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Integral control of port-Hamiltonian systems: non-passive outputs
without coordinate transformation

Joel Ferguson, Alejandro Donaire and Richard H. Middleton

Abstract—In this paper we present a method for the addition
of integral action to non-passive outputs of a class of port-
Hamiltonian systems. The proposed integral controller is a
dynamic extension, constructed from the open loop system, such
that the closed loop preserves the port-Hamiltonian form. It is
shown that the controller is able to reject the effects of both
matched and unmatched disturbances, preserving the regulation
of the non-passive outputs. Previous solutions to this problem
have relied on a change of coordinates whereas the presented
solution is developed using the original state vector and, therefore,
retains its physical interpretation. In addition, the resulting closed
loop dynamics have a natural interpretation as a Control by
Interconnection scheme.

I. INTRODUCTION

Port-Hamiltonian (pH) models describe system dynamics in
terms of the energy, interconnection and dissipation structures
[1]. The physical information readily available from models
written in pH form has inspired successful nonlinear control
techniques such as energy shaping (ES) and interconnection
and damping assignment (IDA) [2], [3]. Controllers designed
with these methods are such that the closed-loop dynamics can
be written as a pH system with a desired structure and energy
function [1]. The closed-loop energy function is chosen to
have a minimum at the desired equilibrium point of the control
system.

Control by Interconnection (Cbl) is a passivity-based control
(PBC) methods that considers the dynamics of the controller
to be in the pH form [4]. The controller is then interconnected
to the plant via a power-preserving interconnection which
implies that, the closed-loop dynamics are passive if both the
plant and controller are passive. Casimir functions (dynamic
invariants) are used to collapse the dynamics of the controller
and generate a static-feedback law [4]. The developments
of Cbl methods has primarily focused on the stabilisation
problem by developing static state-feedback controllers [1]],
(41, [50.

The action of external disturbances on controlled pH sys-
tems can produce a shift of the equilibrium or may induce in-
stabilities. Typically, passivity with respect the original input-
output pair no longer holds which means that the Hamiltonian
cannot be used as a Lyapunov candidate for the disturbed
system. However, under the presence of constant disturbances,
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we can explore the passivity of the so-called incremental
model [6], [7], [8]. That is, we form a new incremental input
about the disturbance and a new incremental output about the
corresponding constant output. Then, incremental passivity can
be used to obtain stability results of non-zero equilibria.

In the pH framework, the addition of integral action to
energy shaping controllers has been proposed to reject the
effects of constant disturbances [9]], [10]. In the case of passive
output regulation, integral action can be applied directly to the
output to solve the problem [3l]. However, often the passive
outputs are not the variables of primary interest. An example
of this is mechanical system were we are often concerned
with the position variables, which are non-passive outputs. A
procedure for the addition of integral action to output that
are not necessarily passive has been proposed and explored
in [9], [10l], [11]. This approach depends on a, possibly
implicit, partial coordinate transformation of the states. This
transformation may result in a state vector formed by latent
variables [12], and the physical interpretation of the states may
be lost, even though the closed loop has a pH form.

This paper presents an alternative approach to design in-
tegral action around non-passive outputs for a class of pH
systems. The pH structure of the controller is constructed by
copying part of the interconnection and dissipation structure
of the plant. The controller ensures asymptotic stability of the
closed loop to a desired equilibrium and regulation of the non-
passive outputs despite the presence of constant disturbances.
The interpretation of the closed loop as interconnected systems
is compatible with the behavioural approach (see [12] for a
survey on this topic), and the closed loop inherits the passivity
properties of the subsystems [1]. A feature of control designs
based on the interconnection of passive systems is that stability
of the closed loop holds even under parametric uncertainties,
provided that the passive properties remain unchanged [13].

