from (A.1), (A.4), Lemma A.2, and note that δ̃1(t) = 0, we have

‖δ̃(k + 1)‖ = ‖δ̃2(k + 1)‖

≤ ‖(J̄(K))k+1‖‖Φ‖‖δ(0)‖+

k∑
i=0

‖(J̄(K))k−i‖

·‖W (B,K)‖‖Φ‖‖E(i)‖
≤ 2

√
Nn‖Φ‖CxM̄1η̄

k+1
1

+‖Φ‖M̄1‖W (B,K)‖(γk+1 − η̄k+1
1 )

(γ − η̄1)

·
(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖

(√
Nn‖L ⊗K‖Cx̂ +

√
mNCû

))
≤ γk+1‖Φ‖max

{
2
√
NnCxM̄1,

M̄1‖W (B,K)‖
(γ − η̄1)

·
(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖

(√
Nn‖L ⊗K‖Cx̂ +

√
mNCû

))}
= γk+1‖Φ‖Γ(K,G, γ, Cx, Cx̂, Cû, α, αu),

0 ≤ k ≤ t. (A.5)

Thus, from H(t+ 1) = γt∆u(t), (14), (A.4) and (A.5), we know
that

‖F (t+ 1)‖∞ ≤ ‖Φ−1 ⊗ In‖‖Φ⊗ In‖‖L ⊗K
− L⊗KA+ L2 ⊗KBK‖

· Γ(K,G, γ, Cx, Cx̂, Cû, α, αu) + ‖L ⊗K(A−GC)

− L2 ⊗KBK − L⊗K‖
(
R(G, γ, Cx, Cx̂, α)

+
αu
√
mNM‖B‖

2γ(γ − η)
+

1

γ
M‖B‖

(√
Nn‖L ⊗K‖Cx̂

+
√
mNCû

))
+
αu
√
mN‖ImN + L ⊗KB‖

2γ

+
α
√
pN‖L ⊗KG‖

2
≤ Lu(K,G, γ, Cx, Cx̂, Cû) < αuLu +

αu
2
.

So Qαu,Lu(·) is not saturate at k = t + 1. By induc-
tion, Qα,L(·) and Qαu,Lu(·) are not saturate at any time.
Thus, under the selected communication protocol and control
protocol, we have supt≥0 max1≤j≤N ‖∆j(t)‖∞ ≤ 1/2 and
supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ ≤ 1/2.

Now we prove that the dynamic network will achieve inter-agent
state observation and cooperative stabilization. Similar to (A.4) and
noting that supt≥0 max1≤j≤N ‖∆j(t)‖∞ ≤ 1

2
and

supt≥0 max1≤j≤N ‖∆u,j(t)‖∞ ≤ 1
2

, we have

‖E(t)‖ ≤ γt
(
R(G, γ, Cx, Cx̂, α) +

αu
√
mNM‖B‖

2γ(γ − η)

+
1

γ
M‖B‖

(√
Nn‖L ⊗K‖Cx̂ +

√
mNCû

))
,

t = 0, 1, ...,

(A.6)

which means limt→∞E(t) = 0, that is, the dynamic network
achieves inter-agent state observation. Similar to (A.5), by (A.1) and
(A.6), we have

‖δ(t)‖ ≤ ‖Φ−1 ⊗ In‖‖δ̃(t)‖ = ‖Φ−1‖‖δ̃2(t)‖
≤ ‖Φ−1‖‖Φ‖Γ(K,G, γ, Cx, Cx̂, Cû, αu)γt,

t = 0, 1, ...,

which implies ‖δ(t)‖∞ → 0, that is, the dynamic network achieves
cooperative stabilization.

