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Local and Distributed Rendezvous of Underactuated

Rigid Bodies

Ashton Roza, Manfredi Maggiore, Luca Scardovi

Abstract—This paper solves the rendezvous problem for a
network of underactuated rigid bodies such as quadrotor he-
licopters. A control strategy is presented that makes the cgres
of mass of the vehicles converge to an arbitrarily small neigpbor-
hood of one another. The convergence is global, and each velai
can compute its own control input using only an on-board camea
and a three-axis rate gyroscope. No global positioning syt is
required, nor any information about the vehicles’ attitudes.

Fig. 1. Vehicle class under consideration.

|. INTRODUCTION The block diagram of the proposed controller is depicted
in Figure[2. There are two nested loops. The outer loop
treats each robot as a point-mass driven by a force input,

Consid K of fivi b h lled band produces a double-integrator consensus controllezhwhi
onsider a network of flying robots, each propelle P¥ecomes a reference input for the inner loop. The inner loop

a thrus_t vector and endowed with an actuation meChan'ﬂgsigns local and distributed feedbacks for the robots.eMor
producing torques about three orthogonal body axes —SRflition is provided in SectiofV

F'%ure.[]' W('jth S deg:jee;-ﬁfa‘reedom?nd(;ouractugtcashe Besides having a simple expression making its real-time
robot is underactuated with degree of underactuation tWo'if% lementation feasible, the proposed controller meeés th

quadrotor helicopter is an example of such a robot. Supp sing requirements of the rendezvous control problem. In

each robot mounts a camera af_’d an inertial measurement Q\Iticular, it does not require any knowledge of the robots’
(IMU) that includes a three-axis rate-gyroscope, so that t

. . ; ) bsolute positions and velocities, or of their attitudésldes
robot is able to measure, in the coordinates of its own frar‘r}?

. X " ~ ot even require sensing of the relative attitudes. Fins
the relative displacements and velocities of nearby vehijcl d g and

di | locitv. Th q | onobl controller does not require any communication among robots
and its own angular velocity. The rendezvous control proble o, i result, Theorerh] 1, states that the proposed

s 10 get the robots to move to a common chatlon using OnJ%ntroller does indeed solve the rendezvous control pnoble

the_ above on-board SENsors. To th_|5 day, this problem IS-0P§Rd in so doing it effectively reduces the problem to one of

This paper presents the first solution. consensus for double-integrators. The latter problem kas b
Consider nown > 2 robots. Therendezvous control prob- researched extensively in the literature (elg., [1], [2]).[

leminvestigated in this paper is to find feedback laws making

the relative distances and velocities become arbitraritalb A. Related work

forall i, € {1,...,n}, and for arbitrary initial conditions of

all robots. Crucial in the problem statement is the requéeim

on sensing. If robot can sense robof, then roboti can

Typical coordination problems include attitude synchrani
tion, rendezvous, flocking, and formation control. For net-

sense the relative position and velocity of robptin its works of single or double-integrator systems, the rendezvo

own local frame. Robof can also measure its own angulaProPlem is referred to asonsensusr agreementand it has
velocity in the coordinates of its body frame. Robotan been investigated by many researchers, for instancel[l,], [2

neither access its own inertial position and velocity, nsr i3l [4], [S_J’_[BJ' (7], [8]. _ . L
own attitude. A feedback law satisfying the above sensingA passwlty-l_)ased _solut|0_n of the att'mde synchron_lzratlo
requirements is referred to as beifaral and distributed ProPlem for kinematic vehicle models is proposed iin [9].
In this paper, the set of vehicles that robotan sense is In [0, 1], [2), the same problem is investigated for
assumed to be constant. This assumption is questionable s research was supported by the National Sciences anihdgning
practice, but is made to render the problem mathematicaltgsearch Council of Canada.

treatable. The rendezvous problem with distance-depéndedhe authors are with the Department of Electrical and Com-
ter Engineering, University of Toronto, 10 King's CokegRoad,

ngighbors remains a challenging open prOblem .for mugﬁronto, ON, M5S 3G4, Canadasht on. roza@mi | . ut oront o. ca,
simpler classes of robot models, such as double-integratomggi or e@ce. ut oront 0. ca, scardovi @cg. utoronto. ca
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Fig. 2. Block diagram of the rendezvous control system fowota. The outer loop assigns a desired thrust veftcﬁy’;'_). The inner loop thrust control uses
f;(y}) to assign the vehicle input; while the rotational control use (y?) to assign the torque input;. The vectory! contains the relative displacements
and velocities of vehicles that robétcan sense, measured in the body frame of rabot

dynamic vehicle models. The proposed controllers do nobmmunication among vehicles is required, whilelinl [27] the
require measurements of the angular velocity, but they doaph is balanced, and it is assumed that each vehicle has
require absolute attitude measurements.[In [13], the asithaccess to the thrust input of its neighbors, therefore rawyi
use the energy shaping approach to design local and distdibuonce again communication between vehicles. Both appreache
controllers for attitude synchronization. The same apghoain [27], [28] use a two-stage backstepping methodology in
is adopted in [[14] to design two attitude synchronizatiowhich the first stage treats each vehicle as a point-mass
controllers, both local and distributed. The first congpll system to which a desired thrust is assigned. A desired
achieves almost-global synchronization for directed emted thrust direction is then extracted and backstepping is used
graphs. However, the controller design is based on dig&ibuto design a rotational control such that vehicle rendezvous
observers[[15], and therefore requires auxiliary statebeo or formation control is achieved. Our previous work |[29]
communicated among neighboring vehicles. It also emplays mvestigates almost-global vehicle rendezvous makingaise
angular velocity dissipation term that forces all vehialgalar a two-stage hierarchical methodology similar [tol[2[7],] [218]
velocities to zero in steady-state. The second contrail¢td] this approach, one can combine a consensus controller for a
does not restrict the final angular velocities, and does nmétwork of double-integrators and an attitude tracking-con
require communication, but it requires an undirected sensitroller satisfying certain assumptions to produce a revolez
graph, and guarantees only local convergence. controller for underactuated vehicles. However, this apph

