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Distributed Nash Equilibrium Seeking by A Consensus Based Approach

Maojiao Ye and Guoqiang Hu

Abstract— In this paper, Nash equilibrium seeking among a
network of players is considered. Different from many existing

works on Nash equilibrium seeking in non-cooperative games,
the players considered in this paper cannot directly observe
the actions of the players who are not their neighbors. Instead,
the players are supposed to be capable of communicating with
each other via an undirected and connected communication
graph. By a synthesis of a leader-following consensus protocol
and the gradient play, a distributed Nash equilibrium seeking
strategy is proposed for the non-cooperative games. Analytical
analysis on the convergence of the players’ actions to the Nash
equilibrium is conducted via Lyapunov stability analysis. For
games with non-quadratic payoffs, where multiple isolated Nash
equilibria may coexist in the game, a local convergence result
is derived under certain conditions. Then, a stronger condition
is provided to derive a non-local convergence result for the
non-quadratic games. For quadratic games, it is shown that
the proposed seeking strategy enables the players’ actions to
converge to the Nash equilibrium globally under the given
conditions. Numerical examples are provided to verify the
effectiveness of the proposed seeking strategy.

Index Terms— Nash equilibrium; gradient play; leader-
following consensus; neighboring communication

I. INTRODUCTION

The past decade witnessed the penetration of game theory

into various research fields including biology, economy,

computer science, just to name a few. With the development

of game theory, Nash equilibrium seeking in non-cooperative

games emerges to be of both theoretical significance and

practical relevance (e.g., see [1]-[20] and the references

therein).

The authors in [2] formulated pure strategy Nash equilibria

seeking as a mixed-integer linear programming problem for

pool-based electricity market. Gradient play was leveraged

for finding differential Nash equilibria in continuous games

in [3]. Dynamic fictitious play and gradient play were

exploited in [4] for a continuous-time form of repeated

matrix games. Policy evaluation and policy improvement

were utilized for the computation of the Nash equilibrium in

differential graphical games [5]. The discrete-time stochastic

algorithm developed in [6] allows the players to take actions

in both simultaneous and asynchronous fashions. Based on

the state-based potential games, the authors in [7] considered

game design for distributed optimization problems, in which

a distributed process was proposed to obtain the equilibrium.

By utilizing the saddle point dynamics, convergence to the

Nash equilibria of a two-network zero-sum game was derived
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in [10]. Switching communications were considered for the

two-network zero-sum games in [11]. Nash equilibrium seek-

ing in generalized convex games was considered in [12]-[14].

The authors in [12] and [13] solved the generalized convex

game by a discrete-time distributed algorithm and Lemke’s

method was adapted for the computation of generalized

Nash equilibrium in convex games with quadratic payoffs

subject to linear constraints in [14]. Besides, extremum

seeking based approaches were proposed to seek for the

Nash equilibrium (e.g., see [1] and [15]-[18]). These methods

vary from integrator-type extremum seeking [1], discrete-

time extremum seeking [15], stochastic extremum seeking

[16], Shahshahani gradient-like extremum seeking [17], to

Lie bracket approximation based extremum seeking [18], etc.

A common characteristic of these methods is that no explicit

model information is required for the implementation of the

methods.

In non-cooperative games, the players’ payoff functions

are determined by the players’ own actions, together with

the other players’ actions [21]. Hence, a body of the existing

works require the players’ observations over their opponents’

actions to search for the Nash equilibrium. However, full

communication is impractical in many engineering systems

(e.g., multi-agent systems, ad hoc networks) [22]. Motivated

by the penetration of the game theoretic approaches into

cooperative control and distributed optimization problems in

engineering systems where full communication is not avail-

able (see, e.g., [5], [7], [8], [9]), this paper addresses Nash

equilibrium seeking under local communication network, i.e.,

the players communicate with their neighbors only.

To solve games with limited information, the main idea

of this paper is to utilize a consensus protocol to broadcast

local information. Consensus problems have been extensively

investigated in the existing literature (e.g., see [23]-[30] [42],

[43]). For instance, a class of consensus controllers were

proposed for networked dynamical systems in [42] and a

consensus based approach was studied in [43] for distributed

coordination of the generation, load and storage devices in a

microgrid. In particular, leader-following consensus concerns

with the synchronization of the agents’ states to a common

value, which is equal to the reference signal provided by the

leader [26]. The proposed Nash equilibrium seeking strategy

is based on an adaptation of a leader-following consensus

protocol and the gradient play. More specifically, each agent

acts as a virtual leader to provide its action as the reference

signal and the agents generate their estimates on the players’

actions by utilizing a leader-following consensus protocol.

Based on the estimates, the gradient play is implemented for

each player.

Related works: Two-network zero sum games were in-
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vestigated in [10] and [11] under communication graphs.

