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Feedback stability of negative imaginary systems
Alexander Lanzon, Senior Member, IEEE and Hsueh-Ju Chen

Abstract—This paper extends the robust feedback stability
theorem of negative imaginary systems by removing restrictive
assumptions on the instantaneous gains of the systems that
were imposed in the earlier literature, and it further generalises
this robust analysis result into the case that allows negative
imaginary systems to have poles at the origin. In so doing, we
extend the class of negative imaginary systems for which this
robust stability theorem is applicable. We also show that this
new generalised necessary and sufficient result specialises to the
earlier theorems under the same assumptions. We additionally
prove that the previously known dc gain condition is not only
necessary and sufficient for robust feedback stability under the
earlier specified instantaneous gain assumptions, but is also
necessary and sufficient for robust feedback stability under new,
different and equally simple assumptions. The general robust
feedback stability theorem for negative imaginary systems with
free body dynamics (i.e. poles at the origin) derived in this paper
also specialises to the case that is only applicable for the negative
imaginary system without poles at the origin. Since the results for
negative imaginary systems with free body dynamics developed
in this paper depend on the existence of a matrix Ψ with certain
properties, we also propose a systematic construction of this
matrix Ψ and show that construction of one such Ψ is sufficient
for determining the feedback stability of the closed-loop system.
Finally, examples are used to demonstrate the applicability of the
results.

Index Terms—Negative imaginary systems, robust control,
feedback stability.

I. INTRODUCTION

NEGATIVE imaginary systems theory was introduced in
[1]. In a single-input single-output (SISO) frequency

domain setting, the negative imaginary notion broadly means
that the positive frequency branch of the Nyquist plot has
negative imaginary part. In a SISO time domain setting, the
negative imaginary notion broadly means that the output of
a system follows but lags behind any sinusoidal input to
the system by not more than 180◦. In contrast to positive
realness, the definitions of negative imaginary systems impose
weaker restrictions on the relative degree of the transfer
function and do not exclude all unstable zeros [2]. The original
development of negative imaginary theory was motivated by
inertial systems, all of which can be described by Newton’s
second law of motion, whose actuation is provided by a
force or torque input and whose sensing is obtained through
a colocated position or angle output measurement [1, 3].
Negative imaginary systems theory was found to be suitable
for a wide variety of applications including nano-positioning
control due to piezoelectric transducers and capacitive sensors
(e.g. [4–6]) and in multi-agent networked systems (e.g. [7–9]).
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Fig. 1. Positive feedback interconnection.

The notion of negative imaginary systems also specialises to
the subclass of lossless systems [10].
In view of the prevalence of negative imaginary systems in
different domains, robust stability of the positive feedback
interconnection of a negative imaginary system M(s) and
a strictly negative imaginary systems N(s) was investigated
in [1]. Under the assumptions that the instantaneous gain
of the strictly negative imaginary system N(s) is positive
semidefinite, i.e. N(∞) ≥ 0, and the open loop trans-
fer function is strictly proper, i.e. M(∞)N(∞) = 0, [1]
showed that the feedback interconnection in Fig. 1 denoted
by [M(s), N(s)] is internally stable if and only if the dc
loop gain condition λ̄[M(0)N(0)] < 1 is satisfied, where λ̄[·]
denotes the maximum eigenvalue for a matrix with only real
eigenvalues. Note that λ̄[·] < 1 is a one-sided restriction, as
λ̄[·] can be either positive or negative. This result was also
found to hold true in [11] when the definition of a negative
imaginary system was extended to allow for poles on the
imaginary axis but not at the origin. Subsequent modifications
in [12] also allow for poles at the origin (under some restrictive
assumptions) but this relaxation makes the result significantly
more complicated and hence less transparent. These stability
conditions are robust in the sense that the internal stability
conclusion is invariant to negative imaginary perturbations
provided that the aforementioned dc and instantaneous gain
conditions are preserved (see Theorem 6 in [2] for negative
imaginary perturbations that preserve the class).

Despite many developments in negative imaginary systems
theory including for example extensions or connections to
infinite dimensional systems [13], Hamiltonian systems [14],
descriptor systems [15], non-rational systems [2, 16], discrete-
time systems [17], finite frequency negative imaginary sys-
tems [18], mixtures of small-gain and negative imaginary
properties [19] and negative imaginary control synthesis [20–
22], the aforementioned robust feedback stability theorem
has remained unchanged since [1] and hence underpins the
motivation and application of all this work. When the as-
sumptions of the feedback stability theorem in [1] and [11] do
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not hold, such as N(∞) may be sign-indefinite, the dc loop
gain λ̄[M(0)N(0)] < 1 may not be an appropriate necessary
and sufficient test for internal stability of the feedback inter-
connection. Very recently [23], has attempted to relax these
assumptions for negative imaginary systems without poles at
the origin by invoking Integral Quadratic Constraint (IQC)
theory. A pair of complementary IQCs were introduced at dc
and infinite frequency to attempt to relax the aforementioned
assumptions. However, the methods of [23] only yield a
conservative sufficient condition as will be illustrated in the
numerical example section. Unlike the sufficient conditions
of [23], this paper directly derives necessary and sufficient
conditions by building on the work of [1, 11] and we handle
the complete class of negative imaginary systems with or
without poles at the origin and on the imaginary axis. In
so doing, we demonstrate that the mechanism to remove
these assumptions is not IQC theory. As indicated above, the
conditions in [12] are derived for negative imaginary systems
that allow for poles on the imaginary axis and at the origin.
However, the conditions obtained in [12] are highly technical,
require computation of several matrix factorisations which
make the results less intuitive than earlier work and impose
a number of additional assumptions for the results to hold
amongst which is the restriction that the negative imaginary
system has to be strictly proper. This paper also generalises
the work in [12] by relaxing the aforementioned assumptions
and provides simple necessary and sufficient conditions that
invoke directly the steady-state and instantaneous gains of the
systems, thereby avoiding cumbersome matrix factorisations
and hence making the results significantly more intuitive.
The main contributions of this work are thus: (i) removal
of the restrictive assumptions in the robust analysis theorem
that underpins all of negative imaginary systems theory; (ii)
derivation of new necessary and sufficient conditions that
reduce to the earlier necessary and sufficient conditions under
the same assumptions imposed in literature; (iii) derivation
of a new set of simple and easy-to-check assumptions under
which the intuitive dc gain condition is both necessary and
sufficient; (iv) specialisation of the results in a SISO setting
which illustrates a number of tests not easily explained in
a multiple-input multiple-output (MIMO) setting; (v) demon-
stration that in certain scenarios a mixture of dc and infinite
frequency gains are essential to characterise the necessary
and sufficient conditions for robust feedback stability (this
is counter intuitive); (vi) derivation of generalised necessary
and sufficient robust feedback stability conditions that can be
applied to negative imaginary systems having poles at the
origin; (vii) demonstration that the matrix Ψ, satisfying certain
properties, used in the two main stability theorems always
exists and we provide a systematic construction for this matrix
Ψ; (viii) demonstration that the conditions which involve the
matrix Ψ are either satisfied for the entire set of matrices Ψ
that fulfil certain properties or violated for the entire same
set of matrices Ψ. This means one only needs to check the
conditions on one Ψ to determine the conclusion (i.e. there
is no need for searching across the set of possible matrices
Ψ); (ix) unification of all robust feedback stability results that
appeared in all earlier literature to date into one general theory;

and (x) illustration via two numerical examples of either
the inapplicability or conservativeness of earlier results and
correspondingly the usefulness of the derived general theory.

Notation: RH∞ denotes the set of real, rational, stable
transfer function matrices. Rm×n and Cm×n denote real
and complex matrices that have n columns and m rows
respectively. λi(A) denotes the ith eigenvalue of a square
complex matrix A. λ̄(A) and λ(A) denote the largest and
smallest eigenvalue of a square complex matrix A that has only
real eigenvalues. A∗ and AT denote the complex conjugate
transpose and transpose of a complex matrix A respectively.
A−∗ and G∼(s) are shorthand for (A−1)∗ and G(−s)T
respectively. R(a) denotes the real part of a complex number
a. Let ker(A) denote the kernel of matrix A. A square transfer
function matrix G(s) is said to have full normal rank if
∃s ∈ C : det(G(s)) 6= 0.

II. PRELIMINARY LEMMAS

First, let us recall the definitions of negative imaginary
systems in Definitions 1 and 2.

Definition 1 ([12]): Let R : C −→ Cm×m be a real, rational,
proper transfer function. Then R(s) is said to be Negative
Imaginary (NI) if

1) R(s) has no poles in R(s) > 0;
2) j[R(jω) − R(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the

values of ω where jω is a pole of R(s);
3) if jω0 with ω0 > 0 is a pole of R(s), then it is

at most a simple pole and the residue matrix K0 =
lim
s→jω0

(s− jω0)jR(s) is Hermitian and positive semidef-

inite;
4) if s = 0 is a pole of R(s), then lim

s→0
skR(s) = 0 for all

integer k ≥ 3 and lim
s→0

s2R(s) is Hermitian and positive
semidefinite.

Definition 2 ([1]): Let R : C −→ Cm×m be a real, rational,
proper transfer function. Then R(s) is said to be Strictly
Negative Imaginary (SNI) if

1) R(s) has no poles in R(s) ≥ 0;
2) j[R(jω)−R(jω)∗] > 0 for all ω ∈ (0,∞).
For SISO systems, the negative imaginary property ensures

that the positive branch of the Nyquist plot lies below the
real axis. The definitions of negative imaginary systems in
[1, 11, 12] do not require the negative imaginary system to be
symmetric, i.e. G(s) = G(s)T . It is stated in [16] that there
are no examples in the literature that are negative imaginary
but not symmetric. We here give one such non-symmetric
example.

Example 1: Let M(s) =

«

−s
s+5

−5
s+5

−(4s+5)
s2+6s+5

−s2+s+15
s2+6s+5

ff

and
«

A B

C D

ff

be a minimal realization of M(s) where A =

„

0 1

−5 −6



, B =

„

−1 −2

6 −3



, C =

„

1 1

−2 −1



, and D =
„

−1 0

0 −1



. We demonstrate that M(s) is a strictly negative
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imaginary system despite it not being symmetric. To do this,
we use the negative imaginary lemma in [1, 11] and also
check for transmission zeros on the imaginary axis. M(s) is
negative imaginary because there exists a real matrix Y =
„

3 −3

−3 4



> 0 such that AY + Y A∗ =

„

−6 7

7 −18



≤ 0

and B = −AY C∗. Furthermore, det(M(s) − M∼(s)) =
59s2

s4−26s2+25 6= 0 ∀s ∈ {s = jω : ω ∈ (0,∞)}. Hence, M(s)
is negative imaginary and there is no transmission zeros of
M(s) −M∼(s) when s = jω ∀ω ∈ (0,∞) which implies
that M(s) must be strictly negative imaginary.