The remainder of the paper will be structured as follows:
Some basic results on port-Hamiltonian systems will be re-
viewed in Section The main result on the addition of
integral action is presented in Section The interpretation
of the control law as a interconnection of passive systems is
discussed in Section The proposed approach for integral
control is illustrated using two examples in Section and
conclusions and future work are discussed in Section [V1l

II. BASIC RESULTS ON PORT-HAMILTONIAN SYSTEMS

A. Port-Hamiltonian systems

In this paper we consider port-Hamiltonian systems (more
specifically called input-state-output pH systems) which are



dynamic systems of the form
x =[J(x) - RX)]VH + G(x)u

1
y = GT(x)VH, M

where x € R™ is the state vector, J(x) = —JT(x) is the
interconnection matrix, R(x) = R (x) > 0 is the dissipation
matrix, H(x) is the Hamiltonian corresponding to the total
system energy, u € R™ is the input, G(x) is the input
mapping matrix and y € R™ is the passive output [1].

For most physical systems, the dimension of the input is
less than that of the state vector (m < n). In this case, the
states can be subdivided into those that are within the image
of the input mapping matrix and those that are not:

).(1 _ J1 — R1 J12 - R12 Vle + G](X) u
%) = |-JL-RL Jo—Rs | |VoH 0
y = GlT(X)vle7
2)

where x1,u,y € R™, xo € R*™ and Gq(x) is full rank.

For systems of the form (@), we refer to y = G{ (x)Vy, H
as the passive output of the system due to the natural duality
with the input u. It is often the case that the output of the
primary interest is yq4 = Vx,H or a function of it. As this
output is not passive, regulation of the passive output is not
sufficient to achieve the desired behaviour of the system in the
presence of disturbances. For the remainder of the paper we
will refer to y, as the non-passive output of the system (2).

The class of pH systems can be extended with the
addition of a feedthrough term [1]:

%= B0 ~ R VH() + GO0 ~PGJu
y = [G(x) + P(x)] T VH(x) + [M(x) + S(x)] u,
subject to
R(x) P(x)]_[R(x) Px)]'
[PT(x) s<x>}[PT<x> s<x)} =0 @
“Jx) -G _ [-Ix) -Gx]'
[GT(X) M(x} [GT(X) M(x)} ©)

Lemma 1: |1]] The pH system is passive with storage
function H(x), input u and output y.

B. Integral action of passive outputs
Integral action can be applied to passive outputs of pH
systems via a dynamic extension [3]. To achieve integral
action, the controller dynamics are defined as
é = KIuc
ye =K VeH(Q),
where ¢ € R™, K; is full rank and H.(¢) is a free strictly

convex function. The system (6) is interconnected with the
plant (2) via the interconnection

L?J = [G;(T)(m Gg(x)} m , ™)

(6)

which results in the closed loop dynamics

X1 Ji Ry Jio—Riz —K] | [Vx, Ha
XQ = _J;—Q - Rirg J2 - R2 0 vaHcl ;
¢ K; 0 0 VeHe

3)

where H.; = H + H.. The same approach can not be directly
extended for the case of non-passive outputs. As there is
no control input acting on the x, states, it is not possible
to interconnect the non-passive output yg; = Vx,H to the
controller (6) whilst preserving the port-Hamiltonian structure.
See [9] for a more comprehensive discussion on this limitation.

C. Integral action via change of coordinates

The addition of integral action to the non-passive outputs
(2) was proposed in [9] and further investigated in [10]. Given
a plant of the form (@), the closed-loop dynamics are proposed
to be

S Ji-R:1  Ji2—Rap 0
5(.2 = _JIQ - RT2 Jg — R2 —K}r
¢ 0 K 0 Il =tsx2.0)
vs,7Llcl
X vxz?'lcl B (9)
VeHa

where H.(s,x2,¢) = H(s,x2) + %CTKI_lC. The partial
coordinate transformation f : (s,x2,{) — x; is defined by
matching the dynamics of xo in () with that of (©). Then, the
control law is computed using the coordinate transformation
f to match the desired dynamics of s, given in (@), to x; in

(2).

III. INTEGRAL ACTION OF NON-PASSIVE OUTPUTS
WITHOUT COORDINATE TRANSFORMATIONS

A. Problem formulation

We consider the following class of pH systems:

R e S
%o -J5,  Jy—Ry| |V, H
+1 0'u—[I 0'di—[0 1] dy
y =V H,

(10)

where dimx; = m, dimxs = p < m, J; = —JI, Jo =
-J;,Ri=R] >0,Ro =Rj >0and H:R™P - Ris
smooth and has a (strict) minimum at (x},x3). d; € R™ is a
constant, matched disturbance to the system and ds € RP is a
constant, unmatched disturbance. The smooth dependence of
the system matrices on x; and X9 is assumed but omitted.