Distributed learning for games on communication graph

was investigated in [31] and [32] for large-scale multi-

agent games by an adaptation of the fictitious play. Though

the communication setting in [32] was similar to the pre-

sented work, the authors considered games with identical

permutation-invariant utilities or exact potential games with

a permutation-invariant potential function, which are distinct

from the games considered in this paper. In [33], the authors

considered Nash equilibrium seeking for aggregative games

on graph, where each player’s payoff function depends on

their own actions and an aggregate of all the players’

actions. A discrete-time gossip algorithm was proposed to

solve it. A similar problem was addressed in [34] for the

energy consumption game in smart grids. The continuous-

time method in [34] was based on a dynamic average

consensus protocol and the primal-dual dynamics. The idea

on solving games without using full information from all

the players was then generalized in [22], where the players’

payoff functions depend on the players’ actions in a more

general manner. The Nash equilibrium was characterized

by a variational inequality and a gossip-based algorithm

was proposed. The players were equipped with a waking

clock and they updated their actions asynchronously to reach

the Nash equilibrium. Different from [22], we consider the

Nash equilibrium seeking problem in a deterministic and

continuous-time scenario. The continuous-time algorithm

activates the powerful analysis tools in control theory to

solve games. Compared with the existing works, the main

contributions of the paper are summarized as follows.

1) Nash equilibrium seeking for non-cooperative games,

where the players have no direct access to the ac-

tions of the players who are not their neighbors, is

investigated in this paper. Based on a leader-following

consensus protocol and the gradient play, a Nash

equilibrium seeking strategy is designed. In the pro-

posed algorithm, the players only need to communicate

with their neighbors on their estimates of the play-

ers’ actions. Avoiding full communication among the

players broadens the applicability of game theory to

engineering systems where only local communication

is attainable.

2) The convergence of the players’ actions to the Nash

equilibrium by utilizing the proposed seeking strategy

is analytically explored. Based on the Lyapunov sta-

bility analysis, it is shown that the proposed method

enables the players’ actions to converge to the Nash

equilibrium under certain conditions. Non-quadratic

games are firstly investigated followed by quadratic

games.

The rest of the paper is organized as follows. The problem

is formulated in Section II and the main results are pre-

sented in Section III. In the main result part, non-quadratic

games are firstly investigated followed by quadratic games.

Numerical examples are presented in Section IV to verify

the effectiveness of the proposed method. Conclusions are

given in Section V.

II. PROBLEM FORMULATION

Problem 1: Consider a game with N players. The set

of players is denoted by N = {1, 2, · · · , N}. The payoff

function of player i is fi(x), where x = [x1, x2, · · · , xN ]T ∈
RN is the vector of the players’ actions and xi ∈ R is the

action of player i. Suppose that if player j is not a neighbor

of player i, then, player i has no direct access to player

j’s action. Given that the Nash equilibrium of the game

exists, design a Nash equilibrium seeking strategy that can

be adopted by the players to learn the Nash equilibrium of

the non-cooperative game.

For the convenience of the readers, the definition of the

Nash equilibrium is given below.

Nash equilibrium is an action profile on which no player

can gain more payoff by unilaterally changing its own action,

i.e., an action profile x∗ = (x∗
i ,x

∗
−i) is the Nash equilibrium

if [37]

fi(x
∗
i ,x

∗
−i) ≥ fi(xi,x

∗
−i), ∀i ∈ N , (1)

where x−i = [x1, x2, · · · , xi−1, xi+1, · · · , xN ]T . Note that

fi(x) and x might alternatively be written as fi(xi,x−i) and

(xi,x−i), respectively, in this paper.

Remark 1: The objective for the players in the game is

different from the objective of the agents in distributed

optimization problems. Given the other players’ actions, the

players in the game intend to maximize their own payoffs by

adjusting their own actions. In contrast, the agents engaged in

distributed optimization problems collaboratively maximize

the sum of the agents’ objective functions, i.e.,

maxx

N
∑

i=1

fi(x), (2)

where fi(x) is the objective function of agent i and x is the

vector of the decision variables (see, e.g., [35]).

The following assumptions on the communication graph

(see Section VI-A for the related definitions) and the payoff

functions will be utilized in the rest of the paper.

Assumption 1: The players can communicate with each

other via an undirected and connected communication graph.

Assumption 2: The players’ payoff functions fi(x), ∀i ∈
N are C2 functions.

III. MAIN RESULTS

In this section, a distributed Nash equilibrium seeking

strategy will be proposed based on a leader-following con-

sensus protocol and the gradient play. Non-quadratic games

are firstly considered followed by quadratic games.

Strategy design: Noticing that the players have no direct

access to the actions of the players who are not their

neighbors, we suppose that each player generates estimates

on the players’ actions. Let yi = [yi1, yi2, · · · , yiN ]T ∈ RN

denote player i’s estimates on the players’ actions and yij is

player i’s estimate on player j’s action. Then, the action of

player i is updated according to

ẋi = ki
∂fi

∂xi

(yi), i ∈ N , (3)



where ki = δk̄i, δ is a small positive parameter and k̄i is

a positive, fixed parameter. Furthermore, yij , ∀i, j ∈ N are

generated by

ẏij = −
(

N
∑

k=1

aik(yij − ykj) + aij(yij − xj)

)

, (4)

where aij is the element on the ith row and jth column of

the adjacency matrix of the communication graph.

