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Abstract-We consider a manufacturing firm whose production is 

characterized by polluting emissions, an incorporated pollution 

abatement process and continuous-time inventory control. 

Recognizing the stochastic nature of both pollution and inventory 

dynamics, we study the impact of consumer demand and pollution 

uncertainty on production-inventory policies under environmental 

costs/taxes imposed on the manufacturer. We find that the 

manufacturer, facing environmental uncertainty, reduces both 

inventory and pollution levels in the long run. The same effect is 

observed in terms of inventories under proportional and 

progressively growing environmental taxes but not necessarily in 

terms of pollution. In particular, emission taxes most impact 

expected steady state inventories while ambient pollution taxes 

combat long-run pollution levels. 

Index Terms — Inventory Control, Stochastic Demands, 

Production Emission, Pollution.  

 

I. INTRODUCTION 

Industrial waste, one of the largest causes of global pollution, 

endangers both people and the environment. Waste produced by 

industrial activity contaminates many sources of drinking water, 

releases unwanted toxins into the air and reduces the quality of soil all 

over the world. Government policies and regulations to reduce 

pollution are commonly based on taxation and pollution permits or a 

combination of both. Pollution permits, (e.g., carbon trading 

schemes) are market-based  and aimed at creating a financial incentive 

to pollute less by enabling the manufacturer to sell excess permits to 

other firms. Pollution reducing taxes involve both emission and 

ambient environmental quality charges. For example, Title IV of the 

US Clean Air Act Amendments and National Ambient Air Quality 

Standards, regulates SO2 emissions and ambient SO2 concentrations 

respectively. Pharmaceutical manufacturing plants, for example, 

generate a variety of wastes during manufacturing and the  

pharmaceutical industry has been subject to emission taxes as well as 

ambient charges for sewage effluents and receiving river pollutant 

concentrations. Direct emissions of active pharmaceutical ingredients 

(APIs) from drug manufacturing have been identified as a source of 

environmental discharges that, in some cases, greatly exceed toxic 

threshold concentrations. For example, the concentrations in the 

effluent from a treatment plant receiving wastewater from about 90 

manufacturing units in Patancheru (India) were, for some 

pharmaceutical, greater than those found in the blood of patients 

ingesting the product itself as a medicine ([12]). Similar 

pharmaceutical pollution sources have been reported in the USA and 

Europe ([1]). Furthermore, emission concentration spikes frequently 

observed in pharmaceutical drying and coating processes commonly 

result in air pollution. According to the OECD's book, “Taxation, 

Innovation and the Environment”, environmental taxes (e.g., in 

California, hazardous waste is subject to numerous fees including 

emission taxes, landfill taxes, fees based on the threat to water quality 

and bay protection as well as toxic cleanup fees), provide an ongoing 

incentive to abate all emission levels. To further reduce its tax liability, 

 

 

 

 

 

 

the firm can switch to a less-polluting fuel, add a scrubber, change 

disposal methods, clean its wastes or otherwise adjust its production 

process. Recent developments in the pharmaceutical industry have led 

to minimizing wastage by strict inventory control and prevalent 

construction of treatment plants with the aim of pre-treating the 

otherwise toxic effluent before sending it to the local municipal 

sewage treatment plant. 

     The effect of environmental policies on production-inventory 

decisions (see, for example, [18], [3], [4], [13]) has been addressed in 

the literature.  The common approach is to employ a modification of 

the Arrow-Karlin deterministic model ([10]). The model’s convex 

(typically quadratic) production costs are known to induce production 

smoothing and thereby increased inventories over a short planning 

horizon. In particular, Wirl ([18]) analyzes the inventory dynamics of 

production with emissions when accounting for pollution taxes. He 

shows that a rise in marginal production costs makes it beneficial to 

smooth production and to carry larger inventories and that this 

property does not necessarily hold if future costs are discounted. 

