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Abstract

This paper investigates the optimal design of event-triggered estimation for linear systems. The

synthesis approach is posed as a team decision problem where the decision makers are given by the

event-trigger and the estimator. The event-trigger decides upon its available measurements whether the

estimator shall obtain the current state information by transmitting it through a resource constrained

channel. The objective is to find the optimal trade-off between the mean square estimation error and the

expected number of transmissions over a finite horizon. After deriving basic characteristics of the optimal

solution, we propose an iterative algorithm that alternates between optimizing one decision maker while

fixing the other and vice versa. By analyzing the dynamical behavior of the iterative method, it is shown

that the algorithm converges to a symmetric threshold policy for first-order systems if the statistics of

the uncertainties are even and unimodal. In the case of bimodal distributions, we show numerically that

the iterative method may find asymmetric threshold policies that outperform symmetric rules.
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I. INTRODUCTION

In contrast to the periodically sampled systems, in which measurements are taken within

equidistant time-intervals, an event-triggered estimator receives measurement updates in an asyn-

chronous fashion. The event-trigger is a preprocessing unit situated at the sensor which decides

upon its available information, whether to update a remote estimator with new measurements.

There is a lot of evidence in the literature that event-triggered sampling for estimation and control

is a promising alternative to periodic sampling when the sensor transmissions are costly [1]–[7].

Along with the benefits of event-triggered sampling for estimation, several challenges emerge in

the analysis and design that are not present in periodically sampled systems. One of the main

issues corresponds to the implicit information available at the estimator in the absence of an

event [8], [9]. This additional information commonly leads to a close coupling of the estimator

and the event-trigger. In order to overcome this complication, the majority of results assumes

symmetric threshold policies. The restriction to symmetry commonly implies that the estimator

will not depend on the event-triggering rule [1]–[3]. In contrast to these works, the focus of this

paper is to study exactly this dependence between event-trigger and estimator by allowing for

asymmetric triggering policies.

Our approach is posed as a team decision problem composed of the event-trigger and the

estimator. The optimal decision makers aim at minimizing a finite horizon cost criterion com-

posed of the mean square estimation error and the expected number of transmissions. First, basic

properties of the optimal event-trigger and estimator are derived in which we make use of the

nested information pattern of the team decision problem. We then propose an iterative algorithm

that alternates between minimizing the cost criterion over one decision maker while fixing the

other and vice versa. Stationary solutions of this algorithm can be identified as person-by-person

optimal solutions. By studying the convergence behavior of the proposed iterative algorithm,

we are able to attain a more detailed characterization of the optimal solution under a slight

restriction of the set of admissible policies. It is shown for first-order systems that the optimal

event-trigger is given by a symmetric threshold policy if the distributions of the uncertainties are

unimodal and symmetric. Furthermore, we demonstrate numerically that our algorithm yields

asymmetric threshold policies for symmetric but bimodal noise densities. For certain systems, it

turns out that these asymmetric solutions decrease the cost considerably when comparing with
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the optimal symmetric solution. This observation suggests that unimodality of the distributions

is essential for the optimality of symmetric threshold policies.

A. Related work

The optimality of symmetric threshold functions for the remote state estimation problem with

costly communication has also been proven in [10]. The authors in [10] make use of majorization

theory and the Riesz rearrangement inequality [11] in order to arrive at this result. The proof

follows a similar guideline used for a related problem that studies the joint optimization of paging

and registration policies in mobile networks [12]. The analysis of the asymptotic behavior of our

iterative algorithm constitutes an alternative way to prove that symmetric event-triggering laws

are optimal for first-order systems. In contrast to [10], our proposed method enables the analysis

of multi-modal noise distributions and is capable to find solutions that outperform symmetric

policies in this case.

Iterative methods for the solution of team decision problems, in which one policy is op-

timized while the others are fixed, has also been applied for the study of optimal solutions

of the Witsenhausen’s counter-example [13] and for the joint design of source-channel-relay

mappings [14]. The work in [15] proposes an iterative encoder-decoder design algorithm for

event-triggered feedback control over a bandwidth-limited channel. The authors in [16] focus

on the existence of solutions of our proposed problem for higher-order systems by relating it to

the Lloyds algorithm originally used to compute Centroidal Voronoi Tessellations [17].

Another closely related work [18] studies distributed estimation for two random variables over

the collision channel. In contrast to our work, the estimator must distinguish between the absence

of an event and a collision during transmission. The authors show that threshold policies are

optimal for the case of a single snapshot estimation. Moreover, the results indicate that even in the

case of observing random variables with unimodal and symmetric distributions, the optimal event-

trigger thresholds may be asymmetric. The work in [19] considers a variation of our problem

setup for first-order Markov sources. In [20], the authors consider the joint design of estimation

and scheduling for an energy-harvesting sensor by employing results from majorization theory.

Both works [19] and [20] highlight the importance of symmetry and unimodality.

A preliminary version of this work has been published in [21]. The present note differs from

the work in [21] as follows. It presents the iterative method and establishes basic properties of
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the optimal event-triggered estimator for higher-order systems. This is in contrast to [21], which

merely considers first-order systems. Moreover, this note introduces a new crucial assumption

necessary for a detailed study of optimal event-triggered estimation. Finally, it provides a full

proof of Theorem 1 that has been omitted in [21].