Insight into the strategy design: Let τ = δt. Then, at the

τ -time scale,

dxi

dτ
= k̄i

∂fi

∂xi

(yi),

δ
dyij

dτ
= −

(

N
∑

k=1

aik(yij − ykj) + aij(yij − xj)

)

,

(5)

∀i, j ∈ N . Define y
q
ij as the quasi-steady state of yij , for all

i, j ∈ N , i.e., y
q
ij for i, j ∈ N satisfy

− (
N
∑

k=1

aik(y
q
ij − y

q
kj) + aij(y

q
ij − xj)) = 0, ∀i, j ∈ N . (6)

Then, y
q
ij = xj , ∀i, j ∈ N as the communication graph is

undirected and connected.

Letting δ = 0 “freezes” yij , ∀i, j ∈ N on the quasi-steady

state on which yij = y
q
ij = xj , ∀i, j ∈ N . Then, the reduced-

system is
dxi

dτ
= k̄i

∂fi

∂xi

(x), ∀i ∈ N (7)

by which the convergence to the Nash equilibrium can be

derived under certain conditions (see, e.g., [1] and [3]).

A. Games with Non-quadratic Payoffs

In the following, we show that the seeking strategy in

(3) and (4) enables the players’ actions to converge to the

Nash equilibrium. To facilitate the subsequent analysis, the

following assumptions are made.

Assumption 3: There exists at least one, possibly multiple

Nash equilibria x∗ = [x∗
1, x

∗
2, · · · , x∗

N ]T such that for all

i ∈ N ,
∂fi

∂xi

(x∗) = 0,
∂2fi

∂x2
i

(x∗) < 0.

Assumption 4: The matrix

B =















∂2f1
∂x2

1
(x∗) ∂2f1

∂x1∂x2
(x∗) · · ·

∂2f1
∂x1∂xN

(x∗)

∂2f2
∂x2∂x1

(x∗) ∂2f2
∂x2

2
(x∗) ∂2f2

∂x2∂xN
(x∗)

...
. . .

∂2fN
∂xN∂x1

(x∗) ∂2fN
∂xN∂x2

(x∗) ∂2fN
∂x2

N

(x∗)















,

is strictly diagonally dominant, i.e., |∂2fi
∂x2

i

(x∗)| >
∑N

j=1,j 6=i | ∂2fi
∂xi∂xj

(x∗)|, ∀i ∈ N [39].

Remark 2: Assumptions 3-4 are adoptions of Assump-

tions 4.3-4.4 in [1]. By Theorem 2 in [3], the Nash equilibria

that satisfy Assumptions 3-4 are isolated. The objective of

this paper is to design a Nash equilibrium seeking strategy

that can be utilized by the players to learn the Nash equi-

librium of the non-cooperative games. The characterizations

on the existence, uniqueness and isolation issues of the Nash

equilibria are beyond the scope of the paper. The readers are

referred to [3], [21] for the related explorations.

For notational convenience, let diag{pij}, pij ∈ R, i, j ∈
N be a diagonal matrix whose diagonal elements are

p11, p12, · · · , p1N , p21, · · · , pNN , successively. Similarly,

diag{pi}, pi ∈ R, i ∈ N denotes an N × N dimensional

diagonal matrix whose ith diagonal element is pi.

Moreover, define
∂G(x)
∂x

=
[

∂f1(x)
∂x1

,
∂f2(x)
∂x2

, · · · , ∂fN (x)
∂xN

]T

,

∂G
∂x

(y) =
[

∂f1
∂x1

(y1),
∂f2
∂x2

(y2), · · · , ∂fN
∂xN

(yN )
]T

,

y = [yT
1 ,y

T
2 , · · · ,yT

N ]T , h1(x) =
−[a11x1, a12x2, · · · , a1NxN , a21x1, a22x2, · · · , aNNxN ]T ,
and B0 = diag{aij}, i, j ∈ N . Then, the concatenated form

of (4) is

ẏ = − ((L⊗ IN×N +B0)y + h1(x)) , (8)

where L is the Laplacian matrix of the communication graph,

IN×N denotes an N × N dimensional identity matrix and

⊗ is the Kronecker product. Note that −(L⊗ IN×N +B0)
is Hurwitz as the communication graph is undirected and

connected.

Theorem 1: Suppose that Assumptions 1-2 hold, and the

agents update their actions according to (3)-(4). Then, for

each x∗ that further satisfies Assumptions 3-4, there exists a

positive constant δ∗ such that for each δ ∈ (0, δ∗), (x∗,1N⊗
x∗) is exponentially stable.

