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On a class of optimization-based robust estimators
Laurent Bako

Abstract—We consider in this paper the problem of estimating
a parameter matrix from observations which are affected by two
types of noise components: (i) a sparse noise sequence which,
whenever nonzero can have arbitrarily large amplitude (ii) and a
dense and bounded noise sequence of "moderate" amount. This is
termed a robust regression problem. To tackle it, a quite general
optimization-based framework is proposed and analyzed. When
only the sparse noise is present, a sufficient bound is derived on
the number of nonzero elements in the sparse noise sequence that
can be accommodated by the estimator while still returning the
true parameter matrix. While almost all the restricted isometry-
based bounds from the literature are not verifiable, our bound
can be easily computed through solving a convex optimization
problem. Moreover, empirical evidence tends to suggest that it is
generally tight. If in addition to the sparse noise sequence, the
training data are affected by a bounded dense noise, we derive
an upper bound on the estimation error.

I. INTRODUCTION

In many engineering fields such as control system design,

signal processing, machine learning or statistics, one is fre-

quently confronted with the problem of empirically uncovering

a mathematical relationship between a number of signals of

interest. The usual method to achieve this goal is to run an

experiment during which one measures (a finite number of)

samples of the relevant signals and proceed with fitting a

certain model structure to the experimental data samples. This

process is known as system identification [11], [19]. A issue of

critical importance during this process is that the experimental

data samples might be contaminated by a measurement noise

of relatively high level due for example to intermittent sensor

failures or various communication disruptions. To cope with

the troublesome effects of the noise, the model estimation must

be designed with care.

In this paper we consider the situation where the data are

corrupted by two types of noise: a sparse noise sequence which

shows up only intermittently in time but can take on arbitrarily

large values whenever it is nonzero; and a more standard dense

noise component of moderate amount.

II. THE ROBUST REGRESSION PROBLEM

Consider a system described by an equation of the form

yt = Aoxt + ft + et (1)

where yt ∈ R
m and xt ∈ R

n are respectively the output and

the regressor vector at time t; Ao ∈ R
m×n is an unknown

parameter matrix; ft and et are some noise terms which are

unobserved.
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Problem. Given a finite collection {xt, yt}
N
t=1 of measure-

ments obeying the relation (1), the robust regression problem

of interest here is the one of finding an estimate of the

parameter matrix Ao under the assumptions that {et} and {ft}
are unknown but enjoy the following (informal) properties:

• {et} is a dense noise sequence with bounded elements

accounting for moderate model mismatches or measure-

ment noise.

• {ft} is such that the majority of its elements are equal

to zero while the remaining nonzero elements can be of

arbitrarily large magnitude. The nonzero elements of that

sequence are usually termed gross errors or outliers. They

can account for possible intermittent sensor faults. We

will refer to {ft} as the sequence of sparse noise.

For the time being, these are just informal descriptions of the

characteristics of the sequences {ft} and {et}. They will be

made more precise whenever necessary in the sequel for the

need of stating more formal results.

Let Y ∈ R
m×N and X ∈ R

n×N be data matrices formed re-

spectively with N output measurements and regressor vectors.

Then it follows from (1) that

Y = AoX + E + F, (2)

where E ∈ R
m×N and F ∈ R

m×N are unknown noise

components. The matrices Y and X can be structured or

not, depending on whether the system (1) is dynamic or not.

For example, when the model (1) is of MIMO FIR type, Y
contains a finite collection of output measurements while X
is a Hankel matrix containing lagged inputs of the system. In

this case Y and X take the form

Y =
[

y1 y2 · · · yN
]

,

X =











u1 u2 · · · uN

u0 u1 · · · uN−1

...
... · · ·

...

u1−nf
u2−nf

· · · uN−nf











.

where {ut} and {yt} stand respectively for the input and

output of the system and the maximum lag nf is called the

order of the model. In the sequel, the notations of the type yt
and xt with subindex t ∈ I , {1, . . . , N} refer to the columns

of Y and X respectively.