B. Organization of the Paper

Sec. II introduces the design problem of event-triggered estimation under communication

constraints. A basic characterization of the optimal solution is discussed in Sec. III. Based on

these properties, an iterative algorithm is developed in Sec. IV whose convergence properties

are analyzed in Sec. V.

C. Notation

The expected value is denoted by E
f [·] and the conditional expectation is denoted by E

f [·|·],
where the underlying probability measure P

f is parameterized by the policy f. The variable

Xk denotes the sequence [x0, . . . , xk] and X l
k denotes the sequence [xk, . . . , xl]. The indicator

function is denoted by 1A(x) taking a value of 1 if x ∈ A and 0 otherwise. The complement

of a set A is denoted by Ac. The maximum norm of a vector x ∈ R
n is denoted by |x|∞. The

convolution of two real-valued function f and g is denoted by f ∗g.

II. MMSE ESTIMATION UNDER COMMUNICATION CONSTRAINTS

Consider the following linear process P driven by noise wk

xk+1 = Axk + wk, (1)

where xk takes values in R
n and A ∈ R

n×n. The system noise wk takes values in R
n and is

an i.i.d. random variable described by the probability density function φw, which is zero-mean

and has a covariance matrix Cw. The initial state, x0, is statistically independent of wk and is

described by probability density function φx0 , which has a finite mean E[x0] and a covariance

matrix Cx0 . The initial state x0 and the noise process {wk} are also referred to as primitive random

variables in the following. System parameters and statistics are known to both the event-trigger

and estimator.
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The system model is illustrated in Fig. 1. The process P outputs the state xk. The event-

trigger E decides upon its available information whether or not to transmit the current state to

the remote state estimator S . We define the output of the event-trigger as

δk =











1, update xk sent,

0, otherwise.

The communication channel between the process P and the state estimator S can be viewed as

a δk-controlled erasure channel whose outputs are described by

zk =











xk, δk = 1,

∅, δk = 0,
(2)

where ∅ is the erasure symbol. As it will be useful for subsequent analysis, we define the last

update time τk as

τk = max{κ|δκ = 1, κ < k} (3)

with τk = −1, if no transmissions have occurred prior to k. The variable τk evolves by

the δk-controlled difference equation

τk+1 =











k, δk = 1,

τk, δk = 0,
τ0 = −1. (4)

Admissible event-triggers are given by causal mappings

δk = fk(X
k), k = 0, . . . , N − 1.

The estimator S outputs the state estimate x̂k and is given by measurable mappings gk defined

by

x̂k = gk(Z
k), k = 0, . . . , N − 1.

The design objective is to jointly synthesize the event-trigger f = [f0, . . . , fN−1] and the estimator

g = [g0, . . . , gN−1] that minimize cost J defined by

J = E
f,g

[

N−1
∑

k=0

‖xk − x̂k‖2 + λδk

]

. (5)

The per-stage cost of J is composed of the squared estimation error ‖xk − x̂k‖2 and a com-

munication penalty λδk. The weight λ > 0 determines the amount of penalizing transmissions
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over the communication channel emerging either from bandwidth limitations or from energy

restrictions in the sensor node.

P S
communication channel

event-trigger E

zkxk x̂k

wk
δk

Fig. 1: System model of the networked estimation system with plant P , event-trigger E , state

estimator S and communication channel.

III. BASIC PROPERTIES

In this section, we are concerned with finding basic properties of optimal solutions minimiz-

ing (5) that will facilitate the description of optimal event-triggered estimators. We begin with

a characterization of the optimal estimator given an arbitrary event-trigger.

Proposition 1: For any event-trigger f, the optimal state estimator g∗ is given by the MMSE

estimator

x̂k = g∗k(Z
k) = E

f [xk|Zk], k = 0, . . . , N − 1.

Proof: Fix an arbitrary event-trigger f. The sequence {δk} is then a function of primitive

random variables. Hence, the communication penalty term E
f
[

∑N−1
k=0 λδk

]

is constant and can

be omitted from the optimization. In the remaining estimation problem the mean square er-

ror E
f
[

∑N−1
k=0 ‖xk − x̂k‖2

]

is to be minimized. The optimal solution for this problem is given

by the MMSE estimator Ef [xk|Zk], [22]. This completes the proof.

In the following, we introduce a time-variant translatory change of coordinates of the state

space that will enable us to focus on the main issues involved in the joint optimization of the

event-trigger and the estimator. As the coordinate transformation at each time k can be computed

at the event-trigger and the estimator, the optimization problem remains unchanged. Let us define

the linear predictor x̂LP
k by the following recursion

x̂LP
k =











xk, δk = 1,

Ax̂LP
k−1, δk = 0,

(6)
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for k ∈ {1, . . . , N − 1} and x̂LP
0 = E[x0]. The linear predictor is the MMSE estimator, when

having no information about the choice of the event-trigger f and assuming that transmission

instances are statistically independent of the state evolution. Clearly, this holds when transmission

instances are selected in advance.

