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SVD-based Kalman Filter Derivative Computation
J.V. Tsyganova and M.V. Kulikova

Abstract— Recursive adaptive filtering methods are often used for
solving the problem of simultaneous state and parameters estimation

arising in many areas of research. The gradient-based schemes for

adaptive Kalman filtering (KF) require the corresponding filter sensitivity
computations. The standard approach is based on the direct differentia-

tion of the KF equations. The shortcoming of this strategy is a numerical

instability of the conventional KF (and its derivatives) with respect to

roundoff errors. For decades, special attention has been paid in the KF
community for designing efficient filter implementations that improve

robustness of the estimator against roundoff. The most popular and

beneficial techniques are found in the class of square-root (SR) or UD
factorization-based methods. They imply the Cholesky decomposition of

the corresponding error covariance matrix. Another important matrix

factorization method is the singular value decomposition (SVD) and,

hence, further encouraging KF algorithms might be found under this
approach. Meanwhile, the filter sensitivity computation heavily relies

on the use of matrix differential calculus. Previous works on the

robust KF derivative computation have produced the SR- and UD-based

methodologies. Alternatively, in this paper we design the SVD-based
approach. The solution is expressed in terms of the SVD-based KF

covariance quantities and their derivatives (with respect to unknown

system parameters). The results of numerical experiments illustrate
that although the newly-developed SVD-based method is algebraically

equivalent to the conventional approach and the previously derived SR-

and UD-based strategies, it outperforms the mentioned techniques for

estimation accuracy in ill-conditioned situations.

Index Terms— Kalman filter, filter sensitivity equations, SVD factor-

ization, array algorithms.

I. INTRODUCTION

The problem of filter sensitivities evaluation plays a key role

in many areas of research; for instance, in state estimation and

parameter identification realm [1], [2], in the field of optimal input

design [3], [4], in information theory for computing the Fisher

information matrix [5]–[7] etc. In this paper we explore linear

discrete-time stochastic systems where the associated Kalman filter

(KF) is used for estimating the unknown dynamic states. Therefore,

the standard approach for computing the filter sensitivities (with

respect to unknown system parameters) is a direct differentiation of

the KF equations. This conventional methodology is comprehensively

studied in [3], [8], [9]. The shortcoming of this strategy is a numerical

instability of the conventional KF (and its derivatives) with respect

to roundoff errors discussed in [10], [11]. Due to this fact, special

attention has been paid in the KF community for designing robust

KF implementation methods. The most popular techniques belong

to the class of square-root (SR) or UD factorization-based methods;

see [12]–[15] and many others. These algorithms imply the Cholesky

decomposition and its modification for the corresponding covariance

matrix factorization [13], [16], [17]. We may note that the Cholesky

decomposition exists and is unique when the symmetric matrix to

be decomposed is positive definite [18]. If it is a positive semi-

definite, then the Cholesky decomposition still exists, however, it
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is not unique [19]. Further encouraging KF implementation methods

might be found with the use of singular value decomposition (SVD).

Some evidences of better estimation quality obtained under the SVD-

based approach exist in the field of nonlinear filtering; for instance,

see discussion in [20]–[22] and others. For linear filtering problem

examined in this paper, the first SVD-based KF was, to the best of

our knowledge, designed in [23]. Our recent analysis exposes that the

mentioned SVD-based filter can be further improved for enhancing its

numerical robustness. This result is comprehensively studied in [24],

where some new stable SVD-based KF implementations are designed.

Despite the existence of inherently more stable SR-, UD- and SVD-

based KF variants, the problem of robust filter derivative computation

is seldom addressed in practice because of its complicated matter.

The solution to the mentioned problem heavily relies on the use

of matrix differential calculus. The first SR-based information-type

algorithm for the KF derivative computations belongs to Bierman et

al. and was appeared in 1990; see [25]. Alternatively, the SR-based

covariance-type method was proposed in [26] as well as the UD-

based scheme designed in [27]. Later on, a general “differentiated”

SR-based methodology was designed for both orthogonal and J-

orthogonal transformations involved in the filtering equations (and

their derivatives) in [28]–[30]. Alternatively, in this technical note we

develop the SVD-based approach for the KF derivative computation.

We show that the new technique is algebraically equivalent to the

conventional “differentiated” KF, but it improves the robustness

against roundoff errors as well as the existing “differentiated” SR- and

UD-based methodologies. However, motivated by the results obtained

in nonlinear filtering realm, we expect that the newly-designed SVD-

based method outperforms the previously derived algorithms while

solving the parameters estimation problem, especially when the error

covariance is ill-conditioned.

II. FILTER SENSITIVITY EQUATIONS: CONVENTIONAL APPROACH

Consider the state-space equations

xk = F (θ)xk−1+B(θ)uk−1+G(θ)wk−1, k ≥ 1, (1)

zk = H(θ)xk + vk, vk ∼ N (0, R(θ)) , wk ∼ N (0,Ω(θ)) (2)

where zk ∈ R
m, uk ∈ R

d, xk ∈ R
n and θ ∈ R

p are, respectively,

the vectors of available measurements, the known deterministic

control input, the unknown dynamic state and the unknown system

parameters that need to be estimated from the available experimental

data, {z1, . . . , zN}. The process and the measurement noises are

independent Gaussian zero-mean white-noise processes that are also

independent from the initial state x0 ∼ N (x̄0,Π0(θ)). The covari-

ances are assumed to be Ω(θ) ≥ 0, R(θ) > 0 and Π0(θ) ≥ 0.

