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Abstract

This paper investigates the optimal design of event-triggered estimation for linear systems. The
synthesis approach is posed as a team decision problem where the decision makers are given by the
event-trigger and the estimator. The event-trigger decides upon its available measurements whether the
estimator shall obtain the current state information by transmitting it through a resource constrained
channel. The objective is to find the optimal trade-off between the mean square estimation error and the
expected number of transmissions over a finite horizon. After deriving basic characteristics of the optimal
solution, we propose an iterative algorithm that alternates between optimizing one decision maker while
fixing the other and vice versa. By analyzing the dynamical behavior of the iterative method, it is shown
that the algorithm converges to a symmetric threshold policy for first-order systems if the statistics of
the uncertainties are even and unimodal. In the case of bimodal distributions, we show numerically that

the iterative method may find asymmetric threshold policies that outperform symmetric rules.
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I. INTRODUCTION

In contrast to the periodically sampled systems, in which measurements are taken within
equidistant time-intervals, an event-triggered estimator receives measurement updates in an asyn-
chronous fashion. The event-trigger is a preprocessing unit situated at the sensor which decides
upon its available information, whether to update a remote estimator with new measurements.
There is a lot of evidence in the literature that event-triggered sampling for estimation and control
is a promising alternative to periodic sampling when the sensor transmissions are costly [1]-[7].
Along with the benefits of event-triggered sampling for estimation, several challenges emerge in
the analysis and design that are not present in periodically sampled systems. One of the main
issues corresponds to the implicit information available at the estimator in the absence of an
event [8], [9]. This additional information commonly leads to a close coupling of the estimator
and the event-trigger. In order to overcome this complication, the majority of results assumes
symmetric threshold policies. The restriction to symmetry commonly implies that the estimator
will not depend on the event-triggering rule [1]—[3]. In contrast to these works, the focus of this
paper is to study exactly this dependence between event-trigger and estimator by allowing for
asymmetric triggering policies.

Our approach is posed as a team decision problem composed of the event-trigger and the
estimator. The optimal decision makers aim at minimizing a finite horizon cost criterion com-
posed of the mean square estimation error and the expected number of transmissions. First, basic
properties of the optimal event-trigger and estimator are derived in which we make use of the
nested information pattern of the team decision problem. We then propose an iterative algorithm
that alternates between minimizing the cost criterion over one decision maker while fixing the
other and vice versa. Stationary solutions of this algorithm can be identified as person-by-person
optimal solutions. By studying the convergence behavior of the proposed iterative algorithm,
we are able to attain a more detailed characterization of the optimal solution under a slight
restriction of the set of admissible policies. It is shown for first-order systems that the optimal
event-trigger is given by a symmetric threshold policy if the distributions of the uncertainties are
unimodal and symmetric. Furthermore, we demonstrate numerically that our algorithm yields
asymmetric threshold policies for symmetric but bimodal noise densities. For certain systems, it

turns out that these asymmetric solutions decrease the cost considerably when comparing with
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the optimal symmetric solution. This observation suggests that unimodality of the distributions

is essential for the optimality of symmetric threshold policies.

A. Related work

The optimality of symmetric threshold functions for the remote state estimation problem with
costly communication has also been proven in [10]. The authors in [10] make use of majorization
theory and the Riesz rearrangement inequality [11] in order to arrive at this result. The proof
follows a similar guideline used for a related problem that studies the joint optimization of paging
and registration policies in mobile networks [12]. The analysis of the asymptotic behavior of our
iterative algorithm constitutes an alternative way to prove that symmetric event-triggering laws
are optimal for first-order systems. In contrast to [10], our proposed method enables the analysis
of multi-modal noise distributions and is capable to find solutions that outperform symmetric
policies in this case.

Iterative methods for the solution of team decision problems, in which one policy is op-
timized while the others are fixed, has also been applied for the study of optimal solutions
of the Witsenhausen’s counter-example [13] and for the joint design of source-channel-relay
mappings [14]. The work in [15] proposes an iterative encoder-decoder design algorithm for
event-triggered feedback control over a bandwidth-limited channel. The authors in [16] focus
on the existence of solutions of our proposed problem for higher-order systems by relating it to
the Lloyds algorithm originally used to compute Centroidal Voronoi Tessellations [17].

Another closely related work [18] studies distributed estimation for two random variables over
the collision channel. In contrast to our work, the estimator must distinguish between the absence
of an event and a collision during transmission. The authors show that threshold policies are
optimal for the case of a single snapshot estimation. Moreover, the results indicate that even in the
case of observing random variables with unimodal and symmetric distributions, the optimal event-
trigger thresholds may be asymmetric. The work in [19] considers a variation of our problem
setup for first-order Markov sources. In [20], the authors consider the joint design of estimation
and scheduling for an energy-harvesting sensor by employing results from majorization theory.
Both works [19] and [20] highlight the importance of symmetry and unimodality.