Dobos ([3]), who adds tradable emission permits to Wirl’s model 

while dropping the discounting factor, also finds that it is optimal to 

smooth production along with selling a portion of the firm's emission 

permit (assuming it is divisible). Analogous results are obtained in [4] 

when it is assumed that the change in production rate is controlled 

rather than the production rate itself. Li ([13]) adds to the Dobos 

model ([3]) the option of investing in pollution abatement activities 

and the corresponding capital dynamics. He demonstrates with 

numerical examples production smoothing along with inventory 

increases due to emission trading. Similar dynamics to those that 

appear in [13]) are commonly used to present the evolution of the 

pollution stock under an environmental absorption capacity and 

manufacturer’s pollution abatement activities but without inventory 

considerations (see, for example, [9] and [21]).  

     An important point in the researches cited above is that they focus 

on the short-term effect of environmental policies on production 

management in a deterministic setting by choosing a limited planning 

horizon and predefined seasonal consumer demand. However, 

environmental policies have long-term cumulative consequences. If 

one attempts to study these consequences by increasing the planning 

horizon, the optimal inventory naturally drops to zero due to the 

deterministic setting under quite a wide range of conditions imposed 

on the rate of demand fluctuations. That is, environmental concerns 

would have no impact on the production inventory policies. In contrast 

to the literature above, we recognize in this paper the stochastic nature 

of both dynamic pollution and inventory stocks in order to study the 

long-term impact of demand and pollution uncertainties on production 

and inventory policies.  

     Similar to the Arrow-Karlin model, our model is based on linear-

quadratic assumptions in terms of the costs and dynamics involved. 

Specifically, since environmental absorption capacity is generally 

stochastic ([20], [19], [7]), measuring pollution involves uncertainty. 

Various approaches have been suggested for effectively assimilating 

data for monitoring and controlling environmental quality by 

assuming linear pollution dynamics. For example, Zhang et al. ([22]) 

assume that transport phenomena of pollutants in the environment are 

described by linear diffusion equations with a Gaussian noise process. 
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Romanowicz and Young ([15]) use linear Gaussian model structures 

for measuring pollution associated with discharges from the repository 

plant of British Nuclear Fuel Ltd. In the present paper, we also adopt 

linear pollution stock dynamics with a Gaussian noise (Wiener 

diffusion process) in the proportional form ([21]). Likewise, we model 

stochastic consumer demand (see, for example, [11], [8], [6] and [17] 

for similar stochastic production models). The goal of this study is to 

determine: (i) how proportional and increasingly growing (convex) 

emission and ambient pollution taxes affect the expected steady state 

inventory and pollution stocks; and (ii) how the level of uncertainty 

alters the relationships in (i). 

    The range of charges paid by polluting firms in real-life is wide. For 

example, the fees applied to emissions of sulfur oxides (SOx), NOx, 

VOCs due to industrial energy consumption vary in the US from $5 

per ton (in Maine for amount emitted up to 1000 tons) through $150 

per ton (in New Mexico). This tax, in terms of production output with 

1% (or less) and up to 10% polluting rates implies fees of $0.05- $15 

per ton. Annual pollution ambient charges, such as the fees of the 

California Bay Protection and Toxic Cleanup Act vary from $300 for 

low pollutant concentrations, 0.05 mg/l, in terms of water quality, 

through $11,000 (up to 0.7 mg/l) to fund the toxic cleanup program. 

This, in terms of the concentrations defines the hourly fees ranging 

from  $0.1 to $1.8 per each mg/l. In this paper we derive an optimal 

feedback solution for a polluting firm and conduct a numerical study 

by varying all environmental costs within the described ranges in 

order to understand the effect of those costs on the production-

inventory policies. 

     We find that the manufacturer, facing environmental uncertainty, 

reduces both his inventory and pollution levels in the long-run. The 

expected long-run pollution stock, however, decreases under ambient 

pollution taxation but not necessarily under emission taxes.  Both 

emission and ambient taxes decrease expected steady state inventory 

stocks. This is in contrast to the literature cited above that finds 

inventory growth due to production smoothing when consumer 

demand and environmental absorption dynamics are deterministic and 

the time horizon is relatively short. 