Case (ii) ρ(A) < 1. Take K = 0 and G = 0, then we have
J̄(K) = IN−1 ⊗ A, J(G) = IN ⊗ A and W (B,K) = 0. Take α
and αu ∈ (0, 1]. Denote

L(γ,Cx, Cx̂, Cû) = ‖C‖∞
(√

NnM(Cx + Cx̂)

+
αu
√
mNM‖B‖

2γ(γ − η)
+

1

γ
M‖B‖

√
mNCû

)
,

and

Lu(γ,Cx, Cx̂, Cû) = max

{√
mNCû,

αu
√
mN

2γ

}
.

Select L > 1
α
L(γ,Cx, Cx̂, Cû) − 1

2
and Lu >

1
αu
Lu(γ,Cx, Cx̂, Cû) − 1

2
, then similar to Case (i), one can

prove that the dynamic network will achieve inter-agent state
observation and cooperative stabilization, and the quantization errors
are uniformly bounded under the communication protocol and
control protocol selected above.

Proof of Theorem 2:
Case(i) ρ(A) ≥ 1. Firstly, we use the reduction to absurdity

to prove that λj(L) 6= 0, j = 2, ..., N . If not, there is an
integer k0 ∈ [2, N ] such that λk0(L) = 0. It can be seen that
infω∈R maxj∈{2,··· ,N} |1− ωλj(L)| ≥ infω∈R maxj∈{2,··· ,N} |1−
|ω||λj(L)||. Denote maxj∈{2,··· ,N} |λj(L)| by p. Since λk0(L) = 0,
we know that minj∈{2,··· ,N} |λj(L)| = 0, thus, one get that

max
j∈{2,··· ,N}

|1− |ω||λj(L)|| = max{|1− |ω|max
j
|λj(L)||,

|1− |ω|min
j
|λj(L)||}

= max{1, |1− |ω||p|} =


−ωp− 1 ω < − 2

p
,

1 − 2
p
≤ ω ≤ 2

p
,

ωp− 1 ω > 2
p
.

(A.7)

From (A.7), we know that infω∈R maxj∈{2,··· ,N} |1 −
|ω||λj(L)|| = 1. So infω∈R maxj∈{2,··· ,N} |1 − ωλj(L)| ≥
minω∈R maxj∈{2,··· ,N} |1 − |ω||λj(L)|| = 1. Then by A1

′
), we

know that
∏
j |λ

u
j (A)| < 1

infω∈R maxj∈{2,··· ,N} |1−ωλj(L)|
≤ 1,

which means ρ(A) < 1. However, ρ(A) ≥ 1 for case (1), so
λj(L) 6= 0, j = 2, · · · , N .

Next we prove that there exists K ∈ R1×n such that A −
λi(L)BK, i = 2, · · · , N are all asymptotically stable. Denote the
block diagonal matrix which consists of the stable Jordan blocks of
A as As ∈ Rns×ns , ns ≥ 0, and the block diagonal matrix which
consists of the other Jordan blocks of A as Au ∈ Rnu×nu , nu ≥ 0.
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For this case, since ρ(A) ≥ 1, we know that nu > 0. Thus, there
exists an invertible matrix T such that

T−1AT =

(
As 0
0 Au

)
. (A.8)

Let T−1B =
(
BT1 , B

T
2

)T
, where B1 ∈ Rns×1 and B2 ∈ Rnu×1.

Now we prove that the matrix pair (Au, B2) is controllable. If not,
transform (Au, B2) into its controllable canonical, that is, there is an
invertible matrix R such that

R−1AuR =

(
Au1 Au2
0 Au3

)
, R−1B2 =

(
B21

0

)
, (A.9)

where Au1 ∈ Rnu1×nu1 , Au3 ∈ Rnu3×nu3 and Au3 is unstable.
Then we know that

A = T

(
Ins 0
0 R

) As 0 0
0 Au1 Au2
0 0 Au3

( Ins 0
0 R−1

)

· T−1, B = T

(
Ins 0
0 R

)(
BT1 , (B21,0)T

)T
.