Proof: See Section VI-B for the proof. �

Remark 3: Theorem 1 can be derived by utilizing sin-

gular perturbation analysis (see e.g., [1][38]). The detailed

Lyapunov stability analysis is conducted in the proof for

the convenience of the subsequent non-local convergence

analysis. From the proof, it can be seen that the convergence

result depends on the convergence of the players’ actions to

each isolated Nash equilibrium under the gradient play, i.e.,

dxi

dt
= k̄i

∂fi

∂xi

(x), ∀i ∈ N , (9)

which is ensured if the matrix k̄B, where k̄ = diag{k̄i}, i ∈
N , is Hurwitz. Hence, Assumption 4 is conservative to derive

the result (see also [1] for the argument).

Note that Assumption 4 is different from the condition

provided in Proposition 2 of [3]. In [3], the gradient play is

governed by
dxi

dt
=

∂fi

∂xi

(x), ∀i ∈ N . (10)

Linearizing (10) at the Nash equilibrium point, it can be

derived that the Nash equilibrium is exponentially stable

under (10) if B is Hurwitz [3].

In Theorem 1, a local convergence result to each isolated

Nash equilibrium that satisfies the given conditions is pre-

sented. In the following, non-local convergence results are

investigated under stronger conditions.

Assumption 5: Each player’s payoff function fi(xi,x−i)
is concave in xi, ∀i ∈ N . Furthermore, for x, z ∈ RN ,

(x− z)T
(

∂G(x)

∂x
− ∂G(z)

∂z

)

≤ −m||x− z||2, (11)



where m > 0 is a constant.

Remark 4: By this assumption, it can be derived that the

Nash equilibrium of the game is unique. In addition, the

stationary condition
∂G(x)
∂x

= 0N , where 0N denotes an N

dimensional column vector composed of 0, is a sufficient

and necessary condition for x = x∗, which indicates that

(x− x∗)T
∂G(x)

∂x
≤ −m||x− x∗||2, (12)

for x ∈ RN . Similar to [21], the uniqueness of the equilib-

rium point can be derived by supposing that

(x− z)T
(

∂G(x)

∂x
− ∂G(z)

∂z

)

< 0, (13)

for all distinct x, z in the considered domain. Assumption 5

is slightly stronger than (13) to derive exponential stability

of the Nash equilibrium under the proposed seeking strategy.

Theorem 2: Suppose that Assumptions 1, 2 and 5 are

satisfied and the players update their actions according to

(3)-(4). Then, for each positive constant ∆, there is a

positive constant δ∗(∆) such that for each δ ∈ (0, δ∗(∆)),
(x,y) converges exponentially to (x∗,1N ⊗ x∗) for every

||[(x(0)− x∗)T , (y(0)− 1N ⊗ x∗)T ]T || ≤ ∆.

Proof: See Section VI-C for the proof.

Corollary 1: Suppose that Assumptions 1, 2 and 5 are

satisfied, the players update their actions according to (3)-

(4) and the functions
∂fi(x)
∂xi

, ∀i ∈ N are globally Lipschitz.

Then, there is a positive constant δ∗ such that for each δ ∈
(0, δ∗), (x∗,1N ⊗ x∗) is globally exponentially stable.

Proof: See Section VI-D for the proof.

Remark 5: A typical example that satisfies Assumption

5 is a potential game1 in which the potential function is

strongly concave2.

B. Quadratic Games

In this section, quadratic games are considered. Suppose

that player i’s payoff function is

fi(x) =
1

2

N
∑

j=1

N
∑

k=1

hi
jkxjxk +

N
∑

j=1

vijxj + gi, (16)

where hi
jk, v

i
j , gi are the coefficients of the quadratic terms,

monomial terms and constant terms, respectively. Further-

more, hi
ii < 0, hi

jk = hi
kj , ∀i, j, k ∈ N .

1Given that the players’ payoff functions are continuously differentiable,
the game is a potential game if there exists a function F (x) such that

∂fi(xi,x−i)

∂xi

=
∂F (xi,x−i)

∂xi

, (14)

∀i ∈ N . Furthermore, the function F is the potential function [36].
2 A differentiable function f is strongly convex if the following inequality

holds for all points x, y in its domain:

(x− y)T
(

∂f(x)

∂x
−

∂f(y)

∂y

)

≥ m||x− y||2, (15)

for some parameter m > 0. A function f is strongly concave if −f is
strongly convex [40].

Assumption 6: The matrix

H =











h1
11 h1

12 · · · h1
1N

h2
21 h2

22 · · · h2
2N

...
. . .

hN
N1 hN

N2 · · · hN
NN











,

is strictly diagonally dominant, i.e., |hi
ii| >

∑N

j=1,j 6=i |hi
ij |, ∀i ∈ N .

Remark 6: By Assumption 6, the Nash equilibrium of the

quadratic games exists and is unique. Moreover, the unique

Nash equilibrium is given by x∗ = −H−1v, where v =
[v11 , v

2
2 , · · · , vNN ]T [1], [41].

Corollary 2: Suppose that Assumptions 1, 2 and 6 hold,

and the agents update their actions according to (3)-(4). Then,

there exists a positive constant δ∗ such that for each δ ∈
(0, δ∗), (x∗,1N ⊗ x∗) is globally exponentially stable.