Let us rewrite the optimization problem by defining the one-step ahead estimation error of

the linear predictor as

ek = xk − Ax̂LP
k−1, k = 1, . . . , N − 1 (7)

and e0 = w−1, where we define w−1 = x0 − E[x0]. The variable ek defines our new state to be

estimated and follows the recursion

ek+1 = hk(ek, δk, wk) = (1− δk)Aek + wk. (8)

Further, we define êk to be the MMSE estimate E[ek|Z̃k], where z̃k is defined accordingly as

z̃k =











ek, δk = 1,

∅, δk = 0.
(9)

It is straightforward to see that the estimation error ek − êk and xk − x̂k are identical random

variables for a fixed event-trigger f, as ek corresponds to a translatory coordinate transformation

of xk shifted by −Ax̂LP
k−1 which is known since the sequence δk−1 is measurable with respect

to Zk. Therefore, our initial optimization problem with cost function J can be rewritten as

inf
f
E
f

[

N−1
∑

k=0

‖ek − êk‖2 + λδk

]

. (10)

In the following, we assume that the event-trigger f is given by a mapping from Ek to {0, 1}.
Since there always exists a bijection from Xk to Ek given the variables δ0, . . . , δk−1, this change

of variables does not put any restrictions on the further analysis keeping in mind that any policy

expressed in Ek can also be written as a function in Xk. Let F denote the set of admissible

policies over the horizon N .

In order to find further structural properties of the optimal solution, we need to introduce

an assumption on our admissible event-triggering policies. Suppose δm = 1 at time m ∈
{−1, . . . , N − 2} and apply a policy f until time m. Then, the remaining optimization problem
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is to find fm = [fm+1, . . . , fN−1], that minimizes

Jm = E
f

[

N−1
∑

ℓ=m+1

‖eℓ − êℓ‖2 + λδℓ|δm = 1

]

(11)

where eℓ evolves according to (8) with initial condition em+1 = wm. The above optimization

problem has the same form as (10) for each m with a shifted initial condition and a shorter

horizon. This suggests that optimal policies need not depend on data prior to time τk+1 because

of the reset transition of the state variable em at m = τk, i.e. it seems to be reasonable to restrict

our policies to only depend on Ek
τk+1. Though a further in-depth analysis for the verification

of this assertion is needed as the expected value to be computed in (11) still depends on the

complete policy f , this study exceeds the scope of this note. Instead, we provide the following

restriction on the set of admissible policies, which our subsequent results will be based on.

Definition 1: The set FCON defines the family of admissible event-triggering policies over the

horizon N constrained to the form

δk = fk(E
k
τk+1), 0 ≤ k ≤ N − 1. (12)

Based on the restricted set of policies introduced in Definition 1, the next proposition gives

us insights into the structure of êk.

Proposition 2: Let the event-trigger f ∈ FCON be fixed. Then, the MMSE estimate of ek is

given by

êk =











ek, δk = 1,

αk(τk), δk = 0,
(13)

where τk is defined by (3) and αk(τk) is defined by

αk(τk) = E
f

[

k−1
∑

l=τk

Ak−l−1wl|δτk+1 = 0, . . . , δk = 0

]

. (14)

Proof: Clearly, we have êk = ek for δk = 1, as ek ∈ Z̃k if δk = 1. For δk = 0, τk is a

sufficient statistics for êk due to the state equation in (8) and f ∈ FCON. The mapping αk is

determined by applying recursively (8) with eτk+1 = wτk .

The function α = [α0, . . . , αN−1] in Proposition 2 can be interpreted as a bias term to improve

the state estimate by incorporating the negative information δτk+1 = · · · = δk = 0 at time k.
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Because of Proposition 2, we can rewrite optimization problem (10) as

inf
f∈FCON

E
f

[

N−1
∑

k=0

(1− δk)‖ek − αk(τk)‖2 + λδk

]

. (15)

It can be observed that the running cost reduces to λ and is therefore independent of the current

αk in the case δk = 1.

IV. AN ITERATIVE ALGORITHM

What prevents a further study of the optimization problem (15) is the fact that the estimation

bias αk(τk) depends on the particular policy f ∈ FCON chosen up to time k. Therefore, methods

like dynamic programming are not directly applicable. In order to overcome this burden, we

broaden (15) by considering the variable αk as a new decision variable being a function of τk.

Then, the optimization problem is given by

inf
f∈FCON,α

J (16)

with

J(f, α) = E
f

[

N−1
∑

k=0

(1− δk)‖ek − αk(τk)‖2 + λδk

]

. (17)

The optimization problem (16) enlarges the set of possible solutions compared to optimization

problem (15), because it omits the constraint for α given by (14). On the other hand, because of

Proposition 2, it follows by contradiction that the optimal solution of (16) satisfies (14). Because

of these observations, we can conclude that any optimal solution of problem (16) will yield the

same optimal cost as (15). By considering optimization problem (16), we are able to specify the

structure of the optimal event-trigger given by the following proposition.

estimator S
event-trigger

E

dynamic programming

conditional expectation

Fig. 2: Iterative scheme to calculate event-trigger E and estimator S .