Relevant prior works. The so formulated regression problem

is called a robust regression problem in connection with the

fact that the error matrix F assume columns of (possibly)

arbitrarily large amplitude. It has applications in e.g., the iden-

tification of switched linear systems [1], [15], [14], subspace

clustering [2], etc. Existing approaches for solving the robust

regression problem can be roughly divided into two groups:

methods from the field of robust statistics [17], [12], [9] which

have been developed since the early 60s and a class of more
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recent methods inspired by the compressed sensing paradigm

[3], [4], [18], [21], [13]. The first group comprises methods

such as the least absolute deviation (LAD) estimator [8], the

least median of squares [16], the least trimmed squares [17],

the family of M-estimators [9]. The latter group can be viewed

essentially as a refreshed look at the so-called least absolute

deviation method. There has been however a fundamental

shift of philosophy in the analysis. While in the framework

of robust statistics, robustness of an estimator is measured

in terms of the breakdown point (the asymptotic minimum

proportion of points which cause the estimation error induced

by an estimator to be unbounded if they were to be arbitrarily

corrupted by gross errors), in the compressed-sensing-inspired

category of robust methods, the analysis aims generally at

characterizing properties of the data that favor exact recovery

of the true parameter matrix Ao. In this latter group, the LAD

estimator is sometimes regarded as a convex relaxation of a

combinatorial sparse optimization problem.

To the best of our knowledge, only the papers [18] provides

an explicit bound on the estimation error induced by the

LAD estimator. However that bound does not fully apply to

the current setting since the estimators although similar are

of different natures. Indeed, the LAD estimator stands only

as a special case of the current framework. Moreover the

bound in [18] is not easily computable while ours is. The

references [4] and [13] provide some bounds for a noise-aware

version of the LAD estimator which are based respectively

on the Restricted Isometry Property (RIP) and a measure of

subspace angles. Unfortunately numerical evaluation of those

bounds is a process of exponential complexity, a price that is

unaffordable in practice.

A related but different problem from the regression problem

considered here is that of sparse signal recovery studied in the

field of compressed sensing [5], [7]. This is about finding the

sparsest solution to an underdetermined set of linear equations.

Various analysis approaches have been devised which rely on

the RIP constant, the mutual coherence, the nullspace property,

to name but a few. Again, these analysis results either cannot

be extended efficiently to the robust regression problem or lead

to bounds that are NP-hard to compute [20], [10], [6].

Contributions. In this paper we propose and analyze a class

of optimization-based robust estimators. It is shown that the

robust properties of the estimators are essentially inherited

from a key property of the to-be-optimized performance func-

tion (or loss function) called column-wise summability. The

proposed framework admits the LAD estimator and its usual

variants as special cases. Moreover it applies to both SISO and

MIMO systems. When the dense noise component E in (2)

is identically equal to zero, we derive bounds on the number

of gross errors (nonzero columns of F ) that the estimator is

able to accommodate while still returning the true parameter

matrix Ao. In comparison with the existing literature, the

proposed bounds have the important advantage that they are

numerically computable through convex optimization. When

both E and F are active, exact recovery of the true parameter

matrix is no longer possible. In this scenario, we derive upper

bounds on the parametric estimation error in function of the

amplitude of E and the number of nonzero columns of F .

Again, computable but (possibly) looser versions of those

bounds are obtainable.

The current paper can be viewed as a generalization of our

previous work reported in [3]. While [3] provides an analysis

of mostly a single estimator (namely the LAD estimator)

relying on nonsmooth optimization theory, we focus here

on a much larger class of optimization-based robust estima-

tors by highlighting some key robustness-inducing properties.

Moreover, we provide, for the considered class of estimators,

stability results which permit the estimation of parametric error

bounds.

Outline. The rest of the paper is organized as follows. Section

III defines the optimization-based approach to the robust

regression problem. Section IV discusses the properties of the

proposed estimation framework. Section V provides further

comments. Section VI reports some numerical experiments.

Lastly, Section VII contains some concluding remarks.

Notations. R is the set of real numbers; R≥0 (respectively

R>0) is the set of nonnegative (respectively positive) real

numbers ; R
N is the space of N -tuples (vectors) of real

numbers. For any vector x = [x1 · · · xN ]⊤ ∈ R
N , the

p-norm of x with p ∈ {1, . . . ,∞} is defined by ‖x‖p =
(
∑N

i=1 |xi|
p )1/p

. A special case is the limit case p = ∞
in which ‖x‖∞ = maxi=1,...,N |xi|. For any matrix A =
[a1 · · · aN ] with ai ∈ R

m, the induced p-norm of A is

defined by ‖A‖p = supx∈RN ,‖x‖p=1 ‖Ax‖p.

Cardinality of a finite set. Throughout the paper, whenever S
is a finite set, the notation |S| will refer to the cardinality of

S. However, for a real number x, |x| will denote the absolute

value of x.

