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Abstract

Recent innovations in the design of computer viruses have led to new trade-offs for the attacker.

Multiple variants of a malware may spread at different rates and have different levels of visibility to the

network. In this work we examine the optimal strategies for the attacker so as to trade off the extent

of spread of the malware against the need for stealth. We show that in the mean-field deterministic

regime, this spread-stealth trade-off is optimized by computationally simple single-threshold policies.

Specifically, we show that only one variant of the malware is spread by the attacker at each time, as

there exists a time up to which the attacker prioritizes maximizing the spread of the malware, and after

which she prioritizes stealth.

Index Terms

visibility, optimal contagion, malware epidemics.

I. INTRODUCTION

Malware (i.e., viruses, worms, trojans, etc.) has been a prominent feature of computer networks

since the 1980’s [1], and has evolved with the growing capabilities of computing technology.

Anderson et al. [2] estimated that malware caused $370m of damage globally in 2010 alone.

Traditionally, malware was designed with the express aim of infecting as many machines as

possible, leading to the mass epidemics of the early 2000’s (e.g., Blaster [3]). More recently, the

focus has shifted to more “surgical” strikes where visibility is highly undesirable, as awareness

can lead the intended target to cease communication (e.g., by quarantining the targets). The
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malware Regin was only discovered (in 2014) after operating since at least 2008, and was so

complex that even when its presence was detected, it was not possible to ascertain what it was

doing and what it was targeting [4]. Stuxnet, as another example, was designed to attack a

specific control software used in centrifuges [5] and did not steal or manipulate data, or receive

any command instructions from remote sources so as to maintain stealth [6]. Furthermore, its

very presence in a system was undetectable due to a rootkit [5]. Yet, it was discovered and

remedied after it spread outside its target area [7] (cf. Duqu, Flame, and Gauss [8]). Thus there

is a new critical trade-off for the attacker — to ensure maximum damage while minimizing

visibility to the defender.

We now describe different dimensions of this trade-off. Malware spreads from one computing

device to another when there is a communication opportunity between the devices. In networks,

both wired and wireless, inter-node communication can be visible to the network administrator,

and can serve as a way of detecting the presence of malware before its function is fully

understood. However, the attacker also has a conflicting onus to ensure the rapid propagation of

her program, as computer systems evolve at a rapid pace, and the exploit(s) that the malware

targets will be noticed and patched in due course. Furthermore, some malware designers work

to specific deadlines — e.g., Stuxnet was due to become inoperational in June 2012 [9]. On the

other hand, the second variant of Stuxnet was released to spread faster (and thus in a more risky

manner) after the designers were concerned about its limited spread [6]. Thus, an attacker will

seek to minimize her communication footprint while still trying to ensure the timely spread of

the malware.

In particular, we consider the case where two variants of a single emerging malware spread in

a network that is unaware of their existence. One spreads aggressively in every contact, and is

thus visible to the network due to its communications, while the other, passive, variant does not

spread subsequent to infecting a node. We assume that the network cannot determine the infection

state of any particular node and does not have patches to remedy the attack, but can detect an

attack by looking at the unusual communication patterns (e.g., the transfer of malware between

nodes) resulting from the malware attack. Coordinating distributed attacks comes at the cost of

added visibility due to communication and is susceptible to timing errors in the hosts. Thus, we

focus on the case where distributed nodes that are infected are not asked to coordinate, as was

the case in Regin and Stuxnet. The natural question that arises is to characterize the structure
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of the optimal malware variant mix that the attacker will spread at each instant depending on

their goal structures and the communication mechanisms that they may have at their disposal.

This is an imperative first step to devising remedies for such attacks.

A. Problem Description

We consider a network under attack by these two variants of a malware. Depending on their

infection status, nodes can be divided into 4 groups:1 Germinators (G), Susceptibles (S), Zombies

(Z), and Passives (P). We now describe these states, as well as their dynamics and the impact

of the attacker’s control (as will be elucidated in §III.A). We also outline an augmentation to

the model that is considered in §III.B and adds a further possible mechanism of interaction and

control to the dynamics:

1) Germinators (G):

- are a fixed (potentially very small) fraction of nodes, - are the only nodes under the attacker’s

direct control,

- are the only nodes that can choose how to interact with susceptibles and zombies depending

on the goal of the attacker: at each encounter with a susceptible, they decide whether to turn it

into a zombie or a passive, or to leave it as a susceptible.

- damage the network by executing malicious code,

- are visible to the network due to their communications.

- in an augmentation in §III.B, we add a further mechanism of interaction (halting) whereby

the germinators, upon contact with zombies, can turn them into passives (i.e., stopping them from

spreading the message any further). This can potentially lead to the attacker initially utilizing

epidemic spreading and then halting the spread once the marginal benefit of infection is overtaken

by the marginal effect of visibility, leading to to a potentially longer propagation of the zombies.

2) Susceptibles (S):

- are nodes that have not received any variant of the malware,

- upon receipt of the malware from germinators, they can turn into zombies (Z) or passives

(P ).

1Note that this classification and the resulting dynamics are an abstraction of real world networks and sacrifice some accuracy

for modeling simplicity. However, these assumptions are common in cybersecurity literature, e.g., [1], [10] and lead to significant

insight.
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- upon receipt of the malware from zombies, they will turn into zombies (Z).

3) Zombies (Z):

- have received the aggressive malware variant,

- damage the network by executing malicious code,

- will continue to propagate the aggressive variant indiscriminately (i.e., upon meeting a

susceptible, will turn into a zombie),

- are visible to the network due to their communications.

- in the augmentation in §III.B, the additional mechanism of halting can turn zombies into

passives.

4) Passives (P):

- have received the passive variant of the malware,

- damage the network by executing malicious code,

- will not propagate the malware variant any further,

- contrary to germinators and zombies, are invisible to the network as they do not communicate

with other nodes to spread the malware henceforth.

These states and their properties are summarized in Table I. We assume that all nodes mix

homogeneously (i.e., contacts between nodes are independent and exponentially distributed) with

rates that only depends on the infection states of the two nodes. Thus, all nodes that are in one

infection state can be assumed to be identical from the perspective of the malware. The purpose

of this abstraction is to simplify the interaction model for analysis in the population limit (i.e.,

as the number of nodes increases).

In these models, the attacker controls the mixture of zombie and passive malware variants

through the germinators under its direct control. Whenever a germinator meets a susceptible,

based on the control chosen by the attacker, it spreads either the zombie or passive variant of

the malware to the susceptible, or leaves it as it is. In the dynamics in §IV.B, the germinator has

an additional controlled mechanism of action, whereby upon meeting a node with the zombie

variant of the malware, it can replace the variant with the passive one (a “halting” mechanism).

These controls are assumed to be piecewise continuous, but they can take any value between

zero and one, which determines the percentage of relevant interactions for which the specified

action happens. We do not assume that all nodes make the same spreading decision at each time

instance: the attacker can assign a certain uniformly distributed and possibly varying fraction of
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State Visibility Growth over time Propagation

S N Only decrease -

G Y Fixed Y

Z Y Increase or decrease Y

P N Only increase N

TABLE I: The states of the SGZP model and their characteristics. “Visibility” denotes whether

the infection state of the node is detectable by the network defender. “Growth over time”

determines the possible changes in the fraction of nodes in each state over time (note that the only

case in which zombies can decrease is the dynamics outlined in §IV.B). Finally, “Propagation”

determines whether a node in that state can spread the malware to a susceptible node upon

contact.

germinators to make the same decision at each time, or it could allow all agents to make one

of the two decisions with a certain, possibly varying probability at each time. The outcome of

both cases is that a certain uniformly distributed percentage of interactions (derived from the

attacker’s controls) lead to the creation of zombies and passives, and the rest have no effect on

the potential target.

Later, we also investigate the effect of defense strategies on the optimal spread of malware

variants (§III.C). In these defense strategies, the defender limits the effective contacts of nodes

using a pre-determined function of malware visibility (which changes over time) as a means to

limit the spread of malware. We consider two classes of network defense functions: affine and

sigmoid. These defense strategies, however, come at the cost of stopping legitimate communi-

cation within the network. This is akin to choosing the communication ranges of nodes as a

decreasing function of the visibility of the malware, which is a form of quarantine.

We allow the attacker to choose the malware spreading controls so as to maximize a measure

of overall damage (described in §III.E). We first consider a damage function that depends on

a) malware efficacy, which is a function of the aggregate number of zombies and passives, and

b) malware visibility, which is a function of the number of zombies (for the models in §III.A

and §III.B). Then, we consider a damage function where malware efficacy is the attacker’s only
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direct concern, and is thus the damage function to be maximized, for the case where visibility

is built into the network dynamics through a network defense policy which is a function of the

fraction of zombies (as in the model in §III.C). These formulations, to the best of our knowledge,

have no precedent in the epidemics literature, and can be used to further investigate the effects

of malware visibility in networks.

An advantageous feature of all these models is that the malware designer only requires

synchronized actions from a fixed number of nodes that are under its control from the outset.

This decreases the risks of detection and policy implementation errors arising from coordinating

synchronized distributed actions among a varying set of nodes.

B. Results

We then derive necessary structures for optimal solutions for each of the cases, using Pontrya-

gin’s Maximum Principle and custom arguments constructed for each case (in §IV). We show

that the attacker’s optimal strategy in all of these models is for the germinators to spread only

one variant of the epidemic at each time: the germinators will create zombies up to a certain

threshold time, and then only create passives (including by halting zombies) from then on. That

is, the optimal controls are bang-bang (i.e., only taking their minimal and maximum values)

with only one jump. Note that the controls can take any value between 0 and 1 at each point

in time, and this bang-bang structure is one that emerges from the dynamics of the problem.

These structural results are without precedent in the literature, both due to the uniqueness of the

model, as well as the constraints placed on the vector of optimal controls.

It is interesting to note that in each of the variations we consider, our analysis reveals that all

the controls in each model have the same threshold, a fact that is not at all clear a priori. Thus

the entire control space can be described by one time threshold. This structure is invaluable for

deriving the optimal controls computationally (by solving the scalar optimization problem with

the state ODEs mapping the variable to the damage objective). Furthermore, the controls are

deterministic and easy to implement as the germinators need to be programmed with just one

time instant for all of their controls.

Finally, we investigate the performance of the derived optimal controls using numerical sim-

ulations (in §V). We first investigate the effect of the additional halting action on the optimal

attack policies. We show that for both the simple and halting models, as the rate of contact
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between zombies and susceptibles increases, zombies are created for a shorter time period. We

also show that the halting control adds to the length of time the zombie variant should optimally

be propagated, with the additional propagation time depending on some system parameters.

We then compare the optimal control with heuristics, and show that even without the halting

control, the optimal solution performs 10% better than the leading heuristic, with the performance

differential being larger for more naive heuristics. We then consider errors in the implementation

of the network defense strategy outlined in §III.C, and investigate their effects on the malware

spread. We show that erroneous estimations on the part of the defender only slightly affect the

damage inflicted by the attacker, which points towards the robustness of the attack policies to

errors in estimations by the network defense. Finally, we quantify the effect of synchronization

errors among the relatively small number of germinators on the efficacy of the malware attack.

We show that any such attack is robust to small errors among the germinators, sounding an

alarm to the fact that these malware attacks are less vulnerable to implementation issues that

may arise from synchronization errors than previous generations of malware.