  

II.  STATEMENT OF THE PROBLEM AND THE OPTIMALITY 
CONDITIONS 

Consider a manufacturer whose production process, which causes 

polluting emissions, is characterized by demand uncertainty.  Changes 

in the cumulative demand rate, 𝑅(𝑡), are determined by the stochastic 

process, 𝑑𝑅(𝑡) = 𝐷𝑑𝑡 + 𝜎𝑑𝑊(𝑡), where D and 𝜎 are the mean and 

volatility of the demand, respectively, and W(t)  is a standard Weiner 

process. The classical inventory stock X(t) dynamics is due to the 

difference between the production rate u(t)≥0 and the demand rate, 

𝑑𝑋(𝑡) = (𝑢(𝑡) − 𝐷)𝑑𝑡 − 𝜎𝑑𝑊(𝑡).     (1) 

This implies that if there is a stock, X(t)>0, then all demanded 

products have been shipped by time t and an inventory holding cost is 

incurred. On the other hand, if there is a shortage, X(t)<0, then the 

shortage is backlogged and supplied later which induces a backlog 

cost. 

       We assume pollution abatement activities (e.g., water treatment, 

solid waste incineration and desulfurization of flue gases) are 

incorporated into the production and the amount of labor employed in 

the abatement process per time unit is denoted by z(t) ([2]). The 

resultant pollution stock P(t) is proportional to the emission eu(t) 

associated with production u(t) and inversely proportional to the 

abatement activity z(t) along with the natural environmental capacity 

of pollutant assimilation 𝑃(𝑡)(𝛾𝑑𝑡 + 𝜀𝑑𝑆(𝑡)), where 𝛾𝑃(𝑡) and 𝜀𝑃(𝑡) 

represent the mean and the volatility of pollutant assimilation, 

respectively; and S(t)  is a standard Weiner process not correlated with 

W(t). Specifically, the pollution stock is described by the stochastic 

process (see, for example, [20]): 

𝑑𝑃(𝑡) = (𝑒𝑢(𝑡) − 𝑧(𝑡) − 𝛾𝑃(𝑡))𝑑𝑡 − 𝜀𝑃(𝑡)𝑑𝑆(𝑡),          (2) 

The deterministic version of this equation obtained by setting 𝜀 = 0  is 

widely used to present either pollution dynamics or capital dynamics 

in pollution abatement activities ([5],[9], [13]).  

      We assume that all operational costs incurred by the firm are 

convex. In particular, in addition to the pollution abatement cost 

G(z(t)), the firm causing pollution bears emission C1(u(t)), production 

C2(u(t)) and ambient (cumulative) pollution A(P(t)) costs/taxes for 

preventing immediate and cumulative damage to human health and/or 

the environment ([14]). The objective is to minimize the total 

discounted expected cost: 

min𝑢(.) 𝐽 = min𝑢(.) 𝐸 {
∫ [𝐻(𝑋(𝑡))

∞

0
+ 𝐶(𝑢(𝑡)) + 𝐴(𝑃(𝑡)) +

 𝐺(𝑧(𝑡))]𝑒−𝛿𝑡𝑑𝑡
},   (3) 

where H(X(t)) is the inventory cost, C(u(t)) = C1(u(t))+ C2(u(t)) and 𝛿 

is the discount rate. 

     Denoting partial derivatives of a function, y, with respect to x,  
𝜕𝑦

𝜕𝑥
  

by 𝑦𝑥, 
𝜕𝑦

𝜕𝑥
|

𝑥=𝑎
 by 𝑦𝑥(𝑎) and 

𝜕2𝑦

𝜕𝑥2
 by 𝑦𝑥𝑥 , and omitting the independent 

variable t, where the dependence on time is obvious, the principle of 

optimality is 

𝛿𝑉 = min𝑢≥0 {𝐻(𝑋)  +   𝐶(𝑢)  +  𝐴(𝑃) +  𝑉𝑋(𝑢 − 𝐷)  +  𝐺(𝑧)  +

  𝑉𝑃(𝑒𝑢 − 𝑧 − 𝛾𝑃) +
1

2
𝜎2𝑉𝑋𝑋 +

1

2
𝜀2𝑃2𝑉𝑃𝑃}              (4) 

where 𝑉 = 𝑉(𝑋, 𝑃) is the cost-to-go function and optimal 

production/abatement controls are straightforwardly found with the 

aid of the first order optimality condition as described in the next 

proposition. 