Submatrices and subvectors. Let X ∈ R
n×N and I =

{1, . . . , N} be the index set for the columns of X . If I ⊂ I,

the notation XI denotes a matrix in R
n×|I| formed with the

columns of X indexed by I . We will use the convention that

XI = 0 ∈ R
n when the index set I is empty.

III. A CLASS OF ROBUST ESTIMATORS

Let DN be the set of N data points generated by system

(1) for any possible values of the noise sequences, i.e.,

DN =
{

(Y,X) ∈ R
m×N × R

n×N :

∃(E,F ) ∈ Ge
N × Gf

N , (2) holds
}

,

with Ge
N ⊂ R

m×N and Gf
N ⊂ R

m×N denoting the set of dense

and sparse noise matrices respectively. The estimation problem

aims at determining the unknown parameter matrix Ao given

a point (Y,X) in DN . Of course, this quest would not make

much sense if the noises E and F were completely arbitrary

since in this case, we would have DN = R
m×N × R

n×N

hence losing any informativity concerning the data-generating

system. Therefore some minimum constraints need to be put

on E and F as informally described above.

With respect to the estimation problem just stated, an estimator

is a set-valued map Ψ : DN → P(Rm×n), (Y,X) 7→
Ψ(Y,X) which is defined from the data space DN to the power
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set P(Rm×n) of the parameter space. For (Y,X) generated

by a system of the form (1), one would like to design an

estimator achieving, whenever possible, the ideal property that

Ψ(Y,X) = {Ao}. In default of that ideal situation, a more

pragmatic goal is to search for a Ψ so that Ao ∈ Ψ(Y,X) and

Ψ(Y,X) is of small size in some sense despite the troublesome

effects of the unknown noise components E and F . The design

of an optimal estimator requires specifying a performance

index (usually called a loss function) which is to be minimized.

In this paper, we study the properties of the estimator of

the parameter matrix Ao in (2) defined by

Ψ(Y,X) = argmin
A∈Rm×n

ϕ(Y −AX) (3)

where ϕ : M (R) → R≥0 is a convex function defined on the

set M (R) of (all) real matrices. It is assumed that ϕ has the

following properties:

P1. For all B,C ∈ M (R) of compatible dimensions,

ϕ([B C]) = ϕ(B) + ϕ(C) (4)

with [B C] denoting the matrix formed by concatenat-

ing column-wise B and C.

P2. There exists a matrix norm ℓ : M (R) → R≥0 such that

for all B,C ∈ M (R), conformable for addition,

ϕ(B) ≤ ϕ(B − C) + ℓ(C) (5)

P3. There exists a constant real number ε ≥ 0 such that for

all B ∈ M (R) with n rows and N columns,

ℓ(B)− |Icε (B)| ε ≤ ϕ(B) ≤ ℓ(B) (6)

where

Icε(B) =
{

i ∈ {1, . . . , N} : ℓ(bi) > ε
}

and |Icε (B)| is the cardinality of Icε(B) and bi ∈ R
n is

the ith column of the (n,N)-matrix B.

The property (4) will be called column-wise summability.

Since ϕ is a function defined over the space of real matri-

ces of any dimensions, it is also defined for n-dimensional

vectors of real numbers. Hence according to property (4), if

B = [b1 · · · bN ] with column vectors bi ∈ R
n, then

ϕ(B) =

N
∑

i=1

ϕ(bi).

The so-defined function ϕ is not necessarily a norm. For any

εo ≥ 0 and any vector norm ℓo, it can be verified that the

function ϕ defined by

ϕ(B) =

N
∑

i=1

max(0, ℓo(bi)− εo) (7)

is positive and convex and satisfies properties (4)-(6) but it

is not a norm for εo > 0 since in this case, ϕ(B) = 0 does

not imply that B = 0. But if εo = 0 in (7), then ϕ = ℓ
by (6) so that ϕ corresponds to the matrix norm defined by

ϕ(B) =
∑N

i=1 ℓ
o(bi). We note in this latter case that (6) is

trivial while (5) reduces to the triangle inequality.