May 1, 2017 DRAFT



10

Proposition 3: Let the function α be fixed and the event-triggering law f be in FCON. Then,

the variables ek and τk are a sufficient statistics for the optimal event-trigger fk, 0 ≤ k ≤ N − 1.

Proof: The evolution of the pair (ek, τk) can be regarded as a δk-controlled Markov process

defined by (4) and (8). The running cost of J at time k is a function of the pair (ek, τk), input δk

and noise wk. By [22], this problem can be solved by dynamic programming with (ek, τk) being

the state, which is a sufficient statistics of the optimal solution fk. This completes the proof.

Proposition 3 implies that the optimal event-trigger in FCON is a function of ek and τk. It can

be observed that for a fixed event-trigger f, the optimal map α can be calculated by (14). On

the other hand, for any fixed map α, the optimal event-trigger f can be calculated by dynamic

programming. We therefore define the running cost as

cαk

k (ek, τk, δk) = (1− δk)‖ek − αk(τk)‖2 + λδk,

and the Bellman operator as

T αk

k Jk+1(·) = min
δk∈{0,1}

cαk

k (·, δk) + E [Jk+1(ek+1, τk+1)|·, δk] .

The value function Jk being a function of the augmented state (ek, τk) is determined by recursive

application of the Bellman equation given by

Jk = T αk

k Jk+1

with JN ≡ 0, where the argument in the minimization yields the optimal event-trigger f and we

have

J(f, α) = E
f [J0(e0,−1)].

This observation motivates us to propose the following iterative procedure sketched in Fig. 2,

which alternates between optimizing f while fixing policy α and vice versa. Algorithm 1 describes

the iterative procedure. With slight abuse of notation, we declared τk as a second subscript instead

of an argument of αk.

As the cost J decreases or is at least kept constant in each step of the iteration, the sequence

[(f0, α0), (f1, α1), . . .] produces a non-increasing succession of costs J .
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Algorithm 1 Iterative procedure to calculate (f, α)

Require: α0
k,τk
∈ R, k = 0, . . . , N − 1, τk = −1, . . . , k − 1

1: i← 0

2: repeat

3: k = N , JN ≡ 0

4: repeat

5: k ← k − 1

6: Jk ← T αi
k

k Jk+1

7: fik(ek, τk) ∈ argminδk∈{0,1}
c
αi
k

k (ek, τk, δk) + E [Jk+1(ek+1, τk+1)|ek, τk, δk]
8: until k = 0

9: αi+1
k,τk
← E

fi
[

∑k−1
l=τk

Ak−l−1wl|δkτk+1 = 0
]

10: i← i+ 1

11: until convergence

V. CONVERGENCE PROPERTIES

In the following, we are interested in the convergence properties of the proposed iterative

algorithm for scalar systems. We will therefore restrict our analysis to linear first-order processes

P defined as

xk+1 = axk + wk, (18)

where a ∈ R\{0}. The system noise wk takes values in R and is an i.i.d. random variable

described by the probability density function φw, which is zero-mean and has finite variance.

The initial state, x0 is statistically independent of wk and is described by density function φx0 ,

which has a finite mean E[x0] and a finite variance. As in the previous sections, we will study

the transformed system with state variable ek defined in (7). Additionally, it is assumed that the

density functions are symmetric around their means, i.e.,

φw(w) = φw(−w),

φe0(e) = φe0(−e)
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for all w, e ∈ R. Rather than regarding α as a function of k and τk, we will interpret α as a

vector in R
1
2
N(N+1) by reindexing its entries appropriately. A central notion for the optimality of

two-person team problems is given by person-by-person optimality, which is defined as follows

with regard to (16).

Definition 2 (Person-by-person optimality): A solution (α∗, f∗) of (16) is called person-by-

person optimal, if

J(α∗, f∗) ≤ J(α, f∗),

J(α∗, f∗) ≤ J(α∗, f)

for all α ∈ R
1
2
N(N+1) and all admissible policies f.

The above definition means to say that the cost of a person-by-person optimal solution can not be

decreased by either changing the estimation bias α or by changing the event-trigger f while fixing

the other. Person-by-person optimality is a necessary condition for optimality, since it would be

otherwise possible to improve the solution by the iterative algorithm defined by Algorithm 1.

Hence, every fixpoint (f∗, α∗) in the iterative algorithm is a person-by-person optimal solution

of optimization problem (16).

The following proposition shows that α∗ = 0 and its resulting optimal event-trigger f∗ is a

person-by-person optimal solution.

Proposition 4: Let e0 and {wk} have symmetric distributions. Then α∗ = 0 is a fixpoint of

the Algorithm 1. The policy of the event-trigger f∗ that corresponds to α∗ is an even mapping

of ek and is independent of τk for every k = 0, . . . , N − 1.