The rendezvous problem for kinematic unicycles was solveequires that all vehicles can sense a common inertial v@cto
in [16] using time-varying feedbacks. The papers [16]. [17{heir own body frame, which requires additional on-boanmt se
[18], [19] discuss the feasibility of achieving various rfita- sors. Moreover, the approach requires communication among
tions using local and distributed feedback for kinematicyn vehicles. The solution presented in this paper overconies al
cle models. Dynamic unicycle models are considered in [2@hese limitations. To the best of our knowledge, a solution
[21]. In [20Q], a two-mode formation control is presented io the rendezvous control problem for underactuated flying
which the sensing graph has a spanning tree with a designateticles stated earlier has not yet appeared in the literatu
leader vehicle as the root. Each vehicle, however, has sicces
to the acceleration of th_e Ieader_through communicatiog. Organization of the paper.
The control strategy requires a switch between two control o . . . .
modes designed to deal with nonholonomic constraints in theWe bggm, n .SeCt'O_E]“’ by mtroducmg_ some notapon and
system. The paper [21] presents a local and distributed«dontpresgnt'ng basic notlon_s of homoggnelty of funct|0ns and
law making dynamic and kinematic unicycles converge toséablhty_ of sets. In Sectiop lll we review the vehicle madel
common circle whose centre is stationary and dependeneon Section IV we formulate the rendezvous control problem.

initial configuration of the vehicles. The spacing and oirgr . € me:clr) rgsult., Eorletﬂs L }S&ﬁlsented n Se@’” IV'. and
of unicycles on the circle is also controlled. The problerﬁS proof in Sectio - In Sectio , We present simulatio

is solved using a three step hierarchical control based Or{eéults showing that the proposed solution is rObl."St agains
reduction theorem for the stabilization of sets. measurement errors, as well as force and torque disturbance

The case of kinematic vehicles in three-space is investiya inally, in SectiorL.VIll, we end the paper with some remarks.

in [13], [22], [23], [24]. The authors of [13],[22] consider he proof of the_ main result rglies on two technical lemmas
the problem of full attitude and position synchronizatibng that are proved in the appendix.

assume fully actuated vehicles. In_[24], the authors prepos

distributed controllers to stabilize relative equilibrehich, Il. PRELIMINARIES AND NOTATION

as shown in [[25],[[26], correspond to parallel, circular or We denote byR . the set of positive real numbers. We use
helical formations. Finally, in([27],[128] the authors ciher interchangeably the notatian= [v; --- v,]" or (v1,...,v,)
formation control for dynamic, underactuated vehicle medefor a column vector inR™. We denote byl € R™ the vector
However, the feedbacks are not local and distributed. Als@,, ..., 1). If v, w are vectors iiR?, we denote by-w := v Tw

in [28] the sensing graph is assumed to be undirected, ahéir Euclidean inner product (also called the dot product)
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TABLE OF NOTATION

Description

and by ||v| := (v - v)'/? the Euclidean norm ob. If v =
(vg, vy, v5), We define
Quantity
0 —, Vy i T,
v* = vy 0 — Uy z; € R3
— Vi R"
Yy Ve 0 Riee SO(3)
One has thav*w = v x w. Let {e1,es,e3} denote the «i €R’

natural basis ofR® and SO(3) := {M € R>* : M~' =
M7, det(M) = 1}. If I" is a closed subset of a Riemannian ,; =z, —
manifold X', andd : X x X — [0,00) is a distance metric .

on X, we denote byl|x||r := infyer d(x, 1) the point-to-set g_eﬁ%g
distance ofy € XY to T. If e > 0, we letB.(') :={x € X : A

Vij = Vj — V;

mass and inertia matrix of robet
inertial position of robot

linear velocity of robot;

attitude of robot

angular velocity of robot

thrust direction vector of robat
coord. repr. ofr in frame BB;

rel. displacement of robot wrt robot ¢
rel. velocity of robotj wrt robot ¢
reference force of robat

reference angular velocity of robet
set of neighbors of robat

lIx|lr < €} and by V(') we denote a neighborhood &fin yi = (z4;,vi;)jen,  Vector of rel. pos. and vel. available to rohot
X.If A, B C X are two sets, denote by\ B the set-theoretic

difference ofA andB. If I = {iy,...,4,} is an index set, the

ordered list of elementge;, , ..., z;,) is denoted by(z;) e;-

Let U, W be finite-dimensional vector spaces. A functioffaMeZ, so thatk; € SO(3). The unit vectory; := —R;es,
f: U — W is homogeneous, for all p > 0 and for all depicted in Figurkll, is referred to as theust direction vector

2 €V, flpz) = pf(z). Afunction f : U x V — W, f(z,y) of robot i, and the matrixR; is referred to as thattitude of

is homogeneous with respect #oif for all p > 0 and for all the robot. We assume that a thrust force; is applied at the
(z,9) € U x V, f(pz,y) = pf(z,y). centre of mass of robat Notice thatu;q; has magnitude:;,

The following stability definitions are taken from [30]. LetiS directed opposite t6;., and has constant direction in body

Y : x = f(x) be a smooth dynamical system with state spad@meBi. _ _
a Riemannian manifold’. Let ¢(¢, vo) denote its local phase Roboti is assumed to have an actuation mechanism that
flow. LetT C X be a closed set that is positively invariant fof"dUces control torques;,, ;,, ;- about its body axes. We
¥, i.e., for all xyo € T, ¢(t, x0) € T for all t > 0 for which let 7 := (7iz, iy, 7iz) b€ the torque vector, and; denote
(t, xo) is defined the angular velocity of the robot with respect to frafhéthe

I . . . 3 . ) =1 _ X

Definition 1: The setT is stablefor ¥ if for any ¢ > 0, unique vector ink” such thatl;(R;) ™" = w;). .
there exists a neighborhool (I') ¢ X such that, for all In this paper we adopt the convention thatrife R” is
Yo € N(T), é(t,vo) € B.(T), for all t > 0 for which an inertial vector, the coordinate representation @ frame

] 3 1> ] . i . P . —1 .

(1, vo) is defined. The sel is attractive for 3 if there Bi 1S denoted byr*, that is,»* := R; 'r. In particular, the

exists neighborhood/(I') C X' such that for ally, € A(T), angular yelocity of robot in its own body frame is denoted
limy_ o0 [|6(£, x0) || = 0. Thedomain of attraction of" is the by w?. Finally, we use boldface symbols to denote reference
set{xo € X : limy_ [|6(t, x0)||Ir = 0}. The sef is globally guantities. For instancé; is the reference force for vehicle

attractivefor ¥ if it is attractive with domain of attractiofy. 2SN (8) andw; is the reference angular velocity for vehicle

The setl" is locally asymptotically stable (LASpr ¥ if it i as in [9). The notation is summarized in Tafle I.

is stable and attractive. The sEtis globally asymptotically  1cKing (i, vi, Ri,wj) as state for robot, we obtain the
equations of motion

stablefor X if it is stable and globally attractive. A
Now consider a dynamical systeRk) : x = f(x, k), in Ty = v,
which k£ € RP? is a vector of constant parameters (typically, miv; = —u;Ries + m;g, @

control gains) andf is a smooth vector field with state space
a Riemannian manifold.