(A.10)

For any given K ∈ R1×n, let KT
(
Ins 0
0 R

)
= (K̂1, K̂2, K̂3),

where K̂1 ∈ R1×ns , K̂2 ∈ R1×nu1 and K̂3 ∈ R1×nu3 , we can see
that

A+BK = T

(
Ins 0
0 R

)[ As 0 0
0 Au1 Au2
0 0 Au3


+

 B1

B21

0

 (K̂1, K̂2, K̂3)
]( Ins 0

0 R−1

)
T−1

= T

(
Ins 0
0 R

)
·

 As +B1K̂1 B1K̂2 B1K̂3

B21K̂1 Au1 +B21K̂2 Au2 +B21K̂3

0 0 Au3


·
(
Ins 0
0 R−1

)
T−1. (A.11)

Since Au3 is unstable, we know that there is no matrix K such that
A + BK is stable, which is in contradiction with that (A,B) is
stabilizable. So we know that (Au, B2) controllable.

Since λi(L) 6= 0, i = 2, · · · , N , from Lemma A.1, we know that
there exist a K̃ ∈ R1×nu such that ρ(Au − λi(L)B2K̃) < 1, i =
2, · · · , N . Take K̄ = [0T , K̃] and take K = K̄T−1, since

T−1AT =

(
As 0
0 Au

)
, T−1B =

(
B1

B2

)
,

we know that

A− λi(L)BK = T

(
As −λi(L)B1K̃

0 Au − λi(L)B2K̃

)
T−1,

i = 2, · · · , N.

So ρ(A− λi(L)BK) < 1, i = 2, · · · , N .
So A1

′
) suffices for A1).

Case (ii) ρ(A) < 1. For this case, take K = 0T , then A1)
holds.

Proof of Theorem 4: Denote supt≥0 max1≤j≤N ‖∆j(t)‖∞ by
W and supt≥0max1≤j≤N ‖∆u,j(t)‖∞ by Wu. Noting that here,
different from Theorem 3, W and Wu may depend on the parameters
γ, α, αu, L,Lu, G and K. Select a constant a satisfying

a >
4‖B‖

√
mNWu

|λ1(A(K,G))− γ| +
4‖G‖W

√
nN

|λ1(A(K,G))− γ| . (A.12)

Take X(0) = (Φ−1 ⊗ In)[0T ,aTPT2 ]T where a = a1 ∈
Rn(2N−1) and 0 ∈ Rn. Take X̂(0) = X(0)− P1a, Û(0) = −(L ⊗
K)X̂(0), thus E(0) = X(0)−X̂(0) = X(0)−(X(0)−P1a) = P1a,
and H(0) = U(0)− Û(0) = −(L⊗K)X̂(0) + (L⊗K)X̂(0) = 0.
Thus Z(0) = a and [Z(0)]1 = a. Then similar to the proof of
Theorem3, we have the conclusion.

Proof of Theorem 5: We use the reduction to absurdity to prove
this theorem. Suppose that (A,B) is unstabilizable, then there exists

an invertible matrix T1, such that T−1
1 AT1 =

(
As1 A12

0 Au4

)
and

T−1
1 B =

(
BT3 ,0

T
)T

, where Au4 ∈ Rnu4×nu4 is unstable. Here nu4
is a positive integer. Take Cx >

√
n‖Φ−1‖‖T1‖. Take Cx̂ > 1 and

Cû > 1. Next we prove that for any given communication protocol
in (2) and control protocol in (6), there exist X(0) ∈ BnN

Cx
, X̂(0) ∈

BnN
Cx̂

and Û(0) ∈ BmN
Cû

, such that the dynamic network can not
achieve cooperative stabilization, which leads to the contradiction.
Denote the first n elements of Ẽ2(t) and δ̃2(t) by Ẽ21(t) and δ̃21(t)
where Ẽ2(t) and δ̃2(t) are defined in the proof of Theorem 1. From
(14), we have

δ̃21(t+ 1) = (A− λ2(L)BK)δ̃21(t) + λ2(L)BKẼ21(t). (A.13)

Denote δ̂21(t) = T−1
1 δ̃21(t), and let KT1 = (K̂3, K̂4) where K̂3 ∈

Rm×(n−nu4), K̂4 ∈ Rm×nu4 . Thus, from (A.13), we have

δ̂21(t+ 1) =

(
As1 − λ2(L)B3K̂3 ×

0 Au4

)
δ̂21(t)

+

(
λ2(L)B3K̂3 λ2(L)B3K̂4

0 0

)
T−1
1 Ẽ21(t).