Equations (1), (2) represent a set of the state-space models (SSMs).

Each of them corresponds to a particular system parameter value. This

means that for any fixed value of θ, say θ̂∗, the system matrices are

known, i.e. there is no uncertainty in model (1), (2). For simplicity,

throughout the paper we write F etc. instead of F (θ̂∗) etc. when

evaluating at the fixed point θ̂∗. The associated KF yields the linear

minimum least-square estimate of the unknown dynamic state that

http://arxiv.org/abs/1612.04777v2
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can be recursively computed via the equations [16, Theorem 9.2.1]:

ek = zk −Hx̂k|k−1, x̂1|0 = x̄0, k ≥ 1, (3)

Kp,k = FPk|k−1H
TR−1

e,k, Re,k = R+HPk|k−1H
T , (4)

x̂k+1|k = F x̂k|k−1 +Buk +Kp,kek (5)

where {ek} are innovations of the discrete-time KF. The important

property of the KF for Gaussian SSMs is ek ∼ N (0, Re,k). The

Pk|k−1 = E
{
(xk − x̂k|k−1)(xk − x̂k|k−1)

T
}

is the one-step ahead

predicted error covariance matrix computed as follows:

Pk+1|k = FPk|k−1F
T+GΩGT−Kp,kRe,kK

T
p,k, P1|0= Π0. (6)

The conventional approach for deriving the related sensitivity

model is based on differentiation of the corresponding filtering

equations. Let A(θ) ∈ R
m×n, B(θ) ∈ R

n×q be matrices, which

entries are differentiable functions of the parameter vector θ ∈ R
p.

The m×n matrix ∂iA = ∂A/∂θi implies the partial derivative of the

A with respect to the i-th component of θ, i = 1, . . . p. The m× n
matrix dA =

∑p
i=1 (∂iA) · (dθi) is the differential form of first-order

derivatives of A(θ). Taking into account the matrix product rule of

differentiation [31, p. 955]: d (AB) = (dA)B + A (dB), and the

fact dI = 0, we derive d
(
A−1

)
= −A−1 (dA)A−1 for any square

and invertible matrix A (it is also known as the Jacobi’s formula);

see also [8, p. 546]. Using these differentiation rules, the necessary

differentials of (3)-(6) can be written as follows [8], [9]:

dek = −
[
(dH) x̂k|k−1 +H

(
dx̂k|k−1

)]
, (7)

dx̂k+1|k = (dF ) x̂k|k−1 + F
(
dx̂k|k−1

)
+(dB)uk

+ (dKp,k) ek +Kp,k (dek), (8)

dKp,k = (dF )Pk|k−1H
TR−1

e,k + F
(
dPk|k−1

)
HTR−1

e,k

+ FPk|k−1

(

dHT
)

R−1
e,k

− FPk|k−1H
TR−1

e,k (dRe,k)R
−1
e,k, (9)

dRe,k = dR+(dH)Pk|k−1H
T +H

(
dPk|k−1

)
HT

+HPk|k−1

(

dHT
)

, (10)

dPk+1|k = (dF )Pk|k−1F
T + F

(
dPk|k−1

)
F T

+ FPk|k−1

(

dF T
)

+(dG)ΩGT +G (dΩ)GT

+GΩ
(

dGT
)

− (dKp,k)Re,kK
T
p,k

−Kp,k (dRe,k)K
T
p,k −Kp,kRe,k

(

dKT
p,k

)

. (11)

In deriving the equations above we take into account that dzk = 0
and duk = 0, because the observations zk and the control input uk do

not depend on the parameters (i.e. their realizations are independent

of variations in θ) and therefore have a differential equal to zero.

We may also note that except for the scalar factor dθi, ∂iA is a

special case of dA, so that to obtain partial-derivative forms from

differential forms, we only have to everywhere replace operator d (·)
with ∂i (·) for i = 1, . . . p [8, p. 546]. Hence, from (7) – (11) we

obtain a set of p vector equations, known as the filter sensitivity

equations, for computing ∂ix̂k+1|k, i = 1, . . . p, and a set of p
matrix equations, known as the Riccati-type sensitivity equations,

for computing ∂iPk+1|k, i = 1, . . . p. This approach for the KF

sensitivity model derivation is called the “differentiated KF”. Its main

drawback is a numerical instability of the conventional KF (3) – (6)

and inherently its derivative (7) – (11) with respect to roundoff errors.

The goal of this paper is to design a robust methodology for

updating the “differentiated” KF equations above in terms of SVD

factors (and their derivatives) of the error covariance matrices Pk|k−1

instead of using the full matrices Pk|k−1 (and their derivatives).