Proposition 1. Let 𝐶𝑢𝑢 > 0 and 𝐺𝑧𝑧 > 0.  

If 𝐶𝑢(0) ≤ −𝑉𝑋 − 𝑒𝑉𝑃, then an optimal production rate is given by  

𝐶𝑢(𝑢) = −𝑉𝑋 − 𝑒𝑉𝑃;  

Otherwise, u=0. 

If 𝐺𝑧(0) ≤ 𝑉𝑃, then an optimal abatement activity rate is given by 

𝐺𝑧(𝑧) = 𝑉𝑃, 

Otherwise, z=0.     

Proof: Since u-dependent terms of (4) are convex, to derive an optimal 

production control, we differentiate the right-hand side of (4) with 

respect to u, which results in 𝐶𝑢(𝑢) = −𝑉𝑋 − 𝑒𝑉𝑃. Given 𝐶𝑢𝑢 > 0, the 

left-hand side of this equation is monotone in u and therefore its 

interior solution is feasible, u≥0, if 𝐶𝑢(0) ≤ −𝑉𝑋 − 𝑒𝑉𝑃. Otherwise, 

u=0. Similarly, an optimal control z is determined.  ■ 

    That is, an optimal production rate is found by equating the 

marginal production and emission cost to the marginal profit from 

inventories and emission while the optimal pollution abatement rate is 

due to equating the marginal abatement cost to the marginal profit 

from polluting production. 

     Following the convex cost of the Arrow-Karlin approach, also 

adopted in the aforementioned literature, we assume the second-order 

polynomial costs, 

𝐻(𝑋) = ℎ1𝑋 + ℎ2𝑋2, 𝐶(𝑢) = 𝑐1𝑢 + 𝑐2𝑢2, 𝐴(𝑃) = 𝑎1𝑃 + 𝑎2𝑃2, 

𝐺(𝑧) = 𝑔1𝑧 + 𝑔2𝑧2.                                     (5) 

Then (4) leads to the Hamilton-Jacobi-Bellman (HJB) equation, 

𝛿𝑉 = ℎ1𝑋 + ℎ2𝑋2 +  𝑐1𝑢 + 𝑐2𝑢2 + 𝑎1𝑃 + 𝑎2𝑃2 +  𝑔1𝑧 + 𝑔2𝑧2 +

      𝑉𝑋(𝑢 − 𝐷) +  𝑉𝑃(𝑒𝑢 − 𝑧 − 𝛾𝑃)+
1

2
𝜎2𝑉𝑋𝑋 +

1

2
𝜀2𝑃2𝑉𝑃𝑃,      (6) 
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where, with respect to Proposition 1, an optimal production rate is  

𝑢 = −
1

2𝑐2
(𝑐1 + 𝑉𝑋 + 𝑒𝑉𝑃),   (7) 

if 
1

2𝑐2
(𝑐1 + 𝑉𝑋 + 𝑒𝑉𝑃)≥0, otherwise u=0; and an optimal pollution 

abatement rate is 

𝑧 = −
1

2𝑔2
(𝑔1 − 𝑉𝑝),                                (8) 

if 𝑉𝑃 − 𝑔1 ≥ 0, otherwise z=0.  

III. OPTIMAL LONG-RUN PRODUCTION-

INVENTORY POLICY  

We next consider linear strategies with the aid of a polynomial form of 

the cost-to-go function 

V(X,P)=b1+b2X+b3X
2+b4XP+b5P+b6P

2                     (9) 

and subsequently verify that (9) satisfies the HJB (6). Substituting (7) 

and (8) into (6) and accounting for (9), we obtain six non-linear 

equations (A1) in six unknowns, b1,b2,b3,b4,b5 and b6 presented in the 

appendix. Accordingly, optimal production (7) and abatement (8) rates 

are a linear combination of the effect of the current inventory X and 

pollution P levels, 

𝑢 = −
1

2𝑐2
(𝑐1 + 𝑏2 + 𝑒𝑏5 + (𝑏4 + 2𝑒𝑏6)𝑃 + (𝑒𝑏4 + 2𝑏3)𝑋),   (10) 

𝑧 = −
1

2𝑔2
(𝑔1 − 𝑏5 − 𝑏4𝑋 − 2𝑏6𝑃).  (11) 

Denoting 

𝛼1 = 𝑐1 + 𝑏2 + 𝑒𝑏5, 𝛼2 = 𝑏4 + 2𝑒𝑏6, 𝛼3 = 𝑒𝑏4 + 2𝑏3,     (12) 

we conclude as follows. 