II. LITERATURE REVIEW

Multiple interacting epidemics that spread among a single population have been considered

in the fields of biology (e.g., multiple strains of a viral epidemic [11], [12]) and sociology (e.g.,

competition among memes in a world with limited attention span [13]). The key distinction

between the control of biological epidemics [14]–[18] and that of malware ones is that in malware

epidemics the attacker can also decide to use her resources optimally and to adapt to foresee

the response of the defender. In the realm of sociology, the control of information epidemics

offers closer parallels to that of malware. For example, Kandhway and Kuri [19] model how

an erroneous rumor may be optimally stifled by the spread of correct information, which is

a secondary epidemic that interacts with the naturally occurring rumor epidemic. However, in

this case only one of the epidemics can be controlled, while the malware attacker can possibly

simultaneously control the spread of all malware variants. When there are multiple controllable

epidemics, the resulting simultaneous controls are interdependent, and focusing on one control

and characterizing its structure does not lead to a characterization of the optimal action. Thus,

in malware epidemics there are vectors of controls available to the attacker, which requires new

approaches and techniques compared to the other fields discussed.
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Even within the majority of malware epidemic models, e.g., [20]–[26], the spread of only

one malware has been examined, while we focus on the case where two variants are spreading

in conjunction with each other. This presents a fundamentally different choice to the attacker,

and so the model presented for the spread of visibility-heterogeneous malware variants has no

precedent in literature. Accordingly, the questions we asked and the solutions we obtained are

substantially different to prior work.

Note also that in nearly all malware epidemics, as well as the more generic epidemic models

mentioned, some form of the homogeneous mixing assumption is used to obtain tractable results.

While [27] provides one interesting avenue for the relaxation of the mean-field assumption in the

study of a given epidemic process, tractable results in the epidemic control domain still critically

rely on the mean-field assumption.

Nonetheless, we still distinguish other aspects of our work from those considering a single

type of malware: in these papers: 1- it is assumed that the attacker’s sole aim is to maximize the

spread of the malware, which is no longer the case for the emerging class of surgical malware

such as Regin [4] and Stuxnet [5] and 2- attackers have a mechanism to control the spread of

the malware remotely in the future, e.g., through a timer in the code which would be executed in

infected machines (as in [28]). Any such code would have to interact with the operating system

of the infected node, the configuration of which might not be known to the attacker, and can

thus create a point of failure for the malware. The failure of such a mechanism of control was

key to the overspread and subsequent remedy of Stuxnet [7].

Among the work on the control of a single-type/variant of malware (and the closely related

literature on the spread of a message in Delay Tolerant Networks [29], [30] and the spread of a

rumor [19]), the closest work to this topic (in terms of approach and spreading models) was in

two papers [26], [31]. In both papers, however, the authors assume that the malware can control

the transmission range of infected nodes2 and patching is the major defense of the network

2We assume that the control affects the mix of malware variants and that the communication ranges of nodes are outside the

malware’s control, perhaps even being controlled by the defender as a mitigation mechanism. Thus, the control and the trade-off

to the malware designer is fundamentally different.
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and starts as soon as the epidemic spreads3. Thus, while the derived bang-bang structure of

the optimal controls is similar, their models and their results apply to a fundamentally different

class of malware, and the arguments used in deriving the results are only similar at the level of

using a classic Maximum Principle-derived switching function argument for constrained controls.

Furthermore, the adaptive defense model and the results on the simultaneity of 3 optimal control

switching times for the halting model are without precedent in the literature.

Finally, the very strict structure we prove for the vector of malware optimal control, which

restricts the search space for computational methods to a single parameter, is also without

precedent in any of the aforementioned literature.

III. SYSTEM MODEL AND OBJECTIVE FORMULATION

In this section we model the spread of malware in a homogeneous network with random

contacts. This can be the case where malware spreads among mobile devices with proximity-

based communication, or where random contacts in an address-book are utilized. The virus

propagates in the network between times 0 and T . We represent the fraction of susceptible,

germinator, zombie, and passive nodes at time t with S(t), G(t), Z(t), and P (t) respectively,

and assume that they are differentiable functions of time. We assume that for any pair of states,

the statistics of meeting times between all pairs of nodes of those two states are identical and

exponentially distributed, where the mean is equal to the homogeneous mixing rate of those two

states. Groenevelt et al. [33] have shown that homogeneous mixing holds under the common

Random Way-point and Random Direction mobility models (when the communication range

of the fast-moving nodes is small compared to the total region). It has been shown [34], [35,

p.1] that the resulting evolution of such a set of state fractions (where state transitions occur

according to a Poisson contact process) will converge pathwise to the solution of a set of ordinary

differential equations derived from the dynamics in the population limit (i.e., in the mean-field)

on any limited time period (in particular, including the transient phase). In previous work, we

have shown that such approximations are reasonable even with populations as small as 40-160

3This may not be the case for an emerging stealthy epidemic like Stuxnet that is very large and extremely hard to decipher,

let alone mitigate [9], [32]. In our model, the network only becomes aware of the malware as it becomes more visible (i.e., as

the visible variant spreads).
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Zombie creation

γβZS + βGSuZ

βGSup

Passive creation

Halting zombies

πβGZuh

Fig. 1: The blocks represent the 4 states of nodes with regard to the malware. The solid black

lines show the dynamics in §III.A with the transition rates super-imposed. The green arrows

point from each source of malware to the resulting transition. The dotted red lines show the

additional halting action in §III.B. The model in §III.C has the same dynamics as the solid

black lines, but with β being a function of Z (i.e., β(Z)).

[29].4

Note that the zombies can be programmed to only spread the malware at a fraction of the

times they meet susceptibles, slowing their spread, or they can be programmed to use resources

that are not utilized by the rest of the network to spread faster. Therefore we take the mixing

rate between Z and S to be potentially different from the other pairs of states.

We describe the state dynamics of such systems as an epidemic for the cases where: 1)

germinator agents can only interact with susceptible agents (§III.A), 2) germinator agents can

also interact with zombies as well (§III.B), and 3) effective network contact rates are a function

of the infection spread, mirroring the response of a network defender (§III.C) (Figure 1). We

state and prove a key observation about all these dynamics (§III.D). We next formulate the

aggregate damage of attack efficacy and the ensuing visibility (§III.E). Finally, we lay out the

optimization problem in §III.F.

A. SGZP Model with no halting

The attacker can spread the malware in two ways: 1- upon encountering a susceptible, she can,

through the control variable uZ(t), turn that susceptible node into a zombie, i.e., one that will

4This work [29] also lays out a roadmap on how to partially relax the homogeneous mixing assumption in the current problem.
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henceforth propagate that infection to susceptibles it meets. 2- upon encountering a susceptible,

she can, through the control variable uP (t), turn that susceptible into a Passive, P . These control

variables — (uZ , uP ) ∈ U , where U is the set of piecewise continuous controls — can be thought

of as the probabilities that an interaction of a germinator and a susceptible at time t will lead to

the susceptible becoming a zombie and a passive respectively. To maintain such a probabilistic

intuition, we constrain their sum to be less than one.

Ṡ = −βGS(uP + uZ)− γβZS (1a)

Ż = βGSuZ + γβZS (1b)

Ṗ = βGSuP (1c)

uP + uZ ≤ 1 (2a)

0 ≤ uP ≤ 1 0 ≤ uZ ≤ 1 (2b)

Here, β is the mixing rate between S and G (which the attacker can calculate using time averages

of contact times), and γβ is the mixing rate between Z and S (with γ > 0). Thus, γ is the

relative secondary rate of spread of the malware. We consider all values of the parameter γ, with

an associated trade-off: if γ is high, the zombies spread too fast and increase visibility, while if

γ is low, the malware does not spread to cause significant damage.

B. SGZP Model with halting

This model is akin to the previous one, with one more mechanism added: germinator nodes

(G) can force a zombie (Z) to become passive (P) through a process we will call ‘‘halting”.

This happens through another control variable uh, which, in keeping with the intuition, can be

thought of as the probability of halting encountered zombies at each instant. Again, we take

(uZ , uP , uh) ∈ U ′, where U ′ is the set of piecewise continuous controls. The system dynamics

become:
Ṡ = −βGS(uP + uZ)− γβZS (3a)

Ż = βGSuZ + γβZS−πβGZuh (3b)

Ṗ = βGSuP+πβGZuh, (3c)

with 0 < π ≤ 1 signifying the extent to which the zombies can be stopped when encountered by

the original germinators. This model is similar to the Daley-Kendall rumor model [36], where
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repeated interaction with active agents can turn an active spreader of the rumor into an agent

that is aware of the rumor, but has no interest in spreading it any further. The constraints now

become:

uP + uZ ≤ 1 (4a)

0 ≤ uP ≤ 1, 0 ≤ uZ ≤ 1, 0 ≤ uh ≤ 1. (4b)

C. SGZP Model with no halting and adaptive defense

Instead of allowing a constant rate of interactions β, the network defender can choose the

effective mixing rate β to be a function of the fraction of zombies as her defense policy (β(Z)).

In these policies, the network defender regulates the rate of contact between nodes based on the

proportion of zombie nodes it has observed. While the network cannot determine which nodes

have been compromised, it can determine the fraction of the network that has been infected by

zombies by observing the chatter among nodes and the extra communications whose purpose

is unknown, either in the whole network or among a representative subset of nodes. If these

illicit communications are significant enough to attract the network defender’s attention, they can

implement a quarantine defense policy, captured by β(Z), which will be a function of likelihood

the malware is detected, and which will decrease the spread of the malware.

We consider the system dynamics described in the no-halting model, and adapt them accord-

ingly:

Ṡ = −β(Z)GS(uP + uZ)− γβ(Z)ZS (5a)

Ż = β(Z)GSuZ + γβ(Z)ZS (5b)

Ṗ = β(Z)GSuP (5c)

The controls available are also the same as those in (2). In particular, they are still assumed

to be piecewise continuity.

We consider two classes of β(Z) functions: 1) Affine functions, of the form β(Z) = −aZ +

βmax for 0 ≤ a ≤ βmax (a natural assumption, as the contact rate cannot be negative). If

a = 0, the affine case simplifies to the constant β case. 2) Exponential sigmoids, of the form

βZ =
β0

1 + eα(Z−Zth)
, with 0 < Zth < 1 being a fixed threshold and α > 0 denoting the sharpness
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of the cut-off. As α increases, β(Z) can become arbitrarily close to β(Z) = β01Z≤Zth
, an all-

or-nothing policy. Both of these classes satisfy β(Z) > 0 for all Z (i.e., the network never

shuts down completely due to the infection) and dβ(Z)
dZ

< 0 for all Z (except for the trivial case

of constant β(Z)), as more visibility should lead to more communication restrictions from the

network. In mobile epidemics, this is equivalent to nodes decreasing their communication range

upon the detection of an infection, e.g. as in [37]. In practice, the network will have an estimate

Ẑ of the fraction of zombies. Our simulations reveal that the sub-optimality induced by the

estimation error is small (§V).

D. Key observations

We start with a theorem that holds for all the models presented above, and which will be used

as a building block to obtain structural results in §IV.