Definition 2: The setI’ is globally practically stablefor
Y (k) if for any € > 0, there exists a gaik* such thatB.(I")

A : In the aboven; is the mass of robot and J; = J, is its
h bset which is globall totically stabledot*). .~ e i L . i
Aas a subset which is globally asymptotically stabletok) inertia matrix. We define the (inertial) relative positioasd

velocities asx;; = z; — x;, vi; = v; — v;. This model is
standard and is widely used in the literature to model flying
vehicles such as quadrotor helicopters. See, for instdtg,
We now return to the-th robot depicted in Figuriel 1, with Sometimes researchers use alternative attitude repatiserst
the aim of deriving its equations of motion. We fix a rightprominently quaternions [28] or Euler anglés|[32].1[33].eTh
handed orthonormal inertial fran® common to all robots, model [1)42) ignores aerodynamic effects such as drag and
and attach at the centre of mass of roboa right-handed wind disturbances (such effects are included.in [31]). $oal
orthonormal body frame; = {b;.., bi,, bi. }, as depicted in the ignores the dynamics of the actuators.
figure. We denote byz;, v;) the inertial position and velocity
of roboti. We letg denote the gravity vector in franie IV. RENDEZVOUS CONTROL PROBLEM
We let R; be the3 x 3 matrix whose columns are the We begin by defining theensor digraptg = (V, &), where
coordinate representations of,,b;,,b;, (in this order) in Vs a set of nodes labelled 43, ...,n}, each representing a

Ri = Rl (w%)&

Jiw; = 1 —w; x Jjw;.

)

IIl. M ODELING



robot, and€ is the set of edges. An edge from nod® node underactuated robots of Sectibnl Ill. A feedbdtky;), i =
j indicates that robat can sense robgt(G has no self-loops). 1...n, is a double-integrator consensus controlldr f; has
A node isglobally reachablef there exists a path from anythe form
other node to ifl. .

We denote by\; C V the set of vehicles that robatcan £i(y)) = Xj\; (aijxij + bijv”)’ i=L.n o (5)
sense. In a realistic scenari; is the set of robots within the . JEN; _ _ .
field of view of roboti. For instance, if each robot mountedwith a;;, b;; € R and if, settingf; = £;(y;) in (4), the set
an omnidirectional camera, then one could deﬁMeto be {(@i,v)ieq1.my € R¥ X R¥ 25 = 0,055 = 0, Vi, j}
the collection of robots that are within a given distancerfro

robot . With such a definition, the sensor digraghwould is globally asymptotically stable fofl(4). A
be state-dependent, making the stability analysis too hard Ren et al. in[[1, Theorems 4.1, 4.2] and Yu et al.[in [2,
presert. Theorem 1] have shown that a double-integrator consensus

In light of the above, in this paper we assume tNais con- controller exists if and only if the sensor digraghhas a
stant for eachi € {1,...,n} (and hencg is constant as well). globally reachable node. Now the main result of this paper.
If j € NV;, then we say that robgtis aneighbourof robot. If Theorem 1:1f the sensor digrap§ has a globally reachable
this is the case, then robbtan sense the relative displacemeritode, then the rendezvous control problem is solvable for
and velocity of robotj in its own body frame, i.e., the system [(1){(R), and a solution is given as follows. et

quantities;zj:ﬁj7vfj_ Define the vectoy; := (x;j,vj)jen;. The ©=1,..., n, bg a double-integrator consensus controller. The
relative displacements and velocities available to rabate local and distributed feedback,

contalned’ in the vectog; := (%, Vi) jen; - We allso assume u; = — mifi(y?) - es,

that robot; can sense its own angular velocity in its own frame (6)

B;. To summarize, we have the definition below. Ti =4 XQJiwi z_ ki ((w:x £i(yi) X es)
Definition 3: A local and distributed feedback;,r;) for — KTk [wi — k1 (£i(y;) x e3)], i=1...n,

roboti is a locally Lipschitz function ofj; andw;. A \where ki, ks > 0 are control parameters, makes the ren-
The adjectivelocal indicates that all quantities are reprega,yous manifold{3) globally practically stable. In peutar,

sented in the body frame of robgtwhile distributedindicates ¢, anye > 0, there exist?, k3 > 0 such that for alk; > k?

that only relative quantities with respect to neighboriabats ks > k3, the setB.(I') has a globally asymptotically stable
are accessible. In applications, a local and distributedfack ¢ pset.

for roboti can be computed with on-board cameras and ratetpo proof of Theorerfil1 is presented in Secfioh V.
gyroscopes.
We are now ready to define the Rendezvous Control Pr

lem.

Rendezvous Control ProblenConsider systeri{1)[X(2), and Returning to the block diagram of Figure 2, we now explain
define therendezvous manifold in detail the operation of its two nested loops. We begin with

; an an " 5, the observation that a double-integrator consensus d@mtro
[ o= {(i,vi, Ri,wj)ieq1,...ny € R¥" x R™ x SO(3)" x R fi(yi), i =1...n, for system[(#) also makes the systems

Of%'(planation of proposed controller

cey

. xij :Uij = O, \V/Z,j}

(3) = 7
Find, if possible, local and distributed feedbacks v =fi+g "
(ui, Ti)i=1,....n that globally practically stabilizé'. A rendezvous, since the addition of the gravity vegtaioes not

The goal of the rendezvous control problem is to achieygsact the relative dynamics. Now compare systéin (7) to the
synchronization of the robot positions and velocities ty afyansiational dynamics of the flying robots

desired degree of accuracy from any initial configuration.

ii = V;
V. SOLUTION OF THE RENDEZVOUS CONTROL PROBLEM 0 1 wiRies + g (8)
.. . . . i — — W Ly€3 .
Definition 4: Consider a collection of. double-integrators ’ mi
&= v If it were the case thaf; = —(1/m;)u;R;e3, systems[{7)

(4) and [8) would be identical. Then, settingu;R;e3 = m;f;

in (@) would solve the rendezvous problem. Inspired by this
where f; is the control input of subsystem Suppose the gbservation, the outer loop of the block diagram in Fidudre 2
double-integrators have the same sensor digrdpbs the assumes that-u;R;e3 is the control input of[(8) and com-