The control objective is to find a dynamic controller u =
u(x1,X2,(), where ¢ € RP is the state of the controller, that
ensures asymptotic stability of an equilibrium (%1, x5, ), for
constant vectors x; € R™ and Z’ € RP. Furthermore, the
closed loop dynamics should retain the general pH structure.

Notice that we are interested in preserving the component
of the original equilibrium associated to x» whilst leaving free
the component associated to x;.



Our approach requires the following assumptions:

Assumption 1: J15 and R, are full rank.

Assumption 2: Vy,x,H = 0.

Assumption 3: H is strongly convex.

Remark 1: The assumption that Vy,x,H = 0 means that
there cannot be cross terms between the x; states and x5 states
in the open loop Hamiltonian of (I0). This condition is sat-
isfied, for example, by fully actuated electrical machines that
are Blondel-Park transformable [14], whereby the dynamics
are expressed in a rotating frame.

As discussed in Section [[I-B| integral action cannot be
directly applied to the non-passive output as the pH form
will not be preserved. It will be shown in this section that
the aforementioned limitation arises due to the selection of
the closed-loop Hamiltonian. In this work, the closed-loop
Hamiltonian is selected to be the sum of the open-loop
Hamiltonian and an additional term which is strictly convex
in the difference between x; and the controller state (.
This means that the energy associated with the controller
is coupled to the the open-loop plant energy. This coupling
is precisely the property that permits disturbance rejection
without a coordinate transformation. The resulting control law
is a state feedback control law that requires knowledge of the
entire state vector.

B. Integral control

We propose the state feedback control law:
u=(J; - RV, He(Ex1 — )

. 11
¢=E"J1uV\,H, (n

where ¢ € RP, E € R™*? is a constant, full rank matrix and
H.(+) is a strictly convex function in z = E T x; — ¢ such that
V2H. : RP — RP is invertible.

The control law (T1), applied to system (10}, results in the
closed loop dynamics

X1 Ji - Ry J12 0 Vi Hea

ol = | —3T, Jo—Rp —ILE| |VHa

¢ 0 E"Jp 0 VeHa | (19
F(x)

—[T o 0o'di—[0 I 0]d,,

where Ho = H + He : R™T2P — R. The definition of H
results in the following relationship between the gradients of
the open and closed loop Hamiltonians:

Vo, M Vi, Het + BV Hey
Vi, H| = Vo, Hel (13)
vz;"Lc *V(Hcl

The remainder of this section will be focused on the
asymptotic behaviour of the closed loop system (12)).

C. Matched disturbance

We first consider the case of a matched disturbance only.
That is, d; is some unknown constant and d> = 0.
Assumption 4: J1 and R are constant.

Assumption 5: The constant E utilised in the control law
can be chosen such that E"J5 is invertible and

(JB‘E)”JB = (J]—2E)71JI2~ (14)
Assumption 6: There exists some unique X; such that
Vo H = {I-EJSE) ' I;1J —Ry)'dy. (15)

Remark 2: If J; and R; are not constant, they can be
replaced with some constant matrices Ji, Ry by the feedback
u=—-(J —-Ry — Ji+ fil)y + 0, where u forms the new
input for further control design.

Remark 3: Assumption [3]is satisfied in two important cases.
Firstly, if J15 is invertible, the assumption is satisfied for any
invertible E. Secondly, if J;» is constant, then any constant
E such that ETJ 5 is invertible will satisfy the assumption.
In particular, the selection E = J5 suffices to satisfy the
assumption.

Remark 4: Assumption E] is satisfied if J;o is invertible.
Note that the right hand side of (I3)) becomes zero, resulting
in the equation Vx, H* = 0. This equation is satisfied by the
equilibrium of the open loop system, x; = xj.