Theorem 1. For a system with the mechanics described in either §III.A, §III.B, or §III.C, with

initial conditions S(0) = S0 > 0, G(0) = G0 > 0, Z(0) = Z0 ≥ 0, and P (0) = P0 ≥ 0, and

S0 + G0 + Z0 + P0 = 1, and with piecewise continuous controls uP , uZ (and in (3), uh), the

dynamical systems (1), (3), and (5) have unique state solutions (S(t), G(t), Z(t), P (t)), with

S(t) > 0, Z(t) ≥ 0, P (t) ≥ 0, and (S +G+ Z + P )(t) = 1 for all t ∈ [0, T ].

The assumptions S0 > 0 and G0 > 0 are natural, otherwise there is no interaction to control.

Henceforth, we will assume these, as well as Z0 ≥ 0 and P0 ≥ 0.

Proof: The uniqueness follows from standard results in the theory of ordinary differential

equations [38, Theorem A.8, p. 419] given the observation that the RHS of the dynamic systems

is comprised of quadratic forms and is thus Lipschitz over [0, T ]×S, where S is the set of states

such that the boundary conditions hold.

We provide the proof for the case of §III.A, and note the changes for §III.B. First of all,

(Ṡ + Ż + Ṗ )(t) = 0 and (S + Z + P )(0) = 1 − G0, so (S + G + Z + P )(t) = 1 for all

t. We know that Ṡ = −βGS(uP + uZ) − γβZS ≥ −MS, where M is the upperbound of

βG + γβZ (because (uP + uZ) ≤ 1). Therefore, S(t) ≥ S0e
−Mt > 0 for all t. Therefore,

Ż = βGSuZ + γβZS ≥ γβZS ≥ MZ, where M is a lowerbound on γβS which exists due

to continuity (respectively, Ż = βGSuZ + γβZS − πβZGuh ≥ Z(γβS − βπGuh) ≥ M ′Z,

where M ′ is a lowerbound on (γβS − βπGuh) which again exists due to continuity). Note
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that the first inequality resulted from uZ(t) ≥ 0 for all t. Therefore, Z(t) ≥ Z0e
Mt ≥ 0

(respectively Z(t) ≥ Z0e
M ′t ≥ 0) for all t. Finally, Ṗ = βGSuP ≥ 0 for all t (respectively,

Ṗ = βGSuP + πβZGuh ≥ 0 for all t), as uZ(t) ≥ 0, so P0 ≥ 0 leads to P (t) ≥ 0 for all t.

Theorem 1 can be proved very similarly for the model in §III.C using the reasoning we used

for the model in §III.A, with the difference that in the arguments, β is replaced by β(Z), which

is lower-bounded away from zero for positive Z.

E. Utility Function

As we discussed, the attacker tries to maximize attack efficacy while minimizing visibility.

We capture efficacy as a function f(·) of the aggregate number of zombies (Z) and passives

(P ) at each time instant. Meanwhile, visibility is only a function of zombies that re-spread the

malware, as that is the only time the malware is detectable. Visibility increases the likelihood that

the network defender detects the malware and takes defensive actions. This means that we can

capture instantaneous visibility as a function g(·) of the number of zombies at that instant. While

the attacker cannot in general measure the malware’s visibility, she can choose g(·) based on how

detrimental detection would be for her purposes. This formulation is comprehensive because the

fixed number of germinators (G) both cause damage and are visible, and are implicitly a term

that is added to the variable of both functions. This leads to the following aggregate damage

function that the attacker seeks to maximize:

J =

∫ T

0

(f(Z(t) + P (t))− g(Z(t))) dt. (6)

We have some natural assumptions on f(.) and g(.): f(0) = g(0) = 0, with dg(Z)
dZ

> 0 and
∂f(Z+P )

∂Z
= ∂f(Z+P )

∂P
> 0.

We assume that f(x) is concave, which means that incremental damage does not increase as

the number of infected agents increases [i.e., the pay-off per infected agent decreases].

In §IV.A: We assume g(x) is convex. This means that an increment in the zombies is costlier

(results in more visibility) when the infection is already more visible. This could be the case

when the network becomes more wary of the infection as it progresses and becomes more visible.

In §IV.B: We simplify g to be linear, g(x) = kgx, kg > 0.

In §IV.C: We set g(x) ≡ 0, as the effects of visibility have been built into the network dynamics
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through β(Z). This leaves us with:

J =

∫ T

0

f(Z(t) + P (t)) dt. (7)

F. Problem statement

In §IV.A and §IV.C, the attacker seeks to choose controls (uZ , uP ) ∈ U satisfying (2) so as

to maximize J (respectively, (6) and (7)), while in §IV.B, she seeks to maximize J (6) through

a choice of (uZ , uP , uh) ∈ U ′ that satisfies (4).

IV. STRUCTURAL RESULTS

Using Pontryagin’s Maximum Principle and custom arguments specific to each case, we obtain

the one-jump bang-bang structure of the optimal controls for the various cases in §III.A, §III.B,

and §III.C. We provide the proof for §IV.A in the main text (§IV.D) and the ones for §IV.B and

§IV.C in the appendices (§Appendix A and §Appendix B respectively).

Intuition is unclear in determining these structures: while intuitively creating zombies at the

beginning of the time period allows the malware to benefit from their epidemic spread, it also

penalizes the malware more because of its prolonged visibility. This is further complicated by the

fact that the controls can take any value between 0 and 1, and thus it is possible for the attacker

to have any mix of malware spread at each instance in time. The strict structures that arise from

the analysis are counter-intuitive and interesting both theoretically and from an implementation

standpoint.

A. Results for the no halting model (proved in §IV.D)

Theorem 2. Any optimal control in U will satisfy

uP (t) =


0 t ∈ [0, t∗)

1 t ∈ (t∗, T )

uZ(t) =


1 t ∈ [0, t∗)

0 t ∈ (t∗, T )

for some t∗ ∈ [0, T ).

This result means that for any optimal control, there exists a time threshold t∗ such that prior

to t∗, the germinators convert all the susceptibles they encounter to zombies, and subsequent to

it they convert the susceptibles to passives.
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The fact that creating zombies starts from the initial time for all interactions, that passives are

created for a time period leading up to the terminal time for all interactions, and that the switch

between creating zombies and passives is instantaneous – with no gap between, and no over-lap

in, the intervals in which these variants are propagated, as well as no intermediate propagation

rates – is not at all a priori obvious.

Note that we prove a necessary condition for any optimal control, thus reducing the search

space of controls from a vector of functions to a scalar (t∗). This is a cause for concern, as

the latter is much more computationally tractable for the attacker, and shows that any optimal

policy will also be simple for the attacker to execute. The attacker can execute the optimal policy

by optimizing the ODE (1), just varying the scalar parameter t∗, and then coding t∗ into the

germinators, which are the only nodes that execute the control.

B. Results for the halting model (proved in §Appendix A)

Theorem 3. Any optimal control in U ′ will satisfy

uP (t) = uh(t) =


0 t ∈ [0, t∗)

1 t ∈ (t∗, T )

uZ(t) =


1 t ∈ [0, t∗)

0 t ∈ (t∗, T )

for some t∗ ∈ [0, T ), except in the case where Z(t) = 0 for all t ∈ [0, T ], in which case uh can

be arbitrary with the other two structures holding.

This means that there exists a time threshold t∗ such that prior to t∗, the germinators again

convert all the susceptibles they encounter to zombies while not halting any zombies they meet,

and subsequent to it they convert both the susceptibles and zombies they encounter to passives.

Here, the added halting control can be used to slow the spread of zombies.

The fact that the same result as Theorem 2 holds for uZ and uP in the presence of uh is not

clear a priori. Furthermore, the fact that the halting optimal control is bang-bang and that the

switching time is the same as the other controls is surprising.

C. Results for the adaptive defense model

Theorem 2 holds (with the difference that t∗ ∈ [0, T ]) for constant, affine, and sigmoid β(Z).

This is remarkable given that here, β changes as a function of Z. This result is proved in

§Appendix B.
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D. Proof of Theorem 2 for the no halting model

Proof: This proof utilizes the necessary conditions for an optimal control derived from

Pontryagin’s maximum principle. In particular, we explicitly characterize the optimal controls

as functions of the optimal states and co-states (akin to Lagrange multipliers). Subsequently, we

start at terminal time, where the co-states are known, and follow their evolution backward in

time till we arrive at the initial time, thereby implicitly characterizing the necessary structure of

the optimal controls.

Define continuous co-states (λS, λP , λZ , λ0) such that at points of continuity of the controls:

λ̇S = β[(λS − λP )GuP + (λS − λZ)GuZ + (λS − λZ)γZ]

λ̇Z = −f ′(Z + P ) + g′(Z) + (λS − λZ)γβS

λ̇P = −f ′(Z + P ), (8)

with final co-state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (9)

Towards characterizing properties of optimal solutions, we define the Hamiltonian as:

H(t) := λ0(f(Z + P )− g(Z)) + (λP − λS)βGSuP

+(λZ − λS)βGSuZ + (λZ − λS)γβZS. (10)

Pontryagin’s Maximum Principle [38, p.182] states that any optimal control vector u∗ must

satisfy the following necessary conditions:

(λS, λP , λZ , λ0) 6= ~0, λ0 ∈ {0, 1}, (11)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t) ≥

H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (12)

But if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

1) Structure of the optimal control: If we define:

ϕP = (λP − λS)βGS (13a)

ϕZ = (λZ − λS)βGS, (13b)
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then, the Hamiltonian becomes:

H(t) = f(Z + P )− g(Z) + ϕPuP + ϕZuZ

+(λZ − λS)γβZS. (14)

The maximization of the Hamiltonian (12), added to the sum constraints for the controls (2a),

leads to the following optimality conditions for the controls:5

(uP , uZ) =



(0, 0) ϕP < 0, ϕZ < 0 (15a)

(1, 0) ϕP > 0, ϕP > ϕZ (15b)

(0, 1) ϕZ > 0, ϕZ > ϕP (15c)

(?, ?) ϕZ = ϕP ≥ 0 (15d)

(?, 0) ϕP = 0, ϕZ < 0 (15e)

(0, ?) ϕZ = 0, ϕP < 0 (15f)

From (13) and the state (1) and costate (8) evolution equations and after some manipulations,

we have:6

ϕ̇P = β[GuZ(ϕZ − ϕP ) + γZ(ϕZ − ϕP )−GSf ′(Z + P )]

ϕ̇Z = β[GS(g′(Z)− f ′(Z + P ))

+GuP (ϕP − ϕZ)− γSϕZ ] (16a)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βGuZ + γβZ + βGuP )

−βGSg′(Z) + γβSϕZ , (16b)

2) Proof methodology outline: From here on, we will use the necessary optimality conditions

to obtain timing conditions for phase transitions among the conditions in (15). We show that a

time t∗ exists such that, for t ∈ (t∗, T ), we have uP (t) = 1 and uZ(t) = 0 (§IV.D.3). If t∗ = 0,

we have finished characterizing optimal controls. If not (i.e., t∗ > 0), we prove that a time t′′

exists such that for t ∈ (t′′, t∗), we have uP (t) = 0 and uZ(t) = 1 (in §IV.D.4). Finally, we show

5The question marks (?) denote singular controls. These can occur when the coefficient of a control variable in the augmented

Hamiltonian (which includes the constraints) is zero over an interval, and thus the control has no effect on the Hamiltonian

maximizing condition of the PMP.
6g′(Z) := dg(Z)

dZ
, f ′(Z + P ) := ∂f(Z+P )

∂Z
= ∂f(Z+P )

∂P
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that t′′ must be equal to zero (in §IV.D.5), leading to all possible optimal controls agreeing with

the structure laid out in Theorem 2.