We will show in the sequel that the estimator Ψ in (3)

enjoys some impressive robustness properties with respect to

the sparse noise matrix F . The term sparse is used here to

mean that a relatively large proportion of the column vectors

of F are equal to zero. And saying that Ψ is robust with

respect to F means that Ψ(Y,X) does not depend on (or

is insensitive to) the magnitudes of the nonzero columns of

F under the sparsity condition. Therefore those few columns

which are nonzero can have arbitrarily large magnitude. As

will be shown in the sequel, the robustness properties of Ψ are

inherited from the properties P1-P3 of the objective function

ϕ. In the special case where ϕ is a norm, the properties P2-

P3 are automatically satisfied so that P1 becomes the only

key property required. As to the convexity of ϕ, it is intended

just for computational reasons as it eases the solving of the

optimization problem in (3).

IV. PROPERTIES OF THE ROBUST ESTIMATORS

A. Exact recoverability

We first study the conditions under which the true parameter

matrix Ao in (1) can be exactly recovered. Theorem 1 and

Theorem 2 stated next show that if the number of nonzero

columns in the matrix V , E + F is less than a certain

threshold, then Ψ(Y,X) = {Ao}.

Theorem 1 (A necessary and sufficient condition). Let ϕ
be a function satisfying (4)-(6) with ε = 0 and Ψ be

defined as in (3). Let d be an integer and assume that

rank(X) = n. For any A ∈ R
m×n and Y ∈ R

m×N , let

I
c (Y −AX) = {t ∈ I : yt −Axt 6= 0}. Then the following

statements are equivalent.

(i)

∀A ∈ R
m×n, ∀Y ∈ R

m×N , |Ic (Y −AX)| ≤ d

⇒ Ψ(Y,X) =
{

A
}

(8)

(ii)

max
Ic⊂I:
|Ic|=d

max
Λ∈R

m×n

Λ6=0

[

ϕ(ΛXIc)

ϕ(ΛX)

]

<
1

2
(9)

Here and in the following, the notation I , {1, . . . , N} is used

to denote the index set for the columns of the data matrices.

Proof: We first note that the rank assumption on X is

intended to insure that (9) is well-defined since then, with ϕ
being a norm, ϕ(ΛX) 6= 0 whenever Λ 6= 0.

(i) ⇒ (ii): Assume that (i) holds.

Consider an arbitrary subset Ic of I such that |Ic| = d.

Let Λ be any matrix in R
m×n satisfying Λ 6= 0. Finally,

consider a matrix Y ∈ R
m×N defined by YIc = 0 and

YI0 = ΛXI0 where I0 = I \ Ic. Then I
c(Y − ΛX) ⊂ Ic and

so |Ic(Y − ΛX)| ≤ d. Hence by (i) {Λ} = argminH ϕ(Y −
HX) which means that ϕ(Y − ΛX) < ϕ(Y −HX) for any

H ∈ R
m×n, H 6= Λ. In particular, by taking H = 0 we get

ϕ(Y − ΛX) < ϕ(Y ). It follows from the property (4) that

ϕ(YIc − ΛXIc) + ϕ(YI0 − ΛXI0) < ϕ(YIc) + ϕ(YI0).

Using now the relations YIc = 0 and YI0 = ΛXI0

yields ϕ(ΛXIc) < ϕ(ΛXI0) or, equivalently, ϕ(ΛXIc) <
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1/2ϕ(ΛX). Eq. (9) then follows from the fact that Ic and

Λ are arbitrary.

(ii) ⇒ (i): To begin with, note that if Eq. (9) holds for some

d, then it holds also for any d0 ≤ d. As a result, the equality

|Ic| = d in (9) can be changed to |Ic| ≤ d. Assuming

(ii), let A ∈ R
m×n and Y ∈ R

m×N be matrices satisfying

|Ic(Y −AX)| ≤ d. Set Ic = I
c(Y − AX) and I0 = I \ Ic.

Then for all Λ ∈ R
m×n such that Λ 6= 0,

2ϕ(ΛXIc) < ϕ(ΛX) = ϕ(ΛXIc) + ϕ(ΛXI0),

where the equality is obtained by the property (4) of ϕ. It

follows that

ϕ(ΛXIc) < ϕ(YI0 − (A+ Λ)XI0). (10)

On the other hand, we know by (5) that

ϕ(YIc −AXIc)−ϕ(YIc − (A+ Λ)XIc) ≤ ϕ(ΛXIc).

Combining with the inequality (10) yields

ϕ(Y −AX) < ϕ(Y − (A+ Λ)X).