Proposition 2. Let the cost functions be defined by (5), real-valued 

constants b1>0,b2,b3>0,b4,b5 and b6 >0 satisfy the system of equations 

(A1), and 𝛼1, 𝛼2, 𝛼3 are defined by (12).  

If 𝑐1 + 𝑏2 + 𝑒𝑏5 + (𝑏4 + 2𝑒𝑏6)𝑃 + (𝑒𝑏4 + 2𝑏3)𝑋 ≤ 0, then 

𝑢 = −
1

2𝑐2
(𝛼1 + 𝛼2𝑃 + 𝛼3𝑋), 

If (𝑔1 − 𝑏5 − 𝑏4𝑋 − 2𝑏6𝑃) ≤ 0,  then 𝑧 = −
1

2𝑔2
(𝑔1 − 𝑏5 −

𝑏4𝑋 − 2𝑏6𝑃).   

Proof: The proof follows from Proposition 1and substitution (9) into 

(4) to ensure the verification theorem holds as detailed in [11].   ■ 

      To illustrate Proposition 2, we simulate optimal production and 

pollution abatement by generating Weiner processes W(t) and S(t) in 

equations (1) and (2) with the ItoProcess function of Maple 18. Figure 

1 presents simulation results with ten sample paths (ten replications, 

each colored either blue or red) obtained over 50 time units  with 100 

time steps, when  X(0)=10.0, P(0)=15.0, g1=0, g2=1.5, c1 = 0, c2 = 1, 

h1 = 0, h2 = .5, a1 = 0, a2 = 1.2, D = 30, σ = 2.5, ε = 0.1, e = 0.1, δ = 

0.01, and γ = 0.1. For this data, b1 = 91753.28611, b2=-59.98612266, 

b3 = 0.7060194454, b4 = -0.1043041593, b5 = 7.850604270, b6 = 

1.197459315 satisfy the system of equations (A1) and result in  α1= -

59.20106223, α2= 0.1351877037, and α3= 1.401608475.  

       From Figure 1 we observe that all conditions of Proposition 2 

hold for a realistic production environment. In particular, the firm 

always produces, u>0 (with the mean value of 29.99343408 and 

standard error=0.01448935133 at t=50 computed based on 104 

replications); always abates, z>0 (with the mean value of 26.99625739 

and standard error=2.236590602 at t=50 based on 104 replications); 

and the pollution is kept within a positive range of values. 

 

 

a)                                             b)                                                 

   
c)                           d) 

Figure 1: Ten sample paths of a) an optimal production rate, b) 

optimal pollution abatement rate, and the corresponding c) inventory 

and d) pollution stocks. 

Substituting (10)-(11) into the state equations (1) and (2) and 

employing notations (10), we obtain the evolution of stochastic 

inventory and pollution stocks: 

𝑑𝑋 = − (𝐷 +
1

2𝑐2
(𝛼1 + 𝛼2𝑃 + 𝛼3𝑋)) 𝑑𝑡 − 𝜎𝑑𝑊, (13) 

𝑑𝑃 = − (
𝑒

2𝑐2

(𝛼1 + 𝛼2𝑃 + 𝛼3𝑋) −  
1

2𝑔2

(𝑔1 − 𝑏5 − 𝑏4𝑋 −  2𝑏6𝑃) +

𝛾𝑃) 𝑑𝑡 − 𝜀𝑃𝑑𝑆.                               (14) 

Next, taking expectations in (13) and (14), we have in our original 

notations: 

𝑥̇ = − (𝐷 +
1

2𝑐2
(𝑐1 + 𝑏2 + 𝑒𝑏5 + (𝑏4 + 2𝑒𝑏6)𝑝 + (𝑒𝑏4 + 2𝑏3)𝑥))   

(15) 