Proof: Let α0 be 0 for all k and all τ in the initialization of Algorithm 1. The cost function J

reduces then to

J(f, α0) = E
f

[

N−1
∑

k=0

(1− δk)|ek|2 + λδk

]

where ek evolves by the recursion (8). Therefore, the resulting optimal f0k and the cost-to-go

function Jk is only a function of ek for all k = 0, . . . , N − 1. We first show that the application

of the Bellman operator T 0
k preserves symmetry of Jk+1 for any k. Given an even value

function Jk+1, the conditional expectation E [Jk+1(ek+1)|·, δk] preserves symmetry for both δk = 1

as the expected value is constant. Due to the symmetry of φw/e0 and the system dynamics (8),
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we have for δk = 1

E [Jk+1(aek + wk)|ek] = E [Jk+1(−aek − wk)|ek] =

= E [Jk+1(−aek + wk)|ek] = E [Jk+1(aek + wk)| − ek]

Adding the cost c0k(·, δk) also preserves symmetry, because the sum of two even functions is

again even. Taking the pointwise minimum of two even functions yields an even function. There-

fore, an even function remains even after application of the Bellman operator. As JN ≡ 0 is an

even function, it follows by induction that every value function Jk is even for k ∈ {0, . . . , N − 1}.
This implies that f0k resulting in the first iteration step from Algorithm 1 is an even mapping of

ek, if α0 = 0.

Next, we calculate α1 assuming f0k being an even function of ek for k ∈ {0, . . . , N − 1}. Let φek|τ

be the density function of the conditional probability distribution of ek given τk and δk = 0.

Then, due to (14) and Proposition 2, α1
k,τ can be computed by

α1
k,τ =

∫

e∈R

e · φek|τ (e)de.

For k = 0, φek|τ is determined by truncating the density function φe0 of the initial state e0 at all

(e, τ), where f00 takes a value of 1 and by normalizing the resulting function, i.e.

φe0|τ (e) =
φe0(e) · (1− f00(e, τ))

∫

e∈R
φe0(e) · (1− f00(e, τ))de

. (19)

Since φe0 and f00 are even functions, we conclude that φe0|τ is even and therefore we have α1
0,−1 =

0. Along the same lines, we can show that φek|k−1 is even and α1
k,k−1 = 0 for k ∈ {1, . . . , N − 1}

by replacing φe0 with φw in (19). Due to the Bayes rule, the conditional density function φek|τ

with a fixed τ evolves by the recursion

φek+1|τ (e) =
( 1
|a|
φek|τ (

(·)
a
) ∗ φw)(e) · (1− f0k+1(e, τ))

∫

e∈R
( 1
|a|
φek|τ (

(·)
a
) ∗ φw)(e) · (1− f0k+1(e, τ))de

.

For the prediction step from (8) in the above expression, the scaling refers to the multiplication

by a, while the convolution arises from the sum of two independent random variables. The

truncation is a result of the incorporation of δk+1 = 0. It can be observed that this recursion

preserves symmetry of the conditional density function φek|τ , as f0k is an even function. Therefore,

we have shown that α∗ = 0 is a fixpoint of Algorithm 1, which completes the proof.
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A. Symmetric Unimodal Distributions

A natural question arising from Proposition 4 is whether the person-by-person optimal solution

α∗ = 0 with its optimal event-trigger f∗ is also the globally optimal solution. We partly answer

this question in the following by assuming that the distributions are unimodal.

Definition 3 (Unimodality): A distribution in R is called unimodal, if there exists w0 ∈ R

such that the density function of the distribution φ(w) is a non-increasing function for w ≥ w0

and a non-decreasing function for w ≤ w0.

This additional assumption enables us to state the following useful convergence property of

Algorithm 1.

Theorem 1: Let f∗ ∈ FCON and the initial state e0 and the noise process {wk} have sym-

metric and unimodal distributions. Then, α∗ = 0 is a globally asymptotically stable fixpoint of

Algorithm 1.

By considering the evolution of αi as a dynamical system evolving over variable i, the asymptotic

behavior of the iterative Algorithm can be analyzed by means of Lyapunov stability theory and

it is shown that α∗ = 0 is a globally asymptotically stable equilibrium point. The details of the

proof can be found in the appendix.

As the iterative Algorithm 1 produces a sequence of pairs (fi, αi) whose costs are non-

increasing with increasing i, we conclude that 0 is the optimal choice for α, when noise

distributions are symmetric and unimodal according to Theorem 1. The optimal state estimator

of xk is then given by the linear predictor in (6) and is therefore independent of the choice of

the event-trigger f. The distribution of the initial state x0 must be also symmetric and unimodal,

but its mean E[x0] can be chosen arbitrarily. Hence, the symmetry axis of the distribution of x0

need not to be at zero. In order to determine the optimal f∗ ∈ FCON, dynamic programming must

only be applied once with α = 0. Note that such f∗ always exists. These results are summarized

in the following corollary.

Corollary 1: The optimal event-triggered estimator with f∗ ∈ FCON for the first-order sys-

tem (18) minimizing cost (5) exists and is characterized by (6) and a symmetric threshold

policy.

The above corollary is in accordance with [10] and constitutes an alternative way by analyzing

the asymptotic behavior of Algorithm 1 to prove that symmetric event-triggering laws are optimal

in the presence of symmetric unimodal distributions. Moreover, the iterative algorithm may also
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be applied to dynamical systems whose noise distributions do not satisfy these assumptions.