A preliminary version of this work has been published in [21]. The present note differs from

the work in [21] as follows. It presents the iterative method and establishes basic properties of
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the optimal event-triggered estimator for higher-order systems. This is in contrast to [21], which
merely considers first-order systems. Moreover, this note introduces a new crucial assumption
necessary for a detailed study of optimal event-triggered estimation. Finally, it provides a full

proof of Theorem 1 that has been omitted in [21].

B. Organization of the Paper

Sec. II introduces the design problem of event-triggered estimation under communication
constraints. A basic characterization of the optimal solution is discussed in Sec. III. Based on
these properties, an iterative algorithm is developed in Sec. IV whose convergence properties

are analyzed in Sec. V.

C. Notation

.]’

where the underlying probability measure P’ is parameterized by the policy f. The variable

The expected value is denoted by Ef[-] and the conditional expectation is denoted by Ef[-

X* denotes the sequence [y, ..., 7;] and X! denotes the sequence [zy, ..., z;]. The indicator
function is denoted by 1 4(x) taking a value of 1 if z € A and 0 otherwise. The complement
of a set A is denoted by A°. The maximum norm of a vector z € R" is denoted by |z|.. The

convolution of two real-valued function f and ¢ is denoted by f xg.

II. MMSE ESTIMATION UNDER COMMUNICATION CONSTRAINTS

Consider the following linear process P driven by noise wy
Tht1 = AZL’k + W, (1)

where x; takes values in R"™ and A € R™*". The system noise wy; takes values in R™ and is
an i.i.d. random variable described by the probability density function ¢,,, which is zero-mean
and has a covariance matrix C,. The initial state, x, is statistically independent of wy and is
described by probability density function ¢,,, which has a finite mean E[x,| and a covariance
matrix C.,. The initial state =, and the noise process {wy, } are also referred to as primitive random
variables in the following. System parameters and statistics are known to both the event-trigger

and estimator.
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The system model is illustrated in Fig. 1. The process P outputs the state z,. The event-
trigger £ decides upon its available information whether or not to transmit the current state to

the remote state estimator S. We define the output of the event-trigger as

1, update z; sent,
o =
0, otherwise.

The communication channel between the process P and the state estimator S can be viewed as

a Jj-controlled erasure channel whose outputs are described by

@, & =0,

where & is the erasure symbol. As it will be useful for subsequent analysis, we define the last

update time 7 as
7, = max{k|d, = 1, kK < k} 3)

with 7, = —1, if no transmissions have occurred prior to k. The variable 7, evolves by

the di-controlled difference equation

Thk+1 — 7'0:—1. (4)
Tk, 5k = 07

Admissible event-triggers are given by causal mappings

or = fn(X¥), k=0,...,N—1.
The estimator S outputs the state estimate Z; and is given by measurable mappings g, defined
by

fck:gk(Zk), k:O,...,N—l.

The design objective is to jointly synthesize the event-trigger f = [fy, ..., fy_1] and the estimator

g = [90,---,9n—1] that minimize cost J defined by

N—-1

J = Ef’g [Z ka — ii'kHZ + )\(sk

k=0

(&)

The per-stage cost of J is composed of the squared estimation error ||z — Z1|* and a com-

munication penalty \d;. The weight A > 0 determines the amount of penalizing transmissions
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over the communication channel emerging either from bandwidth limitations or from energy

restrictions in the sensor node.

event-trigger €

j o O

P communication channel __,] s
Tk 2K ik

Fig. 1: System model of the networked estimation system with plant P, event-trigger £, state

estimator S and communication channel.

III. BASIC PROPERTIES

In this section, we are concerned with finding basic properties of optimal solutions minimiz-
ing (5) that will facilitate the description of optimal event-triggered estimators. We begin with
a characterization of the optimal estimator given an arbitrary event-trigger.

Proposition 1: For any event-trigger f, the optimal state estimator ¢g* is given by the MMSE

estimator
Pp = gi(Z") = E'ay| 2%, k=0,...,N—1.