Under Assumptions [] - [6l the closed-loop dynamics (12),
subject to a matched disturbance only, exhibit the equilibrium
point (X1,x3%,¢), which corresponds to the gradient

Vi Hi (J1 —Rqy)~'dy
Vi, Hoy | = 0 (16)
VeHy ~(JSE)T 5 (3 - Ry) Ty

Using the identity (I3), the gradient of the closed loop
Hamiltonian can be related to the gradients of the open-loop
Hamiltonian and the controller Hamiltonian as follows:

Vi, H* {I-EUE) (I —Ry)~'dy
Vx, H*| = 0
V. H; (J5E) 15 (I - Ry)~dy
a7
As V,H, is invertible, corresponds to a unique equilib-
rium point.

Importantly, the controller preserves the equilibrium point
x5 under the action of matched disturbances. The stability of
this equilibrium point is assessed in the following proposition.

Proposition 1: Consider system subject to unknown,
matched disturbance in closed loop with the controller (TT).
Then, under Assumptions [T}j6] the equilibrium of the closed
loop, corresponding to the gradient (I6), is globally asymp-
totically stable.

Proof: We propose the Lyapunov candidateE]

W =Ha(w) = [w—w*]" VHa(W*) = Ha(w*), (18)

I'This Lyapunov candidate has been previously utilised for similar analysis
in [15], [7].



where w = col(x1, X2, ¢). The derivative of W along the
solution of the closed-loop system can be computed as
follows:

W = {VaHa — Vot {w—0} (19a)
= {(VowHe — VuH)} {(FVWHe —d)
— (F*VHy —d)} (19b)
T
_ VwHCl F —-F* vacl
B [Vwﬂzl] [—F P ] [VWH:J (15

_ [VXI’HC[} ! { Ji-Ri) —(Ji— Rl)} {vxﬂd}
S VM, |~ =Ry (31 —Ry) | [V MY
+ Vi, Had 5 EVeHY + Vi, Had 5 Vi Hy
— VEHGE 315V Ha — Vg, HiJ 12V, He
(19d)
_ [Vxﬂ-[d} ' [ J1—Ry)  —(J1— Rl)} {vxﬂd}
Vi "yl |—J1—Ri) (Ji—Ri) | [V, HY
+ Vi, Had [ EVeHY — Vi, Had (5 EV I,
+ Vi, Had LEJSE) T I Vi, 1Y
— Vo, HaJ LEJLE) I,V HY, (19e)
T
- [eo] [Ae-ror e
+ Vo, Had LE{(JSE) 13y
— (JLE) T IV MY (191)
<0, (19¢2)

whered=[I 0 O] " d; and we have used Assumptions@
and [5] and equation throughout these equations.

As is negative semi-definite along the trajectories of
(I2) and WV is strictly convex, there exists a compact set U C
R™ defined by

U= {xeRW(x) < W(wo)}, (20)

which is invariant under the dynamics (12)). As R; is positive
definite, LaSalle’s invariance principle implies that the trajec-
tories (T2) converge to the maximum invariant set contained
within

S = {W|Vy, He — Vi, 1, = 0} 1)

Evaluating the dynamics (I2)), restricted to the set S, reveal
that any solution of the system restricted to S satisfies

¢ =E"x. (22)
On the set S it holds that Vi, Hey = Vi, Hi, which is
constant. Thus any solution restricted to S must satisfy
d
[V, Het] = 0. (23)

dt

Expanding this equation results in:

1V Ht] = V2, Herkt + Vi Motk + Vo, Ml
= V2 HX1 + Vi Heki + Vi x, HXo
+ Varxa Heka + Vi ¢HC + Vi cHeC (240)
= V2 HX1 + Vi Heki + Vi, x, HXo
+ Vi cHel (24b)
= V2 Hx1 + EVZHE M1k + Vi, x, HXo
—~EVHE % (24c)
= V2 HX1 + Vi x, Ho (24d)
= Vi, Hx, (24¢)

where we have used the symmetry of H.(Ex; — () together
with the identity (22) to make the substitution —V, ¢H.{ =
Vichxl = EV;HEx; in and used Assumption
in (24d).
Rearranging (24¢), together with (23)) results in
x1 = (Vi,H)"'o=0, (25)
where ViIH is invertible due to Assumption (3| Equation
(23) further implies that ¢ = 0 by (22). Considering the X
dynamics restricted to S,
szHcl = vsz = 07 (26)
due to and (23).
By (26), the dynamics restricted to S satisfy Vy,H = O,
which is constant. Taking the time derivative of Vy,H it
follows that