We now give a few technical lemmas that will be used
to prove the main results. We start by giving alternative
representations for λi[(I −AB)−1(CD − I)].

Lemma 3: Suppose that A, B, C and D are real symmetric
matrices and det(I −AB) 6= 0. Then,

λi[(I −AB)−1(CD − I)] = λi[(CD − I)(I −AB)−1]

= λi[(I −BA)−1(DC − I)]

= λi[(DC − I)(I −BA)−1].

Proof: The first equality is via a similarity transform with
(I −AB). The second equality is via λi(X) = λi(X

T ). The
third equality is via a similarity transform with (I −BA).

Next we show that certain matrix structures have real
eigenvalues.

Lemma 4: Suppose that A, B and C are real symmetric
matrices satisfying C ≥ B and det(I −AB) 6= 0. Then,

λi[(I −AB)−1(AC − I)] ∈ R ∀i.

Proof: Trivial via rearrangement into a symmetric matrix.

λi[(I −AB)−1(AC − I)]

= λi[(I −AB)−1A(C −B)]− 1

= λi[(C −B)1/2(I −AB)−1A(C −B)1/2]− 1.

The next lemma manipulates scalar inequalities. This will
be useful in deriving the main results of Section IV.

Lemma 5: Given four scalars a, b, α, and β with α ≥ 0 and
β ≥ 0. If ab < 1 and (a+ α)(b+ β) < 1, then (a+ α)b < 1.

Proof: If b ≤ 0, then (a+α)b = ab+αb ≤ ab < 1. If on
the other hand b > 0, then b + β > 0 and hence (a + α)b =
(a+ α)(b+ β) b

(b+β) < 1.
We now show that s = jω0 with ω0 ∈ (0,∞) is not a

transmission zero of I−M(s)N(s) when M(s) and N(s) are
negative imaginary systems and s = jω0 is a pole of M(s).

Lemma 6: Let M(s) be a negative imaginary system and
N(s) be a strictly negative imaginary system. Assume s =
jω0 with ω0 ∈ (0,∞) is a simple pole of M(s). Then I −
M(s)N(s) has no transmission zero at s = jω0.

Proof: Since s = jω0 with ω0 ∈ (0,∞) is a simple pole
of M(s), M(s) can be factored as M(s) = M1(s) + −jA

s−jω0

where A = A∗ ≥ 0 and M1(s) is analytic in the neighborhood
of s = jω0.
Let 0 6= x ∈ ker(A) and choose a sufficiently small δ > 0.
Since M(s) is a negative imaginary system,

j[M(jω)−M(jω)∗] ≥ 0 ∀ω ∈ {0 < |ω − ω0|< δ}

⇔ [jM(jω)] + [jM(jω)]∗ ≥ 0 ∀ω ∈ {0 < |ω − ω0|< δ}
⇒ x∗[[jM(jω)] + [jM(jω)]∗]x ≥ 0 ∀ω ∈ {0 < |ω − ω0|

< δ}
⇔ x∗[[jM1(jω)] + [jM1(jω)]∗]x ≥ 0 ∀ω ∈ {0 < |ω−ω0|

< δ}
⇒ x∗[[jM1(jω0)] + [jM1(jω0)]∗]x ≥ 0 (by continuity of

real rational functions and because M1(s) is analytic near
s = jω0).

Also, since N(s) is a strictly negative imaginary system,

j[N(jω)−N(jω)∗] > 0 ∀ω ∈ (0,∞)
⇔ [jN(jω)] + [jN(jω)]∗ > 0 ∀ω ∈ (0,∞)
⇔ [jN(jω)]−1 + [jN(jω)]−∗ > 0 ∀ω ∈ (0,∞)

(since N(jω) is nonsingular ∀ω ∈ (0,∞) via [1])
⇒ [jN(jω0)]−1 + [jN(jω0)]−∗ > 0
⇒ x∗[[jN(jω0)]−1 + [jN(jω0)]−∗]x > 0.

From the above two conditions, we now have

(1)x∗[[jN(jω0)]−1 + [jM1(jω0)]]x

+ x∗[[jN(jω0)]−1 + [jM1(jω0)]]∗x > 0.

However, we need to show that I −M(s)N(s) has no trans-
mission zero at s = jω0, which is equivalent to [jN(s)]−1 +
[jM(s)] has no transmission zero at s = jω0.
We show this via contradiction. Suppose s = jω0 with ω0 > 0
is a transmission zero of [jN(s)]−1+[jM(s)]. Then ∃y ∈ Cm
with y 6= 0 such that [[jN(s)]−1 + [jM(s)]]y = 0 at s = jω0.
Expanding the above equation, we have that the given y
must satisfy [jN(s)]−1y + [jM1(s)]y = −Ay

s−jω0
. But in the

limit as s → jω0, the left-hand side is finite and the right-
hand side is infinite when y /∈ ker(A). Hence y ∈ ker(A).
Then [[jN(s)]−1 + [jM(s)]]y = 0 at s = jω0 implies
[jN(jω0)]−1y + [jM1(jω0)]y = 0 which in turn implies that
(1) cannot be fulfilled for the choice x = y as x was an
arbitrary non-zero vector in ker(A). Then, by contradiction,
I −M(s)N(s) has no transmission zero at s = jω0.

The following lemma provides some simple manipulations
of negative imaginary systems.

Lemma 7: Let M(s) be a square, real, rational and proper
transfer function matrix. Then

1) M(s) is negative imaginary if and only if M(s)−M(∞)
is negative imaginary and M(∞) = M(∞)T ;

2) M(s) − M(∞) is negative imaginary if and only if
s[M(s)−M(∞)] is positive real.

Proof: 1) Trivial. 2) See [24, Lemma 2].
The next lemma extends [1, Lemma 2] to negative imag-

inary systems that can possibly have poles on the jω-axis
excluding the origin.

Lemma 8: Let M(s) be a negative imaginary system without
poles at the origin. Then M(0) = M(0)T , M(∞) = M(∞)T

and M(0) ≥M(∞).
Proof: The results are trivial when M(s) is static. When

M(s) is dynamic, let it have a minimal realisation

«

A B

C D

ff

.

Using [11, Lemma 7], we get D = DT and M(0)−M(∞) =
−CA−1B = CA−1AY C∗ = CY C∗ ≥ 0 . The results then
follow.
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III. MAIN RESULTS: PART 1– NO POLES AT THE ORIGIN

References [1, 11] derive a necessary and sufficient condi-
tion for internal stability of the positive feedback interconnec-
tion of a negative imaginary system without poles at the origin
and a strictly negative imaginary system as shown in Fig. 1
under two assumptions at infinite frequency. Here, we consider
the same feedback structure but remove these two assumptions
imposed in [1, 11], hence obtaining a generalized stability
condition. While the condition in [1, 11] for determining
internal stability of the closed-loop system requires a test only
on the dc loop gain, in our generalised setting, the internal
stability conditions in Theorems 9 and 14 depend on both
the frequencies 0 and ∞. Although the resulting stability
conditions involving a mixture of frequencies are surprising,
this is indeed correct and will be explained in detail in the
next section when the results will be specialised to the SISO
setting and given a Nyquist interpretation.
The matrix I−N(0)M(∞) is invertible in the third condition
of Theorem 9 because the second condition (in conjunction
with the first condition) in Theorem 9 guarantees its invertibil-
ity. Also, the matrices [I −M(∞)N(∞)]−1(M(∞)N(0)−I)
and [I−N(0)M(∞)]−1(N(0)M(0)− I) in the conditions of
Theorem 9 have only real eigenvalues via Lemmas 4 and 8.

Theorem 9: Let M(s) be a negative imaginary system
without poles at the origin and N(s) be a strictly negative
imaginary system. Then [M(s), N(s)] is internally stable if
and only if

I −M(∞)N(∞) is nonsingular,

λ̄[[I −M(∞)N(∞)]−1(M(∞)N(0)− I)] < 0, and

λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0.

Proof: This proof closely follows the proof of the cor-
responding result given in [1] with appropriate modifications
in pertinent statements to allow relaxation of the restrictive
assumptions at ∞ frequency.

Let N(s) =

«

Ā B̄

C̄ D̄

ff

be a minimal realisation. Then, by

the assumptions of this theorem and using [11, Lemma 8], Ā is
Hurwitz, D̄ = D̄∗, and there exists a real matrix Ȳ = Ȳ ∗ > 0
such that

ĀȲ + Ȳ Ā∗ ≤ 0 and B̄ = −ĀȲ C̄∗.

The proof is brief when M(s) is a static matrix K, i.e.
M(s) = K, as the first condition in the theorem state-
ment is equivalent to well-posedness, the third condition
is trivially fulfilled and the second condition is equivalent
to (I − KN(s))−1 ∈ RH∞ via the following argument:
(I − KN(s))−1 ∈ RH∞ is equivalent to Â = Ā +
B̄(I − KD̄)−1KC̄ = PQ is Hurwitz, where P = ĀȲ and
Q = Ȳ −1 − C̄∗(I −KD̄)−1KC̄. Then Â is Hurwitz if and
only if Q > 0 which is equivalent to the second condition.
This concludes the proof when M(s) is a static matrix.

Next, consider the case when M(s) has dynamics. Let

M(s) =

«

A B

C D

ff

be a minimal realization. Then, by the as-

sumptions of this theorem and using [11, Lemma 7], det(A) 6=

0, D = D∗, and there exists a real matrix Y = Y ∗ > 0 such
that

AY + Y A∗ ≤ 0 and B = −AY C∗.

Define U = I −DD̄, V = I − D̄D, Φ =

„

AY 0

0 ĀȲ



and

T =

„

Y −1 − C∗D̄U−1C −C∗V −1C̄
−C̄∗U−1C Ȳ −1 − C̄∗U−1DC̄



.