Proof: Fix an arbitrary event-trigger f. The sequence {J;} is then a function of primitive
random variables. Hence, the communication penalty term E' [ZkN;()l )\54 is constant and can
be omitted from the optimization. In the remaining estimation problem the mean square er-
ror Ef [ij:_ol |zx — || is to be minimized. The optimal solution for this problem is given
by the MMSE estimator Ef[z;|Z*], [22]. This completes the proof. [

In the following, we introduce a time-variant translatory change of coordinates of the state
space that will enable us to focus on the main issues involved in the joint optimization of the
event-trigger and the estimator. As the coordinate transformation at each time k can be computed
at the event-trigger and the estimator, the optimization problem remains unchanged. Let us define

the linear predictor ¥ by the following recursion
T, 516 = 15

#F = ©6)
AR G0,
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for k € {1,...,N — 1} and 2{°* = E[z]. The linear predictor is the MMSE estimator, when
having no information about the choice of the event-trigger f and assuming that transmission
instances are statistically independent of the state evolution. Clearly, this holds when transmission
instances are selected in advance.

Let us rewrite the optimization problem by defining the one-step ahead estimation error of

the linear predictor as
ex=ap — A, k=1,...,N—1 (7)

and eqg = w_y, where we define w_; = x¢ — E[x(]. The variable e, defines our new state to be

estimated and follows the recursion
epy1 = hi(er, O, wi) = (1 — 6) Aex, + wy. ®)
Further, we define ¢, to be the MMSE estimate E[ek|Z’“], where Z;, is defined accordingly as

~ €k, 616 = 17
o, 6 =0.

It is straightforward to see that the estimation error e, — é; and x, — 2, are identical random
variables for a fixed event-trigger f, as e; corresponds to a translatory coordinate transformation
of z; shifted by —A#%P, which is known since the sequence 0"~ is measurable with respect

to Z*. Therefore, our initial optimization problem with cost function .J can be rewritten as

N-1

e pf a2
1rf1fE [Z llex — éxl|” + Aok

k=0

(10)

In the following, we assume that the event-trigger f is given by a mapping from E* to {0, 1}.
Since there always exists a bijection from X* to E* given the variables dy, . .., d,_;, this change
of variables does not put any restrictions on the further analysis keeping in mind that any policy
expressed in E* can also be written as a function in X*. Let F denote the set of admissible
policies over the horizon N.

In order to find further structural properties of the optimal solution, we need to introduce
an assumption on our admissible event-triggering policies. Suppose 9,, = 1 at time m €

{=1,..., N — 2} and apply a policy f until time m. Then, the remaining optimization problem
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is to find f™ = [f,,11,...,fx_1], that minimizes

N-1
T =E | D e — édl|* + Ao, = 1 (11)

f=m—+1

where e, evolves according to (8) with initial condition e,,;; = w,,. The above optimization
problem has the same form as (10) for each m with a shifted initial condition and a shorter
horizon. This suggests that optimal policies need not depend on data prior to time 7 + 1 because
of the reset transition of the state variable ¢,,, at m = 73, i.e. it seems to be reasonable to restrict
our policies to only depend on Efk +1- Though a further in-depth analysis for the verification
of this assertion is needed as the expected value to be computed in (11) still depends on the
complete policy f, this study exceeds the scope of this note. Instead, we provide the following
restriction on the set of admissible policies, which our subsequent results will be based on.
Definition 1: The set FON defines the family of admissible event-triggering policies over the

horizon N constrained to the form
0 = fr(Ey ), 0<k<N-1 (12)

Based on the restricted set of policies introduced in Definition 1, the next proposition gives
us insights into the structure of é.

Proposition 2: Let the event-trigger f € FCON be fixed. Then, the MMSE estimate of ¢, is
given by

€k, 5k = 17
er = (13)

Oék(Tk)7 (Sk = 0,

where 7, is defined by (3) and ay(7x) is defined by

k—1

ar(m) =B > A wyls, 0 =0,...,0,=0]. (14)

l:Tk
Proof- Clearly, we have é, = e; for 0, = 1, as e, € Z¥ if 6, = 1. For 8, = 0, 73, is a

sufficient statistics for é; due to the state equation in (8) and f € FCON. The mapping oy, is

determined by applying recursively (8) with e, 1 = w, . [ |
The function oo = [y, . .., auy—1] in Proposition 2 can be interpreted as a bias term to improve
the state estimate by incorporating the negative information 0,43 = --- = d; = 0 at time k.
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Because of Proposition 2, we can rewrite optimization problem (10) as

N—-1
inf ET|Y (1 0)ex — 21 A6 |- 15
nf ;( ller — arn(m)||? + Ad (15)

It can be observed that the running cost reduces to A and is therefore independent of the current

oy in the case 6, = 1.

IV. AN ITERATIVE ALGORITHM

What prevents a further study of the optimization problem (15) is the fact that the estimation

bias v, (75) depends on the particular policy f € FCON

chosen up to time k. Therefore, methods
like dynamic programming are not directly applicable. In order to overcome this burden, we
broaden (15) by considering the variable oy as a new decision variable being a function of 7.