Proof: See Section VI-E for the proof. �

Corollary 3: Suppose that Assumptions 1-2 are satisfied,

matrix H is Hurwitz and the agents update their actions

according to (3)-(4). Then, there exists a positive constant

δ∗ such that for each δ ∈ (0, δ∗), the Nash equilibrium is

globally exponentially stable given that the quadratic game

is a potential game.

Proof: See Section VI-F for the proof. �

Remark 7: The presented results still hold if the estima-

tion dynamics in (4) is changed to

ẏij = −mij

(

N
∑

k=1

aik(yij − ykj) + aij(yij − xj)

)

, (17)

i, j ∈ N , where mij is a fixed positive constant as the matrix

−m(L⊗ IN×N +B0), where m = diag{mij}, i, j ∈ N , is

Hurwitz.

Remark 8: The proposed seeking strategy can be lever-

aged to seek for the Nash equilibrium for games where each

player’s payoff function depends on its own action and all

the other players’ actions. However, for aggregative games

in which each player’s payoff function depends on its own

action and an aggregate of the all the player’s actions, it

is not necessary for each player to estimate all the players’

actions. Instead, a dynamic average consensus protocol can

be utilized to estimate the aggregate of the players’ actions

to reduce the computation cost (see e.g., [34]). Moreover,

for games where the players’ payoff functions depend on

a subset of the players’ actions, an interference graph can

be introduced to describe the interactions among the players

(see e.g., [44]). To further reduce the computation cost, the

adaptation of the proposed seeking strategy for games on

interference graph will be considered in future work.

IV. NUMERICAL EXAMPLES

In this section, three games with a network of 5 players

are considered. The communication graph for the players in

the following examples is depicted in Fig. 1.
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3

4

5

Fig. 1: Communication graph for the players in the numerical

examples.

A. Non-quadratic games

Example 1: The players’ payoff functions are f1(x) =
−x3

1 + 3x1x2, f2(x) = −(−2x1 + 4x2 + 1
2x4 + x5)

2 +
48x2, f3(x) = −(x1 + 4x3 − x4 − x5)

2, f4(x) = −(2x1 +
4x3 +8x4 − x5)

2, f5(x) = −(x1 +4x3 +8x4 +17x5)
2, for

players 1-5, respectively.

Letting
∂fi(x)
∂xi

= 0, ∀i ∈ {1, 2, · · · , 5} gives x =

[−1, 1, 1972 ,
1
9 ,− 1

18 ]
T or x = [ 32 ,

9
4 ,− 19

48 ,− 1
6 ,

1
12 ]

T . How-

ever, as
∂2f1(x)

∂x2
1

> 0 for x1 < 0, the point x =

[−1, 1, 1972 ,
1
9 ,− 1

18 ]
T does not satisfy Assumptions 3-4. From

the other aspect, the matrix B is strictly diagonally dominant

at x = [ 32 ,
9
4 ,− 19

48 ,− 1
6 ,

1
12 ]

T , with its diagonal elements

being negative. Hence, x = [ 32 ,
9
4 ,− 19

48 ,− 1
6 ,

1
12 ]

T satisfies

the conditions in Theorem 1 by which there is a δ∗ > 0
such that for each δ ∈ (0, δ∗), the Nash equilibrium is

exponentially stable.

The players’ actions generated by the seeking strategy

in (3)-(4)3are plotted in Fig. 2. The initial values for the

variables are set as x(0) = [1 2 0 0 0]T and yi(0) =
[1 2 0 0 0]T , ∀i ∈ {1, 2, · · · , 5}, which are close to x∗ as

only local convergence to the Nash equilibrium is ensured

by Theorem 1. From the simulation result, it can be seen

that the players’ actions generated by the proposed seeking

strategy converge to the Nash equilibrium point under the

given initial conditions, which verifies Theorem 1.

Example 2: The payoff function for player i is

fi(x) = mif(x) + di, i ∈ {1, 2, · · · , 5}, (18)

where m1 = 1,m2 = 5,m3 = 2,m4 = 3,m5 = 2, di =
0, ∀i ∈ {1, 2, · · · , 5} in the simulation and

f(x) =−
(

1

12
x4
1 + 5x2

1 + 2x1x2 + 5x2
2 + x2x3

+x2x5 +
5

2
x2
3 + x3x4 + 5x2

4 + 2x4x5 + 3x2
5

)

.

The function f(x) is at its maximum when x = 05, which

is also the Nash equilibrium of the game. Note that in this

game, all the players’ payoffs are maximized if f(x) is

maximized. Hence, any deviation from the Nash equilibrium

reduces all the players’ payoffs, indicating that adopting the

proposed seeking strategy to seek for the Nash equilibrium

would benefit all the players.

3Note that in the simulations, the distributed control gain discussed in
Remark 7 is included in the seeking strategy.
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Time (Seconds)
0 2 4 6 8 10

T
he

 p
la

ye
rs

' a
ct

io
ns

-15

-10

-5

0

5

10

15

20

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

x
5
(t)

0

Fig. 3: The plot of xi(t), i ∈ {1, 2, 3, 4, 5} produced by

(3)-(4) in Example 2.