𝑝̇ = −
1

2
((

𝑒2𝑏5+(𝑏2+𝑐1)𝑒

𝑐2
 +  

𝑏5−𝑔1

𝑔2
) +  (

2𝑒2𝑏4+𝑒𝑏3

𝑐2
 +  

𝑏6

𝑔2
) 𝑥 +

        (
2𝑒2𝑏6+𝑒𝑏4

𝑐2
+

𝑏6

𝑔2
+ 𝛾) 𝑝),                        (16) 

where 𝑥 = 𝐸[𝑋] and 𝑝 = 𝐸[𝑃].  
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Proposition 3. Consider an optimal production control determined by 

Proposition 2. Then the expected steady state inventory and pollution 

stocks are given respectively by:  

𝑝𝑠𝑠 =
2(𝑔2(𝑏4𝑒2+2𝑒𝑏3)+𝑐2𝑏4)𝐷+𝑔1(𝑒𝑏4+2𝑏3)+𝑏4(𝑏2+𝑐1)−2𝑏3𝑏5

2𝑔2𝛾(𝑒𝑏4+2𝑏3)+4𝑏3𝑏6−𝑏4
2 , 

𝑥𝑠𝑠 =

−
2(𝑔2(2𝑏6𝑒2+𝑒𝑏4+2𝑐2𝛾)+2𝑐2𝑏6)𝐷+2𝑔2𝛾(𝑒𝑏5+𝑏2+𝑐1)+𝑐1(2𝑒𝑏6+𝑏4)+2𝑏6(𝑏2+𝑐1)−𝑏4𝑏5

2𝑔2𝛾(𝑒𝑏4+2𝑏3)+4𝑏3𝑏6−𝑏4
2

       

Proof: The proof immediately follows by setting 𝑥̇(𝑡) = 0 and 

𝑝̇(𝑡) = 0 in (15) and (16), respectively, and solving the resultant 

algebraic system of two equations in two unknowns, x and p.  ■ 

    To examine the stability of the expected steady states that have been 

found, we construct the Jacobian matrix for the linear system of 

equations (15) and (16): 

𝐽 = (
−

1

2𝑐2
(𝑒𝑏4 + 2𝑏3) −

1

2𝑐2
(𝑏4 + 2𝑒𝑏6)

−
1

2
(

2𝑒2𝑏4+𝑒𝑏3

𝑐2
+

𝑏6

𝑔2
) −

1

2
(

2𝑒2𝑏6+𝑒𝑏4

𝑐2
+

𝑏6

𝑔2
+ 𝛾)

).    (17) 

The determinant and trace for the Jacobian are respectively, 

∆=
((𝑒𝑏4+2𝑏3)𝛾𝑔2+𝑏6(𝑒(𝑏4−2𝑏6)+2𝑏3−𝑏4))𝑐2−2𝑒𝑔2(𝑒𝑏6+𝑏4/2)(𝑒𝑏4−2𝑏3)

4𝑐2
2𝑔2

;  (18) 

𝑇 = −
((𝑒𝑏6+𝑏4)2𝑒+𝛾𝑐2+2𝑏3)𝑔2+𝑏6𝑐2

2𝑐2𝑔2
.  (19) 

Proposition 4. The expected steady state inventory and pollution 

levels determined by Proposition 3 are globally and asymptotically 

stable if  

((𝑒𝑏4 + 2𝑏3)𝛾𝑔2 + 𝑏6(𝑒(𝑏4 − 2𝑏6) + 2𝑏3 − 𝑏4))𝑐2 >
2𝑒𝑔2(𝑒𝑏6 + 𝑏4/2)(𝑒𝑏4 − 2𝑏3), 

((𝑒𝑏6 + 𝑏4)2𝑒 + 𝛾𝑐2 + 2𝑏3)𝑔2 + 𝑏6𝑐2 > 0.  

    Further, if 𝑇2 − 4∆≥ 0, the steady state is a sink, i.e., the 

convergence to the stable steady state is monotonic; otherwise it is a 

spiral sink (the convergence is with transient oscillations).    