III. SVD FACTORIZATION-BASED KALMAN FILTERING

To the best of our knowledge, the first SVD-based KF was by Wang

et al. and appeared in 1992; see Eqs (17), (22), (23) in [23, pp. 1225-

1226]. Our recent research shows that although that implementation

is inherently more stable than the KF (3) – (6), it is still sensitive

to roundoff and poorly treats ill-conditioned problems. The cited

analysis exposes that the SVD-based filter can be further improved for

enhancing its numerical robustness. This result is comprehensively

studied in [24], where new stable SVD-based KF implementations

are designed. The readers are referred to the cited paper for the

detailed derivations, numerical stability discussion and proofs. Here,

we briefly outline the principle steps for construction of the most

advanced SVD-based KF variant. Next, we extend it to a stable filter

sensitivities computation, which is the main purpose of this study.

Consider the SVD factorization [32, Theorem 2.8.1]: suppose A ∈
C

m×n, rank A = r. There exist positive numbers σ1 ≥ . . . σr > 0
and unitary matrices W ∈ C

m×m and V ∈ C
n×n such that

A = WΣV ∗, Σ =

[
S 0
0 0

]

∈ C
m×n, S = diag{σ1, . . . , σr}

where V ∗ is the conjugate transpose of V .

The diagonal entries of Σ are known as the singular values of A.

The non-zero σi (i = 1, . . . , r) are the square roots of the non-zero

eigenvalues of both A∗A and AA∗.

If A is a square matrix such that A∗A = AA∗, then the A can be

diagonalized using a basis of eigenvectors according to the spectral

theorem, i.e. it can be factorized as follows: A = QDQ∗ where Q
is a unitary matrix and D is a diagonal matrix, respectively. If A
is also positive semi-definite, then the spectral decomposition above,

A = QDQ∗, is also a SVD factorization, i.e. the diagonal matrix

D contains the singular values of A. For the SSMs examined in this

paper, the initial error covariance Π0 ∈ R
n is a symmetric positive

semi-definite matrix and, hence, the spectral decomposition implies

Π0 = QΠ0
DΠ0

QT
Π0

where QΠ0
and DΠ0

are the orthogonal and

diagonal matrices, respectively. It is also a SVD factorization, i.e.

the factor DΠ0
contains the singular values of Π0.

Now, we are ready to present the SVD-based KF implementation

developed recently in [24]. Instead of conventional recursion (3)-(6)

for Pk|k−1, we update only their SVD factors, {QPk|k−1
, D

1/2
Pk|k−1

},

at each iteration step of the filter as shown below.

INITIAL STEP (k = 0). Apply the SVD factorization for the initial

error covariance matrix Π0 = QΠ0
DΠ0

QT
Π0

and, additionally, for

the process and measurement noise covariances: Ω = QΩDΩQ
T
Ω

and R = QRDRQ
T
R , respectively. Set the initial values as follows:

QP1|0
= QΠ0

, D
1/2
P1|0

= D
1/2
Π0

and x̂1|0 = x̄0.

MEASUREMENT UPDATE (k = 1, . . . , N ). Build the pre-arrays

from the filter quantities that are currently available and, then, apply

the SVD factorizations in order to obtain the corresponding SVD

factors of the updated filter quantities as follows:
[

D
1/2
R QT

R

D
1/2
Pk|k−1

QT
Pk|k−1

HT

]

︸ ︷︷ ︸
Pre−array

= W
(1)
MU

[

D
1/2
Re,k

0

]

QT
Re,k

︸ ︷︷ ︸
Post−array SVD factors

, (12)

K̄k =
(

QPk|k−1
DPk|k−1

QT
Pk|k−1

)

HTQRe,k
, (13)

[

D
1/2
Pk|k−1

QT
Pk|k−1

(I −KkH)T

D
1/2
R QT

RK
T
k

]

︸ ︷︷ ︸
Pre−array

= W
(2)
MU

[

D
1/2
Pk|k

0

]

QT
Pk|k

︸ ︷︷ ︸
Post−array SVD factors

(14)

where we denote Kk = K̄kD
−1
Re,k

QT
Re,k

. The matrices W
(1)
MU ∈

R
(m+n)×(m+n), QRe,k

∈ R
m×m and W

(2)
MU ∈ R

(n+m)×(n+m),

QPk|k
∈ R

n×n are the orthogonal matrices of the corresponding
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SVD factorizations in (12), (14). Next, D
1/2
Re,k

∈ R
m×m and D

1/2
Pk|k
∈

R
n×n are diagonal matrices with square roots of the singular values

of Re,k and Pk|k, respectively.