Then,
[M(s), N(s)] is internally stable
⇔ I −M(∞)N(∞) is nonsingular and

[I −M(s)N(s)]−1 =
»

—

–

ˆ

A BC̄

0 Ā

˙

+

ˆ

BD̄

B̄

˙

U−1
`

C DC̄
˘ BD̄U−1

B̄U−1

U−1C U−1DC̄ U−1

fi

ffi

fl

∈ RH∞
(This equivalence is via Theorem 5.7 in [25] due to the
facts that N(s) and M(s) have no poles in the open
right-half plane and at the origin, and N(s) having no
poles nor zeros on jR/{0}. Thus, M(s)N(s) has no
pole-zero cancellation in the closed right-half plane)

⇔ I −M(∞)N(∞) is nonsingular and
A = ΦT is Hurwitz (as the previous realization is
stabilisable and detectable)

⇔ I −M(∞)N(∞) is nonsingular and
T > 0 (necessity and sufficiency are proved as in
the proof of [1, Theorem 5] and the proof of [11,
Theorem 1] except that Lemma 6 must be used instead
of det(I−M(jω)N(jω)) 6= 0 ∀ω ∈ (0,∞) to obtain
that I−M(jω)N(jω) has no transmission zeros ∀ω ∈
(0,∞))

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
(Y −1 − C∗D̄U−1C) − C∗V −1C̄(Ȳ −1 − C̄∗U−1D
C̄)−1C̄∗U−1C > 0

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1−C∗D̄U−1C−C∗V −1(I−C̄Ȳ C̄∗U−1D)−1C̄Ȳ
C̄∗U−1C > 0

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1−C∗D̄U−1C−C∗V −1(I−(N(0)−D̄)U−1D)−1

(N(0)− D̄)U−1C > 0
(since C̄Ȳ C̄∗ = N(0)− D̄ via [1, Lemma 2])

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗D̄U−1C − C∗V −1[[V − (N(0) − D̄)D]
V −1]−1(N(0)− D̄)U−1C > 0

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗D̄U−1C − C∗(I −N(0)D)−1(N(0) − D̄)
U−1C > 0

⇔ I −M(∞)N(∞) is nonsingular,
Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 −C∗(I −N(0)D)−1[(I −N(0)D)D̄+ (N(0)−
D̄)]U−1C > 0

⇔ I −M(∞)N(∞) is nonsingular,
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Ȳ −1 − C̄∗U−1DC̄ > 0, and
Y −1 − C∗(I −N(0)D)−1N(0)C > 0

⇔ I −M(∞)N(∞) is nonsingular,
λ̄[Ȳ 1/2C̄∗U−1DC̄Ȳ 1/2] < 1, and
λ̄[Y 1/2C∗(I −N(0)D)−1N(0)CY 1/2] < 1

⇔ I −M(∞)N(∞) is nonsingular,
λ̄[U−1DC̄Ȳ C̄∗] < 1, and
λ̄[(I −N(0)D)−1N(0)CY C∗] < 1

⇔ I −M(∞)N(∞) is nonsingular,
λ̄[U−1D(N(0)− D̄)− I] < 0, and
λ̄[(I −N(0)D)−1N(0)(M(0)−D)− I] < 0
(since C̄Ȳ C̄∗ = N(0)− D̄ and CY C∗ = M(0)−D
via [1, Lemma 2] and Lemma 8)

⇔ I −M(∞)N(∞) is nonsingular,
λ̄[[I −M(∞)N(∞)]−1(M(∞)N(0)− I)] < 0, and
λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0.

Remark 10: The feedback stability conditions in Theorem
9 involve a mixture of two frequencies, i.e. 0 and ∞. This
appears, on the surface, to be counter intuitive as if one
considers the Nyquist stability criterion, one might reason-
ably ponder why a mixture of two frequencies is needed
given that the Nyquist plot is a pointwise-in-frequency plot
of M(jω)N(jω). However, note that the feedback stability
condition in the Nyquist stability criterion is a winding number
condition (or equivalently, an encirclements condition) which
is certainly not a pointwise-in-frequency condition. The fact
that for certain system classes this encirclements condition
can be equivalently rewritten as simpler conditions that do not
require full knowledge of the transfer functions is not trivial.
It is hence legitimate that the feedback stability conditions in
Theorem 9 invoke more than a single frequency. Note that
in the sequel we shall also show how these conditions spe-
cialise to a single frequency condition under some additional
assumptions.

The next lemma states that the eigenvalues of the product
of certain matrices are always real.

Lemma 11: Let A and B be real symmetric matrices such
that either A or B is sign semi-definite (i.e. ≥ 0 or ≤ 0). Then
λi(AB) ∈ R ∀i.

Proof: Trivial.
If we now impose the same two restrictive assumptions

M(∞)N(∞) = 0 and N(∞) ≥ 0 as in [1, 11], the internal
stability conditions in Theorem 9 reduce to the condition in
[1, 11].

Corollary 12: Let M(s) be a negative imaginary system
without poles at the origin and N(s) be a strictly negative
imaginary system. Let M(∞)N(∞) = 0 and N(∞) ≥ 0.
Then
[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.

Proof: This is a direct consequence of Theorem 9 be-
cause:

1) M(∞)N(∞) = 0⇒ I −M(∞)N(∞) is nonsingular;
2) λ̄[[I −M(∞)N(∞)]−1(M(∞)N(0)− I)] < 0

⇔ λ̄[M(∞)N(0)] < 1
⇔ N(0)1/2M(∞)N(0)1/2 < I

(since N(0) > N(∞) ≥ 0 via [1, Lemma 2])

⇔ M(∞) < N(0)−1;

3) λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0

⇔ λ̄[[N(0)−1 −M(∞)]−1(M(0)−N(0)−1)] < 0
(since N(0) > N(∞) ≥ 0 via [1, Lemma 2])

⇔ [N(0)−1 − M(∞)]−1/2(M(0) − N(0)−1)[N(0)−1

−M(∞)]−1/2 < 0
(since N(0)−1 > M(∞) via above)

⇔ M(0)−N(0)−1 < 0
⇔ λ̄[M(0)N(0)] < 1.

But λ̄[M(0)N(0)] < 1 ⇔ M(0) < N(0)−1 ⇒ M(∞) <
N(0)−1 (since M(∞) ≤M(0) via Lemma 8).
This concludes the proof.

Another way of simplifying the stability conditions given in
Theorem 9 is to assume that M(s) is a strictly proper transfer
function, and under this assumption the internal stability
condition obtained here is the same as the one in the previous
corollary. Note that the statement in Corollary 13 was not
known in previous literature. In other words, it was not known
that the dc loop gain is a necessary and sufficient condition for
internal stability also under a simple assumption of a strictly
proper M(s). Unlike [12, Remark 1] which requires N(0) to
be either a positive or negative definite matrix, Corollary 13
has no restriction of the sign of N(0), i.e. N(0) can be either
sign-indefinite or singular.

Corollary 13: Let M(s) be a negative imaginary system
without poles at the origin satisfying M(∞) = 0 and N(s)
be a strictly negative imaginary system. Then
[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.

Proof: This is a direct consequence of Theorem 9 be-
cause:
1) M(∞) = 0⇒ I −M(∞)N(∞) is nonsingular;
2) λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] = −1 which
means λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] < 0 is
trivially fulfilled;
3) λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0 if and only if
λ̄[M(0)N(0)] < 1.

If in the proof of Theorem 9, we take the Schur complement
around the other block of T > 0, different necessary and
sufficient conditions for the internal stability of a positive feed-
back interconnection of negative imaginary systems without
poles at the origin can be derived as shown in Theorem 14.
The matrices (M(0)N(∞) − I)[I −M(∞)N(∞)]−1 and
(N(0)M(0) − I)[I − N(∞)M(0)]−1 in the conditions of
Theorem 14 have only real eigenvalues due to Lemmas 3,
4 and 8.

Theorem 14: Let M(s) be a negative imaginary system
without poles at the origin and N(s) be a strictly negative
imaginary system. Then [M(s), N(s)] is internally stable if
and only if

I −M(∞)N(∞) is nonsingular,

λ̄[(M(0)N(∞)− I)[I −M(∞)N(∞)]−1] < 0, and

λ̄[(N(0)M(0)− I)[I −N(∞)M(0)]−1] < 0.

Proof: The proof is identical to that in Theorem 9 until
T > 0. Then it proceeds in a similar way to the proof in
Theorem 9 after T > 0 by taking Schur complements about
the (1, 1) element of T > 0 instead of the (2, 2) element
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of T > 0. Note that the conditions in Theorem 14 cannot
be obtained directly via trivial algebraic manipulations of the
conditions in Theorem 9 as shown in Lemma 3.

Example 2 demonstrates that if the closed-loop system is
well-posed (i.e. I −M(∞)N(∞) is nonsingular), each of the
remaining conditions in Theorem 14 is not simply implied
by either one of the remaining conditions in Theorem 9
independently.

Example 2: Choose M(s) =

«

−s
s+5

−5
s+5

−(4s+5)
s2+6s+5

−s2+s+15
s2+6s+5

ff

and

N(s) =

«

5
s+5

−(2s+15)
s+5

−(2s2+16s+15)
s2+6s+5

−s2+s+15
s2+6s+5

ff

. Both M(s) and N(s)

are strictly negative imaginary systems since M(s) is strictly
negative imaginary system from Example 1 and N(s) =

M(s) +

„

1 −2

−2 0



. Also, the closed-loop system is well-

posed, since I −M(∞)N(∞) =

„

1 −2

−2 0



is nonsingular.

In this case, λ̄[[I − M(∞)N(∞)]−1(M(∞)N(0) − I)] =
−0.1340 < 0 and λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] =
8 ć 0, whereas λ̄[(M(0)N(∞)− I)[I −M(∞)N(∞)]−1] =
3.3028 ć 0 and λ̄[(N(0)M(0) − I)[I − N(∞)M(0)]−1] =
1.5447 ć 0.

A different set of assumptions at 0 and ∞ frequencies
can also be imposed to specialise the conditions of Theorem
14, thereby obtaining another intuitive result that is different
from Corollaries 12 and 13. Again note that the statement
in Corollary 15 is also new and was not known in previous
literature. In other words, it was not known that the dc
loop gain condition is a necessary and sufficient condition
for internal stability also under the simple assumption of
M(0) > 0 but no restriction of the sign of N(∞).

Corollary 15: Let M(s) be a negative imaginary system
without poles at the origin and N(s) be a strictly negative
imaginary system. Suppose M(∞)N(∞) = 0 and M(0) > 0.
Then
[M(s), N(s)] is internally stable ⇔ λ̄[M(0)N(0)] < 1.

Proof: This is a direct consequence of Theorem 14
because:

1) M(∞)N(∞) = 0 implies I −M(∞)N(∞) is nonsin-
gular;

2) λ̄[(M(0)N(∞)− I)[I −M(∞)N(∞)]−1] < 0

⇔ λ̄[M(0)N(∞)] < 1
⇔ M(0)1/2N(∞)M(0)1/2 < I
⇔ N(∞) < M(0)−1;

3) λ̄[(N(0)M(0)− I)[I −N(∞)M(0)]−1] < 0

⇔ λ̄[(N(0)−M(0)−1)[M(0)−1 −N(∞)]−1] < 0
⇔ λ̄[[M(0)−1 −N(∞)]−1/2(N(0)−M(0)−1)[M(0)−1

−N(∞)]−1/2] < 0
(since M(0)−1 > N(∞) via above)

⇔ N(0)−M(0)−1 < 0
⇔ λ̄[M(0)N(0)] < 1.