(A.14)
Denote the last nu4 elements of δ̂21(t + 1) by δ̂21nu4

(t + 1), thus
from (A.14), we have δ̂21nu4

(t+ 1) = Au4δ̂21nu4
(t). Take X(0) =

(Φ−1 ⊗ In)
(
0T , [T11]T

)T
, then ‖X(0)‖∞ ≤

√
n‖Φ−1‖‖T1‖ <

Cx. By the definition of δ(t), and noting that πT is the first row of

Φ, we have δ(0) = (Φ−1 ⊗ In)
(
0T , [T11]T

)T
. Thus, δ̂21(0) = 1n

and δ̂21nu4
(0) = 1nu4 . Take X̂(0) = 1nN , Û(0) = 1mN , then we

have ‖X̂(0)‖∞ < Cx̂ and ‖Û(0)‖∞ < Cû . Since δ̂21nu4
(0) 6= 0,

δ(t) does not vanish, which draws the contradiction.

Proof of Theorem 6: We use the reduction to absurdity to prove
this theorem. If (A,C) was not detectable, then there would exist
x0 ∈ Rn, such that CAlx0 = 0, l = 0, 1, 2, ...,, and Atx0 does not
go to zero as t → ∞. Take Cx > ‖x0‖, Cx̂ > 0 and Cû > 0.
Next we will prove that for any given communication protocol H ∈
H (1,+∞) and control protocol U ∈ U (+∞), there exist X(0) ∈
BnN
Cx

, X̂(0) ∈ BnN
Cx̂

and Û(0) ∈ BmN
Cû

, such that the dynamic
network can not achieve inter-agent state observation, which leads to
the contradiction. Take x1(0) = x0 and xj = 0, j = 2, · · · , N . Then
X(0) ∈ BnN

Cx
. By Cx0 = 0, we have yj(0) = 0, j = 1, 2, ..., N .

Take X̂(0) = 0 and Û(0) = 0, so X̂(0) ∈ BnN
Cx̂

and Û(0) ∈ BmN
Cû

.
By (6), we know that U(0) = 0. By (3), (4), noting that yj(0) = 0,
j = 1, 2, ..., N , we know that sj(1) = 0, j = 1, 2, ..., N , which
together with X̂(0) = 0 and Û(0) = 0 lead to X̂(1) = 0. Then by
(3), (4) and (6), it follows that U(1) = 0, and Û(1) = 0. Then by
(1) and CAx0 = 0, we have yj(1) = 0, j = 1, 2, ..., N . Suppose
that up to time t, t = 2, 3, ..., U(k) = Û(k) = 0, and X̂(k) = 0,
k = 0, 1, ..., t − 1. Then By (1), we have x1(t − 1) = At−1x0,
xj(t−1) = 0, j = 2, 3, ..., N . Noting that CAt−1x0 = 0, it follows
that yj(t − 1) = 0, j = 1, 2, ..., N . And by (3), (4) and (6), we
know that X̂(t) = 0 and U(t) = Û(t) = 0. Then by mathematical
induction, we have X̂(t) ≡ 0 and U(t) ≡ 0, which together with
(1) gives x1(t) = Atx0, and x2(t) = · · · = xN (t) ≡ 0. Noting that
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Atx0 does not go to zero as t → ∞, but X̂(t) ≡ 0, it follows that
E(t) = X(t)− X̂(t) does not go to zero as t→∞, which leads to
the contradiction.
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