3) Time interval leading up to T and the existence of t∗: We now follow the evolution of

ϕZ and ϕP for a time interval leading to T in order to characterize necessary conditions for the

optimal controls and to prove the existence of t∗. From the terminal time costate conditions (9):

ϕP (T ) = ϕZ(T ) = 0,

ϕ̇P (T−) = −f ′((Z + P )(T−))βGS(T−) < 0,

ϕ̇P (T−)− ϕ̇Z(T−) = −βGS(T−)g′(Z(T−)) < 0.

Therefore, ϕP (t) > max{ϕZ(t), 0} for some interval leading up to T due to the continuity of

the states and costates and using the definition of a left derivative. Let (t∗, T ) be the largest

interval over which this holds for t ∈ (t∗, T ) for some t∗ < T , leading to the fact that for all

such t, uP (t) = 1 and uZ(t) = 0 due to (15b).

For t ∈ (t∗, T ), (16) becomes:

ϕ̇P = −βGSf ′(Z + P ) + γβZ(ϕZ − ϕP ) (17a)

ϕ̇Z = βGS(g′(Z)− f ′(Z + P )) + βG(ϕP − ϕZ)− γβSϕZ (17b)

ϕ̇P − ϕ̇Z = γβSϕZ − (ϕP − ϕZ)(γβZ + βG)−βGSg′(Z). (17c)

Recall that ϕP (t) > 0 for t ∈ (t∗, T ), so due to continuity, we either have ϕP (t∗) > 0 or

ϕP (t∗) = 0. We now rule out ϕP (t∗) = 0. If ϕP (t∗) = 0, Rolle’s Mean Value Theorem [39,

p. 215] applies over the interval (t∗, T ): as ϕP (t∗) = ϕP (T ) = 0 and ϕP is continuous and

differentiable over this interval, there must exist τ ∈ (t∗, T ) such that ϕ̇P (τ) = 0. However,

from (17a), it can be seen that ϕ̇P (t) < 0 for t ∈ (t∗, T ), a contradiction. Therefore, ϕP (t∗) > 0.

Thus, either t∗ = 0 or ϕZ(t∗) = ϕP (t∗). If t∗ = 0, due to (15b), we have uP (t) = 1 and

uZ(t) = 0 for all t which agrees with the structure in Theorem 2, so henceforth we focus on

the case where ϕZ(t∗) = ϕP (t∗) > 0.

First, we derive a property that will prove useful later on. We have Ż(t) ≥ 0 from (1b) and

Theorem 1, and thus due to the convexity of g(·) for t < t∗:
Gg′(Z(t∗))

γ
≥ Gg′(Z(t))

γ
. (18)
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Next, Z(t∗) can either be equal to zero or strictly positive. We first show that if Z(t∗) = 0,

the structure holds.

If Z(t∗) = 0, we have Ż = γβSZ for t ∈ (t∗, T ) as uZ(t) = 0 in this interval. Consider

M1 > 0 to be an upper-bound on the continuous γβS in this interval, so we must have Z(t) ≤

Z(t∗)eM1(t−t∗) = 0, and therefore Z(T ) = 0 due to continuity and the uniqueness of solutions

of first-order initial value problems. Thus, as Ż ≥ 0 for t ∈ (0, T ), we must have Ż = 0 over

this interval, which from (1b) and Theorem 1 leads to uZ(t) = 0 for t ∈ (0, T ) and Z0 = 0.

This also means that from (17a), ϕ̇P (t) = −βGSf ′(Z + P ) < 0 in this interval, leading to

ϕP (t) > ϕP (T ) = 0, and from (15), to uP (t) = 1 over this interval. Thus, again t∗ = 0, agreeing

with the structure predicted by Theorem 2. So from now on we will consider Z(t∗) > 0.

Now, we examine g′(Z(t∗))− f ′((Z +P )(t∗)), noting that it can either be positive or strictly

negative, and investigate both cases in turn.

If g′(Z(t∗)) − f ′((Z + P )(t∗)) ≥ 0, then g′(Z(t)) − f ′((Z + P )(t)) ≥ 0 for all t ∈ (t∗, T ).

This is because from (1), Ṗ (t) + Ż(t) ≥ 0 and Ż(t) ≥ 0 over this interval, which coupled with

the convexity of g(·) and −f(·) in their arguments gives the aforementioned result. From (17b)

and the definition of t∗, ϕ̇Z > −γβSϕZ ≥ −M2ϕZ in this interval, with M2 > 0 being an

upper-bound on γβS. Therefore, ϕZ(t∗) ≤ ϕZ(T )e−M2(t∗−T ) = 0 due to an integral argument,

which means that ϕP (t∗) > 0 ≥ ϕZ(t∗). Note that this would contradict the starting assumption

of this segment, which was ϕP (t∗) = ϕZ(t∗)

Therefore, from here on we will examine the case of g′(Z(t∗)) < f ′((Z + P )(t∗)).
4) Time interval leading up to t∗ > 0 and the existence of t′′: We now look at the evolution of

ϕZ and ϕP for a time interval leading to t∗ > 0, and show that t′′ exists such that t for t ∈ (t′′, t∗),
we have uP (t) = 0 and uZ(t) = 1. Furthermore, in these cases we showed ϕZ(t∗) = ϕP (t∗),
Z(t∗) > 0, and g′(Z(t∗)) < f ′((Z + P )(t∗)). At such a point t∗, from (16a) and the continuity
of the states and co-states:

(ϕ̇P (t
∗+)− ϕ̇Z(t

∗+)) = βS(t∗)[γϕZ(t
∗)−Gg′(Z(t∗))]. (19)

Now, (19) should be positive, because if this derivative was strictly negative, the definition of

the right-derivative would show that ϕZ(t) > ϕP (t) for t in an interval starting from t∗, a

contradiction. Because from Theorem 1, S(t∗) > 0, so βS(t∗)[γϕZ(t∗)−Gg′(Z(t∗))] ≥ 0 and:

ϕZ(t∗) ≥ Gg′(Z(t∗))

γ
. (20)
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Now, we can see from a continuity argument on (16a) (given that ϕZ(t∗) = ϕP (t∗) > 0) that

ϕ̇Z(t∗−) < 0. Thus ϕZ(t) > ϕZ(t∗) for some interval leading up to t∗ due to the definition of a

left-derivative.

From (16a), (18), and (20), we must have: ϕZ(t) >
Gg′(Z(t))

γ
for t in some interval leading

up to t∗. Let (t′, t∗) be the maximal such interval. In this interval, from (16b), ϕ̇P−ϕ̇Z > −(ϕP−

ϕZ)(γβZ+βG) ≥ −M3(ϕP −ϕZ), where M3 > 0 is an upper-bound on the continuous expres-

sion γβZ+βG. So for any t in this interval, (ϕP (t)−ϕZ(t)) < (ϕP (t∗)−ϕZ(t∗))e−M3(t−t∗) = 0.

Thus, ϕP (t) < ϕZ(t) for t ∈ (t′, t∗). As ϕZ(t∗) > 0, due to the continuity of the states and

co-states, there exists a maximal interval (t′′, t∗) such that ϕZ(t) > max{ϕP (t), 0}. Following

from (15c), for t ∈ (t′′, t∗) we must have uP (t) = 0 and uZ(t) = 1.

5) Proof that t′′ = 0: If t′′ = 0, the above concludes our specification of the structure, which

agrees with Theorem 2. Thus, henceforth we assume t′′ > 0, and thus either ϕZ(t′′) = ϕP (t′′)

or ϕZ(t′′) = 0.

For t ∈ (t′′, t∗), (16) becomes:

ϕ̇P = β[−GSf ′(Z + P ) +G(ϕZ − ϕP ) + γZ(ϕZ − ϕP )] (21a)

ϕ̇Z = β[GS(g′(Z)− f ′(Z + P ))− γSϕZ ] (21b)

ϕ̇P − ϕ̇Z = β[γSϕZ − (ϕP − ϕZ)(G+ γZ)−GSg′(Z)], (21c)

Now, for t ∈ (t′′, t∗), g′(Z(t)) − f ′((Z + P )(t)) < g′(Z(t∗)) − f ′((Z + P )(t∗)) < 0. This is

because Ż(t) > 0 as uZ(t) = 1, and Ṗ (t) = 0 as uP (t) = 0, so g(·)−f(·) is convex in the strictly

increasing Z in this interval. So from (21b), ϕ̇Z < −γβSϕZ ≤ −M4ϕZ with M4 > 0 being the

upper-bound of the continuous γβS, and therefore for all t ∈ (t′′, t∗), ϕZ(t) ≥ ϕZ(t∗)e−M4(t−t∗),

and therefore by continuity, ϕZ(t′′) ≥ ϕZ(t∗)e−M4(t′′−t∗). Thus, we can conclude that ϕZ(t′′) > 0,

as ϕZ(t∗) > 0.

So for t′′ > 0, we must have ϕP (t′′) = ϕZ(t′′). In this case, we have (ϕ̇P (t′′+)−ϕ̇Z(t′′+)) ≤ 0,

as if it is strictly positive, an integral argument will lead to a contradiction with ϕP (t) < ϕZ(t)

for t ∈ (t′′, t∗). Using the continuity of the states and co-states and as from Theorem 1, S(t′′) > 0,

(21b) becomes:

ϕ̇P (t′′+)− ϕ̇Z(t′′+) = βS(t′′)[γϕZ(t′′)−Gg′(Z(t′′))] ≤ 0

⇒ ϕZ(t′′) ≤ Gg′(Z(t′′))

γ
, (22)
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We know that for all t ∈ (t′′, t∗), g′(Z(t)) − f ′(Z + P (t)) < 0, so from (21b), ϕ̇Z(t) <

−γβSϕZ < −M5ϕZ < 0, where M5 > 0 is an upper-bound on the continuous γβS. Thus,

ϕZ(t′′) > ϕZ(t∗). (23)

But (18), (22), and (23) lead to ϕZ(t∗) <
Gg′(Z(t∗))

γ
, which contradicts (20).

Thus t′′ = 0, and this concludes our specification of the structure of the optimal controls

which conform to the structure set out in Theorem 2.

V. SIMULATION

In the preceding sections, we showed that the optimal spreading controls of the malware in

all of the described settings can be fully described by a scalar parameter t∗. In this section, we

investigate the variation of t∗ with respect to some system parameters and then compare the

relative performance of the optimal spreading controls with simple heuristics (§V.A).7 In these

studies, the main parameter of variation is γ, as a higher γ indicates that zombies spread at

a faster rate than infection via germination, and thus γ represents a measure of the virility of

the zombie malware variant. Varying γ changes the relative contact rates internal to the model

and thus represents different possible dynamics of a malware attack. In contrast, varying β, the

contact rate of germinators and susceptibles, changes the number of contacts across the board,

which is equivalent to changing T . Thus any variation of β would only show how t∗ changes

for a specific epidemic. Finally, we numerically investigate the fragility of the optimal control

to network estimation errors in the adaptive defense model and to synchronization errors among

germinators (§V.B).