Then, the optimization problem is given by

a6
with
N-1
J(f,0) = E" [ Y (1= dp)llex — an(mi)[|* + Ad | - (17)
k=0

The optimization problem (16) enlarges the set of possible solutions compared to optimization
problem (15), because it omits the constraint for « given by (14). On the other hand, because of
Proposition 2, it follows by contradiction that the optimal solution of (16) satisfies (14). Because
of these observations, we can conclude that any optimal solution of problem (16) will yield the
same optimal cost as (15). By considering optimization problem (16), we are able to specify the

structure of the optimal event-trigger given by the following proposition.

dynamic programming
event-trigger

estimator S

E
conditional expectation

Fig. 2: Iterative scheme to calculate event-trigger £ and estimator S.
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10

Proposition 3: Let the function « be fixed and the event-triggering law f be in FCON, Then,
the variables e, and 7 are a sufficient statistics for the optimal event-trigger 5, 0 < £k < N — 1.
Proof: The evolution of the pair (e, 7;) can be regarded as a d-controlled Markov process
defined by (4) and (8). The running cost of J at time k is a function of the pair (e, 7% ), input &y,
and noise wy. By [22], this problem can be solved by dynamic programming with (e, 7) being
the state, which is a sufficient statistics of the optimal solution f;. This completes the proof. W
Proposition 3 implies that the optimal event-trigger in F°N is a function of e, and 7. It can
be observed that for a fixed event-trigger f, the optimal map « can be calculated by (14). On
the other hand, for any fixed map «, the optimal event-trigger f can be calculated by dynamic

programming. We therefore define the running cost as
A (ers s 08) = (1= 0p)[ler — an(mi)[|* + Ady,
and the Bellman operator as

Tt Traa (1) = 5 i " (5 0k) + E [Jera (e, Tora) |-, O] -

The value function J;, being a function of the augmented state (e, 75 ) is determined by recursive

application of the Bellman equation given by
I = T* T

with Jy = 0, where the argument in the minimization yields the optimal event-trigger f and we
have

J(f, Oé) = Ef[Jo(eo, —]_>]

This observation motivates us to propose the following iterative procedure sketched in Fig. 2,
which alternates between optimizing f while fixing policy « and vice versa. Algorithm 1 describes
the iterative procedure. With slight abuse of notation, we declared 7, as a second subscript instead
of an argument of «.

As the cost J decreases or is at least kept constant in each step of the iteration, the sequence

[(f°, %), (f', a1), .. .] produces a non-increasing succession of costs .J.
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11

Algorithm 1 Iterative procedure to calculate (f, «)
Require: o) €R, k=0,....N—-1,7.=-1,...,k—1

1. 20

2: repeat

3: ]C:N,JNEO

4: repeat

5: E+—Fk—-1

6: Jp 77?;“ Jet1

7: f! (ex, T) € arg ming, ¢ (0,1} czi(ek, Tk, O) + E [ i1 (€xr1, Thr1)|€rs Tk Ok
8: until £ =0

o affl « BN S AR ylok =0

10: 1 1+1

11: until convergence

V. CONVERGENCE PROPERTIES

In the following, we are interested in the convergence properties of the proposed iterative
algorithm for scalar systems. We will therefore restrict our analysis to linear first-order processes

P defined as

Tg4+1 = ATk + W, (18)

where a € R\{0}. The system noise wy takes values in R and is an i.i.d. random variable
described by the probability density function ¢,,, which is zero-mean and has finite variance.
The initial state, z is statistically independent of wj;, and is described by density function ¢,,,
which has a finite mean E[z,] and a finite variance. As in the previous sections, we will study
the transformed system with state variable e, defined in (7). Additionally, it is assumed that the

density functions are symmetric around their means, i.e.,

¢w(w) = ¢w(_w)a
¢60 (6) = gbe()(_e)

May 1, 2017 DRAFT



12

for all w,e € R. Rather than regarding o as a function of k£ and 7, we will interpret o as a

Y
vector in RzVWV+1)

by reindexing its entries appropriately. A central notion for the optimality of
two-person team problems is given by person-by-person optimality, which is defined as follows
with regard to (16).

Definition 2 (Person-by-person optimality): A solution (o, ") of (16) is called person-by-

person optimal, if
J(a* ) < J(a, ),
J(a*, ) < J(a™, 1)

for all a € R2NW+D) and all admissible policies f.