1For a graphgG, existence of a globally reachable node is equivalent tgmes a desired dOUble-mtegrator foreef; which becomes

having a directed spanning tree in the reverse graph. a reference signal f_or the inner |90p- _ _
2Relatively little research has been done on distributeddination prob- We now explore in more detail the operation of the inner

lems with state-dependent sensor graphs. In this contexthei simplest case |OOp. First we observe that sinde is a linear function, we

when the robots are modelled as kinematic integrators, gt een shown ; : .
in [34] that the circumcentre law of Ando et dl._|35] presen@nnectivity haveRifi(yz?) = fi(Riy;) = fl(yl) Moreover, using the fact

of the sensor graph and leads to rendezvous if the senson ggapitially ~ that dot products are invariant under rotations, we have
connected. Despite the simplicity of the robot model, trabitity analysis ) )
in [34] is hard, and the control law is continuous but not kigi&z continuous. u; = —m£;(y})-es = m;(R:£;(y})) - (—Ries) = mf;:(yi)- ¢,

’Ulzfl, i:1...n7



where ¢; is the thrust direction vector. Thus, the thrust
magnitude is the projection of the desired thrusif; onto
the thrust direction vector—see Figure 3. Now deit(y!) =

k1 (£i(y) x e3). Then we have

il ) Sy — ki (< Biwi)) xes) o) -

— Khe (] — wily)) , | , _
Fig. 3. lllustration of the control input; and reference angular velocidy;
We will show in the proof of Theorefd 1 that the torque inputs @).

7, makew! converge to an arbitrarily small neighborhood of

w!, i=1,...,n. Thus,w! can be seen as a reference angular _ _ _
velocity for the inner loop. Using the fact that, for allb € R control law. More importantly, the computation of such dafi
and all R € SO(3), R(a x b) = (Ra) x (Rb), we have tives requires communication between neighboring robemts,

_ _ _ problem that has been overcome in the present approach. The
w; = Rw} = Rik1 (£i(y;) x e3) = k1 ((Rifi(y})) x (Rie3)) approach in[[29] requires that robots have access to a common
= k1 (£i(yi) x —q;) = k1(qi < £:(1s)). ine_r_tial vector. This requirement is abs_ent in 'Fhis paper.

) ) (i) The feedback of Theorerh] 1 is static. It does not
Thusw; is perpendicular to the plane formed by the thrugfepend on dynamic compensators that require communication
direction vectorg; and the desired thrust forcef,—see petween neighboring robots.

Figuref3. Since the angular velocity vector identifies atains (jij) The feedback of Theorefl 1 is local and distributed
taneous axis of rotation, it follows thatdf; = w;, then robot  j the sense of Definitiof] 3. Interestingly, it does not reeui
rotates abouw; according to the right-hand rule. Referring tensing of relative attitudes, which can be computed using
Figure[3, we see that such a rotation closes the gap betwg@oard cameras, but are harder to compute than relative
uig; and m;f;, and the speed of rotation is proportional tqjisplacements.

sin @, V‘_’here%@ is the angle petweeniqi andm;f; marked () On the rendezvous manifold there is no prespecified

in the figure. When the gap is closed, we haye= [|m:fill, thrust directiony; for roboti and the robot thrust directions do

qi = mifi/||mf;|, and thusu,q; = m:f;. In conclusion, the ot need to align at rendezvous. This is desirable if one svant
inner loop assignéu;, 7;) to makew; approximately converge 1 employ the proposed controller in a hierarchical control

to w;, so thatu;q; = —u;R;e3 approximately converges t0gsetting to enforce additional control specifications.
m;f;, which is computed by the outer loop.
While the intuition behind the proposed controller is sigpl V1. PROOE OFTHEOREMIT

the proof that the interplay between the two nested looptesu . . _ L
in global practical stability of the rendezvous manifold is The feedback in[{6) is local and distributed because it is

rather delicate, and it crucially relies on the homogeneity a Sr_“opth function of; a_nd w; qnly. By Theorems 4.1 and
the functionsf;, i = 1,...,n. 4.2 in [1] (or Theorem 1 in [2]), ilG has a globally reachable

Remark 1: Theorem[L proves global practical stability OInodethen there exists_a double-i_ntegrator consensusotientr .
the rendezvous manifol@. The reason that the stability isand the feedback](6) is well-defined. We need to show that it

practical and not asymptotic is roughly as follows. In Orderlenders the reqdezvous mamfd]dm @ glopally pract.|cally
to achieve rendezvous of the rigid bodiasyg; is driven stabIe._We_begm by expressing the transla_tlone_ll portictnef
approximately tom,f;. What's important is not so much dynaml_cs in coordinates relative to robnti.e., in terms of
the difference in magnitude of these vectors but rather e variableg(zy;, vij)j=2.....n,

difference in angle between them. In Figure 3, one can seei;; = vy,

thatw; acts to reduce this angle with a rate proportional to 1 1 _ (10)
the magnitude ofv;. Sincew; is a linear function of;, as the by = ———Rjesu; + m—1R1€3U1, J=2,...,m,

robots approach consensws converges to zero at the same . Z «

rate asf;. This leads to increasing inaccuracy in closing the Ry - Ri(w;) ’ ‘

gap between the vectorsg; andm,f; insomuch thatinavery — Jiw; =7 —w; X Jiw;, i=1,...,n.
small neighborhood pf rendezvog&,— is so small that. it fails Since all relative state&;;, v;;) can be expressed in terms of
to make the translatpnal.dynarr_ucs a}ct as double integ@ataf,e yariables above through the identity;;, vi;) = (21, —
More detailed reasoning is provided in Remark 2. z1:,v1; — v1;), perfect rendezvous occurs if and only if the

vector (z1,v15)j=2,...» IS zero. Denoting,
Features of the proposed controller X = (21, 01))j=2....n € X 1= R3(—1) RB(n71)7

(11)

() The proposed controller has a number of advantages p.— (R,.... R,) € R:=S50(3)",
over our previous work in [29]. Unlike [29], the inner conitro 1 " 3n
loop does not require any derivatives of the reference thrus wi= (Wi, wp) € Q=R
force f;. In [29], the large expressions resulting from sucthe new collective state i$X,R,w) € X x R x Q. The
derivatives pose difficulty in real-time computation of theéneaning of the new state is thi&X’ contains all translational



states (positions and velocities) relative to roboR contains
all the attitudes, andv contains all body frame angular
velocities. The rendezvous manifold in new coordinatesiés t
set{(X,R,w) e Xx RxQ: X = 0}.

Due to the identity(zij,vij) = (ZClj — T14,V15 — ’Uli),
the vectory, = (x5, vi)jen; IS a linear function ofX
which we will denotey; = h;(X). Similarly, the vector
yi = (x;,v};)jen; is a function of X and R, linear with
respect toX. We will denote this functiory; = h}(X, R).