Proof: The proof readily follows from applying (18) and (19) to the 

stability criteria in [16].  ■ 

    Based on Propositions 3 and 4, it is straightforward to verify for the 

data of the simulation example (Figure 1) that:  

(i) The expected steady states of inventory and pollution stocks are 

xss=-12.02685786 (while mean X=-11.98370862 at t=50 based on the 

simulation with 104 replications) and pss=30.01758329 (while mean 

P=30.02459034 at t=50 based on 104 replications).  

(ii) ∆= 0.6366607036 > 0, 𝑇 = −1.605869833<0, and 𝑇2 − 4∆=
 0.032175107 > 0, that is, the found steady states are stable and 

convergence to these states is monotone (which is also observed from 

Figure 1 and from the mean values at t=50 being very close to the 

expected values xss and pss). 

     The system of non-linear equations (A1) is solvable only 

numerically. Therefore we next study numerically the effect of 

environmental concerns and uncertainty on stable steady-state, 

production-inventory policies. 

IV. NUMERICAL ANALYSIS 

Demand uncertainty does not impact the expected steady states, which 

is typical for linear-quadratic control models (see, for example, [11]). 

Further, the expected steady state production level is not influenced by 

cost coefficients due to the unchanged mean customer demand. This is 

also observed in our numerical computations. Therefore, we present 

below only graphs of pss, Xss and zss for different ε and cost 

coefficients. In particular, using the data similar to those from the 

previous section: g1=0.1, g2=1.5, c1 = 0.1, c2 = 1, h1 = 0, h2 = 0.5, a1 = 

0.1, a2 = 1.2, D = 30, σ = 2.5, ε = 0.1, e = 0.1, δ = 0.01, and γ = 0.1, 

we vary only one specific (marginal) cost coefficient and/or the 

environmental volatility ε for each case in point. We start off from the 

coefficient c1 that represents the proportional effect of the constant 

marginal emission cost on the manufacturer. 

Proportional emission taxes 

Proportional growth of c1 induces linear reduction in the expected 

steady- state inventory level (Figure 2b), while not affecting pollution 

abatement efforts (Figure 2c) and subsequently the expected pollution 

long-run stock (Figure 2a). From Figure 2a, however, we observe that 

the pollution stock decreases (improves) with growing environmental 

uncertainty ε. The positive effect of the environmental concerns on the 

pollution stock, pss, is accomplished by an increased steady-state 

abatement rate zss, as seen from Figure 2c. Consequently, though the 

expected steady-state production level is not influenced by the 

proportional emission taxes, the expected inventory level does 

decrease with both growing environmental uncertainty and greater 

emission taxation. This is to offset the fact that the same production 

and thereby emission rates are associated with a higher cost of 

emission (Figures 2b and 2c). 

 

a)                                               b) 

 

                                             c) 

Figure 2. The effect of linear emission costs and of 

environmental uncertainty on  

a) pollution pss, b) inventories xss,  and c) abatement zss.  

Proportional ambient pollution taxes  

Similar to the effect of the constant marginal emission cost c1 

presented in Figure 2, by varying ambient pollution marginal cost 

coefficient a1, we find that unlike c1, ambient pollution taxes linearly 

reduce not only steady-state inventories (Figure 3b) but also the 

expected steady-state pollution stock (Figure 3a). This is 

accomplished by increasing the pollution abatement rate (Figure 3c). 
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The effect of uncertainty ε naturally remains the same – the higher the 

environmental uncertainty, the greater the abatement effort and the 

lower the pollution along with inventory stocks (see Figures 2 and 3).  

 
                      a)                                                      b) 

 

                                     c) 

Figure 3. The effect of linear ambient pollution costs and of 

environmental uncertainty on a) pollution pss, b) inventories 

xss,  and c) abatement zss.  

Progressively growing emission taxes 

Similar to the proportional emission taxation, progressively growing 

emission taxes impact only inventory levels that naturally reduce 

faster than under proportional taxation as shown in Figure 4. 

 

Figure 4. The effect of progressing emission costs and of 

environmental uncertainty on inventories xss.   

Progressively growing ambient pollution taxes 

Unlike progressively growing emission taxation and similar to the 

proportional ambient pollution costs, both pollution and inventory 

stocks are reduced by increasingly growing ambient pollution taxes. In 

this case, the effect is naturally non-linear as shown with Figure 5. 