It can be easily seen that the required SVD factors of the inno-

vation covariance Re,k , i.e. {QRe,k
, D

1/2
Re,k
}, and a posteriori error

covariance matrix Pk|k, i.e. {QPk|k
, D

1/2
Pk|k
}, are directly read-off

from the post-array factors in (12) and (14), respectively. Finally,

find a posteriori estimate x̂k|k through equations

x̂k|k = x̂k|k−1+ K̄kD
−1
Re,k

ēk, ēk = QT
Re,k

(
zk −Hx̂k|k−1

)
. (15)

TIME UPDATE (k = 1, . . . , N ). Build the pre-array and apply the

SVD factorization to obtain a priori error covariance SVD factors

{QPk+1|k
, D

1/2
Pk+1|k

} as follows:

[

D
1/2
Pk|k

QT
Pk|k

F T

D
1/2
Ω QT

ΩG
T

]

︸ ︷︷ ︸
Pre−array

= WTU

[

D
1/2
Pk+1|k

0

]

QT
Pk+1|k

︸ ︷︷ ︸
Post−array SVD factors

(16)

and find a priori estimate x̂k+1|k as follows:

x̂k+1|k = F x̂k|k +Buk. (17)

The SVD-based KF implementation above is formulated in two-

stage form. Meanwhile, following [15], the conventional KF (3) –

(6) is expressed in the so-called “condensed” form. Nevertheless,

these KF variants are algebraically equivalent. It is easy to prove

if we take into account the SVD factorization A = WΣVT and

the properties of orthogonal matrices. Indeed, for each pre-array to

be decomposed we have ATA = (VΣWT )(WΣVT ) = VΣ2
V

T .

Next, by comparing both sides of the obtained matrix equations, we

come to the corresponding SVD-based KF formulas. The detailed

derivation can be found in [24].

IV. FILTER SENSITIVITY EQUATIONS: SVD-BASED APPROACH

To begin constructing the “differentiated” SVD-based method for

computing the filter sensitivities, we pay attention to the underlying

SVD-based filter and remark that it is formulated in the so-called

array form. This makes the modern KF algorithms better suited to

parallel implementation and to very large scale integration (VLSI)

implementation as mentioned in [15]. Each iteration of the SVD-

based filter examined has the following pattern: given a pre-array A ∈
R

(k+s)×s, compute the post-array SVD factors W ∈ R
(k+s)×(k+s),

Σ ∈ R
(k+s)×s and V ∈ R

s×s by means of the SVD factorization

A = W ΣV
T , Σ =

[
S
0

]

, S = diag{σ1, . . . , σs} (18)

where the matrix A is of full column rank, i.e. rankA = s; the W,

V are orthogonal matrices and S is a diagonal matrix with singular

values of the pre-array A.

The goal of our study is to develop the method that naturally

extends formula (18) on the post-array SVD factors’ derivative com-

putation. More precisely, the computational procedure is expected to

utilize the pre-array A and its derivative A′
θ for reproducing the SVD

post-arrays {W,Σ,V} together with their derivatives {W′
θ ,Σ

′
θ ,V

′
θ}.

To achieve our goal, we prove the result presented below. We also

bear in mind that the SVD post-array factor W is of no interest in the

presented SVD-based KF for performing the next step of the filter

recursion and, hence, the quantity W
′
θ is not required to be computed.

Lemma 1: Consider the SVD factorization in (18). Let entries of

the pre-array A(θ) be known differentiable functions of a scalar

parameter θ. We assume that σi(θ) 6= σj(θ), j 6= i, for all θ. Given

the derivative of the pre-array, A′
θ , the following formulas calculate

the corresponding derivatives of the post-arrays:

Σ′
θ =

[
S′
θ

0

]

, S′
θ = diag

[

W
TA′

θV

]

s×s
, (19)

V
′
θ = V

[

L̄T
2 − L̄2

]

(20)

where
[
W

TA′
θV

]

s×s
denotes the main s × s block of the matrix

product WTA′
θV, and L̄2 is a strictly lower triangular matrix, which

entries are computed as follows:

(l̄2)ij =
ūjiσj + l̄ijσi

σ2
i − σ2

j

, i = 2, . . . , s, j = 1, . . . , i− 1. (21)

In equation above, the quantities ūji and l̄ji denote the entries of

matrices L̄ and Ū , respectively. The L̄, Ū are strictly lower and upper

triangular parts of the matrix product
[
W

TA′
θV

]

s×s
, respectively.

Proof: By differentiating (18) with respect to θ, we obtain

A′
θ = W

′
θΣV

T +WΣ′
θV

T +WΣ (VT )′θ. (22)

Having applied a right-multiplier V and a left-multiplier W
T to

equation (22), we have

W
TA′

θV =
[

W
T
W

′
θ

]

Σ + Σ′
θ + Σ

[

(VT )′θV
]

. (23)

In deriving the equation above we take into account the properties of

any orthogonal matrix Q, i.e. QQT = QTQ = I .

It is also easy to show that for any orthogonal matrix Q the product

Q′
θQ

T is a skew symmetric matrix. Indeed, by differentiating both

sides of QQT = I with respect to θ, we get Q′
θQ

T +Q
(
QT

)′

θ
= 0,

or in the equivalent form Q′
θQ

T = −
(
Q′

θQ
T
)T

. The latter implies

that the matrix Q′
θQ

T is skew symmetric.