Using the definitions above, we may now exprgg:) and

w;(y!) = k1(£:(y) x e3) (the latter function was discussed

in SectionY) in terms of states. Accordingly, we defige:
X—R3 gl : XxR—R?andw : X x R — Q as follows:
gz(X) = fl o hl(X),
gi(X, R) := R; 'gi(X) = fi o hi(X, R),
w(X,R) := (w;(hi(X,R))),

(12)

yeeey

We remark thag; is linear andg! is linear with respect to its
first argument. The second identity in the definitiongifis
due to the linearity of;.

Finally, we define the rendezvous manifold in new coord
nates,

I :={(X,R,w) e XXRxQ:X =0} (13)

We will prove thatl™ is globally practically stable, which will
imply thatT" is globally practically stable as well.

A. Lyapunov function

Consider the: double-integrator§{4) with contré} in (5),
expressed inX coordinates:

i‘lj = V1y
v1; =£5(y;) — £1(y1) = g;(X) —g1(X), .
(14)

By Definition[4, the origin of this linear time-invariant sgsn
is globally asymptotically stable. Thus, there exists adyatc
Lyapunov functionV : X — R, V(X) = X T PX, whereP is
a symmetric positive definite matrix, such that the denti
of V along the vector field in(14) is negative definite.

Let J € R37%3" pe the block-diagonal matrix with thieth
block equal taJ;, and consider the functio” : X x Rx Q —
R defined as

i=2,..

W(X, R,w) = aWyan(X) + Wiet(X, R,w),  (15)

wherea > 0 is a parameter to be assigned later and
1
Wyan(X) = /V(X) + §V(X),
Wrot(Xa va) = ZgZ(Xv R) 1 €3
=1

+ %(w —w(X, R)J(w - w(X, R)).

Lemma 1:Consider the continuous functiold” defined

in (I8). Then

a*

= sy S IgHX/VV (X)L R) e < o,

(X,R)EX\{0} xR

Fig. 4. lllustration of the set$; and S,.

and for alla > a*, the following properties hold:
() W>0andW~10) c T*.
(i) For all ¢ > 0, the sublevel sell/, :
W(X, R,w) < c} is compact.
(iii) Forall € > 0, there exist® > 0 such thai¥s C B.(T"™*).
The proof is in the appendix.
i. From now on we assume > o*. In light of the lemma, if
we show thatll’ is nonincreasing outside a certain compact
region of the state space, then all trajectories [ofl (I0)-(11
with feedback[(6) are bounded, ruling out finite escape times
Moreover, in light of part (iii) of the lemma, to prove that
I'* is practically stable it suffices to prove that for every
d > 0, there exists a gain vectdk,, k2) such thatWWs is
globally asymptotically stable. For this, we need to shoat th
W>6 = W<O0.

{(X,R,w) :

B. Coordinate transformation

We now construct a coordinate transformation on the trans-
lational statesX that leverages the homogeneity property
of £;. Return to the Lyapunov functioW (X) = XTPX
associated with the double-integrator consensus coaitroll
Since V' is a positive definite quadratic form, its level sets
are compact and convex. Consider the level$et= {X €
X : V(X)) = XTPX 1}, and forp > 0, let S,
denote the sefS, := {X € X : X = pf,0 € S;}. The
sets S; and S, are depicted in Figurél4. By convexity of
Sp, any pointX € X\{0}, can be uniquely represented as
X =p8, pe Ry 6 € S, wherep = VXTPX and
6 = X/p. In the above decomposition, one can thinkpads a
scaling factor determining the size of the neighborhoockobz
where X belongs, whiled is a shape variable determining the
relative positions and velocities of the robots moduloiscgal
We use this construction to transform the coordinates of the
relative translational states i as follows. Define the map

F:X\{0} xRxQ =Ry x5 xRxQ,
F(X,Rw) = (p,6, Rw), p:=/V(X),0:=X/\/V(X).
Clearly F' is a smooth bijection. Moreover its inverse

F~1(p,0,R,w) = (pf, R,w) is smooth as well, s¢ is a dif-
feomorphisrﬁ. The new state i§p, 0, R,w) € Ry x.51 xRxQ.

3F is a diffeomorphism of smooth manifolds. The $atis diffeomorphic
to the unit sphere of dimensia#(n — 1) — 1. All other sets involved in the
Cartesian products are smooth manifolds



Rendezvous in these coordinates would correspond to havingerrom now on we letk; > 1. Using the inequalities in
p = 0, which is outside of the image af'. This is not a Lemmal2, we get
problem though, since we want to show practical stability of

the rendezvous manifold, for which it suffices to show that W <(p+p?)
can be made arbitrarily small.

—aM, +aM; Y |gi(0, R) x 83||]
=1

Having defined a coordinate transformation, our next objec- e ; , M,
tive is to represent the Lyapunov function candidaten new +p Z |:_k1|gi(97 R) x es|” + k_z]
coordinates. The new representatioiis= W o F~!, which i=1
amounts to simply replacing’ by p. Doing so we obtain kiks 2
' +pMs = == |lw — w(pf, B)|".
W(p,0, R,w) = aWiran(p) + Wrat(p, 0, R, w), Denote 3,(6, R) := ||gi(6,R) x esl, and B(6,R) :=
A ) (81(0,R),...,B,(0,R)). For notational convenience, we
whereWean(p) = p+ &, omit the arguments of the function8 and w. With these
definitions, the inequality above may be rewritten as
2 M.
Wiot(p, 0, R, w ngz 0, R) W <(p+p?) (—aMz + aM17 B) +p? ( k|| Bl*+ k4n>
1 0, R))T 9 ik 2
In writing the above, we used the identity= /V (x) and For everyk, > nMy/Ms, we have
the fact that the functiog?(X, R) is linear with respect tc, W <(p+p*) (—aMy + Ms + OéM11TB) ~ 0%k |18
implying thatg!(pd, R) = pgi(0, R). In what follows, we let o K2k
Ws == {(p,0, R,w) € Ry x S; xRx Q: W(p,0, R,w) < 0}. - 122Hw—w||2.