A. Structure of the optimal malware spread controls and their performance vs heuristics

We first computed t∗ (the optimal switching time) as a function of the relative spread rate of

the zombies γ for the problems in §III.A and §III.B (with different values of halting efficacy

π), as well as the optimal controls, for a cost function for which both Theorem 2 and 3 apply

(Figure 2). As γ increases, zombies are created for a shorter period due to the rapid explosion of

7Stealth conscious epidemics are an emerging threat, and while more data is available now than before, their very nature

makes real spreading data hard to come by and a topic of active research, even years after the fact. Thus, our numerical studies

are based on simulations with parameters that are justified based on their real-world implication.
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their population later on. Furthermore, the addition of a halting control and its increased efficacy

leads to the attacker creating zombies for longer, as she can control their spread (and thus their

visibility) later on using the halting control.
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Fig. 2: We compared t∗ (the length of time the zombie control uZ was equal to one) for the optiml

no halting and halting controls as the secondary rate of spread of the zombies (γ) was varied.

Here, β = 2, T = 5,(S0, G0, Z0, P0) = (0.99, 0.01, 0, 0), f(x) = x0.5, and g(x) = kgx = 0.7x.

We then compared the cost of these two optimal controls to that of simple heuristics: for the

model in §III.A, Always Zombie and Always Passive represent the two most extreme policies

- Always Zombie sets uZ(t) = 1 and uP (t) = 0 for all times, while Always Passive does the

exact opposite. Thus, in these heuristics the germinators only ever propagate one fixed type of

malware variant. In the Optimal Static Mixing heuristic, the attacker chooses a fixed ratio for uZ

and uP at all times. Our optimal controls are titled No Halting and Halting, the latter indexed

by the value of π (which represents the relative success of the germinators in halting zombies).

The efficacy of the policies is evaluated as γ, the relative propagation rate of the zombies is

varied (Figure 3, which is presented for the same parameters as those used in Figure 2).

The optimal controls perform much better than the heuristics, with the halting control outper-

forming the no-halting control for by as much as 10% for large values of π (where the halting

control is efficient) and γ (where the zombie variant propagation is rapid), both factors which

penalize sub-optimal decision-making. This vindicates the assumption that the attacker would be

wise to utilize the halting control were it to be available. Out of the simple heuristics, optimal

static mixing has the maximum utility, which is typically 10% below that of even the no-halting

optimal control.
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Fig. 3: Comparison of the damage utilities across the optimal controls and heuristics for the

parameters of Fig. 2.

B. Fragility of the optimal damage to network estimation errors and synchronization errors in

the germinators

We then investigated how the optimal control would fare when the network, which is capable of

adaptive defense (i.e., the model in §III.C), has an erroneous estimate of the fraction of zombies

(Figure 4). The optimal attack policy is derived with the assumption that the network’s defense

policy is based on the correct observation of the visibility of the epidemic (i.e., the fraction

of zombies), information that is rarely available. Figure 4 shows that the optimal control is

remarkably robust to the network’s estimation errors up, with an error of 5% even when the

estimation error is 40%. In many cases, the performance is much better.

Finally, we examined how synchronization errors among the germinators would affect the

utility of the malware. One of the benefits of the malware spread models was that they assumed

that only this small fraction of nodes, which is under the direct control of the attacker, has to

coordinate their actions. To examine the fragility of the optimal control to this coordination, once

the optimal policy is derived, random errors are introduced to the clocks of the germinators, and

the resulting utilities are compared over 100 runs of the simulation (Figure 5). As can be seen,

the damage of both the no halting (π = 0) and halting (π = 0.5) cases is distributed around

the damage obtained by the calculated optimal control, and only suffers a 10-15% performance

drop for synchronization errors of up to 30% of t∗ in the small number of germinators.

Furthermore, it can be seen that the synchronized infinite-node optimal control can actually
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Fig. 4: The network was assumed to make unbiased random estimation errors at each time instant

with the range depicted on the x-axis. The solid line shows the average difference in damage

relative to the optimal over 50 runs of the estimating network. Here, we used an exponential

sigmoid β(Z) with β0 = 1, α = 100, T = 15, γ = 1.4, Zth = 0.01, (S0, G0, Z0, P0) =

(0.999, 0.001, 0, 0), and f(x) = x0.9.

perform slightly worse than the case where there are synchronization errors on a finite number of

nodes, even in the mean. We can explain this as follows: in the previous sections, we characterized

the optimal solution for the problem in §III.F under the assumption that the number of nodes was

infinite. For a finite number of nodes, even without synchronization errors, the damage sustained

by the simulated network can be different from (and potentially less than) that computed using

the computational optimal control framework.

These studies lead to the conclusion that an adversary will not be deterred by the possibility

of errors in estimation and synchronization of the malware spread, further sounding the alarm

about the emerging trend of visibility-aware malware.

VI. FUTURE DIRECTIONS

In this paper we investigated the optimal controls for the SGZP model with and without

halting with no explicit network defense (§III.A and III.B), and without halting for the case with

adaptive network defense (§III.C). This leaves open the case of the SGZP model with halting

and adaptive defense. Initial analytical investigations show that Theorem 3 is likely generalizable

to this case, barring some technical issues that will be investigated in the future. In principle,

γ can also be a variable to be optimized by the attacker in all models. Furthermore, the model
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Fig. 5: Germinators were assumed to have unbiased random synchronization errors at each time

instant with the range depicted on the x-axis. The lines shows average damage over 100 runs with

unsynchronized germinators. Here, β = 2, γ = 0.5, T = 5, (S0, G0, Z0, P0) = (0.99, 0.01, 0, 0),

f(x) = x0.5, and g(x) = kgx = 0.7x, and the simulation was run for 500 nodes (i.e., 5

germinators).

can be extended to a botnet case where the attack is unleashed only when the damage-visibility

trade-off is at the optimal point – the same arguments as in the paper would hold in that case,

with the difference that the terminal time will be free. The set-up and formulation of the visibility

problem is, to the best of our knowledge, novel, and thus leads itself to analysis both in the

mean-field regime and in more structured settings. In particular, in the mean-field case, possible

patching will be addressed at a later stage, as well as the dynamic game that would result from

such a competition.

The current work is an abstraction of practical cybersecurity problems mainly due to the

homogeneous mixing assumption. Another possible direction is to look at the optimal control of

such an epidemic in sub-populations with differentiating characteristics (e.g., location, contact

rate) as a way to relax the homogeneous mixing assumption (e.g., by following the roadmap

in [29]). Such a generalization would better model Stuxnet in particular, with the goal being

to maximize the number of infected agents in a particular region, while minimizing the total

number of detectable zombies.
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APPENDIX A

PROOF OF THEOREM 3

Proof: This proof follows the same structure as that of Theorem 2.

As before, we define continuous co-states (λS, λP , λZ , λ0) such that at points of continuity of

the controls:

28



λ̇S = (λS − λP )βGuP + (λS − λZ)[βGuZ + γβZ]

λ̇Z = λ0g
′(Z)− λ0f ′(Z + P ) + (λS − λZ)γβS

+ (λZ − λP )πβGuh

λ̇P = −λ0f ′(Z + P ), (24)

with final state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (25)

To characterize optimal controls, we define the Hamiltonian to be:

H(t) =λ0(f(Z + P )− g(Z)) + (λP − λZ)πβGZuh

+ (λZ − λS)[βGSuZ + γβZS] + (λP − λS)βGSuP . (26)

Pontryagin’s Maximum Principle again gives the following necessary conditions for an optimal

control vector u∗:

(λS, λP , λZ , λ0) 6= ~0 λ0 ∈ {0, 1}, (27)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t) ≥

H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (28)

Again, if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

Now, we have:

λ̇P − λ̇Z = −g′(Z)− (λS − λZ)γβS − (λZ − λP )πβGuh

λ̇S − λ̇Z = f ′(Z + P )− g′(Z) + (λS − λP )βGuP

+ (λS − λZ)βGuZ + (λS − λZ)γβ(Z − S)

− (λZ − λP )πβGuh

λ̇S − λ̇P = f ′(Z + P ) + (λS − λZ)[βGuZ + γβZ]

+ (λS − λP )βGuP ,
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1) Structure of the optimal control: If we define:

ϕP = (λP − λS)βGS (29a)

ϕZ = (λZ − λS)βGS (29b)

ϕh = (λP − λZ)πβGZ, (29c)

then, the Hamiltonian becomes:

H(t) = f(Z + P )− g(Z) + ϕPuP + ϕZuZ + ϕhuh

+ (λZ − λS)γβZS.

Also notice that:

ϕh = π
Z

S
(ϕP − ϕZ). (30)

The maximization of the Hamiltonian (28), added to the sum constraints for the controls (2a),

leads to the following optimality conditions for the controls:

(uP , uZ) =



(0, 0) ϕP < 0, ϕZ < 0 (31a)

(1, 0) ϕP > 0, ϕP > ϕZ (31b)

(0, 1) ϕZ > 0, ϕZ > ϕP (31c)

(?, ?) ϕZ = ϕP ≥ 0 (31d)

(?, 0) ϕP = 0, ϕZ < 0 (31e)

(0, ?) ϕZ = 0, ϕP < 0 (31f)

Furthermore,

ϕZ(t) > 0 or ϕP (t) > 0⇒ uP (t) + uZ(t) = 1, (32)

as if that is not true, we can increase H(t) by adding to either uP (t) or uZ(t), a contradiction

with the Hamiltonian maximization condition of the Maximum Principle (28). Also,

uh =


0 ϕh < 0 (33a)

1 ϕh > 0 (33b)

? ϕh = 0 (33c)
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. Using (30), we can rewrite the above as:

uh =


0 ϕP < ϕZ & Z(t) > 0 (34a)

1 ϕP > ϕZ & Z(t) > 0 (34b)

? ϕP = ϕZ or Z(t) = 0 (34c)

. From (29) and the state and costate evolution equations and after trite manipulation, we have:

ϕ̇P = −βGSf ′(Z + P ) + βGuZ(ϕZ − ϕP )

+ γβZ(ϕZ − ϕP ) (35a)

ϕ̇Z = βGS(kg − f ′(Z + P ))− γβSϕZ

+ βG(uP − πuh)(ϕP − ϕZ) (35b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βGuZ + γβZ + βGuP − βGuh)

− βGSkg + γβSϕZ (35c)

ϕ̇h = −πβGZkg + πβGuZ(ϕP − ϕZ) + πγβZϕP . (35d)

From here on, the proof follows the same outline laid out in §IV.D.2 (in terms of finding t∗ and

t′′ and proving t′′ = 0); however, the algebraic expressions for ϕ̇Z , ϕ̇P are different and ϕh(t)

is introduced in the dynamics, necessitating the use of different and context-specific analytical

arguments.

2) Time interval leading up to T and the existence of t∗: We follow the evolution of ϕZ ,

ϕP , and ϕh for a time interval leading to T and prove the existence of t∗ such that we have

uP (t) = 1, uZ(t) = 0, and, if Z(T ) > 0, uh(t) = 1 for all t ∈ (t∗, T ) (otherwise, uh can be

arbitrary over this interval). From the terminal time costate conditions (25):

ϕP (T ) = ϕZ(T ) = ϕh(T ) = 0, (36a)

ϕ̇P (T−) = −f ′((Z + P )(T−))βGS(T−) < 0, (36b)

ϕ̇P (T−)− ϕ̇Z(T−) = −βGS(T−)kg < 0, (36c)

ϕ̇h(T
−) = −πβGZ(T−)kg ≤ 0. (36d)

Now, we may either have Z(T ) = 0 or Z(T ) > 0 due to Theorem 1.