For the sake of simplicity we introduce the following notations:

Υ = W
T
W

′
θ and Λ = V

T
V

′
θ . As discussed above, the matrices

Υ ∈ R
(k+s)×(k+s) and Λ ∈ R

s×s are skew symmetric, because W

and V are orthogonal matrices. Hence, we have ΛT = −Λ. Taking

into account this fact, we obtain the following partitioning of the

matrix form of equation (23):
[[

W
TA′

θV
]

s×s[
W

TA′
θV

]

k×s

]

=

[
[Υ]s×s [Υ]s×k

[Υ]k×s [Υ]k×k

] [
S
0

]

+

[
S′
θ

0

]

−

[
S
0

]

Λ.

From the equation above, we derive the formula for the main s×s
block of the matrix product WTA′

θV

[

W
TA′

θV

]

s×s
= [Υ]s×sS + S′

θ − SΛ. (24)

Hence, the diagonal matrix S′
θ obeys the equation

S′
θ =

[

W
TA′

θV

]

s×s
− [Υ]s×sS + SΛ. (25)

Now, let us discuss formula (25) in details. Recall the matrices Υ
and Λ are skew symmetric matrices and, hence, their diagonal entries

are equal to zero. The multiplication of any skew symmetric matrix

by a diagonal matrix does not change the matrix structure, i.e. the

diagonal entries of the matrix products [Υ]s×sS and SΛ are equal to

zero as well. Meanwhile, the matrix
[
W

TA′
θV

]

s×s
is a full matrix

and contains a diagonal part. Hence, from equation (25) we conclude

that diagonal matrix S′
θ is, in fact, a diagonal part of the main s× s

block of the matrix product W
TA′

θV. This completes the proof of

formulas in equation (19).

Finally, we need to compute V
′
θ where Λ = V

T
V

′
θ . Since V is an

orthogonal matrix, we obtain V
′
θ = VΛ. Next, any skew symmetric

matrix can be presented as a difference of a strictly lower triangular
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matrix and its transpose. Hence, the skew symmetric matrices [Υ]s×s

and Λ can be represented as follows:

[Υ]s×s = L̄T
1 − L̄1 Λ = L̄T

2 − L̄2 (26)

where L̄1 and L̄2 are strictly lower triangular matrices.

Next, we split the matrix product
[
W

TA′
θV

]

s×s
into strictly

lower triangular, diagonal and strictly upper triangular parts, i.e.
[
W

TA′
θV

]

s×s
= L̄ + D + Ū . It was proved above that S′

θ = D.

Taking into account this fact, the substitution of both formulas in (26)

into (25) yields

D
︸︷︷︸

S′
θ

= L̄+D + Ū
︸ ︷︷ ︸

[WT A′
θ
V]

s×s

−
[

L̄T
1 − L̄1

]

︸ ︷︷ ︸

[Υ]s×s

S + S
[

L̄T
2 − L̄2

]

︸ ︷︷ ︸
Λ

. (27)

Hence, we obtain

L̄+ Ū = [L̄T
1 − L̄1]S − S[L̄T

2 − L̄2]. (28)

In (28), the L̄, L̄1, L̄2 are strictly lower triangular matrices, the

Ū is a strictly upper triangular matrix and S is a diagonal. Hence,

equation (28) implies
{

Ū = L̄T
1 S − SL̄T

2 ,
L̄ = −L̄1S + SL̄2.

It can be solved with respect to entries of L̄2 as follows:

(l̄2)ij =
ūjisj + l̄ijsi

s2i − s2j
, i = 2, . . . , s, j = 1, . . . , i− 1.

The formula above is exactly equation (21). Having computed the

entries (l̄2)ij we can form the matrix Λ = L̄T
2 − L̄2 in (26) and,

then, compute the derivative V
′
θ = VΛ. This completes the proof

of (20) and Lemma 1.

Remark 1: The assumption of singular values of A(θ) being

distinct for all values of parameter θ is necessary for avoiding the

division by zero in formula (21). In future, if possible, we will intend

for relaxing this restriction, which reduces the practical applicability

of the proposed method.

For readers’ convenience, Algorithm 1 provides a pseudocode for

the computational scheme derived in Lemma 1.

ALGORITHM 1. DIFFERENTIATED SVD(A,A′
θ)

Input: A, A′
θ ✄ Pre-array and its derivative

1 Apply SVD from (18) to the pre-array A. Save W, S, V.

2 Compute the matrix product WTA′
θV.

3 Extract the main s× s block M =
[
W

TA′
θV

]

s×s
.

4 M = L̄+D + Ū . ✄ Split into strictly lower triangular, diagonal

✄ and strictly upper triangular parts

5 Given L̄, Ū and S, compute the lower triangular L̄2 by (21).

6 Find V
′
θ = V

[
L̄T

2 − L̄2

]
.

7 Find S′
θ = D. Hence, Σ′

θ = [S′
θ | 0]

T
.