ThUS,W(s = F(W(s)
If we further picka > max{a*,3M3/Ms}, we have

W <(p+p?) (=2Ms + aM117 B) — p*k1| 8]
kiks 2
Let > 0 be arbitrary. We havél < a(p + p2/2) + D) low = "
pSUPg ) 1810, R)-e3] + (1/2)(w—w) " J(w—w). Using the
definition of o* in Lemmall and the fact that > o*, we get

C. Stability analysis

Splitting the term—p?k; ||3]|? into two parts and collecting
terms forp and p?, we obtain

W < a(2p+ 22/2) + (D) —w) Jew - w). W <p? <_2M3 +aM178 - EIBHz)
It readily follows that there existg € (0,1) such that ( 2M; +aMi1' B~ p ”ﬁ|2)
3 1
Ag = {(p,0, R.w) 1 p € (0,0), |—w(ph, B> < o} C W. HE
— w —Wwil".

2

We will show that there exist > 0 and a gain vectofk, k2) Consider now the expression

such thatW < 0 outside the sed,. This will imply that W > o u
§ = W < 0, proving thatWW; is globally asymptotically Af;—aM;17 B+ 19||5H2 17 87] TMI _Q‘TI 1
stable. —ahp hep |18

Lemma 2:Consider the closed-loop system1(10)4(11) withf k; > 2n(a;/2)?/(0Ms3), the above quadratic form is
feedback[(b). If; > 1, then there exist scalafd,, ..., My > positive definite, implying that
0 such that the derivatives of and Wit along the closed-

k
loop system in(p, 0, R,w) coordinates satisfy the following Mz —aMi1" B+ 1QHBHQ > 0. (17)
inequalities: )
Sincep < 1, we also haveMz —aM;17 B+ (k1 /2)||8|> > 0.
n ‘ Using the latter inequality, we get a further upper bound for
p<p|-Ma+Mi)y_|lgi(0.R) x es | , W,
- A T ( OMs + aMi1T B — |5||2>
— (0%
Wi <5 Z kg6, B) x es]” Soommme TR et EE ) g
; Kk 1w
M, kik - - :
+k—] + oMy — L o — (o, B 2

Using [18), we now prove that outside,, W < 0. In other
The proof is in the appendix. words, when eithep > g or |[|w —w]||? > o, W < 0.



TABLE Il TABLE Il

SIMULATION INITIAL CONDITIONS CONTROL EFFORT
Vehicle ¢ z;(0) (m) v;(0) (m/s)  R;(0) Figure[6  Figurdl
1 (0,—-10,10) (0,0,0) side 1 max; sup; |u;(t)] (N) 20.4 17.21
2 (0,10, 10) (0,0,0) side 2 max; supy ||7;(¢)]| (N-m) 15.27 16.47
3 (0,0,0) (0,0,0) down max; rms(|u; (¢)]) (N) 1.72 4.31
4 (—10,0,-10) (0,0,0) up max; rms(||7; (¢)]]) (N-m) 143 2.24
5 (10,0, —10) (0,0,0) up
Remark 2:1f the derivativell’ were negative definite, then '\

the rendezvous manifold* would be globally asymptotically é)

stable. However, this is not guaranteed [in](18). The reason

is as follows. Suppose is very small and|jw — w| = 0.

Then all terms multiplied by? become negligible and whatFig. 5. Sensor digraph used in the simulation resuits.
remains in[(IB) is)V < p (—2Ms + aM;17 8). As we have

no control over the value of the constadts and A/3 in the

equation above})’ can be greater than zero if the second term

dominates the first.

i > R _— .
Suppose first that > ¢. Then from [18) we have chosen to bé&; = 2 andk,; = 0.45. The initial conditions of

. k . . - .
W < — p*Ms +p <—2M3 +aM1 8- 1Q”ﬁ|2) the robots are shown in Tabld Il. The initial attitud&s(0)

2 of the robots are: up(right), side(ways) side(ways)2 and
k2ky | 2 (upside)down respectively given by:
— w— Wil .
2 10 0] [t 0o 0 1 0 0] [1 0 o0
By inequality [1T) we conclude that 01 0/,/0 0 =1{,1(0 0o 1|,]0 -1 0O
0 -1 0 0 0 -1

2k 0 0 1 01 O
12w —w|? < 0.

W< —p* Mz — pMs — . . . . .
Figure[6 shows the simulation without the presence of distur
Next, suppose thalw — w|? > p. Then from [IB), bances while Figurlgl 7 shows the simulation when disturtance

are present. The disturbances are: an additive random noise

W < —p?Ms + paMi17 8 — @Q with maximum magnitude of.25N on the applied force; an
) 2 additive random noise with maximum magnitudeOdt5 N-m
< —p® My + pa My My — kiko 0, on the applied torque; an additive measurement error for the
2 angular velocity, with maximum magnitude 0f25rad/s; an
where M5 := maX(@,R)eslxR{lTﬁ(eaR)}- The maximum @additive random noise on the quantify(y:) accounting for
exists becaus@ is continuous ands; x R is a compact set. €rrors in measurements of relative displacements anditiekoc
If ky > (@M Ms/k1)?/0 thenW < 0. of the vehicles. The direction of this vector has been rdtate

We have therefore proved that,df> max{a*, 3Ms/Ms,}, within 0.25rad and the magnitude is scaled betw®ert to
ki > max{1,2n(aMi/2)2/(oMs)}, and ks > 1-25times the actual magnitude. The disturbances are updated

max{nM, /Ms, (a My Ms/k1)?/ o}, thent > § implies that 10 ti_mes per s_e_cond. In both cases of Figure 6 and I_:ure 7, the
: vehicles’ positions and velocities converge to a neighboch
of one another.

In Figurel® the vehicles remain withih25m of one another
while in Figurd Y the vehicles remain withim of one another
at steady state. These neighborhoods can be made evenrsmalle
by further increasing the control gaihs andks. However, this

We consider a group of five robots with the sensor digraphwmould result in having higher control inputs. Metrics relat
Figure[®. The robot masses and inertia matricesware= 3 to the thrust and torque inputs are presented in Table li& Th
Kg, me = 3 Kg, ms = 3.4 Kg, mq = 3.2 Kg, ms = 3.2 first two rows show peak control norms and the last two show
Kg and J; := diag (0.13,0.13,0.04) Kg-m?, as in [28],.J, = the root mean square (rms) of the control norms. In these
Ji, J3 = 1.4Jy, Jy = 1.2Jy, J5 = 1.2J;. We use the simulations we considered zero gravity, i.¢.= 0. This was
double-integrator consensus controller of Ren and AtKlijs [ done to improve visibility of the simulation results. In the
f,(y;) = Z;;l a;j(zi; + yvi;) wherea;; > 0, v > 0. It is presence of gravity, the vehicles would still converge te th
shown in [1] that for sufficiently large the above controller same neighborhood of one another, however at steady state
does indeed achieve consensus. We pigk = 0.3 for all they would accelerate in the direction of gravity since gyav
j € N; and~y = 30. The control gaings; andk, in (@) are is not compensated through the control inputsin (6).