Moreover, all the policies are influenced more strongly under lower 

pollution uncertainty. 

     

a)                                  b)  

 

c)  

Figure 5. The effect of progressively growing ambient 

pollution costs and of environmental uncertainty on a) 

pollution pss, b) inventories xss,  and c) abatement zss.  

Pollution abatement costs 

The effect of pollution abatement costs is quite expected (see Figures 

6 and 7):  the inventories still drop while pollution increases slightly 

(significantly) when the abatement cost grows proportionally 

(progressively). 

       

a)                                              b)                                      c) 

Figure 6. The effect of proportional abatement costs and of 

environmental uncertainty on a) pollution pss, b) inventories 

xss,  and c) abatement zss.  
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a)                                b)  

 

c) 

Figure 7. The effect of progressively growing abatement 

pollution costs and of environmental uncertainty on a) 

pollution pss, b) inventories xss,  and c) abatement zss.  

V. Conclusions 

We study the effect of environmental policies on production-inventory 

decisions under environmental and customer demand uncertainties. 

Assuming that the manufacturing process causes polluting emissions 

that can be reduced with an incorporated pollution abatement process, 

we find that environmental uncertainty leads to both lower expected 

steady-state pollution and inventory stocks while not affecting the 

expected steady-state production rate. The reduction in pollution is 

accomplished by increased pollution abatement efforts.  

       Although the emission taxes imply more costly production, which 

causes production smoothing, thereby increasing inventories and 

slowing down of the emission in the short-run, in the long-run we 

observe no impact on the expected steady-state pollution stock. This 

sustains the well-known claim that the industry fully exploits demand 

while simply passing on increased production costs to its consumers. 

The ambient pollution costs, however, do reduce the long-run 

expected pollution stock. The reduction is especially efficient with 

progressively growing taxation compared to proportional ambient 

pollution costs. Furthermore, in contrast to the short-run effect on 

inventories of production smoothing (described in deterministic 

studies), we find that environmental taxes always decrease long-run, 

inventory stocks. The strongest impact is observed with progressively 

growing emission taxes. The result is due to the fact that under 

growing production costs induced by environmental taxes, the 

manufacturer prefers to produce more to order rather than to stock 

thereby minimizing surpluses. Growing pollution abatement costs 

similarly decrease long-run inventory stocks. Naturally these costs are 

detrimental to the environment since they lead to lower abatement 

efforts and thereby higher pollution. 

      Although the computational experiments we conducted are in 

accordance with the US taxation system, a wider numerical analysis 

about the possible effects of various taxation approaches, including 

those under consideration as well as the hypothetical methods would 

be an important extension to the current research. As with the 

literature we cited in this study, we employed a simple Arrow-Karlin 

framework for our model based on linear-quadratic assumptions in 

terms of the dynamics and costs (including symmetric inventory-

related costs) involved. More general assumptions can be considered 

to model the costs and environmental absorption properties and their 

impact on production-inventory policies which is a challenging 

direction for future research. Further, when there are a number of 

industrial firms which pollute the same aria, then a game-theoretic 

approach can be used to study the consequences of such a competition 

which is also an important direction for future research. 

Appendix  

A1. The system of equations for the coefficients of the cost-to-go 

function: 

 2 2 2

2 3 2 1 5 2 1 2 2 5 14c ( ) (e ) ( ) 0b Db b b b c g c b g        

 2 1 2 3 5 2 1 4 3 2 2 4 5 12 ( 2 ) ( )( 2 ) ( ) 0c h b Db eb b c eb b g c b b g        

    2 1 4 5 6 4 5 2 1 2 2 6 1 52 ( ) 2 ( ) 2 ( ) 0c a Db b eb b eb b c g c b g b          

  2 2

2 3 2 4 3 2 2 44( ) ( 2 ) 0h b c eb b g c b      

  2 2 2

2 6 2 6 4 2 2 64 ( 2 ) (2 ) 4 0c b a eb b g c b        

  2 4 6 4 4 3 2 2 4 62 ( ) (2 )( 2 ) 2 0c b eb b eb b g c b b      

. 
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