Output: Σ, V and Σ′
θ , V′

θ ✄ Post-arrays and their derivative

The theoretical result presented in Lemma 1 can be further applied

to the SVD factorization-based KF discussed in Section III. The

obtained computational scheme is summarized in Algorithm 2 and

shown in the form of a pseudocode. The new “differentiated” SVD-

based KF extends the underlying SVD-based filter on the derivative

computation (with respect to unknown system parameters) for updat-

ing the corresponding filter sensitivities equations. The method can

be used for replacing the conventional “differentiated KF” approach

discussed in Section II by inherently more stable approach, which

is preferable for practical implementation. Finally, we would like

to remark that any “differentiated” filtering technique consists of

two parts: i) the underlying KF variant, and ii) its “differentiated”

extension used for the filter sensitivities computation.

ALGORITHM 2. DIFFERENTIATED SVD-BASED KF(x̄0,Π0)

Initial Step (k = 0).

1 Ω = QΩDΩQ
T
Ω and R = QRDRQ

T
R ✄ SVD factorization

2 Π0 = QΠ0
DΠ0

QT
Π0

✄ SVD factorization

3 Set QP1|0
= QΠ0

, D
1/2
P1|0

= D
1/2
Π0

and x̂1|0 = x̄0.

4 Set ∂iQP1|0
= ∂iQΠ0

, ∂iD
1/2
P1|0

= ∂iD
1/2
Π0

, ∂ix̂1|0 = 0.

Measurement Update: (k = 1, . . . , N ).

5 Build pre-array A in (12) and its derivatives ∂iA, i = 1, p.

6 [Σ, V, ∂iΣ, ∂iV] ← Differentiated SVD(A, ∂iA).

7
{

D
1/2
Re,k

, ∂iD
1/2
Re,k

}

← read-off from Σ, ∂iΣ (i = 1, p).

8
{
QRe,k

, ∂iQRe,k

}
← read-off from V, ∂iV (i = 1, p).

9 Find K̄k from (13) and Kk = K̄kD
−1
Re,k

QT
Re,k

.

10 ∂iK̄k = ∂i

(

QPk|k−1
DPk|k−1

QT
Pk|k−1

HTQRe,k

)

, i = 1, p.

11 Build pre-array A in (14) and its derivatives ∂iA, i = 1, p.

12 [Σ, V, ∂iΣ, ∂iV] ← Differentiated SVD(A, ∂iA).

13
{

D
1/2
Pk|k

, ∂iD
1/2
Pk|k

}

← read-off from Σ, ∂iΣ (i = 1, p).

14
{

QPk|k
, ∂iQPk|k

}

← read-off from V, ∂iV (i = 1, p).

15 Find a posteriori estimate x̂k|k and ēk from (15).

16 ∂iēk =
(

∂iQ
T
Re,k

) [
zk −Hx̂k|k−1

]

−QT
Re,k

[
(∂iH) x̂k|k−1 +H

(
∂ix̂k|k−1

)]
, i = 1, p.

17 ∂ix̂k|k = ∂ix̂k|k−1 +
(
∂iK̄k

)
D−1

Re,k
ēk + K̄kD

−1
Re,k

(∂iēk)

− K̄kD
−1
Re,k

(
∂iDRe,k

)
D−1

Re,k
ēk, i = 1, p.

Time Update: (k = 1, . . . , N ).

18 Build pre-array A in (16) and its derivatives ∂iA, i = 1, p.

19 [Σ, V, ∂iΣ, ∂iV] ← Differentiated SVD(A, ∂iA).

20
{

D
1/2
Pk+1|k

, ∂iD
1/2
Pk+1|k

}

← read-off from Σ, ∂iΣ (i = 1, p).

21
{

QPk+1|k
, ∂iQPk+1|k

}

← read-off from V, ∂iV (i = 1, p).

22 Find a priori estimate x̂k+1|k from equation (17).

23 ∂ix̂k+1|k = (∂iF ) x̂k|k + F
(
∂ix̂k|k

)
+(∂iB)uk, i = 1, p.

End.

At the same manner, one can naturally augment any existing SVD-

based KF variant (see, for instance, the algorithms in [23], [24]) or

potentially new SVD-based KF implementation on the corresponding

filter sensitivities computation.

Finally, taking into account the properties of orthogonal matrices,

it is not difficult to show that the negative log likelihood function

(LF) given as [33]:

L
(

θ, ZN
1

)

= c0 +
1

2

N∑

k=1

{

ln (detRe,k) + eTkR
−1
e,kek

}

can be rewritten in terms of the SVD filter variables QRe,k
, DRe,k

and ēk appeared in equations (12) – (17) as follows:

L
(

θ, ZN
1

)

= c0 +
1

2

N∑

k=1

{

ln
(
detDRe,k

)
+ ēTkD

−1
Re,k

ēk
}

(29)

where ZN
1 = {z1, . . . , zN} is N -step measurement history and c0 is

a constant value where c0 = Nm
2

ln(2π).
Taking into account that the matrix DRe,k

is diagonal and using the

Jacobi’s formula, d
(
A−1

)
= −A−1 (dA)A−1, from (29) we obtain

the expression for the log LF gradient evaluation in terms of the SVD

filter variables and their derivatives computed in the newly-developed

Algorithm 2 (for each i = 1, . . . , p):

∂iL
(

θ, ZN
1

)

=
1

2

N∑

k=1

{

tr

[(
∂iDRe,k

)
D−1

Re,k

]

+2
(

∂iē
T
k

)

D−1
Re,k

ēk

−ēTkD
−1
Re,k

(
∂iDRe,k

)
D−1

Re,k
ēk
}

. (30)



PREPRINT 5

V. NUMERICAL EXPERIMENTS

By using simple test problem, we would like to demonstrate

thoroughly each step of the method summarized in Algorithm 1.