Since Λ is an arbitrary nonzero matrix, this inequality says

that A is the unique minimizer of V (H) = ϕ(Y −HX).
Consider a data pair (Y,X) generated by (1). By letting

πc
ϕ(X) = max

{

d : Eq. (9) holds
}

, (11)

and assuming that πc
ϕ(X) > 0 we can see that whenever

|Ic(Y −AoX)| ≤ πc
ϕ(X), Ao can be exactly recovered by

computing Ψ(Y,X). Of course this is likely to hold only

if the dense noise component E does not exist. So in the

situation where E = 0, the theorem says that Ao can be

uniquely obtained by convex optimization provided that the

number of outliers (nonzero columns of F ) is less than or

equal to πc
ϕ(X). For the condition of exact recoverability to

be checkable we must be able to compute πc
ϕ(X). The bad

news are that evaluating numerically such a number is likely

to be NP-hard in most cases.

In the sequel, we investigate sufficient conditions of exact re-

covery which are more tractable from a numerical standpoint.

For this purpose let us introduce some definitions.

Definition 1. A matrix X = [x1 · · · xN ] ∈ R
n×N is said

to be self-decomposable if rank(X) = n and for all k ∈ I,

xk ∈ im(X 6=k) where X 6=k , XI\{k} is the matrix obtained

from X by removing its k-th column and im(·) refers to range

space.

For a matrix to be self-decomposable it is enough that X 6=k

be full row rank for any k ∈ I. Achieving this condition in

practice seems easy provided that the number N of measure-

ments is large enough compared to the dimension n of X .

Definition 2 (self-decomposability amplitude). Let X ∈
R

n×N be a self-decomposable matrix. We call self-

decomposability amplitude of X , the number ξ(X) defined

by

ξ(X) = max
k∈I

min
γk∈RN−1

{

‖γk‖∞ : xk = X 6=kγk

}

. (12)

The so-defined ξ(X) constitutes a quantitative measure of

richness (or genericity) of the regressor matrix X . By richness

it is meant here how much, in a global sense, the columns of

X are linearly independent. ξ(X) is expected to be small if

the columns of X are somehow strongly linearly independent.

Remark 1. If for some k the norm of xk was to be consider-

ably large in comparison to the norm of the other columns of

X , then ξ(X) would get large hence reducing recoverability

capacity of the considered class of estimators (see also Eq.

(9)). Such situations can be alleviated by normalizing each

column of X , i.e., for example by replacing (yk, xk) by

(ỹk, x̃k) , (yk/ ‖xk‖ , xk/ ‖xk‖) under the assumption that

xk 6= 0 for all k ∈ I.

With the help of the device of self-decomposability ampli-

tude (12), we can state a condition for exact recovery of the

parameter matrix Ao by solving the optimization problem in

(3). A similar result was proven in [3] for the Least Absolute

Deviation (LAD) estimator.

Theorem 2 (A sufficient condition for exact recovery). Let ϕ
be a function satisfying (4)-(6) with ε = 0 and Ψ be defined as

in (3). Assume that X is self-decomposable. Then the following

statement is true:

∀A ∈ R
m×n, ∀Y ∈ R

m×N ,

|Ic(Y −AX)| < T
(

ξ(X)
)

⇒ Ψ(Y,X) =
{

A
}

.
(13)

where T : R>0 → R>0 is the function defined by T (α) =
1

2

(

1 +
1

α

)

.

Proof: The proof is completely parallel to that of Theorem

11 in [3]. From the assumptions, each xk , k ∈ I, can be

written as a linear combination of the columns of X 6=k. Let

γk ∈ R
N−1 be any vector satisfying xk = X 6=kγk. It follows

that for any Λ ∈ R
m×n,

ϕ(Λxk) = ϕ
(

∑

t∈I\{k}

γk,tΛxt

)

with γk,t denoting the entry of γk ∈ R
N−1 indexed by t.

Under the assumptions of the theorem, ϕ is a norm. So, it

is positive and satisfies the triangle inequality property. As a

result we can write

ϕ(Λxk) ≤
∑

t6=k

|γk,t|ϕ(Λxt) ≤ ‖γk‖∞ (ϕ(ΛX)− ϕ(Λxk))

where the rightmost term follows from the property (4) of ϕ.

Since this holds for any γk such that xk = X 6=kγk, it holds

also for

γ⋆
k = argmin

γ∈RN−1

{

‖γ‖∞ : xk = X 6=kγ
}

.

Hence,

ϕ(Λxk) ≤ ξ(X) (ϕ(ΛX)− ϕ(Λxk)) ∀k ∈ I, ∀Λ ∈ R
m×n.