We start by considering the case where Z(T ) = 0. From (3b) we have Ż ≥ Z(γβS−πβGuh) ≥

M6Z for t ∈ [0, T ], where M6 > 0 is an upper-bound on the γβS over the whole interval.
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Therefore, Z(t)eM6(t−T ) ≤ Z(T ) = 0. Thus we must have Z(t) = 0 for all t ∈ [0, T ]. This

means that Ż(t) = βGSuZ = 0 over this interval, which from Theorem 1 leads to uZ(t) = 0 for

all t ∈ [0, T ]. Furthermore, as Z(t) is never positive, uh(t) will have no effect on the dynamics

of the system, and can thus be arbitrary. Finally, (35a) and (36a) tell us that ϕP (T ) = 0 and

ϕ̇P (t) = −βGSf ′(P ) < 0 over this interval, which leads to ϕP (t) > 0 for t ∈ [0, T ) due to

continuity of the states and co-states and the differentiability of ϕP (t) using an integral argument.

This, along with uZ(t) = 0 for all t ∈ [0, T ] and (32) leads to uP (t) = 1 for all t ∈ [0, T ) (and

therefore t∗ = 0). So in sum, for all t ∈ [0, T ), uP (t) = 1, uZ(t) = 0, with uh(t) taking any

arbitrary value. This agrees with the structure set forth in Theorem 3.

Henceforth, we examine the case where Z(T ) > 0. From (36a) and (36c), as before, ϕP (t) >

max{ϕZ(t), 0} for some interval leading up to T due to the continuity of the states and costates

and using the definition of a left derivative. Let (t∗, T ) be the largest interval over which this

holds for t ∈ (t∗, T ) for some t∗ < T , leading to the fact that for all such t, uP (t) = 1 and

uZ(t) = 0 due to (31b).

We now prove that for t ∈ [t∗, T ], Z(t) > 0. If Z(τ) = 0 at any τ ∈ (t∗, T ), as uZ(t) = 0

in this interval and from (3b) we will have Ż = Z(γβS−πβGuh) < M7Z for t ∈ [τ, T ] and

for some M7 > 0 which is an upper-bound to γβS. This leads to Z(t) ≤ Z(τ)eM7(t−τ) = 0,

or Z(t) = 0 for all t ∈ [τ, T ] and especially Z(T ) = 0 which is a contradiction. The same

reasoning also applies to t = t∗ due to continuity. So for t ∈ [t∗, T ], Z(t) > 0. Thus, from (34b)

and the definition of t∗, we have uh(t) = 1 for all t ∈ (t∗, T ).

So if t∗ = 0, we have uP (t) = 1, uZ(t) = 0, and uh(t) = 1 for all t ∈ [0, T ), which agrees

with Theorem 3. Now we consider t∗ > 0.

3) Time interval leading up to t∗ > 0 and the existence of t′′: We now look at the evolution of

ϕZ , ϕP , and ϕh for a time interval leading to t∗ > 0, and show t′′ exists such that for t ∈ (t′′, t∗)

we must have uP (t) = 0, uh(t) = 0, and uZ(t) = 1. For t ∈ (t∗, T ), and after replacing optimal
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controls, (35) becomes:

ϕ̇P = −βGSf ′(Z + P ) + γβZ(ϕZ − ϕP ) (37a)

ϕ̇Z = βGS(kg − f ′(Z + P )) + βG(1− π)(ϕP − ϕZ)

− γβSϕZ (37b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(γβZ + βG(1− π))− βGSkg

+ γβSϕZ , (37c)

ϕ̇h = πZ(γβϕP − βGkg). (37d)

It can be seen that ϕ̇P (t) < 0 for t ∈ (t∗, T ) (as ϕP (t) > ϕZ(t) and f ′(Z(t) +P (t)) > 0 in this

interval). This, coupled with ϕP (T ) = 0 ((36a)) leads to ϕP (t∗) > 0 due to continuity and an

integral argument. Thus, we must have ϕZ(t∗) = ϕP (t∗) > 0 for t∗ > 0.

For t ∈ (t∗, T ):

Ż + Ṗ = βGS + γβZS > 0. (38)

Now, if kg − f ′((Z + P )(t∗)) ≥ 0, then kg − f ′((Z + P )(t)) ≥ 0 for all t ∈ (t∗, T ) due to the

convexity of kg − f(·) in its argument and as Z + P is strictly increasing in this interval (from

(38)). From (37b), ϕ̇Z > −γβSϕZ ≥ −M8ϕZ for all t ∈ (t∗, T ), with M8 being an upper-bound

on γβS. Therefore, ϕZ(t∗) < ϕZ(T )e−M8(t∗−T ) = 0 due to an integral argument, which means

that ϕP (t∗) > 0 ≥ ϕZ(t∗). This contradicts the starting assumption of this argument, which was

ϕP (t∗) = ϕZ(t∗).

Therefore, from here on we will consider kg < f ′((Z + P )(t∗)). At such a point t∗, from

(37b) and the continuity of the states and co-states:

(ϕ̇P (t∗+)− ϕ̇Z(t∗+)) = βS(t∗)[γϕZ(t∗)−Gkg]. (39)

Now, (39) should be positive, because if this derivative was strictly negative, the definition

of the right-derivative would show that ϕZ(t) > ϕP (t) for t in an interval starting from t∗, a

contradiction with the definition of t∗. So, as S(t∗) > 0 from Theorem 1:

βS(t∗)[γϕZ(t∗)−Gkg] ≥ 0⇒ ϕZ(t∗) ≥ Gkg
γ
. (40)

Now, we can see from a continuity argument on (37b) (given that ϕZ(t∗) = ϕP (t∗) > 0) that

ϕ̇Z(t∗−) < 0. Thus ϕZ(t) > ϕZ(t∗) > 0 for some interval leading up to t∗ due to the definition
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of a left-derivative. Thus, from (40) we must have: ϕZ(t) >
Gkg
γ

(and therefore also ϕZ(t) > 0)

for t in some interval leading up to t∗. Let (t′, t∗) be the maximal such interval. In this interval,

from (37c), we have

ϕ̇P − ϕ̇Z > −(ϕP − ϕZ)(γβZ + βG(1− π)) ≥ −M9(ϕP − ϕZ),

where M9 > 0 is an upper-bound on the continuous expression γβZ + βG(1− π). So for any t

in this interval, (ϕP (t)− ϕZ(t)) < (ϕP (t∗)− ϕZ(t∗))e−M9(t−t∗) = 0.

Thus, ϕP (t) < ϕZ(t) for t ∈ (t′, t∗). As ϕZ(t∗) > 0, due to the continuity of the states and

co-states, there exists a maximal interval (t′′, t∗) such that ϕZ(t) > max{ϕP (t), 0}. Following

from (31c) , for t ∈ (t′′, t∗) we must have uP (t) = 0 and uZ(t) = 1.

As ϕZ(t) > ϕP (t), from (34a) and (34c) we have Z(t)uh(t) = 0 for t ∈ (t′′, t∗). This leads

to Ż(t) > 0 in this interval (from (3b)), which combined with Theorem 1 leads to Z(t) > 0 in

this interval. Therefore, from (34a) we can also conclude that in this interval, uh(t) = 0.

4) Proof of t′′ = 0: If t′′ = 0, this concludes our specification of the structure, which agrees

with Theorem 3. Thus, henceforth we consider the case where t′′ > 0, and thus either ϕZ(t′′) =

ϕP (t′′) or ϕZ(t′′) = 0.

For t ∈ (t′′, t∗), (35) becomes:

ϕ̇P = −βGSf ′(Z + P ) + βG(ϕZ − ϕP ) + γβZ(ϕZ − ϕP )

ϕ̇Z = βGS(kg − f ′(Z + P ))− γβSϕZ (41a)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)(βG+ γβZ)− βGSkg + γβSϕZ (41b)

ϕ̇h = −πβGZkg + πβG(ϕP − ϕZ) + πγβZϕP ,

Now, for t ∈ (t′′, t∗),

kg − f ′((Z + P )(t)) < kg − f ′((Z + P )(t∗)) < 0 (42)

as kg − f(·) is convex and in this interval and Ṗ (t) + Ż(t) = Ż(t) = βGS + γβZS > 0

as uZ(t) = 1, and uP (t) = uh(t) = 0. So from (41a), ϕ̇Z < −γβSϕZ ≤ −M10ϕZ with

M10 > 0 being the upper-bound of the continuous γβS, and therefore for all t ∈ (t′′, t∗),

ϕZ(t) ≥ ϕZ(t∗)e−M10(t−t∗). As ϕZ(t∗) > 0, ϕZ(t) is bounded away from zero, which leads to

ϕZ(t′′) > 0 due to continuity.
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So we must have ϕP (t′′) = ϕZ(t′′). In this case, from (41b) we have (ϕ̇P (t′′+)−ϕ̇Z(t′′+)) ≤ 0,

as if it is strictly positive, an integral argument will lead to a contradiction with ϕP (t) < ϕZ(t)

for t ∈ (t′′, t∗). Using the continuity of the states and co-states, as well as the fact that S(t′′) > 0

from Theorem 1, (21b) becomes: ϕ̇P (t′′+)− ϕ̇Z(t′′+) = βS(t′′)[γϕZ(t′′)−Gkg] ≤ 0 and so:

ϕZ(t′′) ≤ Gkg
γ
, (43)

From (42) and (41a), ϕ̇Z < −γβSϕZ < −M10ϕZ < 0. So,

ϕZ(t′′) > ϕZ(t∗). (44)

But (40) and (43) lead to ϕZ(t′′) ≤ ϕZ(t∗), which contradicts (44).

Thus t′′ = 0, and this concludes our specification of the structure of the optimal controls

which conform to the structure set out in Theorem 3.

APPENDIX B

PROOF OF THEOREM 2 FOR ADAPTIVE DEFENSE MODEL

We first provide a general framework (akin to the one presented for Theorem 2), and then we

differentiate the analysis based on the type of adaptive defense used by the network: Constant

β(Z) in §Appendix B.B, affine β(Z) in §Appendix B.C, and sigmoid β(Z) in §Appendix B.D

As before, define the continuous co-states (λS, λP , λZ , λ0) such that at points of continuity of

the controls:

λ̇S = β(Z)[(λS − λP )GuP + (λS − λZ)(GuZ + γZ)]

λ̇Z = −λ0f ′(Z + P ) + (λS − λZ)γβ(Z)S

+ β′(Z)[(λS − λP )GSuP + (λS − λZ)GSuZ

+ (λS − λZ)γZS]

λ̇P = −λ0f ′(Z + P ), (45)

with final co-state constraints:

λS(T ) = λZ(T ) = λP (T ) = 0. (46)

To characterize optimal controls, we define the Hamiltonian:

H(t) := λ0f(Z + P ) + (λP − λS)β(Z)GSuP

+(λZ − λS)β(Z)GSuZ + (λZ − λS)γβ(Z)ZS (47)
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Pontryagin’s Maximum Principle [38, p.182] gives us the following necessary conditions for

optimality for an optimal control vector u∗:

(λS, λP , λZ , λ0) 6= ~0, λ0 ∈ {0, 1}, (48)

∀u∈U ,t∈[0,T ] H(S∗, Z∗, P ∗, u∗, λS(t), λP (t), λZ(t), λ0, t) ≥

H(S∗, Z∗, P ∗, u, λS(t), λP (t), λZ(t), λ0, t). (49)

But if λ0 = 0, (λS(T ), λP (T ), λZ(T ), λ0) = ~0, a contradiction, so λ0 = 1.