By direct calculation, it can be verified that in this game,

Assumption 5 is satisfied. Hence, for any bounded initial

condition, there is a δ∗ > 0 such that for each δ ∈ (0, δ∗),
the players’ actions generated by the proposed method con-

verge to the unique Nash equilibrium by Theorem 2. In

the simulation, the initial values of the variables are set as

xi(0) = 20, yij(0) = 20, ∀i, j ∈ {1, 2, · · · , 5}, which are

far away from the equilibrium point. The players’ actions

generated by the proposed method in (3)-(4) are shown in

Fig. 3. It can be seen from the simulation result that the

players’ actions generated by the proposed method in (3)-(4)

converge to the Nash equilibrium though the initial values of

the variables are far away from the equilibrium point, which

verifies Theorem 2.

B. A quadratic game

Example 3: The payoff function of player i is

fi(x) = −ρi(xi − xd
i )

2 − (p0

N
∑

i=1

xi + q0)xi,
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Fig. 4: The plot of xi(t), i ∈ {1, 2, 3, 4, 5} produced by

(3)-(4) in Example 3.

for i ∈ {1, 2, · · · , 5}, where ρi > 0, xd
i for i ∈ {1, 2, · · · , 5},

p0 > 0 and q0 are constants. The given example can be

utilized to model the energy consumption game for heating

ventilation and air conditioning systems (see, e.g., [34] and

the references therein).

In the simulation, the parameters are set as ρi = 1, for i ∈
{1, 2, · · · , 5}, p0 = 0.1, q0 = 10 and xd

i for i ∈ {1, 2, · · · , 5}
are set as 10, 15, 20, 25, 30, respectively. By direct calcula-

tion, it can be derived that the unique Nash equilibrium is

x∗ = [2.0147, 6.7766, 11.5385, 16.3004, 21.0623]T. For this

example, H defined in Assumption 6 is strictly diagonally

dominant with all the diagonal elements being negative.

Hence, the conditions in Corollary 2 are satisfied by which,

it can be concluded that there is a δ∗ > 0 such that for

each δ ∈ (0, δ∗), the equilibrium is globally exponentially

stable under the given strategy. In the simulation, the initial

conditions of all the variables in (3)-(4) are set as −10. The

players’ actions generated by the proposed method in (3)-(4)

are plotted in Fig. 4. From the simulation result, it can be

seen that though the initial conditions are far away from the

equilibrium, the players’ actions still converge to the Nash

equilibrium, which verifies Corollary 2.

V. CONCLUSION

Distributed Nash equilibrium seeking by neighboring com-

munication for non-cooperative games among a network of

players is studied in this paper. The players are supposed to

be equipped with an undirected and connected communica-

tion graph. Based on a leader-following consensus protocol

and the gradient play, a Nash equilibrium seeking algorithm

is designed. For non-cooperative games, local convergence

to the Nash equilibrium is firstly provided under mild condi-

tions. Then, non-local convergence results are derived for the

non-quadratic games under stronger conditions. For quadratic

games, it is proven that under the proposed seeking strategy,

the Nash equilibrium is globally exponentially stable under

certain conditions.
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VI. APPENDIX

A. Basics on Graph Theory

For a graph defined as G = (V , E), where E is the edge

set satisfying E ⊆ V × V with V = {1, 2, · · · , N} being

the set of nodes in the network, it is undirected if for every

(i, j) ∈ E , (j, i) ∈ E . Furthermore, j is a neighbor of agent

i if (j, i) ∈ E . An undirected graph is connected if there

is a path between any pair of distinct vertices. The element

on the ith row and jth column of the adjacency matrix A
is defined as aij = 1 if node j is connected with node i,

else, aij = 0. Moreover, we suppose that aii = 0 in this

paper. The Laplacian matrix for the graph L is defined as

L = D−A, where D is a diagonal matrix whose ith diagonal

entry is equal to the out degree of node i, represented by
N
∑

j=1

aij [26].

B. Proof of Theorem 1

To facilitate the subsequent analysis, define an auxiliary

system as

ẋi = k̄i
∂fi(x)

∂xi

, i ∈ N . (19)

Linearizing (19) at x∗ gives

dx

dt
= k̄B(x− x∗), (20)

where k̄ = diag{k̄i}, i ∈ N . Since B is strictly diagonally

dominant with all the diagonal elements being negative,

k̄B is Hurwitz by the Gershgorin Circle Theorem [39].

Hence, the equilibrium point is exponentially stable under

(19). Therefore, there is a function W1 : D0 → R, where

D0 = {x ∈ RN |||x− x∗|| ≤ r0} for some positive constant

r0 such that

c1||x− x∗||2 ≤ W1(x) ≤ c2||x− x∗||2
(

∂W1(x)

∂x

)T (

k̄
∂G(x)

∂x

)

≤ −c3||x− x∗||2
∣

∣

∣

∣

∣

∣

∣

∣

∂W1(x)

∂x

∣

∣

∣

∣

∣

∣

∣

∣

≤ c4||x− x∗||,

(21)

for some positive constants c1, c2, c3, c4 by the Lyapunov

Converse Theorem [38].