The above definition means to say that the cost of a person-by-person optimal solution can not be
decreased by either changing the estimation bias « or by changing the event-trigger f while fixing
the other. Person-by-person optimality is a necessary condition for optimality, since it would be
otherwise possible to improve the solution by the iterative algorithm defined by Algorithm 1.
Hence, every fixpoint (f*, «*) in the iterative algorithm is a person-by-person optimal solution
of optimization problem (16).

The following proposition shows that o* = 0 and its resulting optimal event-trigger f* is a
person-by-person optimal solution.

Proposition 4: Let ey and {wy} have symmetric distributions. Then a* = 0 is a fixpoint of
the Algorithm 1. The policy of the event-trigger f* that corresponds to a* is an even mapping
of e, and is independent of 7, for every k =0,..., N — 1.

Proof: Let a° be 0 for all k and all 7 in the initialization of Algorithm 1. The cost function .J

reduces then to
N-1
—Ef Z 1_51:: |6k| + Ao
k=0

where ¢, evolves by the recursion (8). Therefore, the resulting optimal f} and the cost-to-go
function Jj is only a function of e, for all £ =0,..., N — 1. We first show that the application
of the Bellman operator 7,0 preserves symmetry of Ji,; for any k. Given an even value
function Ji 1, the conditional expectation E [J;11(ex+1)|, O] preserves symmetry for both §;, = 1

as the expected value is constant. Due to the symmetry of ¢, /., and the system dynamics (8),
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we have for 6, = 1

E [Jrr1(aer +wy)ler] = E[Jrii(—aer — wy)|ex] =
= E [Jr1(—aer +wy)lex] = E [Jria(aer +wyi)| — ex]

Adding the cost c)(-, d;) also preserves symmetry, because the sum of two even functions is
again even. Taking the pointwise minimum of two even functions yields an even function. There-
fore, an even function remains even after application of the Bellman operator. As Jy = 0 is an
even function, it follows by induction that every value function Jj is even for k € {0,..., N — 1}.
This implies that fg resulting in the first iteration step from Algorithm 1 is an even mapping of
e, if a® = 0.

Next, we calculate o' assuming f) being an even function of e for k € {0,..., N — 1}. Let Gey|r
be the density function of the conditional probability distribution of e, given 75, and ¢, = 0.

Then, due to (14) and Proposition 2, aix can be computed by

O‘llc,v = / € Geylr(€)de.
e€R

For k = 0, ¢, is determined by truncating the density function ¢, of the initial state e, at all

(e,7), where fg takes a value of 1 and by normalizing the resulting function, i.e.

dey€) (1 —fole,7)
[ @ele) - (1 — (e, 7))de

Since ¢, and f8 are even functions, we conclude that ¢, is even and therefore we have ag =

(19)

¢€0|T(e> =

0. Along the same lines, we can show that ¢, |1 is even and oy, , =0 fork € {1,..., N — 1}
by replacing ¢., with ¢,, in (19). Due to the Bayes rule, the conditional density function ¢, |-
with a fixed 7 evolves by the recursion

(i %eir () ¥ du)(e) - (1 = (e, 7))
Jocr (E e (D) % du)(e) - (1 — £, (e,7))de

For the prediction step from (8) in the above expression, the scaling refers to the multiplication

¢€k+1\7'(€) =

by a, while the convolution arises from the sum of two independent random variables. The
truncation is a result of the incorporation of d,; = 0. It can be observed that this recursion
preserves symmetry of the conditional density function ¢, |, as f? is an even function. Therefore,

we have shown that o* = 0 is a fixpoint of Algorithm 1, which completes the proof. [ ]
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A. Symmetric Unimodal Distributions

A natural question arising from Proposition 4 is whether the person-by-person optimal solution
a* = 0 with its optimal event-trigger f* is also the globally optimal solution. We partly answer
this question in the following by assuming that the distributions are unimodal.

Definition 3 (Unimodality): A distribution in R is called unimodal, if there exists wy € R
such that the density function of the distribution ¢(w) is a non-increasing function for w > wy
and a non-decreasing function for w < wy.

This additional assumption enables us to state the following useful convergence property of
Algorithm 1.

Theorem 1: Let f* € FON and the initial state ey and the noise process {wy} have sym-

metric and unimodal distributions. Then, a* = 0 is a globally asymptotically stable fixpoint of
Algorithm 1.
By considering the evolution of o' as a dynamical system evolving over variable 4, the asymptotic
behavior of the iterative Algorithm can be analyzed by means of Lyapunov stability theory and
it is shown that o = 0 is a globally asymptotically stable equilibrium point. The details of the
proof can be found in the appendix.