But λ̄[M(0)N(0)] < 1 ⇔ N(0) < M(0)−1 ⇒ N(∞) <
M(0)−1 (since N(∞) < N(0) via [1, Lemma 2]).
This concludes the proof.

IV. SISO SPECIALISATION

In Theorems 9 and 14, two different internal stability
conditions are given. For the SISO case, these two stability
conditions can be further reduced as shown in Lemma 16.

Lemma 16: Let M(s) be a scalar negative imaginary system
without poles at the origin and N(s) be a scalar strictly neg-
ative imaginary system. Then the following three statements
are equivalent:

1) [M(s), N(s)] is internally stable;
2) either condition a) or condition b) holds:

a) M(0)N(0) < 1, M(∞)N(∞) < 1 and
M(∞)N(0) < 1;

b) M(0)N(0) > 1, M(∞)N(∞) > 1 and
M(∞)N(0) > 1;

3) either condition a) or condition b) holds:
a) M(0)N(0) < 1, M(∞)N(∞) < 1 and
M(0)N(∞) < 1;

b) M(0)N(0) > 1, M(∞)N(∞) > 1 and
M(0)N(∞) > 1.

Proof: Via Theorem 9, [M(s), N(s)] is internally stable
if and only if M(∞)N(∞) 6= 1, 1−M(∞)N(0)

M(∞)N(∞)−1 < 0, and
M(0)N(0)−1
1−M(∞)N(0) < 0. These three conditions yield condition 2a)
or condition 2b).
Theorem 14 gives condition 3a) or condition 3b).

The internal stability conditions in Lemma 16 can be further
simplified as shown in Theorem 17.

Theorem 17: Let M(s) be a scalar negative imaginary
system without poles at the origin and N(s) be a scalar strictly
negative imaginary system. Then [M(s), N(s)] is internally
stable if and only if either one of the following three conditions
holds:

i) M(0)N(0) < 1 and M(∞)N(∞) < 1;
ii) N(∞) > 0 and M(∞)N(∞) > 1;

iii) N(0) < 0 and M(0)N(0) > 1.
Proof: Both conditions 2a) and 3a) in Lemma 16 reduce

to condition i) in this theorem statement via Lemma 5. This
then implies that conditions 2b) and 3b) in Lemma 16 are
equivalent.

Next recall that N(0) > N(∞) via [1, Lemma 2] and
M(0) ≥ M(∞) via Lemma 8. Condition ii) and these two
negative imaginary properties imply N(0) > N(∞) > 0
and M(0) ≥ M(∞) > 0. Then M(0)N(0) > M(0)N(∞),
M(0)N(0) ≥M(∞)N(0), M(∞)N(0) > M(∞)N(∞) > 1
and M(0)N(∞) ≥ M(∞)N(∞) > 1. These inequal-
ities then imply conditions 2b) and 3b) in Lemma 16.
Similarly, condition iii) and the same two negative imag-
inary properties imply 0 > N(0) > N(∞) and 0 >
M(0) ≥ M(∞). Then 1 < M(0)N(0) < M(0)N(∞),
1 < M(0)N(0) ≤M(∞)N(0), M(∞)N(0) < M(∞)N(∞)
and M(0)N(∞) ≤ M(∞)N(∞). These inequalities then
imply conditions 2b) and 3b) in Lemma 16.

To show the converse, consider the following five compli-
mentary cases: 0 < N(∞) < N(0), 0 = N(∞) < N(0),
N(∞) < 0 < N(0), N(∞) < N(0) = 0, and N(∞) <
N(0) < 0. The three middle cases violate conditions 2b)
and 3b) in Lemma 16. Hence only two valid complimentary
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cases are permitted by conditions 2b) and 3b) in Lemma 16:
0 < N(∞) and N(0) < 0. Hence, condition 2b) (respectively,
condition 3b) ) in Lemma 16 implies either condition ii) or
condition iii) of this theorem statement.

For the internal stability of the closed-loop system to be
guaranteed via condition i) in Theorem 17, it is necessary and
sufficient that the Nyquist plot of M(s)N(s) starts and ends on
the left-hand side of 1. Recall that the Nyquist point is +1+j0
since we are considering a positive feedback interconnection.
Similarly, for the internal stability to be guaranteed by either
conditions ii) or iii) in Theorem 17, it is necessary and
sufficient that the Nyquist plot of M(s)N(s) begins and ends
on the right-hand side of 1, and also that M(0), M(∞), N(0),
and N(∞) have the same sign (positive in condition ii) and
negative in condition iii) ).
The following example demonstrates use of Lemma 16 and
Theorem 17.

Example 3: Choose M(s) = 3−s
s+1 and N(s) = 1−2s

s+1 .
Both M(s) and N(s) are strictly negative imaginary sys-
tems. Hence they fulfill the assumptions of Lemma 16 and
Theorem 17. In this case, M(0)N(0) = (3)(1) > 1
and M(∞)N(∞) = (−1)(−2) > 1, but M(∞)N(0) =
(−1)(1) č 1, M(0)N(∞) = (3)(−2) č 1, N(∞) = −2 č 0
and N(0) = 1 ć 0. Lemma 16 and Theorem 17 cor-
rectly infer that [M(s), N(s)] is not internally stable since
[I −M(s)N(s)]−1 = (s+1)2

−2+9s−s2 = −(s+1)2

s2−9s+2 /∈ RH∞.
Example 3 illustrates that although the positive frequency

branch of the Nyquist plot of M(s)N(s) begins and ends on
the right-hand side of the Nyquist point +1+j0, [M(s), N(s)]
is unstable since M(0), M(∞), N(0), and N(∞) have
different signs. Indeed, M(s)N(s) has no open-loop poles in
the closed right half plane but the Nyquist plot of M(s)N(s)
encircles the Nyquist point +1+j0 twice. Hence, there will be
two unstable closed-loop poles which results in the instability
of the closed-loop system according to the Nyquist stability
criterion.

V. MAIN RESULTS: PART 2– ALLOWING POLES AT THE
ORIGIN

In the previous sections, we have discussed necessary
and sufficient conditions for internal stability of the positive
feedback interconnection shown in Fig. 1 involving a strictly
negative imaginary system and a negative imaginary system
without poles at the origin. Here, we derive more general
results by allowing the negative imaginary system to have
poles at the origin. To do this, we need to build on the results
of the previous sections.
In the following subsections, we first provide several technical
lemmas that underpin the subsequent theorems and results.
Then, the general feedback stability results are derived. We
also show how these general results specialise to the results
in the earlier sections through simple algebraic manipulation
and reduce to the results of [12] under the same assumptions
as imposed in [12]. Lastly, we demonstrate that a matrix Ψ
with specific properties needed in the results always exists
and propose a systematic way to construct a matrix Ψ. We
also show that one such Ψ is sufficient to conclude closed-

loop stability, thereby we avoid having to search over the set
of matrices Ψ with certain properties.

A. Technical Lemmas

We introduce the following three technical lemmas as a
basis for deriving the internal stability conditions in the next
subsection. We first show that an original feedback system and
a transformed system via a linear shift transformation have the
same stability properties. Note that the loop transformation
technique also holds even for the nonlinear systems [14, 26].

Lemma 18: Let M(s) be a negative imaginary system and
N(s) be a strictly negative imaginary system. Let Ψ < 0
be such that I − M(∞)Ψ is nonsingular. Define M1(s) =
[I −M(s)Ψ]−1M(s) and N1(s) = N(s)−Ψ. Then

1) I − M(∞)N(∞) is nonsingular if and only if I −
M1(∞)N1(∞) is nonsingular;

2) [M(s), N(s)] is internally stable if and only if
[M1(s), N1(s)] is internally stable.
Proof:

1) I −M(∞)N(∞) is nonsingular
⇔ I − M1(∞)N1(∞) = I − [I − M(∞)Ψ]−1M(∞)

(N(∞)−Ψ)= [I −M(∞)Ψ]−1[I−M(∞)N(∞)] is
nonsingular

2) [M(s), N(s)] is internally stable
⇔ I − M(∞)N(∞) is nonsingular (due to well-

posedness condition) and M(s)[I −N(s)M(s)]−1 ∈
RH∞ (since N(s) ∈RH∞, see [25, Corollary 5.4])

⇔ I − M1(∞)N1(∞) is nonsingular via 1) and
M1(s)[I − N1(s)M1(s)]−1 = M(s)[I − ΨM(s)]−1

[I− (N(s)−Ψ)M(s)[I−ΨM(s)]−1]−1 =M(s)[I−
N(s)M(s)]−1 ∈ RH∞

⇔ [M1(s), N1(s)] is internally stable.

In the next lemma we show that under a full normal rank
assumption, a condition for a negative imaginary system to
have no transmission zeros in the open right-half plane and at
the origin is to choose the system gain at the infinity frequency
to be positive semi-definite.

Lemma 19: Let M(s) be a negative imaginary system with
M(∞) ≥ 0. Suppose M(s) has full normal rank. Then M(s)
has no transmission zeros in R(s) > 0 and at the origin.

Proof: In this proof we use the notion of positive real
systems as given by [2, Definition 1] and [2, Lemma 1].
We define the transfer function M̂(s) = M(s) −M(∞) and
F (s) = sM̂(s). Then M(s) is negative imaginary if and only
if M̂(s) is negative imaginary and M(∞) = M(∞)T via 1)
in Lemma 7, and furthermore M̂(s) is negative imaginary if
and only if F (s) is positive real via 2) in Lemma 7. Then,
M(∞) ≥ 0

⇒ F1(s) = F (s) + sM(∞) is positive real (since both
F (s) and sM(∞) are positive real and hence their
addition must be positive real [27])

⇔ F1(s) = sM(s) is positive real
⇒ F1(s)−1 = 1

sM(s)−1 is positive real (since F1(s) is
positive real and ∃s ∈ C : det[F1(s)] 6= 0, see [27,
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Theorem 5–8]. So, F1(s)−1 has no poles in R(s) > 0
and possibly has a simple pole at the origin)

⇒ M(s)−1 = sF1(s)−1 has no poles in R(s) > 0 and
at the origin, since either F1(s)−1 has no pole at the
origin or if F1(s)−1 has a simple pole at the origin then
sF1(s)−1 has a pole-zero cancellation at the origin

⇔ M(s) has no transmission zeros in R(s) > 0 and at
the origin since ∃s ∈ C : det[M(s)] 6= 0.

The following technical lemma provides a condition for two
transfer matrices to be marginally stable and have no poles at
the origin.