W < 0. Therefore, for any initial condition, the solution
of (I0)-(11) with feedback{6) is bounded and the Bét is
globally asymptotically stable.

VII. SIMULATION RESULTS



20 10 hovering without additional sensors. One would need some
measurement of the gravity vector, for example provided by

10 5
o Y a three-axis accelerometer. The point of view of these asitho
N . is that the proposed solution of the rendezvous problem
will serve as a layer in a hierarchy of higher-level control
-20 -10 o . . . oy .
o s |l 10 2w o s oo 10 2w specifications such as hovering, formation stabilizatiamd

path following.

_ APPENDIX
02 A. Proof of Lemmall

0 s 100 1m0 200 0 50 100 150 200 Recall the definition oWV (X, R, w), and assume that # 0,

time (s) time (s)

I

,
speed (m/s)

o

S

-10

—— 1 =,
Fig. 6. Rendezvous control simulation without the presesfadisturbances. W =a ( V(X) + QV(X)) + Zgi (Xv R) " €3

At the top-left, top-right and bottom-left: positions oftfiive robots expressed i=1

in the inertial frameZ. At the bottom-right: linear speeds; ||, : = 1,...,5. 1
sl +§(w—w(X,R))TJ(w—w(X,R))

10 - o Z?: g%(X, R)'e3 o
4@( + B )+2v<x>

+ %(w —w(X,R)) J(w—-w(X,R)).

% 50 100 130 200 0 50 100 150 200 Sinceg!(X, R) is linear with respect toX, we have

W =\/V(X) (a + 38 (u(X), R ) +SV(X)
i=1

Lo, R I - e, ),

20 15

10

I
speed (m/s)

o
”

-10 [9)
0

P mew T e where (X)) := X/\/V(X) is continuous onX\{0} and
bounded as follows
Fig. 7. Rendezvous control simulation with the presenceisifitbances. At ||X|| HXH 1
the top-left, top-right and bottom-left: positions of theefirobots expressed ||,U(X)|| — = .
in the inertial frameZ. At the bottom-right: linear speeds; ||, i = 1,...,5. \/V(X) VXTPX — \/,\min(P)

Sinceg! is continuousy(X) is bounded, andz € R, a com-
pact set, it follows that the functiop.! ; |g! (u(X), R) - es]
has a bounded supremum. Accordingly, let

VIII. CONCLUSIONS

We have presented the first local and distributed feedback n
solving the rendezvous control problem for a class of un- a* = sup Z |g! (1(X), R) - e3] .
deractuated robots modelling vertical take-off and lagdin (X, R)eX\{0} xR ;=7

(VTOL) vehicles such_ as quadrotor heligopters. The maj ralla > of, we haveW (X, R,w) > W(X, R, w),

result, Theorenill, relies on the assumption that the sensor

digraph is constant. As we have discussed in the papew (X, R,w) ::EV(X)

this assumption is questionable in practice, but a stgbilit 2

analysis in the presence of a state-dependent sensor kligrap + l(w —w(X,R))"J(w—-w(X,R)) >0.

is beyond the scope of this paper. We believe that solutions 2

in the literature for consensus of double-integrators wiitte- We derived the bound above faf # 0, but sinceg?(0, R) = 0
dependent sensor digraphs could be extended to rigid bodies linearity of gi with respect toX), the bound also holds
using the framework in this paper. However the Lyapunder X = 0. The above inequality implies tha¥ > 0 and
function used in the analysis would need to be modifidd’~!(0) ¢ W ~'(0). But W = 0 if and only if V(X) = 0
extensively. Since this makes the problem even more diffic@l.e., X = 0) andw = w. ThusW~1(0) c I'*, proving part
than it already is, we leave it as a possible future researn@hof the lemma.

direction. In this paper we limited ourselves to the control For part (ii), note that for alk > 0, W. C {W < c}.
specification of rendezvous. The proposed control law, BincelV is a positive definite quadratic form in the variables
particular, does not guarantee hovering of the vehiclesleNh(X,w — w), its sublevel sets are compact [X,w — w)
the robots converge to each other, nothing can be said abcotrdinates. Thus ifX, R,w) € W, X andw — w(X, R)
the motion of the ensemble. This cannot be otherwise, forate bounded. Since is continuous and? € R, a compact
would be impossible to solve the rendezvous problem witlet,w is bounded, implying that is also bounded. Therefore



the setW,. is bounded. Continuity of// implies thatWW, is

10

The first term in the bracket is the derivative B{X') along

compact. This concludes the proof of part (ii) of the lemmathe nominal vector field[(14), and = Q' is a positive

For part (iii), let ¢ > 0 be arbitrary. SincelV is a
positive definite quadratic form in the variable¥, w — w),
there existsé > 0 such thatW(X,R,w) < § implies
H(Xvw - QJ(X, R))H <e.

Furthermore, the inequality|(X,w — w(X,R))|| < ¢
implies that|| X | < e. Now consider any pointX, R, w) €
{W < 4}. We have just seen that this implies thiat || < .
It will be shown next that this implie$X, R,w) € B.(I'*)
and hencegW < §} C B.(T™).

Note that(X, R,
spacesX, R and (2. Respectively, the metrics ark, dg and

dq (dx anddq are Euclidean metrics). As such, choosing to

use the2-product metric,
H(XvR’W)HF*

1
= inf dx (X, Xo)? + dr(R, Ro)? + da(w,wo)?) ? .
(XOaRtI;lWO)GF*( X( 0) R( 0) Q(W WO) )

Recall thatl™ = {(X, R,
the point(0, R,

w) € XxRxQ: X =0}. As such,
w) is contained in the sdt* and therefore,

(X, R,w)lr+ < (dx(X,0)* +dr(R, R)* + da(w,w)?)?

where dgr(R,R) and dg(w,w)
[(X,R,w)|r+ < dx(X,0) < | X|| < e. This implies that
(X,R,w) € B.(T'™*). Thus,Ws Cc {W < ¢} C B.(I'"), as
required. This concludes the proof of Lemfa 1. O

B. Proof of Lemm&l2

We will use a standard result from differential geometry

relating the Lie derivatives of smooth functions alotig

related vector fields[ [36, Proposition 8.16]. In our context

recalling thatp = /V|x—,s and W = W|x—,, the result
has the following implication:

d

_Wrot

d
4
dt\/_X:p dt

Rewrite the dynamics ok in (I0) as

and W,o: =
6

(19)

b1 =[g;(X) — g1(X)]
+ Ry [(8)(X,B) - es)es — (X, R)]
+ Ry [(81(X, R) - e3)es — g1 (X, R)] .