Although α = 0 is a fix point of the Algorithm 1 by Proposition 4 assuming symmetric density

functions, the next section shows that symmetric threshold policies with α = 0 can be outper-

formed by Algorithm 1 by almost 50%. Hence, we can conclude that symmetry of the densities is

not sufficient to show that the independent design is optimal. Therefore, additional assumptions

are required to show that the independent design is optimal. In the case of Theorem 1 such

requirement is given by the unimodality assumption of the density functions.

It is an open question whether Theorem 1 is also valid for higher-order systems. The work

in [20] considers the case of multi-dimensional systems for scaled orthonormal system matrices

to find structural properties for the joint optimal scheduling and estimation problem. However,

neither the use of majorization theory in [10] and [20] nor our iterative approach allow a direct

extension to the case of general multi-dimensional systems.

B. Symmetric Bimodal Distributions

This subsection intends to outline the benefits of the iterative algorithm for bimodal noise

distributions. We demonstrate numerically how the event-trigger and the estimator can benefit

from signaling through the absence of triggering by comparing our solution with the optimal

symmetric solution.

Suppose the process (18) with a = 1, λ = 0.5 and the distribution of the initial state, φe0 , and

the system noise, φw, to be given by

φe0(µ, σ) = φw(µ, σ) =
1

2
φN (µ, σ) +

1

2
φN (−µ, σ)

φN (µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

For µ = 0, we retrieve the normal distribution. In the limit µ → 1, the noise process degrades

to a Bernoulli process taking discrete values {−1, 1} with probability 1
2
. We select µ ∈ [0, 1)

and set σ =
√

1− µ2 in order to have unit variance for all µ ∈ [0, 1). Various density functions

for different µ are sketched in Fig. 3a.

We observe that for µ < 0.8 the peaks of the bimodal density function are less distinctive.

According to Theorem 1, we can not expect that large gains of the iterative procedure can be

attained compared with the optimal symmetric solution for µ < 0.8. A performance comparison

of the iterative procedure and the optimal symmetric event-trigger is drawn in Fig. 3b for a
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Fig. 3: (a) Density functions for various µ. (b) Performance comparison with varying degree of

unimodality drawn on a log. scale.

horizon N = 10 and various µ. The initialization for the iterative procedure is chosen to

be α0 ≡ 0.1. For µ ∈ [0, 0.8], the costs are almost identical as the noise distributions are

(approximately) unimodal within this range. This is also anticipated by Theorem 1. For µ > 0.8

a rapid performance improvement can be observed. The value µ = 0.8 can therefore be viewed

as the critical border between (approximately) unimodal distributions and density functions with

two distinct peaks. In the limit µ→ 1, the costs are reduced by 45% by the iterative procedure

compared with the optimal symmetric event-trigger.

Fig. 4 gives an illustrative explanation of the significant performance improvement for N = 1

and µ = 0.95. With an initial value α0
0 = 0.1, the iterative algorithm converges to α0 ≈ 0.95

and an asymmetric event-trigger f(x0) = 1[0.25,1.65]c(x0). The event-trigger and estimator have

therefore an implicit agreement if no state update is sent over the resource-constrained channel.
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In that case, no transmission indicates the estimator that the state x0 is situated at the right peak

resulting in the estimate α0.

-4 -3 -2 -1 0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

 

 

event-trigger policy f
density φ

w

α0

state x0

Fig. 4: Asymmetric event-trigger f (scaled by 0.007) resulting from the iterative Algorithm 1 for

a bimodal initial distribution ϕw.

VI. SUMMARY

By considering the joint optimal design of state estimator and event-trigger as a two-person

problem, we were able to develop an efficient iterative algorithm, which alternates between

optimizing the estimator while fixing the event-trigger and vice versa. The iterative method

shows special properties in the case of unimodal and symmetric statistics in the uncertainty. In

this situation it is shown that the optimal event-triggered estimator can be obtained by a separate

design and is given by a linear predictor and a symmetric threshold policy. This result is along

previous results and offers an alternative line of proof for showing that such separate design

is optimal in case of symmetric unimodal distributions. In the case of symmetric and bimodal

distributions, the iterative procedure offers a systematic method, which leads to asymmetric

event-triggers and biased estimators that outperform symmetric threshold policies.

Similar properties of the iterative method are likely to hold as well in the case of multi-

dimensional systems, but a conclusive derivation for higher-order systems is still an open issue

for future research.

May 1, 2017 DRAFT



18

APPENDIX

PROOF OF THEOREM 1

Proof: First, we define the following time-variant transformations of ek and αk,τk by

yk =
1

ak
ek, k = 0, . . . , N − 1,

βk,τk =
1

ak
αk,τk , k = 0, . . . , N − 1, τk = −1, . . . , k − 1

By this transformation, the running cost and the Bellman operator are defined by

ĉ
βk

k (yk, τk, δk) = (1− δk)a
2k|yk − βk,τk |2 + λδk,

T̂ βk

k Ĵk+1(·) = min
δk∈{0,1}

ĉ
βk

k (·, δk) + E

[

Ĵk+1(yk+1, τk+1)|·, δk
]

.

The optimization problem (16) can then be restated by replacing J with Ĵ defined by

Ĵ(f, β) = E
f

[

N−1
∑

k=0

ĉ
βk

k (yk, τk, δk)

]

.