Lemma 20: Let M(s) be a negative imaginary system. Let
Ψ < 0 be such that λ̄[M(∞)Ψ] < 1. Then

1) [I − ΨM(s)]−1 has no poles in R(s) > 0 and at the
origin;

2) M1(s) = M(s)[I − ΨM(s)]−1 is a negative imaginary
system without poles at the origin.
Proof:

λ̄[M(∞)Ψ] < 1

⇔ λ̄[(−Ψ)1/2(−M(∞))(−Ψ)1/2] < 1
⇔ M(∞)−Ψ−1 > 0
⇒ det[M(∞) − Ψ−1] 6= 0 and M(s) − Ψ−1 has no

transmission zeros in R(s) > 0 and at s = 0 via
Lemma 19 since M(s) − Ψ−1 is negative imaginary
with M(∞) − Ψ−1 > 0 and M(s) − Ψ−1 has full
normal rank

⇔ [I−ΨM(s)]−1 has no poles in R(s) > 0 and at s = 0
and det [I −ΨM(∞)] 6= 0

⇔ −I + [I − ΨM(s)]−1 has no poles in R(s) > 0 and
at s = 0 and det [I −ΨM(∞)] 6= 0

⇔ ΨM(s)[I −ΨM(s)]−1 has no poles in R(s) > 0 and
at s = 0 and det [I −ΨM(∞)] 6= 0

⇔ M1(s) = M(s)[I−ΨM(s)]−1 has no poles in R(s) >
0 and at s = 0 and det[I −ΨM(∞)] 6= 0

⇒ M1(s) = M(s)[I−ΨM(s)]−1 is a negative imaginary
system without poles at the origin via [2, Theorem 6]
and since M1(s) has no poles at the origin. Note that
the internal stability assumption in [2, Theorem 6] can
be relaxed to analyticity in R(s) > 0 in the non-strict
negative imaginary setting.

The next lemma provides an equivalent condition for the
maximum eigenvalue of the product of two symmetric matri-
ces being less than unity.

Lemma 21: Let A = A∗ ∈ Rm×m, B = B∗ ∈ Rm×m,
and C = C∗ ∈ Rm×m with C < 0 and A − B ≥ 0. Then
λ̄[BC] < 1 if and only if A−C−1 > 0 and I−(A−B)1/2(A−
C−1)−1(A−B)1/2 > 0.

Proof:
λ̄[BC] < 1

⇔ λ̄[(−C)1/2(−B)(−C)1/2] < 1 (via C < 0)
⇔ −C−1 +B > 0
⇔ (A− C−1)− (A−B) > 0

⇔
„

A− C−1 (A−B)1/2

(A−B)1/2 I



> 0 (via A−B ≥ 0)

⇔ A− C−1 > 0 and

I − (A−B)1/2(A− C−1)−1(A−B)1/2 > 0.

The next two highly technical lemmas below are used to
underpin the results in Subsection V-D. We provide a rewritten
expression for λi[(−I+AC)(I−BC)] in the following lemma.

Lemma 22: Let A, B and C be real symmetric matrices
with C ≥ 0. Then λi[(−I + AC)(I − BC)] = λi[(−I +
C1/2AC1/2)(I − C1/2BC1/2)] for all i.

Proof:

λi[(−I +AC)(I −BC)]

= λi[C
1/2(A+B −ACB)C1/2]− 1 (via C ≥ 0)

= λi[(−I + C1/2AC1/2)(I − C1/2BC1/2)].

The positiveness and positive semidefiniteness of the trans-
fer matrices are shown in the following lemma via algebraic
manipulation with specific choices of the Ψ.

Lemma 23: Let M(s) be a negative imaginary system. Let
Ψ < 0 be such that λ̄[M(∞)Ψ] < 1. Define Q = [M(∞) −
Ψ−1]1/2(I− [M(∞)−Ψ−1]1/2 lim

s→0
[M(s)−Ψ−1]−1[M(∞)−

Ψ−1]1/2)[M(∞)−Ψ−1]1/2. Then

1) M(∞)−Ψ−1 > 0;
2) lim

s→0
[M(s)−Ψ−1]−1 ≥ 0;

3) Q ≥ 0;
4) I −Q1/2[M(∞)−Ψ−1]−1Q1/2 ≥ 0.

Furthermore, let Ψ1 < 0 be such that λ̄[M(∞)Ψ1] < 1 and
define M1(s) = M(s)[I −ΨM(s)]−1. Then,

5) lim
s→0

[[M(s)−Ψ−1][M(s)−Ψ1
−1]−1] is nonsingular;

6) I − [M1(0) −M1(∞)]1/2[I + (Ψ − Ψ1)M1(0)]−1(Ψ −
Ψ1)[M1(0)−M1(∞)]1/2 > 0.

Proof:

1) λ̄[M(∞)Ψ] < 1

⇔ λ̄[(−Ψ)1/2[−M(∞)](−Ψ)1/2] < 1
⇔ M(∞)−Ψ−1 > 0

2) lim
s→0

[M(s)−Ψ−1]−1

= lim
s→0

[[M(s)−M(∞)] + [M(∞)−Ψ−1]]−1

= lim
s→0

s[s[M(s) −M(∞)] + s[M(∞) − Ψ−1]]−1 ≥ 0

(since both s[M(s) −M(∞)] and s[M(∞) − Ψ−1]
are positive real via Lemma 7 and 1), hence their
addition must be positive real [27] and since s[M(s)−
M(∞)] + s[M(∞)−Ψ−1] is positive real, its inverse
is also positive real [27, Theorem 5–8]. If [s[M(s)−
M(∞)] + s[M(∞) − Ψ−1]]−1 has a simple pole at
the origin, then its residue is Hermitian and positive
semidefinite. Otherwise, lim

s→0
s[s[M(s) − M(∞)] +

s[M(∞)−Ψ−1]]−1 = 0)
3) M(s) is a negative imaginary system
⇒ M(s)[I −ΨM(s)]−1 is a negative imaginary system

without poles at the origin, via 2) in Lemma 20
⇒ lim

s→0
M(s)[I − ΨM(s)]−1 −M(∞)[I − ΨM(∞)]−1

≥ 0 (via Lemma 8)
⇔ λ[− lim

s→0
[I −ΨM(s)]−1 + [I −ΨM(∞)]−1] ≥ 0
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⇔ I − [M(∞)−Ψ−1]1/2 lim
s→0

[M(s)−Ψ−1]−1[M(∞)−
Ψ−1]1/2 ≥ 0 (since M(∞)−Ψ−1 > 0 via 1))

⇔ Q ≥ 0

4) lim
s→0

[M(s)−Ψ−1]−1 ≥ 0 (via 2))

⇔ λ[ lim
s→0

[M(s)−Ψ−1]−1[M(∞)−Ψ−1]] ≥ 0

⇔ λ[I − [M(∞)−Ψ−1]−1Q] ≥ 0
⇔ I − Q1/2[M(∞) − Ψ−1]−1Q1/2 ≥ 0 (since Q ≥ 0

via 3)).
5) For convenience, define Ψ2 < 0 such that Ψ2

−1 < Ψ−1

and Ψ2
−1 < Ψ1

−1. Then
lim
s→0

[[M(s)−Ψ−1][M(s)−Ψ1
−1]−1]

= lim
s→0

[[M(s) − Ψ−1][M(s) − Ψ2
−1]−1[M(s) − Ψ2

−1]

[M(s)−Ψ1
−1]−1]

= [(Ψ−1 −Ψ2
−1)−1 + lim

s→0
[M(s)−Ψ−1]−1]−1(Ψ−1 −

Ψ2
−1)−1(Ψ1

−1 − Ψ2
−1)[ (Ψ1

−1 − Ψ2
−1)−1 +

lim
s→0

[M(s) − Ψ1
−1]−1] is nonsingular (since Ψ−1 −

Ψ2
−1 > 0, Ψ1

−1−Ψ2
−1 > 0, lim

s→0
[M(s)−Ψ−1]−1 ≥

0, and lim
s→0

[M(s)−Ψ1
−1]−1 ≥ 0 via 2))

6) For convenience, define Q1 = [M(∞) − Ψ1
−1]1/2(I −

[M(∞) − Ψ1
−1]1/2 lim

s→0
[M(s) − Ψ1

−1]−1[M(∞) −
Ψ1
−1]1/2)[M(∞)−Ψ1

−1]1/2. Then
I − Q

1/2
1 [M(∞) − Ψ1

−1]−1Q
1/2
1 + Q

1/2
1 [M(∞) −

Ψ−1]−1Q
1/2
1 ≥ 0 (since [M(∞)−Ψ−1]−1 > 0 and Q1 ≥

0 via 1) and 3) and I−Q1/2
1 [M(∞)−Ψ1

−1]−1Q
1/2
1 ≥ 0

via 4))
⇔ λ[ lim

s→0
[I + [[M(∞)−Ψ−1]−1 − [M(∞)−Ψ1

−1]−1]

[M(s) − M(∞)][I + [M(∞) − Ψ1
−1]−1[M(s)−

M(∞)]]−1]] ≥ 0
⇔ λ[ lim

s→0
[[I + [M(∞) − Ψ−1]−1[M(s) −M(∞)]][I +

[M(∞)−Ψ1
−1]−1[M(s)−M(∞)]]−1]] ≥ 0

⇔ λ[ lim
s→0

[[M(∞) − Ψ−1]−1[M(s) − Ψ−1][M(s) −
Ψ1
−1]−1[M(∞)−Ψ1

−1]]] > 0 via 1) and 5)
⇔ I − [M1(0)−M1(∞)]1/2[I + (Ψ−Ψ1)M1(0)]−1(Ψ
−Ψ1)[M1(0)−M1(∞)]1/2 > 0.

B. Generalised Internal Stability Results for Negative Imagi-
nary Systems with Possible Poles at the Origin

In this subsection, necessary and sufficient conditions are
derived for internal stability of a positive feedback intercon-
nection composed of a negative imaginary system (which may
or may not have poles at the origin) and a strictly negative
imaginary system. The limits in the stability conditions will be
shown to be all finite. We obtain the general result in Theorem
24 by building on Theorem 9, which was only applicable
for negative imaginary systems without poles at the origin,
by using an appropriate linear shift transformation to remove
the undesirable restriction of no poles at the origin. This
then enables Theorem 24 to be also applicable for negative
imaginary systems which may or may not have free body
dynamics (i.e. poles at the origin).

Theorem 24: Let M(s) be a negative imaginary system and
N(s) be a strictly negative imaginary system. Let Ψ < 0 be
such that λ̄[M(∞)Ψ] < 1. Then [M(s), N(s)] is internally
stable if and only if

I −M(∞)N(∞) is nonsingular,
λ̄[[I −M(∞)N(∞)]−1[M(∞)N(0)− I]] < 0, and
λ̄[ lim
s→0

[[I−ΨM(∞)][I−N(s)M(∞)]−1[N(s)M(s)− I]

[I −ΨM(s)]−1]] < 0.