As the iterative Algorithm 1 produces a sequence of pairs (fi,oci) whose costs are non-
increasing with increasing i, we conclude that O is the optimal choice for «, when noise
distributions are symmetric and unimodal according to Theorem 1. The optimal state estimator
of xj is then given by the linear predictor in (6) and is therefore independent of the choice of
the event-trigger f. The distribution of the initial state xy must be also symmetric and unimodal,
but its mean E[z(] can be chosen arbitrarily. Hence, the symmetry axis of the distribution of
need not to be at zero. In order to determine the optimal {* € FON, dynamic programming must
only be applied once with & = 0. Note that such f* always exists. These results are summarized
in the following corollary.

Corollary 1: The optimal event-triggered estimator with f* € FCON for the first-order sys-
tem (18) minimizing cost (5) exists and is characterized by (6) and a symmetric threshold
policy.

The above corollary is in accordance with [10] and constitutes an alternative way by analyzing
the asymptotic behavior of Algorithm 1 to prove that symmetric event-triggering laws are optimal

in the presence of symmetric unimodal distributions. Moreover, the iterative algorithm may also
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be applied to dynamical systems whose noise distributions do not satisfy these assumptions.
Although v = 0 is a fix point of the Algorithm 1 by Proposition 4 assuming symmetric density
functions, the next section shows that symmetric threshold policies with @ = 0 can be outper-
formed by Algorithm 1 by almost 50%. Hence, we can conclude that symmetry of the densities is
not sufficient to show that the independent design is optimal. Therefore, additional assumptions
are required to show that the independent design is optimal. In the case of Theorem 1 such
requirement is given by the unimodality assumption of the density functions.

It is an open question whether Theorem 1 is also valid for higher-order systems. The work
in [20] considers the case of multi-dimensional systems for scaled orthonormal system matrices
to find structural properties for the joint optimal scheduling and estimation problem. However,
neither the use of majorization theory in [10] and [20] nor our iterative approach allow a direct

extension to the case of general multi-dimensional systems.

B. Symmetric Bimodal Distributions

This subsection intends to outline the benefits of the iterative algorithm for bimodal noise
distributions. We demonstrate numerically how the event-trigger and the estimator can benefit
from signaling through the absence of triggering by comparing our solution with the optimal
symmetric solution.

Suppose the process (18) with a = 1, A = 0.5 and the distribution of the initial state, ¢.,, and

the system noise, ¢,,, to be given by

1 1
qbeo (M? U) = ¢w(:uv U) = Egb/\/(:u? U) + §¢N<_1u7 U)
1 _<x—;;>2
(bN(M? O-) - \/We 20 *

For ;1 = 0, we retrieve the normal distribution. In the limit ¢ — 1, the noise process degrades

to a Bernoulli process taking discrete values {—1,1} with probability 3. We select 1 € [0,1)
and set o = ﬂ in order to have unit variance for all p € [0, 1). Various density functions
for different p are sketched in Fig. 3a.

We observe that for ;1 < 0.8 the peaks of the bimodal density function are less distinctive.
According to Theorem 1, we can not expect that large gains of the iterative procedure can be
attained compared with the optimal symmetric solution for 1 < 0.8. A performance comparison

of the iterative procedure and the optimal symmetric event-trigger is drawn in Fig. 3b for a
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(a)

u=0
u=0.8

—— =09

0.008 —— =0.97

0.006

0.004

density function ¢,

0.002

system Ploise w
(b)

T
—+= symmetric
L —— iterative

cost J

5 1 0

10°
degree of unimodality 1 — p

Fig. 3: (a) Density functions for various p. (b) Performance comparison with varying degree of

unimodality drawn on a log. scale.

horizon N = 10 and various p. The initialization for the iterative procedure is chosen to
be o’ = 0.1. For p € [0,0.8], the costs are almost identical as the noise distributions are
(approximately) unimodal within this range. This is also anticipated by Theorem 1. For p > 0.8
a rapid performance improvement can be observed. The value ;o = 0.8 can therefore be viewed
as the critical border between (approximately) unimodal distributions and density functions with
two distinct peaks. In the limit g — 1, the costs are reduced by 45% by the iterative procedure
compared with the optimal symmetric event-trigger.

Fig. 4 gives an illustrative explanation of the significant performance improvement for N = 1
and = 0.95. With an initial value o = 0.1, the iterative algorithm converges to oy ~ 0.95
and an asymmetric event-trigger f(zo) = 1L.251.651(z0). The event-trigger and estimator have

therefore an implicit agreement if no state update is sent over the resource-constrained channel.
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In that case, no transmission indicates the estimator that the state x is situated at the right peak

resulting in the estimate «.