Define

ȳ = y − yq, (22)

where yq = [yq11, y
q
12, · · · , yq1N , y

q
21, · · · , yq2N , · · · , yqNN ]T

and y
q
ij = xj , ∀i, j ∈ N . Then,

˙̄y = ẏ − ẏq

= −((L ⊗ IN×N +B0)(ȳ + yq) + h1(x)) − ẏq

= −(L⊗ IN×N +B0)ȳ − ẏq.

(23)

Define a Lyapunov candidate function as

V = cW1(x) + (1 − c)ȳTP1ȳ, (24)

where c ∈ (0, 1) is a constant and P1 is a symmetric positive

definite matrix such that

P1(L⊗ IN×N +B0) + (L⊗ IN×N +B0)
TP1 = Q1, (25)

where Q1 is a symmetric positive definite matrix as −(L⊗
IN×N +B0) is Hurwitz by noticing that the communication

graph is undirected and connected.

Define z = [(x−x∗)T , ȳT ]T . Then, there exists a domain

D1 = {z ∈ RN+N2 |||z|| ≤ r1}, for some positive constant

r1 such that the time derivative of the Lyapunov candidate



function satisfies

V̇ =cδ

(

∂W1(x)

∂x

)T (

k̄
∂G(x)

∂x

)

+ cδ

(

∂W1(x)

∂x

)T

k̄

(

∂G

∂x
(y) − ∂G

∂x
(x)

)

+ (1− c)(−(L ⊗ IN×N +B0)ȳ − ẏq)TP1ȳ

+ (1− c)ȳTP1(−(L⊗ IN×N +B0)ȳ − ẏq)

≤− cδc3||x− x∗||2 − (1− c)ȳTQ1ȳ

− 2(1− c)ȳTP1ẏ
q + δl1||x− x∗||||ȳ||,

(26)

for some positive constant l1 by noticing that the ∂fi
∂xi

(x) for

i ∈ {1, 2, · · · , N} are Lipschitz. Let λmin(Q1) denote the

minimal eigenvalue of Q1. Then,

V̇ ≤− δcc3||x− x∗||2 − (1− c)λmin(Q1)||ȳ||2

+ δl1||x− x∗||||ȳ|| − 2(1− c)ȳTP1

(

∂(yq)T

∂x

)T
dx

dt

≤− δcc3||x− x∗||2 − (1− c)λmin(Q1)||ȳ||2

+ δl2||x− x∗||||ȳ||+ δl3||ȳ||2,
(27)

for some positive constants l2 and l3 by noticing that
∣

∣

∣

∣

dxi

dt

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣
δk̄i

∂fi
∂xi

(yi)
∣

∣

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣
δk̄i

∂fi
∂xi

(yi)− δk̄i
∂fi
∂xi

(x∗)
∣

∣

∣

∣

∣

∣
≤

δl̄i1||ȳ||+ δl̄i2||x−x∗||, for some positive constants l̄i1 and

l̄i2, for i ∈ N .

Define B1 =

[

(1−c)λmin(Q1)
δ

− l3 − l2
2

− l2
2 cc3

]

. Then, if

0 < δ <
4(1−c)cc3λmin(Q1)

l22+4cc3l3
, matrix B1 is symmetric positive

definite. If this is the case, V̇ ≤ −δλmin(B1)||z||2, where

λmin(B1) is the minimal eigenvalue of B1 and λmin(B1) >
0.

Noticing that there exist positive constants c̄1 and c̄2 such

that c̄1||z||2 ≤ V ≤ c̄2||z||2, it can be derived that

||z(t)|| ≤
√

c̄2

c̄1
e
−

δλmin(B1)

2c̄2
t||z(0)||, (28)

by utilizing the Comparison Lemma [38].

Furthermore, define Er(t) = [(x − x∗)T , (y −
yq(x∗))T ]T . Then, ||Er(t)|| ≤ ||z(t)|| + ||yq(x) −
yq(x∗)|| ≤ K1||z(t)|| ≤ K1

√

c̄2
c̄1
e
−

δλmin(B1)

2c̄2
t||z(0)|| ≤

K1

√

c̄2
c̄1
e
−

δλmin(B1)

2c̄2
t
(||Er(0)|| + ||yq(x∗) − yq(x(0))||) ≤

K2

√

c̄2
c̄1
e
−

δλmin(B1)

2c̄2
t||Er(0)||, for some positive constants

K1 and K2. Hence, the conclusion is derived.