Proof: Define M1(s) = [I − M(s)Ψ]−1M(s) and
N1(s) = N(s)−Ψ. Then,
[M(s), N(s)] is internally stable
⇔ [M1(s), N1(s)] is internally stable (by Lemma 18)
⇔ I −M1(∞)N1(∞) is nonsingular,

λ̄[[I −M1(∞)N1(∞)]−1(M1(∞)N1(0) − I)] < 0,
and λ̄[[I − N1(0)M1(∞)]−1(N1(0)M1(0) − I)] < 0
(since M1(s) is a negative imaginary system without
poles at the origin via Lemma 20 and N1(s) is a
strictly negative imaginary system and then direct use
of Theorem 9)

⇔ I −M(∞)N(∞) is nonsingular (via Lemma 18),
λ̄[[I − [I − M(∞)Ψ]−1M(∞)(N(∞) − Ψ)]−1[[I−
M(∞)Ψ]−1M(∞)(N(0)−Ψ)− I]] < 0, and
λ̄[ lim
s→0

[[I − (N(s) − Ψ)[I − M(∞)Ψ]−1M(∞)]−1

[(N(s)−Ψ)[I −M(s)Ψ]−1M(s)− I]]] < 0
⇔ I −M(∞)N(∞) is nonsingular,

λ̄[[[I − M(∞)Ψ]−1[I − M(∞)Ψ − M(∞)N(∞)+
M(∞)Ψ]]−1[[I − M(∞)Ψ]−1[M(∞)N(0) − M(∞)
Ψ− I +M(∞)Ψ]]] < 0, and
λ̄[ lim
s→0

[[I − (N(s) − Ψ)M(∞)[I − ΨM(∞)]−1]−1

[(N(s)−Ψ)M(s)[I −ΨM(s)]−1 − I]]] < 0
⇔ I −M(∞)N(∞) is nonsingular,

λ̄[[I −M(∞)N(∞)]−1[I −M(∞)Ψ][I −M(∞)Ψ]−1

[M(∞)N(0)− I]] < 0, and
λ̄[ lim
s→0

[[[I − ΨM(∞) − N(s)M(∞) + ΨM(∞)][I−
ΨM(∞)]−1]−1[[N(s)M(s) − ΨM(s) − I + ΨM(s)]
[I −ΨM(s)]−1]]] < 0

⇔ I −M(∞)N(∞) is nonsingular,
λ̄[[I −M(∞)N(∞)]−1[M(∞)N(0)− I]] < 0, and
λ̄[ lim
s→0

[[I − ΨM(∞)][I − N(s)M(∞)]−1[N(s)M(s)

−I][I −ΨM(s)]−1]] < 0.

The above algebraic reformulations, together with Lemmas 4
and 8, also demonstrate why the eigenvalues of the matrices
in the conditions of the theorem statement are real.

Remark 25: We need to show that lim
s→0

[[N(s)M(s) −
I][I − ΨM(s)]−1] = lim

s→0
N(s)M(s)[I − ΨM(s)]−1 −

lim
s→0

[I −ΨM(s)]−1 is finite. Since both M(s)[I−ΨM(s)]−1

and [I − ΨM(s)]−1 have no poles at the origin via Lemma
20, lim

s→0
[[N(s)M(s)− I][I −ΨM(s)]−1] is finite.

We now give a different internal stability necessary and
sufficient condition in Theorem 26 which is based on Theorem
14 instead of Theorem 9.

Theorem 26: Let M(s) be a negative imaginary system and
N(s) be a strictly negative imaginary system. Let Ψ < 0 be
such that λ̄[M(∞)Ψ] < 1. Then [M(s), N(s)] is internally
stable if and only if
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I −M(∞)N(∞) is nonsingular,
λ̄[ lim
s→0

[[I − M(s)Ψ]−1[M(s)N(∞) − I][I − M(∞)

N(∞)]−1[I −M(∞)Ψ]]] < 0, and
λ̄[ lim
s→0

[[N(s)M(s)− I][I −N(∞)M(s)]−1]] < 0.

Proof: The proof is similar to that of Theorem 24 except
Theorem 14 is used instead of Theorem 9.

Remark 27: We need to show that lim
s→0

[[I − M(s)Ψ]−1

[M(s)N(∞)−I][I−M(∞)N(∞)]−1[I−M(∞)Ψ]] is finite.
Note that lim

s→0
[[I −M(s)Ψ]−1[M(s)N(∞)− I]] is finite by

Lemma 20, (I −M(∞)N(∞))−1 is finite via the first condi-
tion in Theorem 26 and I −M(∞)Ψ is obviously finite.

The following technical lemma will be needed in Remark
29 to show that the limit in the third condition of Theorem 26
is also finite.

Lemma 28: Let all the assumptions in Theorem 26
hold. Furthermore, suppose that I − M(∞)N(∞) is non-
singular and λ̄[ lim

s→0
[[I − M(s)Ψ]−1 [M(s)N(∞) − I][I −

M(∞)N(∞)]−1[I − M(∞)Ψ]]] < 0. Then lim
s→0

[[I −
ΨM(s)][I −N(∞)M(s)]−1] is finite and nonsingular.

Proof: First note that lim
s→0

[[N(∞)M(s) − I][I −
ΨM(s)]−1] is finite via Lemma 20. Next, note that
λ̄[ lim
s→0

[[I −M(s)Ψ]−1[M(s)N(∞)− I][I −M(∞)N(∞)]−1

[I −M(∞)Ψ]]] < 0

⇒ lim
s→0

[[I − M(s)Ψ]−1[M(s)N(∞) − I][I − M(∞)

N(∞)]−1[I −M(∞)Ψ]] is nonsingular
⇒ lim

s→0
[[I −M(s)Ψ]−1[M(s)N(∞)− I]] is nonsingular

⇒ lim
s→0

det(M(s)N(∞)− I)

det(I −M(s)Ψ)
6= 0

⇒ lim
s→0

det(N(∞)M(s)− I)

det(I −ΨM(s))
6= 0

⇒ lim
s→0

[[N(∞)M(s)− I][I −ΨM(s)]−1] is nonsingular.

Then
lim
s→0

[[N(∞)M(s)− I][I − ΨM(s)]−1] is finite and
nonsingular

⇔ lim
s→0

[[I −ΨM(s)][N(∞)M(s)− I]−1] is finite and
nonsingular

⇔ lim
s→0

[[I −ΨM(s)][I −N(∞)M(s)]−1] is finite and
nonsingular.

Remark 29: We need to show that lim
s→0

[[N(s)M(s)−I][I−
N(∞)M(s)]−1] = lim

s→0
[[N(s)M(s) − I][I − ΨM(s)]−1[I −

ΨM(s)][I − N(∞)M(s)]−1] is finite. It is clear that
lim
s→0

[[N(s)M(s) − I] [I − ΨM(s)]−1] and lim
s→0

[[I − ΨM(s)]

[I − N(∞)M(s)]−1] are finite via Lemmas 20 and 28 re-
spectively. Hence, lim

s→0
[[N(s)M(s)−I][I−N(∞)M(s)]−1] is

finite.
In contrast with the stability results in the literature [1, 11,

12, 23], the conditions presented here are a generalisation
on those results in at least three aspects: 1) the stability
results allow for poles on the imaginary axis and at the
origin, 2) the stability results impose no restriction on the
instantaneous gains of the systems, and 3) the conditions

are significantly easier to check. Note that [12] imposes
several restrictive assumptions, including strict properness of
the negative imaginary system, and requires multiple complex
matrix factorisations. Furthermore, some of the assumptions
in [12] are imposed on the resulting factorisations, thereby
destroying intuition. The results in Theorems 24 and 26 impose
no such restrictions. Subsection V-D discusses existence and
construction of the matrix Ψ that is needed in Theorems 24
and 26.

C. Specialisations of the Generalised Internal Stability Con-
ditions

First, we give a corollary that does not depend on the matrix
Ψ. It is a SISO specialisation of both Theorems 24 and 26
in the special situation when the negative imaginary system
necessarily has poles at the origin.

Corollary 30: Let M(s) be a scalar, negative imaginary
system and N(s) be a scalar, strictly negative imaginary
system. Let s = 0 be a (single or double) pole of M(s).
Then [M(s), N(s)] is internally stable if and only if either
one of the following two conditions holds:

i) M(∞)N(∞) < 1 and N(0) < 0;
ii) M(∞)N(∞) > 1 and N(∞) > 0.

Proof: Writing M(s) as a Laurent series, the three
conditions in Theorem 26 simplify, in the scalar case, to
M(∞)N(∞) 6= 1, N(∞)

1−M(∞)N(∞) < 0 and N(0)
N(∞) > 0 after

taking the limit as s → 0. It is easy to see that these three
conditions are equivalent to either condition i) or condition
ii) in this corollary statement using the negative imaginary
property N(0) > N(∞) via [1, Lemma 2].

Alternatively, Theorem 24 can be used instead of Theo-
rem 26 to give the same specialisations. Writing M(s) as a
Laurent series, the three conditions in Theorem 24 simplify,
in the scalar case, to M(∞)N(∞) 6= 1, M(∞)N(0)−1

1−M(∞)N(∞) < 0

and N(0)
1−N(0)M(∞) < 0 after taking the limit as s → 0. These

three conditions are equivalent to either one of the following
two statements:

1) M(∞)N(∞) < 1, M(∞)N(0) < 1 and N(0) < 0;
2) M(∞)N(∞) > 1, M(∞)N(0) > 1 and N(0) > 0.

Equivalence between condition 1) and condition i) in the
corollary statement can be seen on noting that M(∞)N(0) =

[M(∞)N(∞)]
”

N(0)
N(∞)

ı

< 1 since N(∞) < N(0) < 0

via [1, Lemma 2]. Equivalence between condition 2) and
condition ii) in the corollary statement can be seen on not-
ing that M(∞)N(0) = [M(∞)N(∞)]

”

N(0)
N(∞)

ı

> 1 since
0 < N(∞) < N(0) via [1, Lemma 2].

Next, we specialise Theorems 24 and 26 to a MIMO case
that is in fact still a generalisation of the results in [12]. If we
consider the situation that M(s) is a strictly proper transfer
function with negative imaginary properties, then Theorems
24 and 26 can be specialised to the results in 2) and 3) in
Corollary 31 respectively.