(14)

or equivalently,

ϕ(Λxk) ≤
ξ(X)

1 + ξ(X)
ϕ(ΛX) ∀k ∈ I, ∀Λ ∈ R

m×n.

Let Ic be any subset of I and pose |Ic| = d. Summing the
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previous inequality over the set Ic yields

max
Λ6=0

ϕ(ΛXIc)

ϕ(ΛX)
≤

1

2T
(

ξ(X)
) |Ic| (15)

Note that the term on the right hand side is well-defined since

by the self-decomposability assumption, rank(X) = n which

implies that ϕ(ΛX) 6= 0 whenever Λ 6= 0. Therefore (9) holds

if |Ic| < T
(

ξ(X)
)

and the conclusion follows from Theorem

1.

It is worth noting that the threshold T (ξ(X)) on the number

of correctable outliers does not depend on ϕ. Hence this

threshold is valid when the estimator is defined from any

matrix norm obeying (4).

Remark 2. The statement of Theorem 2 still holds true if we

replace ξ(X) with the ϕ-dependent number δϕ(X) defined by

δϕ(X) = max
k∈I

sup
Λ6=0

ϕ(Λxk)

ϕ(ΛX 6=k)
(16)

when it is assumed that ϕ is a norm and rank(X 6=k) = n
for all k. Doing so will give a less conservative condition

for exact recovery. However δϕ(X) seems much harder to

evaluate numerically than ξ(X).

Remark 3 (A few useful properties of ξ(X)).

• For any nonsingular matrix R ∈ R
n×n, ξ(RX) = ξ(X).

It follows that the number ξ(X) depends only on the

subspace spanned by the rows of the regressor matrix X .

• For any self-decomposable X ∈ R
n×N , ξ(X) is lower-

bounded in the following sense

ξ(X) ≥
1

N − 1
,

This follows from the more general observation that

ξ(X) ≥ max
k∈I

‖xk‖
∑

t6=k ‖xt‖

for any vector norm ‖·‖. As a result, T (ξ(X) is upper-

bounded as follows

T (ξ(X)) ≤
N

2
.

Theorem 2 provides a sufficient condition for exact recovery

in the situation where the function ϕ is a norm. Next, another

condition is stated which holds in the general case.

Proposition 1. Consider a triplet (ϕ, ℓ, ε) satisfying (4)-(6).

For A ∈ R
m×n and Y ∈ R

m×N , pose Ic = I
c(Y − AX),

I0 = I \ Ic = {t ∈ I : yt −Axt = 0} and Icε (ΛXI0) =
{

t ∈ I0 : ℓ(Λxt) > ε
}

. Then Ψ(Y,X) = {A} if

|Icε (ΛXI0)| ε < ℓ(ΛXI0)− ℓ(ΛXIc) (17)

∀Λ ∈ R
m×n,Λ 6= 0.

Proof: Ψ(Y,X) = {A} is equivalent to

ϕ(Y −AX) < ϕ(Y − (A+ Λ)X)

for any Λ ∈ R
m×n, Λ 6= 0. Using the definitions of the sets

I0 and Ic and applying property (4) of ϕ yields the equivalent

relation

ϕ(YIc −AXIc)− ϕ(YIc − (A+ Λ)XIc) < ϕ(ΛXI0).

By (5), we can note that ϕ(YIc − AXIc) − ϕ(YIc − (A +
Λ)XIc) ≤ ℓ(ΛXIc). It then follows that

ℓ(ΛXIc) < ϕ(ΛXI0)

is a sufficient condition for Ψ(Y,X) = {A}. Finally, invoking

(6) allows us to observe that ℓ(ΛXI0) − |Icε (ΛXI0)| ε ≤
ϕ(ΛXI0) which implies that ℓ(ΛXIc) < ℓ(ΛXI0) −
|Icε (ΛXI0)| ε is a sufficient condition for Ψ(Y,X) = {A}.

We have hence proved the proposition.

B. Uncertainty set induced by dense noise

When both E and F are nonzero in the data-generating

system (1), Ψ(Y,X) is likely to be a non-singleton subset of

P(Rm×n) especially if we consider all possible realizations of

the unknown components E and F . In this case the desirable

properties of the estimator are in default of better (i) that it

contains Ao and (ii) that its size with respect to some metric

is as small as possible. In this section we are interested in

estimating the size of Ψ(Y,X) when both dense noise E and

sparse noise F are active in the data-generating system (1).