X = (V4,H) 'Vi, i =0, (27)

where Viz”H, is invertible due to the Assumption

Substituting 1)), (26) and into (T2) reveals that on the
set S

VeHa = -V H; = —(ILE) ' IL(J1 —Ry)'dy 08)
= —(JI5E) "5 (31 — Re) " ldy,
where we have used Assumption 5. Considering 1),
and (28), we have recovered the equilibrium gradient (T6).
Thus, the maximum invariant set in & is comprised of a
singleton satisfying (I6), which implies that the system is
globally asymptotically stable to this non-zero equilibrium. B
Remark 5: Tt is advantageous for J12 to be invertible, so that
Assumption [3] is satisfied for any choice of E. If dimxy <
dim x3, it is always possible to add a dynamic extension to
the system in order to transform the system into a similar one
with dim xo = dim x;. The extended system can be obtained
via the feedback law

7= -IVaH

(29)
u= (Jf_Z)TPY + ulv



where Ji; is_the full-rank left annihilator of Ji2, which
satisfies that Jio = [J12 (Ji3) '] is an invertible m x m
matrix. The resulting system has the dynamics

X J, - R, Ji0 I [Va, H
x| =| -J, J2—Rs 0 Vi H'
g -J& 0 0 VA H
Y 12I 0 I: ¥ (30)
— 10 d1 — | I dg + {0 u’,
0 0 0]

where H' = H+ %vTv and u’ is the new input for subsequent
control design. This system is now of the form with Jqo
invertible.

D. Unmatched disturbance

We now consider the case of an unmatched disturbance only.
That is, d; = 0 and d» is an unknown constant. In this case
R; and J; can be state-dependant.

Assumption 7: J1o is constant.

Assumption 8: There exists some unique X; such that

Vi, H* = —E(JL,E)d,. (31)

Under Assumptions [7] and [8] the dynamics subject
to an unmatched disturbance only, has an equilibrium point
(x1,x3,¢) which corresponds to the gradient

Vi 1 0
Vi, M| = 0 (32)
VeHs ~(JLE)"'ds

Using the identity (13), can be related to the open-loop
Hamiltonian and the controller Hamiltonian:

Vi, H —~E(JLE)d,
Ve H* | = 0 33)
V. H: (JLE)"1d,

As V,H, is invertible, (33) corresponds to a valid equilibrium
point. It follows from (33) that the value of x5 at equilibrium
is x5 as desired.

Proposition 2: Consider system (I0) subject to unmatched,
constant disturbance in closed loop with the controller (LT).
Then, under Assumptions and [§] the equilibrium of the
closed loop, corresponding to the gradient (32)), is globally
asymptotically stable.

Proof: We again make use of the Lyapunov candidate
(T8). Following the same procedure as the proof of Proposition
[ the derivative of WV along the dynamics of the closed-loop
system (12) satisfies:

T

. Vi Hei (J1 —Ry) 0 0 Vi, Het
W < | Vi, Hei 0 0 JLE| [V, Ha
VeH 0 -E"J;, 0 VeHY,

(34a)

=~V HaR Vs, Hal (34b)
<0, (34c)

where we made use of Assumption[7|and (32)) throughout these
equations.

The proof is completed following the same procedure as
Proposition [T} utilising invariance and Assumptions [I}3] ®

E. Matched and unmatched disturbance

Now consider the case where both matched and unmatched
disturbances are acting on the system. That is, d; and d, are
non-zero unknown constants. In this case, Assumptions [Z_f] and
are required. That is, J;, R; and J;2 must be constant.

Assumption 9: There exists some unique x; such that

Vi H' = {I-EJLE) ' ILJ - Ry) 'y
—~E(JLE) 'd,.

Under Assumptions and [9] the equilibrium of the dynam-
ics subject to constant disturbances d; and d» satisfy

(35)

VleZl (Jl —Rl)_ldl
Vi, | = 0 ;
Vet

—(JLE) "I (I —Ry)dy + d2}3
(

which can be related to the open loop Hamiltonian using the
identity Notice that as Vy,H: = Vi, H* = 0, the
equilibrium of the variable x5 is preserved to its desired values
x5 despite the disturbances.