Corollary 31: Let M(s) be a strictly proper, negative
imaginary system and N(s) be a strictly negative imaginary
system. Let Ψ < 0. Then, the following three conditions are
equivalent:
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1) [M(s), N(s)] is internally stable;
2) λ̄[ lim

s→0
[[N(s)M(s)− I][I −ΨM(s)]−1]] < 0;

3) λ̄[ lim
s→0

[[I −M(s)Ψ]−1[M(s)N(∞)− I]]] < 0 and

λ̄[ lim
s→0

[[N(s)M(s)− I][I −N(∞)M(s)]−1]] < 0.

Proof: The equivalence between 1) and 2) is omitted since
it is the direct consequence of Theorem 24 and the assumption
of strictly properness of M(s). The equivalence between 1)
and 3) is omitted since it is a direct consequence of Theorem
26 and the assumption of strict properness of M(s).
Note that the limit in 2) of Corollary 31 is finite via Lemma
20 and the limits in 3) of Corollary 31 are finite via Lemmas
20 and 28. Under the same assumption of strictly proper
M(s), [12] proposed necessary and sufficient conditions for
internal stability of positive feedback interconnections of
negative imaginary systems. However, the stability results in
[12] require additional assumptions such as the invertibility of
FT Ḡ(0)F and Nf being either positive or negative definite
(see [12, Thereom 1]). When these assumptions imposed in
[12] do not hold, such as FT Ḡ(0)F being singular or Nf
being sign-indefinite, the conditions in [12] are no longer ap-
plicable. Unlike the results in [12], the conditions in Corollary
31 are easy-to-check, are necessary and sufficient conditions,
impose no extra assumptions, and do not require any matrix
factorisations. Indeed, the extra assumptions in [12] on objects
that are a result of such factorisations unfortunately inhibit
intuition into the results of [12].
The internal stability condition in 2) of Corollary 31 only
depends on the steady-state (or DC) gains and a negative
definite matrix Ψ. If we rearrange the inequality in 2), we
end up to have λ̄[M1(0)N1(0)] < 1, where M1(s) = [I −
M(s)Ψ]−1M(s) and N1(s) = N(s) − Ψ, which means that
the stability of the positive-feedback interconnection relies on
only the dc loop gain of the transformed system. Surprisingly,
simplification of the two inequalities in 3) to obtain the
inequality in 2) is not directly obvious for the MIMO situation.
However, for the SISO case, it is straightforward to realise that
the terms of [M(s)N(∞)−I] and [I−N(∞)M(s)]−1 in first
and second inequalities of 3) can be eliminated via multiplying
both inequalities in 3) to give the inequality in 2).

We next give a corollary that does not depend of the matrix
Ψ. It is a MIMO specialisation of Corollary 31 in the situation
when the negative imaginary system necessarily has single or
double poles at the origin in all directions.

Corollary 32: Let M(s) be a strictly proper, negative
imaginary system and N(s) be a strictly negative imaginary
system. Assume one of the following conditions holds:

• lims→0 s
2M(s) is nonsingular;

• lims→0 s
2M(s) = 0 and lims→0 sM(s) is nonsingular.

Then [M(s), N(s)] is internally stable if and only if N(0) < 0.
Proof: Consider each of the two cases of this corollary

separately. Writing M(s) as a Laurent series into either
condition 2) or condition 3) of Corollary 31 gives the required
result after evaluating the limit and simplifying.

In Subsection V-B, general internal stability conditions
of positive feedback interconnections of negative imaginary
systems were derived. We now show that the main stability

theorems of that subsection (i.e. Theorems 24 and 26) spe-
cialise to the prior stability conditions in Theorems 9 and 14
respectively under the corresponding assumption that M(s)
is a negative imaginary system without poles at the origin,
thereby demonstrating the generality of Theorems 24 and 26.

Since, by inspection, two of the conditions in Theorem 24
(respectively Theorem 26) are trivially equivalent to two of
the conditions in Theorem 9 (respectively Theorem 14), we
only need to proof equivalence of the remaining inequality
in Theorem 24 (respectively Theorem 26) with the remaining
inequality in Theorem 9 (respectively Theorem 14). Note that
to show these equivalences in Lemmas 33 and 34, we cannot
simply assume that Ψ = 0 since Ψ < 0 is required in the
assumptions of both Theorems 24 and 26 and a limiting argu-
ment cannot be used as the results in Theorems 24 and 26 are
valid for any arbitrary Ψ < 0 that satisfies λ̄(M(∞)Ψ) < 1.

Lemma 33: Let all the assumptions of Theorem 24 hold and
furthermore suppose M(s) has no poles at the origin. Then

λ̄[ lim
s→0

[[I − ΨM(∞)][I − N(s)M(∞)]−1[N(s)M(s)

−I][I −ΨM(s)]−1]] < 0
⇔ λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0.

Proof: Let R = [M(0) −M(∞)]1/2. See Lemma 8 for
proof that M(0)−M(∞) ≥ 0. Then,
λ̄[ lim
s→0

[[I −ΨM(∞)][I −N(s)M(∞)]−1[N(s)M(s)− I][I−
ΨM(s)]−1]] < 0

⇔ λ̄[[I−ΨM(∞)][I−N(0)M(∞)]−1[N(0)M(0)−I][I−
ΨM(0)]−1] < 0 (since M(s) is a negative imaginary
system without poles at the origin and N(s) is a strictly
negative imaginary system, M(0) and N(0) exist)

⇔ λ̄[[I − ΨM(0)]−1[I − ΨM(∞)][I − N(0)M(∞)]−1

[N(0)M(0)− I]] < 0
⇔ λ̄[[I − ΨM(0)]−1[I − ΨM(0) + ΨM(0) − ΨM(∞)]

[I−N(0)M(∞)]−1[N(0)M(0)−N(0)M(∞)+N(0)
M(∞)− I]] < 0

⇔ λ̄[[I + [I −ΨM(0)]−1ΨR2][[I −N(0)M(∞)]−1N(0)
R2 − I]] < 0

⇔ λ̄[[[I−N(0)M(∞)]−1N(0)− [I−ΨM(0)]−1Ψ+[I−
ΨM(0)]−1ΨR2[I −N(0)M(∞)]−1N(0)]R2]< 1

⇔ λ̄[R[[I−N(0)M(∞)]−1N(0)−[I−ΨM(0)]−1Ψ+[I−
ΨM(0)]−1ΨR2[I −N(0)M(∞)]−1N(0)]R]< 1

⇔ λ̄[[I + R[I − ΨM(0)]−1ΨR][R[I − N(0)M(∞)]−1

N(0)R− I]] < 0
⇔ λ̄[[I−R[M(0)−Ψ−1]−1R][R[I−N(0)M(∞)]−1N(0)

R− I]] < 0
⇔ [I − R[M(0) − Ψ−1]−1R]1/2[R[I − N(0)M(∞)]−1

N(0)R − I][I − R[M(0) − Ψ−1]−1R]1/2 < 0 (since
I −R[M(0)−Ψ−1]−1R > 0 via Lemma 21)

⇔ λ̄[R[I −N(0)M(∞)]−1N(0)R] < 1
⇔ λ̄[[I −N(0)M(∞)]−1N(0)R2 − I] < 0
⇔ λ̄[[I−N(0)M(∞)]−1[N(0)M(0)−N(0)M(∞)−I+

N(0)M(∞)]] < 0
⇔ λ̄[[I −N(0)M(∞)]−1(N(0)M(0)− I)] < 0.

In Lemma 34, we state the equivalence between the sta-
bility conditions of Theorem 26 and Theorem 14 under the
specialisation that M(s) has no poles at the origin.
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Lemma 34: Let all the assumptions of Theorem 26 hold and
furthermore suppose M(s) has no poles at the origin. Then

λ̄[ lim
s→0

[[I − M(s)Ψ]−1[M(s)N(∞) − I][I − M(∞)

N(∞)]−1[I −M(∞)Ψ]]] < 0
⇔ λ̄[(M(0)N(∞)− I)[I −M(∞)N(∞)]−1] < 0.

Proof: The proof is similar to that of Lemma 33 except
that the second inequality in Theorem 26 is used instead of
the third inequality in Theorem 24.

D. Existence and Construction of a Negative Definite Matrix
Ψ

In Subsections V-B and V-C, we have derived powerful in-
ternal stability conditions that allow for the negative imaginary
systems with free body dynamics. Some of the conditions
in Theorems 24 and 26 and Corollary 31 are expressed in
terms of a negative definite matrix Ψ that is not part of the
problem data. In the Corollary 31, since M(∞) = 0, then
any choice of a negative definite Ψ is fine. However, if the
plant is not strictly proper, i.e. M(∞) 6= 0, Ψ < 0 also needs
to satisfy λ̄[M(∞)Ψ] < 1 as required by the assumptions
of Theorems 24 and 26. We first demonstrate that such a
Ψ always exists, even when M(∞) 6= 0, and give a simple
constructive procedure to determine one such Ψ.
Since M(∞) 6= 0 is a symmetric matrix, M(∞) can be fac-
tored into M(∞) = QΛQT where Q and Λ are orthogonal and
diagonal matrices respectively. Now, choose Ψ = QΛ−11 QT

where Λ1 is a diagonal matrix with strictly negative numbers
on its diagonal. It is clear that Ψ < 0. Then, via 1) in Lemma
23, λ̄[M(∞)Ψ] < 1 is equivalent to M(∞) − Ψ−1 > 0.
Hence, the problem reduces to selecting a strictly negative
definite and diagonal matrix Λ1 which satisfies Λ − Λ1 > 0.
It is obvious that there always exists a matrix Λ1 fulfilling
Λ1 < Λ. Hence, it is trivial to construct a matrix Ψ < 0 such
that λ̄[M(∞)Ψ] < 1.

It is trivial to observe that there is a large set of matrices
Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1. The statements in Theo-
rems 24 and 26 and Corollary 31 indicate that any arbitrary
Ψ in this set could be selected. The following two theorems
show that the conditions that depend on Ψ in Theorems 24
and 26 and Corollary 31 are either fulfilled for all Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1 or violated for all Ψ < 0 satisfying
λ̄[M(∞)Ψ] < 1. Hence, choosing any arbitrary Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1, for example via the constructive
procedure described earlier, will be all that is required to use
the powerful results in Theorems 24 and 26 and Corollary 31.