A. General structure of the optimal control

If we define:

ϕP = (λP − λS)β(Z)GS (50a)

ϕZ = (λZ − λS)β(Z)GS, (50b)

then, the Hamiltonian becomes:

H(t) = f(Z + P ) + ϕPuP + ϕZuZ + (λZ − λS)γβ(Z)ZS.

The maximization of the Hamiltonian (49), added to the sum constraints for the controls (2a),

leads to (15) as the optimality conditions for the controls:

ϕZ(t) > 0 or ϕP (t) > 0⇒ uP (t) + uZ(t) = 1, (51)

as if that is not true, we can add to the instantaneous value of H(t) by adding to either uP (t)

or uZ(t), a contradiction with the Hamiltonian maximization condition (49).

From (50) and the state (5) and costate (45) evolution equations and after some manipulation,

we have:

ϕ̇P = −β(Z)GSf ′(Z + P ) + β′(Z)SϕP [GuZ + γZ]

−(ϕP − ϕZ)β(Z)[GuZ + γZ] (52a)

ϕ̇Z = −β(Z)GSf ′(Z + P )− ϕPGuPβ′(Z)S

−ϕZβ(Z)γS + (ϕP − ϕZ)β(Z)GuP , (52b)

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+ϕPS
[
γβ(Z) + β′(Z)[G(uZ + uP ) + γZ]

]
(52c)
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Again, the proof follows the outline laid out in §IV.D.2 (i.e., proving the existence of t∗ and t′,

which are, however, defined differently, and proving t′ = 0 for t∗ > 0), with the difference that

the algebraic expressions for ϕ̇Z and ϕ̇P , and therefore all subsequent analytical arguments, will

change.

1) Time interval leading up to T and the existence of t∗: We follow the evolution of ϕZ and

ϕP for a time interval leading to T and prove the existence of t∗ such that we have uP (t) = 1,

and uZ(t) = 0 for all t ∈ (t∗, T ).

From the terminal time costate conditions (46) and their directional derivatives (52), we have:

ϕP (T ) = ϕZ(T ) = 0, (53a)

ϕ̇P (T−) = ϕ̇Z(T−) = −β(Z)GSf ′(Z + P ) < 0. (53b)

So, due to continuity of the states and co-states, there is an interval leading up to T, over which

we have ϕP (t) > 0 and ϕZ(t) > 0. Let (t∗, T ) be the maximal length interval with this property.

For t ∈ (t∗, T ), equation (51) leads to

uZ(t) + uP (t) = 1. (54)

Now, for t ∈ (t∗, T ), (52c) becomes:

ϕ̇P (t)− ϕ̇Z(t) =− (ϕP − ϕZ)β(Z)[G+ γ(Z + S)]

+ ϕPS
[
γβ(Z) + β′(Z)[G+ γZ]

]
(55)

The rest of the analysis depends on the β(Z) function - we present different arguments for

β(Z)’s that are constant, affine, and sigmoid (§Appendices B.B, B.C, and B.D, respectively).

For the affine case (§B.C), the analysis needs to be broken down into different cases according

to the value of Z(T ) in relation to the constant 1
2
[
βmax

a
− G

γ
]. When β(Z) is a sigmoid (§B.D),

we use different analytical arguments to prove the result depending on whether eα(Z(T )−Zth)(1−
α
γ
G − αZ(T )) + 1 is less than, equal to, or greater than zero. For the simple case of constant

β(Z) (§B.B), no such conditional arguments are needed.

B. Constant β(Z)

Assume β(Z) = β.8 In this case, there is no penalty for creating zombies, and we expect

zombies to be created for the whole time period. Then for t ∈ (t∗, T ), (55) becomes:(ϕ̇P −

8Note that this is a case of the model in §IV.C with g ≡ 0.
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ϕ̇Z)(t) = ϕPSγβ − (ϕP − ϕZ)β[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M11, for all t ∈ (t∗, T ) and for

some M11 > 0 that is an upper-bound for β(G+γ(Z+S)), as ϕP (t)S(t)γβ > 0 in this interval.

Therefore, for t ∈ (t∗, T ), ϕP (t) − ϕZ(t) < [ϕP (T ) − ϕZ(T )]e−M11(t−T ) = 0 (from (53a)), and

thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and from the definition of t∗, there exists an

interval (t′, T ), with t′ ≤ t∗ such that ϕZ > ϕP and ϕZ > 0. These conditions, coupled with

(15c) lead to uP (t) = 0 and uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = ϕP (t′) or ϕZ(t′) = 0 for some

t′ > 0 due to continuity of the states and co-states.

Since uP (t) = 0 for t ∈ (t′, T ), (52b) becomes: ϕ̇Z(t) = −β(Z)GSf ′(Z+P )−ϕZβ(Z)γS <

0, which leads to ϕZ(t′) > ϕZ(T ) = 0. Thus, ϕZ(t′) cannot be equal to zero.

If ϕZ(t′) = ϕP (t′), then from (52c), β′(Z) = 0 for constant β(Z), and the continuity of

the states and co-states:
(
ϕ̇P − ϕ̇Z

)
(t′+) = ϕP (t′)S(t′)γβ = ϕZ(t′)S(t′)γβ > 0, leading to the

existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contradiction with the definition of

t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the statement of

Theorem 2 and our intuition that zombies will be created for the entire period.

C. Affine β(Z)

Assume β(Z) = −aZ + βmax, with 0 < a ≤ βmax (as βmax is an upperbound on this β(Z)

and β(Z) > 0). Then, for t ∈ (t∗, T ), (55) becomes:

ϕ̇P (t)− ϕ̇Z(t) = −aϕPS
[
γ(2Z − βmax

a
) +G

]
−(ϕP − ϕZ)(−aZ + βmax)[G+ γ(Z + S)] (56)

Now we break down the situations that can arise based on the value of Z(T ) with respect to

the fixed 1
2
[βmax

a
− G

γ
]:

1) Z(T ) ≤ 1
2
[
βmax

a
− G

γ
]: Note that for this case, we must have 1

2
[βmax

a
− G

γ
] ≥ 0 due to

Theorem 1.

We first consider the sub-case where Z(T ) = 1
2
[βmax

a
− G

γ
] = 0. Here, we must have Ż(t) = 0

for all t as Ż(t) ≥ 0 for all t and as states are continuous. The only way for Ż(t) = 0 for

all t is for us to have Z0 = 0 and uZ(t) = 0 for all t < T (due to Theorem 1). This leads to

38



(52a) becoming ϕ̇P (t) = −β(0)GS(t)f ′(P (t)) < 0 for all t < T , and thus ϕP (t) > 0. This fact,

combined with uZ(t) = 0 for all t and (15b) leads to uP (t) = 1 for all t (i.e., t∗ = 0 in the

statement of Theorem 2).

Otherwise, we either have (i) Z(T ) = 1
2
[βmax

a
− G

γ
] > 0 or (ii) Z(T ) < 1

2
[βmax

a
− G

γ
].

(i) In this case, from (5) (for which β(Z) > 0 and G > 0), Theorem 1 (which specifies

S(T ) > 0), and continuity of the states, we have Ż(T−) > 0. Thus Z(t) < 1
2
[βmax

a
− G

γ
] for some

(t′′, T ). Therefore, as Ż(t) ≥ 0 for all t, so Z(t) < 1
2
[βmax

a
− G

γ
] for all t < T .

(ii) Since Ż ≥ 0 from (5) and Theorem 1, in this case we also have Z(t) < 1
2
[βmax

a
− G

γ
] for

all t < T .

Therefore for both (i) and (ii), γβmax − 2γaZ(t)−Ga > 0 for all t < T .

From (56) and for all t ∈ (t∗, T ): ϕ̇P (t)−ϕ̇Z(t) > −(ϕP−ϕZ)β(Z)[G+γ(Z+S)] ≥ −(ϕP−

ϕZ)M12, for some M12 > 0 which is an upper-bound to the continuous β(Z)[G + γ(Z + S)]

over this interval. Therefore, for t ∈ (t∗, T ), ϕP (t)− ϕZ(t) < [ϕP (T )− ϕZ(T )]e−M12(t−T ) = 0,

and thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and because for t ∈ (t∗, T ), ϕZ(t) > 0, there

exists an interval (t′, T ), with t′ ≤ t∗ such that both ϕZ(t) > ϕP (t) and ϕZ(t) > 0. These

conditions, coupled with (15c) lead to uP (t) = 0 and uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = 0 or ϕZ(t′) = ϕP (t′) for some

t′ > 0 due to continuity of the states and co-states.

For t ∈ (t′, T ) (52b) becomes, ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0, which leads

to ϕZ(t′) > ϕZ(T ) = 0.

So we must have ϕZ(t′) = ϕP (t′) for t′ > 0. From (56) and the continuity of the states

and co-states,
(
ϕ̇P − ϕ̇Z

)
(t′+) = ϕP (t′)S(t′)

[
γβmax − 2γaZ(t′) − Ga

]
= ϕZ(t′)S(t′)

[
γβmax −

2γaZ(t′)−Ga
]
> 0, leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t),

a contradiction with the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the statement of

Theorem 2.

2) Z(T ) > 1
2
[
βmax

a
−G
γ

]: Due to the continuity of the states, Z(t) > 1
2
[βmax

a
−G

γ
] for t ∈ (t1, T )

for some t1. Recall that for t ∈ (t∗, T ), ϕP (t) > 0. Thus, for t ∈ (t2, T ), where t2 = max{t∗, t1}

and with M12 again defined as the upper-bound to the continuous β(Z)[G + γ(Z + S)], (56)

leads to: ϕ̇P (t)− ϕ̇Z(t) < −(ϕP − ϕZ)β(Z)[G + γ(Z + S)] ≤ −(ϕP − ϕZ)M12. Therefore, in
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this interval, ϕP (t) − ϕZ(t) > [ϕP (T ) − ϕZ(T )]e−M12(t−T ) = 0, and thus ϕP (t) > ϕZ(t) and

ϕP (t) > 0 for t ∈ (t2, T ).

Now, due to the continuity of the states and co-states, define (t3, T ) to be the maximal length

interval over which ϕP (t) > max{ϕZ(t), 0}. Note that for t ∈ (t3, T ) we have uZ(t) = 0 and

uP (t) = 1 due to (15b).

Due to continuity of the states and co-states, either t3 = 0, in which case uZ(t) = 0 and

uP (t) = 1 for all t (agreeing with the structure of Theorem 2), or we have a t3 > 0 such that

ϕP (t3) = 0 or ϕP (t3) = ϕZ(t3) > 0.