Proposition 3: Consider system subject to both matched
and unmatched constant disturbances in closed loop with the
controller (TT). Then, under Assumptions [I}f4] [7] and 0] the
equilibrium of the closed loop, corresponding to the gradient
(36), is globally asymptotically stable.

Proof: The proof is obtained by combining the proofs for
Propositions [I] and [2| [ |

IV. INTERPRETATION OF THE INTEGRAL ACTION
CONTROLLER AS CBI

In this section, the closed-loop dynamics (I2)) are studied
under a coordinate transformation. In the new coordinates, the
dynamics coincide with the dynamics presented in [16] with
E = Ji9, giving a Cbl interpretation to the closed loop. This
interpretation is of particular interest as in the case that Ry =
0, disturbance rejection of unmatched disturbances from the
non-passive outputs can be achieved without knowledge of the
states Xa.

Consider the system (I2) under the coordinate transforma-
tion

X1 I 0 0 X1
Xo £ 0 I 0 Xa 1 , (37)
Z ET 0 -I ¢
which results in the transformed dynamics
X1 Ji— Ry Jis J1 —Ry)E
X9 | = —JlT2 Js — Rs 0
Z ET(Jl—Rl) 0 ET(Jl—Rl)E
Vx, H I 0
X VXQH — 0 d1 — | I dg.
ViHe ET 0

(38)



Careful inspection reveals that the system (38)) can be obtained
as the power-preserving interconnection of the controller

Y. :2=E'(J; -R)EV,#.+E"(J; —R))u. —E'd;
Ye = _(Jl - RI)EVZHC + Rluc»

(39)
with the plant
5 x| _ | J1 Ji2 Vi, H
Plxs -J, Js—Ra| |V, H
40
w1 o u-1 0'di~Jo 1 a W
yzvlev
via the interconnection
fu| |0 O] |y
Sl N P 1 B

The controller subsystem is a pH system of the form
with

J=E'J,E P=E'R,
R=E'R,E G=E"J, (42
S=R, M =0,

which is acted upon by a disturbance —d;. It can be verified
that the matrices (@2) satisfy @) and (5), thus by Lemma [I]
the controller is a disturbed, port-Hamiltonian system.

Under this interpretation, the dissipation term R, is viewed
as a parameter of the controller subsystem 3., rather than the
plant which restricts our ability to implement the controller as
a passive interconnection. Furthermore, in the case of matched
disturbances, the controller subsystem requires knowledge
of the disturbance.

In the case that the open-loop plant has R; = 0, integral
action can be applied for the rejection of unmatched distur-
bances using the controller,

Ye:z =T, —Ry)IoVoHe +I/5(J1 — Ry)u, )
Ye = *(Jl - Rd)J12vzHc + Rduca

where Ry is a positive definite matrix to be chosen. The
closed-loop dynamics has the form (38) and, thus, the analysis
of section [[II| applies to it. This formulation has the advantage
of not requiring knowledge of the states to be regulated, xs.
This controller was studied in [16] as a disturbance rejection
controller for unmatched disturbances.

V. EXAMPLES

In this section, application of the integral action scheme
to a simple RCL circuit is presented to demonstrate the
interpretation of the integral action scheme as Cbl. The integral
action controller is also applied to a class of fully actuated
mechanical systems. An example application of the proposed
action controller to a permanent magnet synchronous motor
can be found in [16].

A. Electrical network

In this case study, we consider the basic electrical circuit
shown in Figure [T} This figure represents the feedback inter-
connection of a plant (X,) and a controller (X/). The plant
is a LC circuit with a constant source of current acting as
an unmatched disturbance and a constant source of voltage
acting as a matched disturbance. The objective is to regulate
the voltage of the capacitor to a desired set-point (V* = g).
It can be see that the controller shown in Figure[T| achieves the
control objective in the case where there are no disturbances
and no additional control input, ie. dy = 0, do = 0 and u = 0.
For a linear inductor, capacitor and resistor, the dynamics of

| R L |
WA |
| | | —c |
O 1 o
| | | dl@ |
| A | | Z |

Fig. 1: Plant-controller connected through power-preserving
interconnection.

the system are as follows:
x| |—R
)= 1

o} [
y=[1 0] VHa(x)
1 1
Ha(x) = o Y
with x = col(x1, z2) where z; is the inductor flux and z2 is
the capacitor charge.