Example 1: Given pre-array A(θ) and its derivative A′
θ

A(θ) =









−2θ sin(θ)
2θ θ2

sin2 (θ) 1/3 θ3

θ 2θ2 − 1
cos2 (θ) θ3 + θ2









,

compute the corresponding SVD post-arrays Σ, V and their derivative

Σ′
θ , V′

θ at the point θ̂ = 0.5.

Table 1 illustrates each step of the computational scheme in

Algorithm 1. To assess the accuracy of computations, we compute

l∞ =
∣
∣
∣

∣
∣
∣(ATA)

′

θ̂=0.5 − (VΣ2
V

T )
′

θ̂=0.5

∣
∣
∣

∣
∣
∣
∞

. This quantity should be

small. Indeed, taking into account the properties of diagonal and

orthogonal matrices, from (18) we have ATA = VΣT
W

T
WΣVT =

VΣ2
V

T . Hence, the derivatives of both sides of the last formula

should coincide as well. In our numerical experiment we obtain

l∞ = 1.99 · 10−15 . This justifies the correctness of computations via

Algorithm 1 and confirms the theoretical derivations in Lemma 1.

TABLE I

ALGORITHM 1 ILLUSTRATIVE CALCULATIONS FOR EXAMPLE 1

Input Pre-array: A|
θ̂=0.5

=

[−1.0000 0.4794
1.0000 0.2500
0.2298 0.0417
0.5000 −0.5000
0.7702 0.3750

]

Pre-array derivative: A′
θ

∣

∣

θ̂=0.5
=





−2.0000 0.8776
2.0000 1.0000
0.8415 0.2500
1.0000 2.0000

−0.8415 1.7500





Line 1. W =





−0.6070 0.4848 0.1556 0.2057 0.5745
0.5723 0.4035 0.0539 −0.5533 0.4478
0.1323 0.0735 0.9579 0.1059 −0.2197
0.3159 −0.5593 0.0946 0.4337 0.6247
0.4321 0.5329 −0.2152 0.6724 −0.1756





Σ =

[ 1.7061 0
0 0.8185
0 0
0 0
0 0

]

, V =
[

0.9967 0.0811
−0.0811 0.9967

]

Line 2. Compute M =





2.2959 −1.6522
1.1584 0.5691
0.5177 −0.1427

−0.2470 −2.2944
−1.8181 −0.8517



.

Line 3. Extract [M ]2×2 =
[

2.2959 −1.6522
1.1584 0.5691

]

Line 4. Split [M ]2×2=
[

0 0
1.1584 0

]

+
[

2.2959 0
0 0.5691

]

+
[

0 −1.6522
0 0

]

Line 5. Compute L̄2 =
[

0 0
0.8348 0

]

Line 6. V′
θ

∣

∣

θ̂=0.5
=

[

0.0677 −0.8321
0.8321 0.0677

]

Line 7. Σ′
θ

∣

∣

θ̂=0.5
=

[

2.2959 0
0 0.5691
0 0
0 0
0 0

]

Output Post-arrays: Σ|
θ̂=0.5

=

[ 1.7061 0
0 0.8185
0 0
0 0
0 0

]

V|
θ̂=0.5 =

[

0.9967 −0.0811
−0.0811 −0.9967

]

Post-arrays’ derivative: Σ′
θ

∣

∣

θ̂=0.5
and V′

θ

∣

∣

θ̂=0.5
(Lines 6,7)

Next, we wish to demonstrate how the novel method for the filter

sensitivities evaluation (Algorithm 2) works in practice. For that,

we consider the parameter estimation problem where the gradient-

based optimization method is applied for finding the optimal value

of unknown system parameters. We test the conventional “differ-

entiated” KF (Eqs (3) – (11) in Section II) and the previously

derived SR- and UD-based “differentiated” KF variants from [26]

and [27], respectively, against the new “differentiated” SVD-based

KF (Algorithm 2). As discussed in Section IV, all “differentiated”

methods consist of two parts and, hence, they compute the Log

LF and its gradient simultaneously. These values are utilized by a

gradient-based optimization method for maximizing the log LF with

respect to system parameters. Our library of codes is implemented in

MATLAB where we use the built-in optimization method fminunc.

Example 2: Consider a linearized version of the in-track motion

dynamic when a satellite travels in a circular orbit [34]:

xk =







1 1 0.5 0.5
0 1 1 1
0 0 1 0
0 0 0 0.606






xk−1 + wk−1, Ω =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 q1







zk =

[
1 1 1 1
1 1 1 1 + δ

]

xk + vk, R =

[
θ2 δ2 0
0 θ2 δ2

]

where q1 = 0.63 · 10−2, x0 ∼ N (0, θ2I4) and θ is the unknown

system parameter that needs to be estimated. In contrast to [34], we

wish to test both well-conditioned and ill-conditioned situations. For

that, following [17], we simulate the roundoff by parameter δ. It is

assumed to be δ2 < ǫroundoff , but δ > ǫroundoff where ǫroundoff

denotes the unit roundoff error1. When δ → ǫroundoff , i.e. the

machine precision limit, the problem above becomes ill-conditioned.