To get the identities above, we added and subtractédin i£0) t

ideal force feedbacks§;(y;) = g;(X) andf(y1) = g:1(X),

and we replaced; andu, in (I0) by the assigned feedback

in (6). Finally, we used the identitR,g! = g

Taking the time derivative of,/V(X) along the above

vector field we get

SV =

L T
2 V(X) X QX

+28 o (gg (X,R) - 33)33—g§(X,R))

—Z

a ((81(X, R) - e3)es—g1(X, R))|.
111]

w) € Xx Rx Q lies on the product of metric

are zero. This vyields,

definite matrix. Letting My = Amin(Q)/(2 max(P)) and
using the fact that the Euclidean norm is invariant under
rotations, we have

V(X) < - My/V(X) +
>3
Jj=2

+||(gi(Xa R) : 63)63 _g}(Xv R)H)

1
2/ V(X)

ov
Huaxm@m—mxw

dt

We claim that]|(g(X, R) -e3)es —g4(X, R)| = ||lgi(X, R) x
es|. Indeed, writingg? = (g?-e3)es +gi — (gi-e3)es, we have

g xe3 = (8] —(g}-e3)es) X e3. Since the vectag; — (g} -es)es
is perpendicular tes, ||(g; — (g; - es)es) X es| = [1g; — (&; -
e3) i X es|| = |lg; — (& - e3)es]|. This proves

the claim. Using the identity just derived, we get

TVV(X) <= MpV(X)

n

> |5

=2

" (1. Ry x el

\/_

+lg1 (X, R) x egl)]-

V1j

Using [19), we get

>

p< M2P+—

awpﬂ|&wa%|

HﬁWﬂw%ﬂ.

Since the functiong! are linear with respect to their first
argument, and the partial derivatives of the quadratic fofm
are linear functions, by the homogeneity of the norm we have

. 14 - oV J
< — - [ .
p<—Msp+ 5 ;:2 Havlj (9)H (||gj(9aR) x es|

+g1 (8, R) x es]])

The functions||0V/dvy,|| are continuous. The variablé

belongs toS;, a compact set. TherefoV/dvy;| has a
maximum,

p < — Myp+ max ‘
0€s,
j€{2,...m}

6U17

H[ioaeRxm)

+(n—1)llg1(6, R) x 63||]

< —Msp + max

eesl

H S0 gl (6, Ryxes).
j=1



Letting M := max |0V /0vi] (n — 1)/2, we get

0eS;

_ . Jef2...n}
the first inequality IIZI).

We now turn to the second inequality ih {16). Recall th

definition of W,

rotXR

ZngR

+ %(w —w(X, R)) J(w —w(X, R)).

11

Substituting in the first term inside the bracket= —k; (g! x
es), taking norms, and using the fact thiat > 1, we arrive
’én the inequality

Wit <> [ -
=1
+ k1ki(X, R)||w; — wi|| — kT ka|lw; — wi[?],

wherek; (X, R) := ||g}(X, R) x es| + || J:(hi(X, R) x e3)]|.
Note thatk, (X, R) is homogeneous with respectibecause

killgi x es” + [|hj - s

The time derivative of¥, along the vector field if(10j=(11) &; and h; are linear with respect t&X and the norm is a

is

Wrot =

)y [ () eat (ot - wiCx )

=1
(Ti — wf X le; — Jl (iw§)> ‘|
dt

To express(d/dt)g:, recall thatg!(X, R) = R; 'f;(hi(X)).

Then,
d , (d L d
a® =\t

SR B0 R (X)),

The functionf; (h; (X)) is linear. Its derivative along the vector Wrot < Z

field (10)-(11) with feedback(6) is a function @K, R) which
is linear with respect t&( because:; = —g!(X, R)-e3 is such.
We will denote ith;(X, R), h;(X,R) := (d/dt)f;(h;(X)).

homogeneous function.

Splitting the term—k7k;||w!—w?||? into two parts and notic-
ing that the functiork;k; (X, R)||w! — w?|| — (k¥k2/2)||wi —
wi||? is quadratic in the variablfw! — w?|| with maximum
k?(X, R)/(2k2), we get

k1k2 1H2

v‘vmtgz[—k1|g;iXe3|2+|hzi-e3|— et

L R(LR)
2ks '
Now using [I9) we get

[— allgi (00, R) x call” + [Ii(o0, R) - ea]

k0. ]

i=1
kl o

lwi — wi]?
Wi %

2k

Consistently with our notatlonal convention in Taljle I, we

will let h(X, R) := R; 'h;(X, R). The functionh’(X, R) is
linear with respect toX. Returning to the derivative gf, we
have

8= W) R BO0) + R (X

S|m|IarIy, sincew}(X,R) = ki(g;(X,R) x e3), we have
Ll = ki (—w! xgl—l—hl) x es. Substituting the above
identities in the expression foi,,: and sincer; = w; x

Jiwf — ki Ji((w) x &) % e3) — kTk2(w] — w}), we get

Wrot :Z [—(w; X g;) T €3 +h§ t €3
=1

Ji(hﬁ X e3) —

—k1(w] —w;) - ki kalw; — wil?]

Using the property of the triple product that! x g) - e
(g% x e3) - wi, we obtain

Wrot :Z [_(gz X 63) ! w;’. +h§ T €3
1=1
—k1(w} —wyp) -

Ji(h] x e3) — kiks|lw; —wi[?] .

Adding and subtracting the terfg! x e3) -w! and collecting
the termw! — w!, we have

Wit = [~ (8! % e3) -wi +h-e5 — ((g! x e3)
=1

+ k1 Ji(h} x e3)) - (w; —w}) — kTka||w] — wi||?].

Using the homogeneity with respect 16 of ||g? x es]|, [|hi -
es|l, andk;, we get

Wi <z[ k1020, R) x esl + p|mi(0, ) - es]

B k | K2(0, R
2 1_”2 p2 z( )]

2ks

Since ||hi(0, R) -e3|| andk?(¢, R) are continuous functions

over the compact sef; x R, they each have a maximum.

Letting M3 = n - max, ?)Esle(ﬂh {O,R)-es), My =
1€{1,...,

2
maX(e,R)eslxR(k <§ R)) , we conclude that
ie{l,...,n}

W <07 z[ i llgi(0, ) x eo]* + 7

k%g )
Z H _wiH27

as required. This concludes the proof of Lenimha 2. 0

+pM3
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