The integral action controller (TIT) can be implemented to
ensure that V,, %y = &(z2 — x3) converges to zero for any
constant disturbances d;,ds. According the the interpretation
of the closed loop provided in Section the resulting
dynamics can be interpreted as the interconnection of a plant

(@0) with a controller (39).

For this example, the controller subsystem (39) has the form
Y.:2=—-RV,H.+ Ru. —d;
Ye=—RV,H. + Ru,,

(44)

o] + 5 (@2 — 23)?,

(45)

where H.(z) is a free convex function. For simplicity, we take
He(2z) = 57-C°. The integral action controller @3) has the
interpretation of a resistor in parallel with a linear inductor,
with inductance L,, and voltage source d; in series. The
physical interpretation of the controller Y. interconnected with
the plant ¥, is depicted in Figure [2]

In the case where there is only an unmatched disturbance
acting on the plant, the controller subsystem does not require



| | .’ |
; 1 — T 3
| §R | dzf
idl 3 3 dy 3
3 ) 1 1
| N\ | |
1 Y, e 1 2, !

Fig. 2: Electrical circuit scheme of a Cbl controller intercon-
nected to the plant.

any knowledge of the disturbances. Thus the controller can
be implemented as a Cbl scheme. In this electrical example,
this is simply the case where d; = 0. The advantage of
implementing the controller in this form is that the controller
does not require knowledge of the capacitor voltage, whereas
in the form @, the controller does require this information.

B. Mechanical systems

The control law (TT)) can be applied to a class of mechanical
systems to add integral action to the configuration variables.
Consider a mechanical system with dynamics

o=t SR ol

—[1 0'di-[0 1]"d,

_O0H
1
H=-p M 'p+V(q),

2

(46)
where p € R™ is the momenta, g € R™ is the configuration,
J(p,q) = —J7(p,q) contains the Coriolis and centrifugal
terms, D(p,q) = D'(p,q) > 0 contains the dissipative
terms, M = M T > 0 is the constant mass matrix, K (q) maps
between the reference frame of the momenta and generalised
velocities and V(q) > 0 is the potential energy. d; is a vector
of force disturbances acting on the system, while d; is a vector
of velocity disturbances. The mechanical system (46)) is of the
form with x; = p and x5 = q.

When controlling mechanical systems, the control objective
is typically concerned with the asymptotic behaviour of the
configuration variables, q. It is easily verified that Assump-
tions|[I] - B]are satisfied provided that D > 0, M is constant and
V(q) is strongly convex. As dim p = dim q, Assumption |3| is
satisfied for any full rank E. Furthermore, as VpH = M-lp
is invertible, Assumptions [6] [§] and [9] are satisfied for each of
the relevant disturbance cases. Thus, the control law can
be applied to the mechanical system (46):

u=[J(p,q) — D(p,q)]VoH(E p— ()

. (47)
¢= *KT(Q)VqH'

In the case where J(p,q) and D(p,q) are constant, the
controller can be used to reject the effects of a matched
disturbance from the configuration variables. Likewise, in the
case where K(q) is constant, the controller (7)) can be used
to reject the effects of an unmatched disturbance from the
configuration variables.

VI. CONCLUSION

This paper presents a method for the addition of integral
action that is driven by the non-passive outputs to a pH control
systems. Previous methods involve solving (possibly implicit)
algebraic expressions to define a suitable coordinate trans-
formation. The control law proposed here is given explicitly,
without the need of coordinate transformation. Under suitable
assumptions, this control law is able to reject both matched
and unmatched disturbances.

The control scheme can be interpreted, under a simple
coordinate transformation, as the interconnection of the open-
loop plant and a dynamic controller in pH form. This allows
the interpretation of the closed loop as a Cbl scheme. The
controller was applied to a simple RCL circuit and the physical
interpretation of the control realised. The control law was also
given explicitly for a class mechanical systems.

We notice that Assumption |2| restricts the applicability of
the proposed design to mechanical systems with constant mass
matrix. Future research will focus on relaxing assumption
2 and extending the approach in this paper to mechanical
systems with non-separable Hamiltonian.
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