C. Proof of Theorem 2

Define the Lyapunov candidate function as

V =
c

2
(x− x∗)T k̄−1(x− x∗) + (1− c)ȳTP1ȳ, (29)

where c ∈ (0, 1) is a constant, k̄ = diag{k̄i}, i ∈ N , P1

is defined in (25) and ȳ is defined in (22). Then, there

exist positive constants c̄1 and c̄2 such that c̄1||z||2 ≤ V ≤
c̄2||z||2, where z = [(x − x∗)T , ȳT ]T . Furthermore, for any

(x,y) that belongs to a compact set, the time derivative of

the Lyapunov candidate function satisfies

V̇ =δc(x− x∗)T
∂G

∂x
(y)

+ (1− c) ˙̄yTP1ȳ + (1− c)ȳTP1 ˙̄y

=δc(x− x∗)T
∂G

∂x
(x) + δc(x− x∗)T

(

∂G

∂x
(y) − ∂G

∂x
(x)

)

+ (1− c)(−(L⊗ IN×N +B0)ȳ − ẏq)TP1ȳ

+ (1− c)ȳTP1(−(L⊗ IN×N +B0)ȳ − ẏq)

≤− δcm||x− x∗||2 + δcl1||x− x∗||||ȳ||
− (1− c)ȳTQ1ȳ − 2(1− c)ȳTP1ẏ

q,
(30)

for some positive constant l1.

Hence, for any (x,y) that belongs to the compact set,

V̇ ≤− δcm||x− x∗||2 + δcl1||x− x∗||||ȳ||

− (1− c)ȳTQ1ȳ − 2(1− c)ȳTP1

(

∂(yq)T

∂x

)T
dx

dt

≤− δcm||x− x∗||2 − (1− c)λmin(Q1)||ȳ||2

+ δcl2||x− x∗||||ȳ||+ δl3||ȳ||2,
(31)

for some positive constants l2 and l3, in which λmin(Q1)
is the minimal eigenvalue of Q1. The second inequality in

(31) is derived by using the fact that for (x,y) that belongs

to the compact set,

∣

∣

∣

∣

∣

∣

∂fi
∂xi

(yi)
∣

∣

∣

∣

∣

∣
=
∣

∣

∣

∣

∣

∣

∂fi
∂xi

(yi)− ∂fi
∂xi

(x∗)
∣

∣

∣

∣

∣

∣
≤

∣

∣

∣

∣

∣

∣

∂fi
∂xi

(yi)− ∂fi
∂xi

(x)
∣

∣

∣

∣

∣

∣
+
∣

∣

∣

∣

∣

∣

∂fi
∂xi

(x)− ∂fi
∂xi

(x∗)
∣

∣

∣

∣

∣

∣
≤ l̄i1||ȳ|| +

l̄i2||x− x∗||, for some positive constants l̄i1 and l̄i2, for all

i ∈ N .

The rest of the proof follows the proof of Theorem 1 and

is omitted here.

D. Proof of Corollary 1

The proof follows the proof of Theorem 2 by further

noticing that (30) and (31) hold for any z ∈ RN+N2

given

that the functions
∂fi(x)
∂xi

, ∀i ∈ N , are globally Lipschitz.

E. Proof of Corollary 2

If Assumption 6 is satisfied, all the conditions in Theorem

1 are satisfied for the quadratic games. In addition, the Nash

equilibrium is unique for the quadratic game. By the result

in Theorem 1, there exists a δ∗ > 0 such that for each δ ∈
(0, δ∗), the equilibrium is exponentially stable. Moreover,

the system in (3)-(4) is a linear system, by which it can be

derived that the equilibrium is globally exponentially stable.

F. Proof of Corollary 3

Note that for potential games
∂fi(x)
∂xi

= ∂F (x)
∂xi

, ∀i ∈ N ,

which indicates that
∂2fi(x)
∂xi∂xj

= ∂2F (x)
∂xi∂xj

, ∀i, j ∈ N . Hence,

∂2fi(x)
∂xi∂xj

=
∂2fj(x)
∂xi∂xj

, ∀i, j ∈ N . Therefore, H is a symmetric

negative definite matrix.

Before we facilitate the subsequent analysis, we firstly

show that k̄H is Hurwitz. Define an auxiliary system as

Φ̇ = k̄HΦ, (32)



where k̄ = diag{k̄i}, i ∈ N . Let Φ =
√
k̄Ψ, where

√
k̄ is a

diagonal matrix whose ith diagonal element is
√

k̄i. Then,

Ψ̇ =
√

k̄H
√

k̄Ψ. (33)

Since ΨT
√
k̄H

√
k̄Ψ = ΦTHΦ < 0 for every ||Φ|| 6= 0,

hence for every ||Ψ|| 6= 0, it can be derived that,
√
k̄H

√
k̄

is Hurwitz, which indicates that the equilibrium point of (33)

is exponentially stable. Hence, the equilibrium point of (32)

is exponentially stable, by which it can be derived that k̄H

is Hurwitz.

Noticing that k̄H is Hurwitz, the Nash equilibrium is

exponentially stable under the gradient play in (19). The

rest of the proof follows the proof of Theorem 1 by further

noticing that the proof of Theorem 1 holds for z ∈ RN+N2

for the quadratic potential games.
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