The event-trigger fk is a function of yk and τk, where yk evolves by

yk+1 = (1− δk)yk + vk, y0 = e0.

with vk =
1
ak
wk and the evolution of τk is given by (4). It is easy to see that the distribution of

vk is again unimodal and symmetric. In the following, we adapt Algorithm 1 to the transformed

system. We consider βi as a vector in R
1
2
N(N+1) that evolves by the procedure defined by (20).

By this view, βi is the state of a non-linear time-invariant discrete-time system described by

fi = argmin
f

Ĵ(f, βi),

βi+1
k,τ = E

fi

[

k−1
∑

l=τ

vl|δτ+1 = 0, . . . , δk = 0

]

.

(20)

In order to analyze the asymptotic behavior with regard to i, we introduce the following Lyapunov

candidate V (βi) defined by

V (βi) = ‖βi‖∞.

For notational convenience, let βi
∞ be defined as

βi
∞ = ‖βi‖∞.
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What we want to show first is that for every event-trigger fi resulting from (20) for a given βi,

we have

fik(β
i
∞ +∆, τ) = 0 =⇒ fik(β

i
∞ −∆, τ) = 0,

∀∆ ≥ 0, k = 0, . . . , N − 1, τ = −1, . . . , k − 1.
(21)

The validity of above implication is shown by induction starting with k = N − 1. We fix a βi

and apply dynamic programming to obtain fi. Because of ĴN ≡ 0, the value function ĴN−1 is

then given by

ĴN−1(y, τ) = min
δ∈{0,1}

ĉ
βi
N−1

N−1 (y, τ, δ).

Note that the running cost exhibits the symmetry property

ĉ
βi
k

k (βi
k,τ +∆, τ, δ) = ĉ

βi
k

k (βi
k,τ −∆, τ, δ),

∀∆ ∈ R, δ ∈ {0, 1}

with τ = −1, . . . , k − 1 and the monotonicity property

0 ≤ ∆1 ≤ ∆2

=⇒ ĉ
βi
k

k (βi
k,τ +∆1, τ, δ) ≤ ĉ

βi
k

k (βi
k,τ +∆2, τ, δ)

for δ ∈ {0, 1} and τ = −1, . . . , k − 1. Both properties are preserved after taking the minimum

over δ implying that they are also valid for ĴN−1. Therefore, we obtain

ĴN−1(β
i
∞ +∆, τ) ≥ ĴN−1(β

i
∞ −∆, τ), ∀∆ ≥ 0 (22)

with τ = −1, . . . , N − 1. For ∆ ≤ βi
∞ − βi

k,τ , inequality (22) is valid due to the monotonicity

property of ĴN−1. In case of ∆ > βi
∞ − βi

k,τ , we have

ĴN−1(β
i
∞ −∆, τ)

= ĴN−1(β
i
∞ − βi

k,τ + βi
k,τ −∆, τ)

= ĴN−1(β
i
k,τ + (βi

k,τ − βi
∞ +∆, τ)

≤ ĴN−1(β
i
∞ +∆, τ).

The second equality is due to the symmetry property and the inequality is due to the monotonicity

property as

βi
k,τ ≤ βi

k,τ + (βi
k,τ − βi

∞ +∆) ≤ βi
∞ +∆.
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By knowing that the value function ĴN−1 = λ is constant for all pairs (y, τ), when δN−1 = 1,

we have

fiN−1(β
i
∞ −∆, τ) = 1

=⇒ λ = ĴN−1(β
i
∞ −∆, τ) ≤ ĴN−1(β

i
∞ +∆, τ)

=⇒ JN−1(β
i
∞ +∆, τ) = λ

=⇒ fiN−1(β
i
∞ +∆, τ) = 1.

Next, we show that by applying the Bellman operator will preserve the inequality given by (22).

Assume, we have

Ĵk+1(β
i
∞ +∆, τ) ≥ Ĵk+1(β

i
∞ −∆, τ), ∀∆ ≥ 0 (23)

with τ = −1, . . . , k − 1. We want to show statement (23) implies

Ĵk(β
i
∞ +∆, τ) ≥ Ĵk(β

i
∞ −∆, τ), ∀∆ ≥ 0 (24)

with τ = −1, . . . , k − 1. The Bellman equation is

Ĵk = T̂ βi
k

k Ĵk+1.

For all pairs (y, τ), where the argument of the minimization in T̂ βi
k

k yields δk = 1, Ĵk is constant.

This also implies that Ĵk takes its maximum for these pairs. In the following, we are interested

in outcomes for Ĵk in case of δk = 0. Along the same lines as for ĴN−1, we obtain for the

running cost ĉ
βi
k

k

ĉ
βi
k

k (βi
∞ +∆, τ, δ) ≥ ĉ

βi
k

k (βi
∞ −∆, τ, δ), ∀∆ ∈ R, δ ∈ {0, 1} (25)

with τ = −1, . . . , k − 1. We rewrite Ĵk+1 to

Ĵk+1 = ĴSYM
k+1 + ĴREM

k+1

with

ĴSYM
k+1 (y, τ) =











Ĵk+1(y, τ), y ≤ βi
∞,

Ĵk+1(β
i
∞ + (βi

∞ − y), τ), y > βi
∞,

(26)

ĴREM
k+1 (y, τ) = Jk+1(y, τ)− ĴSYM

k+1 (y, τ). (27)
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By the assumption (23), we have

ĴREM
k+1 (y, τ)











= 0, y ≤ βi
∞,

≥ 0, y > βi
∞.