Theorem 35: Let M(s) be a negative imaginary system
and N(s) be a strictly negative imaginary system. Define
X = {Ψ < 0 : λ̄[M(∞)Ψ] < 1}. Then ∃Ψ1 ∈
X : λ̄[ lim

s→0
[[I − Ψ1M(∞)][I − N(s)M(∞)]−1[N(s)M(s) −

I][I − Ψ1M(s)]−1]] < 0 if and only if ∀Ψ ∈
X, λ̄[ lim

s→0
[[I − ΨM(∞)][I − N(s)M(∞)]−1[N(s)M(s) −

I][I −ΨM(s)]−1]] < 0.
Proof:

(⇐) Trivial.
(⇒) Choose an arbitrary Ψ ∈ X . Let M1(s) = M(s)[I −

ΨM(s)]−1, N1(s) = N(s)−Ψ, and R = I − [M1(0)−

M1(∞)]1/2[I + (Ψ − Ψ1)M1(0)]−1(Ψ − Ψ1)[M1(0) −
M1(∞)]1/2. See Lemma 8 for proof that M1(0) −
M1(∞) ≥ 0 after noting that M1(s) is negative imag-
inary without poles at the origin via Lemma 20. Then
λ̄[ lim
s→0

[[I −Ψ1M(∞)][I −N(s)M(∞)]−1[N(s)M(s)−
I][I −Ψ1M(s)]−1]] < 0

⇔ λ̄[ lim
s→0

[[I−Ψ1M(∞)][I−ΨM(∞)]−1[I−ΨM(∞)][I−
N(s)M(∞)]−1[N(s)M(s) − I][I − ΨM(s)]−1[I −
ΨM(s)][I −Ψ1M(s)]−1]] < 0

⇔ λ̄[[−I + [I − N1(0)M1(∞)]−1N1(0)[M1(0) −M1(∞)]]
[I − [I + (Ψ−Ψ1)M1(0)]−1(Ψ−Ψ1)[M1(0)−M1(∞)]
]] < 0

⇔ λ̄[[−I + [M1(0) − M1(∞)]1/2[I − N1(0)M1(∞)]−1

N1(0)[M1(0)−M1(∞)]1/2]R] < 0 (via Lemma 22)
⇔ λ̄[−I + [M1(0) − M1(∞)]1/2[I − N1(0)M1(∞)]−1

N1(0)[M1(0) −M1(∞)]1/2] < 0 (since R > 0 via 6)
in Lemma 23)

⇔ λ̄[ lim
s→0

[[I − ΨM(∞)][I − N(s)M(∞)]−1[N(s)M(s) −
I][I −ΨM(s)]−1]] < 0.

The result then follows since Ψ ∈ X was arbitrary.
Necessity of Theorem 35 states that if there exists a Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1 and the third condition in Theorem
24 (i.e. the condition involving the matrix Ψ), then this third
condition of Theorem 24 is satisfied for all Ψ < 0 satisfying
λ̄[M(∞)Ψ] < 1. The contrapositive statement of this same
necessity of Theorem 35 states that if there exists a Ψ < 0
satisfying λ̄[M(∞)Ψ] < 1 that violates the third condition
of Theorem 24, then this third condition of Theorem 24 is
violated for all Ψ < 0 satisfying λ̄[M(∞)Ψ] < 1.

Theorem 36 is similar to Theorem 35, but tackles the second
inequality of Theorem 26 (i.e. the one involving the matrix Ψ)
instead of the third inequality of Theorem 24.

Theorem 36: Let M(s) be a negative imaginary sys-
tem and N(s) be a strictly negative imaginary system.
Define X = {Ψ < 0 : λ̄[M(∞)Ψ] < 1}. Then
∃Ψ1 ∈ X : λ̄[ lim

s→0
[[I − M(s)Ψ1]−1[M(s)N(∞) − I][I −

M(∞)N(∞)]−1[I − M(∞)Ψ1]]] < 0 if and only if
∀Ψ ∈ X, λ̄[ lim

s→0
[[I − M(s)Ψ]−1[M(s) N(∞) − I][I −

M(∞)N(∞)]−1 [I −M(∞)Ψ]]] < 0.
Proof: Proof is omitted as it is similar to that of Theorem

35.
Theorem 36 states that the second inequality of Theorem

26 is either satisfied for all Ψ < 0 with λ̄[M(∞)Ψ] < 1 or
violated for all Ψ < 0 with λ̄[M(∞)Ψ] < 1. Hence, one only
needs any arbitrary Ψ < 0 with λ̄[M(∞)Ψ] < 1 to use the
result in Theorem 26.

VI. NUMERICAL EXAMPLES

Two numerical examples are given to illustrate the internal
stability results developed in the previous sections.

A. Without Poles at the Origin

In this subsection, an example is given to illustrate the in-
applicability or conservativeness of earlier results and demon-
strate the main results developed in this paper. Let us consider
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Fig. 2. Schematic diagram of a slewing beam equivalent to a robotic arm.

a positive feedback interconnection [M(s), N(s)] as shown
in Fig. 1. An undamped SISO plant M(s) is given by
M(s) = 1

s2+1 + 2 which is negative imaginary without poles
at the origin according to [11, Definition 1]. A SISO controller
N(s) is given by N(s) = 1

s+1 + 2 which is strictly negative
imaginary according to Definition 2. The internal stability of
[M(s), N(s)] cannot be determined via [11, Theorem 1], since
M(∞)N(∞) = 4 6= 0. Also, [23, Corollary 4.3] cannot
be used to check the internal stability of [M(s), N(s)] since
σ̄(M(0)N(0)) = 9 ć 1 and σ̄(M(∞)N(∞)) = 4 ć 1. Next,
we attempt to use the IQC-based sufficient conditions of [23,
Theorem 4.2]. We will demonstrate via this example that the
sufficient conditions of [23, Theorem 4.2] are conservative.

Let Π0 = Π∗0 =

„

a b

b c



and Π∞ = Π∗∞ =

„

d e

e f



. [23,

Theorem 4.2] is only applicable if there exist scalars a, b, c,
d, e, and f such that the sufficient conditions in [23, Theorem

4.2] are satisfied for all τ ∈ [0, 1]. However,
„

N(0)

I

∗

Π0

„

N(0)

I



= 9a + 6b + c < 0 and
„

I

τM(0)

∗

Π0

„

I

τM(0)



= 9cτ2+6bτ+a ≥ 0 cannot be fulfilled simultaneously when
τ = 1/9. Hence, [23, Theorem 4.2] cannot be used here.
By applying Theorem 17 in Section IV, we can easily
conclude that [M(s), N(s)] is internally stable since either
condition 2) or 3) is satisfied, i.e. M(∞)N(∞) = 4 > 1,
M(0)N(0) = 9 > 1 and M(∞)N(0) = 6 > 1. The
robust stability conditions in this paper are easy to check, are
necessary and sufficient, and only depend on the steady-state
and instantaneous gains (i.e. the 0 and ∞ frequency gains) of
the systems.

B. With Poles at the Origin

In this subsection, a physically motivated example is pre-
sented to demonstrate the application of the generalised feed-
back stability results derived in this paper. The example is di-
rectly taken from [12] for ease of comparison. Let us consider
a flexible robotic arm, as shown in Fig. 2, which is driven by a
motor mounted at one end and with two piezoelectric patches
attached to either side of the arm which are used as an actuator
and a sensor respectively. The control inputs of this flexible
structure are the voltage Va applied to the actuator patch and
the torque of the motor τ , while the outputs of the system are
the voltage Vs generated by the sensor patch and the motor
hub angle θ. Using techniques detailed in [28], this flexible
robotic arm can be modelled as an infinite dimensional trans-

fer function: G(s) = 1
D(s)

„

Nτ,θ(s) NVa,θ(s)

Nτ,Vs
(s) NVa,Vs

(s)



, where

Nτ,θ(s), NVa,θ(s), Nτ,Vs
(s), NVa,Vs

(s), and D(s) are given
in equations (26) − (28) in [28]. Through approximation
approaches, we can represent the above model G(s) as the
finite dimensional model and for the sake of simplification
we here only consider the finite dimensional model M(s)
with only the first resonant mode which can be expressed

as M(s) =

1∑
i=0

«

ai
s2+p2i

bi
s2+p2i

ci
s2+p2i

di
s2+p2i

ff

, where a0 = 0.14, b0 =

c0 = d0 = p0 = 0, a1 = 3.0907, b1 = c1 = 3.5573 ×
10−4, d1 = 2.35, and p1 = 3.4 [12]. This finite dimensional
model M(s) is a negative imaginary system since all poles
of M(s) are located in the closed left-half plane, j[M(jω)−
M(jω)∗] = 0 for all ω ∈ (0,∞) \ 3.4, the residue matrix

lim
s→j3.4

(s− j3.4)jM(s) =

«

3.0907
6.8

3.5573×10−4

6.8
3.5573×10−4

6.8
2.35
6.8

ff

> 0

and lim
s→0

s2M(s) =

„

0.14 0

0 0



≥ 0 which imply the condi-

tions 3) and 4) in Definition 1 are fulfilled. We then apply
the strictly negative imaginary controller [3] N(s) = (sI +

ΓΦ)−1Γ − ∆, where Γ =

„

35 15

15 20



, Φ =

„

0.745 0.521

0.521 1.021



and ∆ =

„

4.29 0

0 2.22



, as detailed in [12]. Note that since

M(s) is a negative imaginary system with two poles at the
origin, the internal stability results introduced in [11] and [23]
are not applicable. Hence, for ease of calculation, we directly
set Ψ = N(0) < 0 and use the generalised stability results pre-
sented in Subsection V-C. Using the stability condition in 2) of
Corollary 31, we get λ̄[ lim

s→0
[[N(s)M(s)−I][I−ΨM(s)]−1]] =

λ̄[ lim
s→0

[[N(0)M(s) − I][I − N(0)M(s)]−1]] = −1 < 0.
Hence, feedback stability of [M(s),N(s)] is guaranteed for
the chosen controller via 2) in Corollary 31 without any
complicated calculations. In contrast, the results in [12] require
computation of several matrix factorisations and also a set of
different inequalities need to be checked for different cases
that depend on the positive or negative semidefiniteness of a
specific matrix which is a result of such factorisations in order
to determine whether the positive-feedback interconnection is
internally stable or not.

VII. CONCLUSION

We have removed restrictive assumptions from the robust
stability analysis of positive feedback interconnections of neg-
ative imaginary systems, and generalised results for negative
imaginary systems that may also have poles at the origin. New
necessary and sufficient conditions have thus been derived
that reduce to the earlier necessary and sufficient conditions
when the assumptions of earlier literature are imposed. This
demonstrates that the new results generalise the earlier work in
the area. We also show that it is possible to simplify the new
necessary and sufficient conditions by imposing alternative
new succinct assumptions that were not known in prior liter-
ature. Because the proposed extended internal stability results
rely on a negative definite matrix Ψ with specific properties,
it was also shown that such a matrix always exists. Moreover,
a systematic procedure was given for constructing Ψ to fulfil
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the required properties. We also prove that no search is needed
for an appropriate Ψ as the results are valid for any arbitrarily
chosen Ψ. Two numerical examples are given that demonstrate
the completeness of the derived results in this paper and
illustrate the knowledge gap in the earlier literature.
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