From (52a), Theorem 1, and from the definition of t3, for t ∈ (t3, T ) we have, ϕ̇P =

−β(Z)GSf ′(Z + P ) − (ϕP − ϕZ)β(Z)γZ − aSϕPγZ < −aSϕPγZ ≤ −M13ϕP , for some

M13 > 0 that is an upper-bound to the continuous a1SγZ over this interval. Thus, ϕP (t3) >

ϕP (T )e−M13(t3−T ) = 0. So for t3 > 0, we must have ϕP (t3) = ϕZ(t3) > 0. From the continuity

of the states and co-states, there must exist an interval leading up to t3 such that ϕZ(t) > 0 and

ϕP (t) > 0. Let (t4, t3) be the maximal-length interval with such a property. Notice that (51) also

applies, leading to uP (t) + uZ(t) = 1 for t ∈ (t4, t3).
Furthermore, also from continuity, (56) becomes:

(ϕ̇P − ϕ̇Z)(t
+
3 ) = −aϕP (t3)S(t3)

[
γ(2Z(t3)−

βmax

a
) +G

]
(57)

But if ϕ̇P (t+3 ) − ϕ̇Z(t+3 ) < 0, then due to continuity and the definition of the derivative, we

must have an interval starting from t3 where ϕZ(t) > ϕP (t), which contradicts the definition

of t3 (which stated that over an interval starting at t3, ϕP (t) > max{ϕP (t), 0}). So we must

have ϕ̇P (t+3 ) − ϕ̇Z(t+3 ) ≥ 0. From (57) this is equivalent to [γ(2Z(t3) − βmax

a
) + G

]
≤ 0, or

Z(t3) ≤ 1
2
[βmax

a
− G

γ
].

Following the same set of arguments as presented in §B.C.1 for the case of Z(T ) ≤ 1
2
[βmax

a
−G

γ
]

and retracing them for Z(t3) ≤ 1
2
[βmax

a
− G

γ
] (with t3 replacing T in all arguments) shows that

the structure postulated in Theorem 2 holds.

Thus, all possible state and co-state trajectories lead to the structure postulated in Theorem

2.

D. Sigmoid β(Z)

Assume βZ =
β0

1 + eα(Z−Zth)
, with 0 < Zth < 1 being a fixed threshold and α > 0 denoting

the sharpness of the cut-off. This simulates a threshold-like detection of zombies by a network
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administrator. In this case, (52c) becomes:

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+
β0γϕPS

[
eα(Z−Zth)(1− α

γ
G(uz + uP )− αZ) + 1

]
(1 + eα(Z−Zth))2

(58)

Define: Ψ(Z, uZ + uP ) := eα(Z−Zth)(1− α
γ
G(uz + uP )− αZ) + 1. Then (58) becomes:

ϕ̇P − ϕ̇Z = −(ϕP − ϕZ)β(Z)[G(uZ + uP ) + γ(Z + S)]

+
β0γϕPS

(1 + eα(Z−Zth))2
Ψ(Z, uZ + uP ) (59)

Now, for possible intervals where uZ + uP is a constant c ∈ [0, 1], Ψ(Z, c) is a function of one

variable (Z). We can see that at points of continuity of the controls and in intervals where it is

defined, Ψ(Z, c) is also continuous and differentiable. Furthermore, we can see that at points of

continuity of the controls in these intervals, we have:

dΨ(Z, c)

dZ
= −α2eα(Z−Zth)(

G

γ
c+ Z) < 0 (60)

Now we break down the situations that can arise based on the value of Ψ(Z(T ), 1):

1) Ψ(Z(T ), 1) > 0: From Ż ≥ 0 ((5) and Theorem 1) and the continuity of the states, we

have Z(t) ≤ Z(T ) for all t. Now for t ∈ (t∗, T ), as the sum of the controls is constant and equal

to one due to (54), we will have Ψ(Z(t), 1) ≥ Ψ(Z(T ), 1) > 0 due to (60). Thus from (59) and

for all t ∈ (t∗, T ) at which the controls are continuous: ϕ̇P (t)− ϕ̇Z(t) > −(ϕP −ϕZ)β(Z)[G+

γ(Z + S)] ≥ −(ϕP − ϕZ)M14, for some M14 > 0 which is an upper-bound to the continuous

β(Z)[G+γ(Z+S)]. Therefore, for t ∈ (t∗, T ), ϕP (t)−ϕZ(t) < [ϕP (T )−ϕZ(T )]e−M14(t−T ) = 0,

and thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and from the definition of t∗, there exists

an interval (t′, T ), with t′ ≤ t∗ such that ϕZ(t) > ϕP (t) and ϕZ(t) > 0. These conditions,

coupled with (15c) lead to uP (t) = 0 and uZ(t) = 1 for all t ∈ (t′, T ), with the corollary that

uP (t) + uZ(t) = 1.

We now prove t′ = 0. If this does not hold, either ϕZ(t′) = 0 or ϕZ(t′) = ϕP (t′) > 0 for

t′ > 0 due to continuity of the states and co-states.

For t ∈ (t′, T ), as uP (t) = 0, (52b) becomes: ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS <

0, as each term in the right hand side is strictly positive in the interval. Now, if we have
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ϕZ(t′) = 0, from this time-derivative and continuity of the states and co-states we must have

ϕZ(t′) > ϕZ(T ) = 0. Thus, ϕZ(t′) = 0 is ruled out.

On the other hand, if ϕZ(t′) = ϕP (t′) > 0, then from (59) and the continuity of the states

and co-states:
(
ϕ̇P − ϕ̇Z

)
(t′+) =

β0γϕP (t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1) > 0, leading to the existence of

an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contradiction with the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the statement of

Theorem 2.

2) Ψ(Z(T ), 1) = 0 and Z(T ) > 0: We have Ż(T−) > 0 (from (5), Theorem 1, and continuity)

which leads to Z(t) < Z(T ) for an interval leading up to t. As Ż ≥ 0, we can extend Z(t) <

Z(T ) to all t. Now for t ∈ (t∗, T ), from (54), we will have Ψ(Z(t), 1) > Ψ(Z(T ), 1) = 0 due

to (60). We now prove t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t.

From (54), (59), for all t ∈ (t∗, T ) (over which ϕP (t) > 0): ϕ̇P (t) − ϕ̇Z(t) > −(ϕP −

ϕZ)β(Z)[G+ γ(Z + S)] ≥ −(ϕP − ϕZ)M12 for some M12 > 0 which is an upper-bound to the

continuous β(Z)[G + γ(Z + S)] over this interval. Therefore, for t ∈ (t∗, T ), ϕP (t)− ϕZ(t) <

[ϕP (T )− ϕZ(T )]e−M12(t−T ) = 0, and thus ϕP (t) < ϕZ(t) for t ∈ (t∗, T ).

Due to the continuity of the states and co-states and because for t ∈ (t∗, T ), ϕZ(t) > 0, there

exists an interval (t′, T ), with t′ ≤ t∗ such that both ϕZ(t) > ϕP (t) and ϕZ(t) > 0. These

conditions, coupled with (15c) lead to uP (t) = 0 and uZ(t) = 1 for all t ∈ (t′, T ).

We now prove t′ = 0. If this does not hold, either (i) ϕZ(t′) = 0 or (ii) ϕZ(t′) = ϕP (t′) for

some t′ > 0 due to continuity of the states and co-states.

For t ∈ (t′, T ) (52b) becomes: ϕ̇Z(t) = −β(Z)GSf ′(Z + P )− ϕZβ(Z)γS < 0, which leads

to ϕZ(t′) > ϕZ(T ) = 0.

So for t′ > 0 we must have ϕZ(t′) = ϕP (t′). From (59) and the continuity of the states and co-

states:
(
ϕ̇P − ϕ̇Z

)
(t′+) =

β0γϕP (t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1) =

β0γϕZ(t′)S(t′)

(1 + eα(Z(t′)−Zth))2
Ψ(Z(t′), 1) > 0,

leading to the existence of an interval (t′, t′′) over which ϕP (t) > ϕZ(t), a contradiction with

the definition of t′.

Thus, t′ = 0 and uZ(t) = 1 and uP (t) = 0 for all t, which agrees with the statement of

Theorem 2.

3) Ψ(Z(T ), 1) = 0 and Z(T ) = 0: We must have Ż(t) = 0 for all t as Ż ≥ 0 and as states

are continuous. The only way for Ż(t) = 0 for all t is for us to have Z0 = 0 and uZ(t) = 0 for

all t < T (due to Theorem 1). This leads to (52a) becoming ϕ̇P (t) = −β(0)GS(t)f ′(P (t)) < 0
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for all t < T , and thus ϕP (t) > 0. This fact, combined with uZ(t) = 0 for all t and (15b) leads

to uP (t) = 1 for all t.

4) Ψ(Z(T ), 1) < 0: Due to the continuity of the states, Ψ(Z(t), 1) < 0 for t ∈ (t1, T ) for

some t1. Thus, (59) leads to ϕ̇P (t)−ϕ̇Z(t) < −(ϕP−ϕZ)β(Z)[G+γ(Z+S)] ≤ −(ϕP−ϕZ)M12,

for t ∈ (t2, T ), where t2 = max{t∗, t1} and with M12 defined as before (an upper-bound to the

continuous β(Z)[G+ γ(Z + S)] over this interval). Therefore, in this interval, ϕP (t)−ϕZ(t) >

[ϕP (T )− ϕZ(T )]e−M12(t−T ) = 0, and thus ϕP (t) > ϕZ(t) and ϕP (t) > 0 for t ∈ (t2, T ).

Now, due to the continuity of the states and co-states, define (t3, T ) to be the maximal length

interval over which ϕP (t) > ϕZ(t) and ϕP (t) > 0. Note that for t ∈ (t3, T ) we have (due to

(15b)) uZ(t) = 0 and uP (t) = 1.

Due to continuity of the states and co-states, either t3 = 0, in which case uZ(t) = 0 and

uP (t) = 1 for all t, or we have a t3 > 0 such that (i) ϕP (t3) = 0 or (ii) ϕP (t3) = ϕZ(t3) > 0.

From (52a), Theorem 1, and from the definition of t3, for t ∈ (t3, T ) we have: ϕ̇P =

−β(Z)GSf ′(Z+P )−(ϕP −ϕZ)β(Z)γZ− αβ0γe
α(Z−Zth)

(1 + eα(Z−Zth))2
SϕPZ < −αβ0γe

α(Z−Zth)SZ

(1 + eα(Z−Zth))2
ϕP ≤

−M15ϕP , for some M15 > 0 that is an upper-bound to the continuous
αβ0γe

α(Z−Zth)SZ

(1 + eα(Z−Zth))2
. Thus,

ϕP (t3) > ϕP (T )e−M15(t3−T ) = 0.

So for t3 > 0 we must have ϕP (t3) = ϕZ(t3) > 0. From the continuity of the states and

co-states, there must exist an interval leading up to t3 such that ϕZ(t) > 0 and ϕP (t) > 0.

Let (t4, t3) be the maximal-length interval with such a property. Notice that (51) also applies,

leading to uP (t) + uZ(t) = 1 for t ∈ (t4, t3).

Furthermore, also from continuity, (59) becomes:

ϕ̇P (t+3 )− ϕ̇Z(t+3 ) =
β0γϕP (t3)S(t3)

(1 + eα(Z(t3)−Zth))2
Ψ(Z(t3), 1) (61)

But if ϕ̇P (t+3 )− ϕ̇Z(t+3 ) < 0, then due to continuity and the definition of the derivative, we must

have an interval starting from t3 where ϕZ(t) > ϕP (t), which contradicts the definition of t3. So

we must have ϕ̇P (t+3 )− ϕ̇Z(t+3 ) ≥ 0. From (57) this is equivalent to Ψ(Z(t3), 1) ≥ 0. Following

the same arguments presented in §B.D.1, §B.D.2, and §B.D.3 for the case of Ψ(Z(T ), 1) ≥ 0

and retracing them for Ψ(Z(t3), 1) ≥ 0 (with t3 replacing T ) shows Theorem 2’s structure holds.

Thus, Theorem 2 holds for all possible trajectories.
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