(28)

Taking the expectation of Ĵk+1 given δk, yk and τk, gives either a constant function over (yk, τk)

for δk = 1 or is given by convolution with the density function of vk for δk = 0 denoted by φ. By

assumption the density function φ is symmetric and unimodal. By linearity of the convolution

operator, we follow

E

[

Ĵk+1|·, τk, δk = 1
]

= JSYM
k+1 (·, τk) ∗ φ+ JREM

k+1 (·, τk) ∗ φ. (29)

For the first term of (29), we see that symmetry is preserved, i.e.,

(JSYM
k+1 (·, τk) ∗ φ)(βi

∞ +∆) = (JSYM
k+1 (·, τk) ∗ φ)(βi

∞ −∆) (30)

for ∆ ∈ R. On the other hand due to (28) and

φ(y − (βi
∞ +∆)) ≥ φ(y − (βi

∞ −∆)),∆ ≥ 0, y ≥ βi
∞,

we have for any ∆ ≥ 0

(JREM
k+1 (·, τk) ∗ φ)(βi

∞ +∆) ≥ (JREM
k+1 (·, τk) ∗ φ)(βi

∞ −∆). (31)

Summing up the terms and taking the minimum to obtain Ĵk, we obtain statement (24) by

using (25), (30) and (31). By induction, statement (24) is valid for all k ∈ {0, . . . , N − 1}.
Along the same lines as for N − 1, we follow (21) from the statement in (24). Equivalently

to (21), it can be showed that

fik(−βi
∞ −∆, τ) = 0 =⇒ fik(−βi

∞ +∆, τ) = 0,

∀∆ ≥ 0, k = 0, . . . , N − 1, τ = −1, . . . , k − 1.

Let φi
yk|τ

be defined as the density function of the conditional probability distribution of yk given

τk and δk = 0, when using event-trigger fi. Then, βi+1
k,τ is given by

βi+1
k,τ =

∫

y∈R

y · φi
yk|τ

(y)dy.
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By assuming fi satisfying (21), we show inductively that

φi
yk|τ

(βi
∞ +∆) ≤ φi

yk|τ
(βi

∞ −∆), ∀∆ ≥ 0,

k = 0, . . . , N − 1, τ = −1, . . . , k − 1.
(32)

For k = 0, φi
yk|τ

is calculated by truncating the density function φy0 of the initial state y0 at all

(y, τ), where fik takes a value of 1 and by normalizing the resulting function, i.e.

φi
y0|τ (y) =

φy0(y) · (1− fi0(y, τ))
∫

y∈R
φy0(y) · (1− fi0(y, τ))dy

.

As φy0 is an even and unimodal function, we have

φi
y0|τ (β

i
∞ +∆) ≤ φi

y0|τ (β
i
∞ −∆),

∆ ≥ 0, fik(β
i
∞ +∆, τ) = 0.

For all (y, τ) with fik(β
i
∞ +∆, τ) = 1, we have

φi
y0|τ (β

i
∞ +∆) = 0,

which trivially validates inequality (32). Similarly as for k = 0 and τ = −1, we can prove the

validity of (32) for k ∈ {1, . . . , N − 1} and τ = k − 1 by replacing the density function φy0

by the density function φvk−1
of the noise variable vk−1. By assuming that inequality (32) is

satisfied for time step k, we prove that (32) holds for k+1 for an arbitrary k ∈ {0, . . . , N − 2}
and fixed τ ∈ {−1, . . . , k − 1}. For a fixed τ , φi

yk|τ
(y) arises from the recursion

φi
yk+1|τ

(y)=
(φi

yk|τ
∗ φvk)(y) · (1− fik+1(y, τ))

∫

y∈R
(φi

yk|τ
∗ φvk)(y) · (1−fik+1(y, τ))dy

. (33)

As having already been observed for Ĵk+1, the convolution of φi
yk|τ

with φvk preserves the

inequality (32). With the same arguments as for k = 0, we follow that

φi
yk|τ

(βi
∞ +∆) ≤ φi

yk|τ
(βi

∞ −∆), ∆ ≥ 0

implies

φi
yk+1|τ

(βi
∞ +∆) ≤ φi

yk+1|τ
(βi

∞ −∆), ∆ ≥ 0,

which concludes the induction.

Inequality (32) implies that βi+1
k,τ ≤ βi

∞. Similarly, it can be showed that βi+1
k,τ ≥ −βi

∞. In

fact, it is straight forward to see that the inequalities are strict for all βi
∞ 6= 0 and therefore the
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Lyapunov candidate V decreases with increasing i for all β 6= 0. Hence, the iterative procedure

defined in (20) converges to 0 for any initial condition of β. By transforming β back into the

initial state space system, we can conclude the proof.
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