By varying the ill-conditioning parameter δ, we are able to explore

some numerical insights of each method assessed.

The numerical experiment is organized as follows. For each fixed

value of ill-conditioning parameter δ, the SSM in Example 2 is

simulated for θ∗ = 5 to generate N = 100 measurements. Next,

the unknown system parameter θ is estimated from the available

experimental data, ZN
1 = {z1, . . . , zN}, by using gradient-based

adaptive KF techniques examined, i.e. by four “differentiated” KF

methods mentioned earlier in this Section. For a fair comparison,

each “differentiated” algorithm utilizes the same data ZN
1 and the

same initial value for the optimization method, θ̂(0) = 1. Next, the

obtained optimal estimate θ̂∗ is compared with the “true” value of

θ∗ = 5 for assessing the estimation quality of each method. We repeat

the experiment M = 100 times and calculate a posterior mean of the

estimate, the root mean squared error (RMSE) and the mean absolute

percentage error (MAPE) over 100 Monte Carlo runs.

Having carefully analyzed the obtained numerical results summa-

rized in Table 2, we make a few important conclusions. First, all

“differentiated” KF variants work equally well when δ is about 10−1

and 10−2, i.e. when the problem is not ill-conditioned. This con-

firms that all “differentiated” techniques are algebraically equivalent.

Second, among all methods examined, the conventional approach

(“differentiated” KF) shows the worst performance. It degrades faster

than any other algorithms when δ → ǫroundoff . Furthermore, the

line in Table 2 means that MATLAB can not even run the algorithm.

Third, we analyze the outcomes obtained by other methods tested

and observe that the UD- and SVD-based “differentiated” techniques

produce a better estimation quality than the SR-based counterpart.

This conclusion is reasonable if we recall that in this paper we do

not explore the filtering algorithms, but their differential form for

the KF sensitivities computation. Any existing “differentiated” SR-

based scheme requires the triangular matrix inversion R
1/2
e,k that is

a square-root factor of the innovation covariance Re,k; see Eq (6)

in [26]. In contrast, the UD- and SVD-based “differentiated” methods

involve the inversion of only diagonal matrix DRe,k
; see (30) and

Eq (8) in [27]. Finally, we observe that the new SVD-based approach

slightly outperforms the UD-based counterpart when δ → ǫroundoff .

1Computer roundoff for floating-point arithmetic is characterized by a single
parameter ǫroundoff , defined in different sources as the largest number such
that either 1+ǫroundoff = 1 or 1+ǫroundoff/2 = 1 in machine precision.
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TABLE II

EFFECT OF ROUNDOFF ERRORS IN ILL-CONDITIONED TEST PROBLEMS IN EXAMPLE 2; EXACT θ∗ = 5, 100 MONTE CARLO RUNS

“differentiated” KF “differentiated” SR-based KF “differentiated” UD-based KF “differentiated” SVD-based KF

δ Mean RMSE MAPE% Mean RMSE MAPE% Mean RMSE MAPE% Mean RMSE MAPE%

10−1 5.0046 0.2485 3.8829 5.0046 0.2485 3.8829 5.0046 0.2485 3.8829 5.0046 0.2485 3.8829

10−2 4.9649 0.2784 4.2892 4.9649 0.2784 4.2883 4.9649 0.2784 4.2883 4.9649 0.2784 4.2883

10−3 5.2764 0.7027 9.7757 5.0083 0.3555 5.7217 5.0083 0.3555 5.7217 5.0083 0.3555 5.7217

10−4 8.8812 4.1440 77.623 4.9879 0.3715 5.8595 4.9879 0.3715 5.8596 4.9879 0.3715 5.8597

10−5 0.2803 8.0217 >100% 4.9509 0.3352 5.6154 4.9508 0.3353 5.6162 4.9509 0.3352 5.6150

10−6 -0.1315 7.2403 >100% 4.9310 1.0362 6.8368 4.9323 1.0333 6.8265 5.0288 0.3138 4.8826

10−7 − − − 4.9298 0.3658 5.8586 4.9268 0.3562 5.6883 4.9249 0.3507 5.5674

10−8 − − − − − − 5.0437 0.3757 6.0712 5.0493 0.3790 6.0946

10−9 − − − − − − 6.0119 1.2179 20.762 5.9738 1.1853 20.106

10−10 − − − − − − 6.7496 2.6030 49.405 6.7021 2.5286 49.252

In summary, the previously derived UD- and the new SVD-

based techniques provide the best estimation quality when solving

parameter estimation problem by the gradient-based adaptive filtering

methodology. This creates a strong background for their practical use.

In our ill-conditioned test example, the new SVD-based approach

even slightly outperforms the UD-based counterpart.
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