0.01 T T T T T T T
event-trigger policy f
_ - _densityo

0.008

0.006 -
7\

0.004

0.002f- :

Ao
&
)
o
N
w
EN

Fig. 4: Asymmetric event-trigger { (scaled by 0.007) resulting from the iterative Algorithm 1 for

a bimodal initial distribution ¢,,,.

VI. SUMMARY

By considering the joint optimal design of state estimator and event-trigger as a two-person
problem, we were able to develop an efficient iterative algorithm, which alternates between
optimizing the estimator while fixing the event-trigger and vice versa. The iterative method
shows special properties in the case of unimodal and symmetric statistics in the uncertainty. In
this situation it is shown that the optimal event-triggered estimator can be obtained by a separate
design and is given by a linear predictor and a symmetric threshold policy. This result is along
previous results and offers an alternative line of proof for showing that such separate design
is optimal in case of symmetric unimodal distributions. In the case of symmetric and bimodal
distributions, the iterative procedure offers a systematic method, which leads to asymmetric
event-triggers and biased estimators that outperform symmetric threshold policies.

Similar properties of the iterative method are likely to hold as well in the case of multi-

dimensional systems, but a conclusive derivation for higher-order systems is still an open issue

for future research.
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APPENDIX
PROOF OF THEOREM 1
Proof: First, we define the following time-variant transformations of e; and oy ,, by

yk:—kek, kZO,...,N—l,
a

1
/Bkﬂ'k:_kakﬂ'k7 ]{ZZO,...,N—L Tk:_la"‘7k_1
a

By this transformation, the running cost and the Bellman operator are defined by

& (s s 1) = (1 = 04)a™ ye — B [* + A,

TP da () = min, &5 (.00) + E [Juaa (s, mi) | 8]

The optimization problem (16) can then be restated by replacing J with J defined by

[ZC (Yrs Tho» O ] :

The event-trigger fj is a function of y; and 7, where y, evolves by

Y1 = (1 — 0)yk + vk, Yo = eo.

with vy, = aikwk and the evolution of 7, is given by (4). It is easy to see that the distribution of
v, 1s again unimodal and symmetric. In the following, we adapt Algorithm 1 to the transformed

N(N+1)

system. We consider 3’ as a vector in R2 that evolves by the procedure defined by (20).

By this view, /3" is the state of a non-linear time-invariant discrete-time system described by
f' = argmin J(f, 5%),
f
k—1 (20)
Ilv—:—l = E" Zvl|57+1 =0,...,0, =0

=7
In order to analyze the asymptotic behavior with regard to 7, we introduce the following Lyapunov

candidate V' (3") defined by
V(8) = 18]l o-
For notational convenience, let ﬁéo be defined as

Bro = 118"l
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What we want to show first is that for every event-trigger f’ resulting from (20) for a given 3,

we have
B+ D) =0 = fi(B—A7) =0,
21
VA>0,k=0,.... N—1,7=—-1,...,k—1.
The validity of above implication is shown by induction starting with k = N — 1. We fix a 3°

and apply dynamic programming to obtain f’. Because of Jy = 0, the value function Jy_; is

then given by

S . B
Inaaly, ) = soin en (y,T,9).

Note that the running cost exhibits the symmetry property
(B, + A7, 8) = 6 (BL, — A7),
VA e R,6 €{0,1}
with 7 = —1,...,k — 1 and the monotonicity property
0< A <Ay
= (Bl + DT 0) <GB, + A7 0)

for § € {0,1} and 7 = —1,...,k — 1. Both properties are preserved after taking the minimum

over ¢ implying that they are also valid for Jy_1. Therefore, we obtain
In-1(B + A7) > Ina (B, — A7), VA >0 (22)

with 7 = —1,...,N — 1. For A < 8, — f3; _, inequality (22) is valid due to the monotonicity

property of Jy_. In case of A > 3/ — B, » we have

Ina(Bly = A7)
In-1(BL, — Brr + By — A7)
Ina(Brr+ (Br = B+ A7)

S jN—l(/B(Z)O + A77—)'

The second equality is due to the symmetry property and the inequality is due to the monotonicity
property as
Brr < Brr + By — B +8) S B+ A
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By knowing that the value function J N—1 = A is constant for all pairs (y,7), when dy_1 = 1,

we have
1 (B — A7) =1
— A= Jy1 (B, — A7) < In_1 (B + AT
— Jya(BL A T) =)
— fy_ (B + A7) =1

Next, we show that by applying the Bellman operator will preserve the inequality given by (22).

Assume, we have

jk+l(ﬁéo +A,7) > j]ﬁ-l(ﬁé@ - A7), VAZ>0 (23)
with 7 = —1,..., k — 1. We want to show statement (23) implies
Th(Bl + A7) > Ju(BL — A7), YA >0 (24)
with 7 = —1,...,k — 1. The Bellman equation is

A~ AB'L A~
Je = T .

For all pairs (y, 7), where the argument of the minimization in 7; yields 6 = 1, Ji is constant.
This also implies that Ji takes its maximum for these pairs. In the following, we are interested
in outcomes for jk in case of 6y = 0. Along the same lines as for jN_1, we obtain for the

running cost éi’i
Sr(B+ A, 8) > B~ A T,6), VA € R, € {0,1} (25)
with 7 = —1,...,k — 1. We rewrite ij to

7 JSYM | JREM
Jet1 = Jk+1 Jk+1

with
jk+1(y7 7-)7 y S Béou
My =9 | | (26)
JkJrl(ﬁéo_'—(ﬁéo _y)aT)u y>ﬁéo>
TRy, 7) = T (v, 7) — TNy, 7). (27)
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By the assumption (23), we have

=0, y<pB,
T (v, ) | (28)
>0, y> 05

Taking the expectation of ij given Jy, yx and 7, gives either a constant function over (yy, 7%)
for 6, = 1 or is given by convolution with the density function of vy, for J; = 0 denoted by ¢. By
assumption the density function ¢ is symmetric and unimodal. By linearity of the convolution

operator, we follow
E [Jeralmio b = 1] = S, ) % 0+ TR, ) % 6, (29)

For the first term of (29), we see that symmetry is preserved, i.e.,

(i1 (5 7k) * ) (B + A) = (ST (- 7) * 0) (Boe — A) (30)

for A € R. On the other hand due to (28) and

oy — (Bl +A) > oy — (B —A),A >0,y > 5,

we have for any A > 0

(S (o i) % @) (Bl + A) = (JED (k) % 0) (Bl — A). 31)

Summing up the terms and taking the minimum to obtain Ji, we obtain statement (24) by
using (25), (30) and (31). By induction, statement (24) is valid for all £ € {0,..., N — 1}.
Along the same lines as for N — 1, we follow (21) from the statement in (24). Equivalently
to (21), it can be showed that

fi(=6 —AT)=0 = f(=pL+A4,7)=0,
VA>0,k=0,...,N—1,7=—1,... . k—1.

Let gf);kh be defined as the density function of the conditional probability distribution of y; given

z+1

7 and 8, = 0, when using event-trigger f’. Then, is given by

llﬂ—;’l:/ Y- ¢yk\’r( )
yeR
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By assuming f* satisfying (21), we show inductively that
yk|7(/6Z + A) < gbykh’(ﬂéo - A)’ VA Z 07
k=0,.... N—1,7=—-1,...)k—1.

(32)

For k =0, gb;k‘T is calculated by truncating the density function ¢,, of the initial state y, at all
(y,7), where f, takes a value of 1 and by normalizing the resulting function, i.e.

Ouly) (1= fy(5.7)
nyR ¢y0<y) ' (1 - f6<y7 T))dy

As ¢, is an even and unimodal function, we have

¢;0|T(y) =

woir (B +A) <6y (B — A),
A > 0,8+ A7) =0.

For all (y,7) with f} (3" + A, 7) = 1, we have
yo\T(ﬁl + A) - O

which trivially validates inequality (32). Similarly as for £ = 0 and 7 = —1, we can prove the

validity of (32) for k € {1,...,N — 1} and 7 = k — 1 by replacing the density function ¢,

by the density function ¢,, , of the noise variable v,_;. By assuming that inequality (32) is

satisfied for time step k, we prove that (32) holds for k + 1 for an arbitrary k& € {0,..., N — 2}

and fixed 7 € {—1,...,k — 1}. For a fixed 7, ¢! -(y) arises from the recursion
(@ * Do) () - (1= iy (v, 7))

fyeR( vlr * Qo) (Y) - (1=fjp1 (y, 7))y

with ¢,, preserves the

vl () = (33)

As having already been observed for jkﬂ, the convolution of gb;k

|T

inequality (32). With the same arguments as for & = 0, we follow that
(B +8) < ¢y (B, —A), A>0
implies
Bar(Boo +8) <0, (B — D), A0,

which concludes the induction.
Inequality (32) implies that 5;"' < g% . Similarly, it can be showed that ;' > —gi . In

fact, it is straight forward to see that the inequalities are strict for all 3°  # 0 and therefore the
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Lyapunov candidate V' decreases with increasing ¢ for all 3 # 0. Hence, the iterative procedure

defined in (20) converges to 0 for any initial condition of 3. By transforming 3 back into the

initial state space system, we can conclude the proof. [ ]
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