A notion of estimator gain. Similarly to the concept of

system gain in control [22], one could define the gain of an

estimator, that is, a quantitative measure of the sensitivity

of the estimator with respect to the perturbations affecting

the measurements. Consider a data pair (Y,X) generated

by a system of the form (1) with Ao being the parameter

matrix sought for. Let us fix the sparse noise matrix F or

view it somehow as part of the data-generating system. This

consideration proceeds from the fact that Ψ can be insensitive

to F (when acting alone) under, for example, the condition

derived in Theorem 2. Let E be bounded in the sense that

ℓ(E) is finite with ℓ being the norm appearing in (6). Then

we can define a gain of the estimator with respect to the dense

noise component E. More specifically, an (ℓ, q)-gain of the

estimator Ψ with respect to the dense noise E may be defined

by

gℓ,q(Y,X) = sup
A⋆∈Ψ(Y,X)
0<ℓ(E)<∞
F sparse

‖A⋆ −Ao‖q
ℓ(E)

. (18)

Here ‖·‖q denotes matrix q-norm. The so-defined number

gℓ,q(Y,X) provides an upper bound on the distance from the

set Ψ(Y,X) to Ao in function of the amount of dense noise.

The following theorem and its corollaries show that if the

number of nonzero columns in F is no larger than a certain

threshold, then gℓ,q(Y,X) exists and is finite.

Theorem 3. Let (Y,X) be the data generated by system (1)

subject to the noise components E and F . Consider a triplet

(ϕ, ℓ, ε) satisfying (4)-(6). Let S0 ⊂ I be a set such that FS0 =
0 and let Sc = I \ S0. Assume that the matrix X and the

partition (S0, Sc) are such that there exists α > 0 such that

ℓ(ΛXS0)− ℓ(ΛXSc) ≥ α ‖Λ‖q ∀Λ ∈ R
m×n, (19)



6

with ‖·‖q denoting some matrix q-norm.

Then for any A⋆ ∈ Ψ(Y,X), it holds that

‖A⋆ −Ao‖q ≤
1

γℓ,q(X,Sc)

[

2ℓ(ES0) + |Icε | ε
]

(20)

with1 Icε = Icε(YS0 −A⋆XS0) =
{

t ∈ S0 : ℓ(yt −A⋆xt) > ε
}

and

γℓ,q(X,Sc) = inf
Λ∈R

m×n

Λ6=0

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
(21)

where ‖·‖q refers to matrix q-norm.

Proof: By definition of Ψ(Y,X) in (3),

ϕ(Y −A⋆X) ≤ ϕ(Y −AX) ∀A ∈ R
m×n

By letting Λ = A−Ao, Λ⋆ = A⋆ −Ao and applying (2), the

last inequality takes the form

ϕ(F + E − Λ⋆X) ≤ ϕ(F + E − ΛX) ∀Λ ∈ R
m×n.

In particular, for Λ = 0, we get ϕ(F +E−Λ⋆X) ≤ ϕ(F +E)
which, thanks to property (4) of ϕ, takes the form

ϕ(FSc + ESc − Λ⋆XSc)+ϕ(ES0 − Λ⋆XS0)

≤ ϕ(FSc + ESc) + ϕ(ES0).

Now applying property (5) to the first member of the left hand

side and rearranging yields

ϕ(ES0 − Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ ϕ(ES0 ).

Using (6) gives

ℓ(ES0 − Λ⋆XS0)− |Icε | ε− ℓ(Λ⋆XSc) ≤ ϕ(ES0 ) ≤ ℓ(ES0).

Here we used the fact that Icε (ES0 − Λ⋆XS0) is equal to the

set Icε defined in the statement of the theorem.

Applying the triangle inequality property of ℓ, it can be seen

that ℓ(Λ⋆XS0)− ℓ(ES0) ≤ ℓ(ES0 −Λ⋆XS0). Combining with

the previous inequality yields

ℓ(Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ 2ℓ(ES0) + |Icε | ε.

Finally, it follows from the definition of γℓ,q(X,Sc) in (21)

that

γℓ,q(X,Sc) ‖Λ⋆‖q ≤
[

2ℓ(ES0) + |Icε | ε
]

.

The condition (19) guarantees that γℓ,q(X,Sc) is well-defined

and is positive. Hence the statement of the theorem is estab-

lished.

Theorem 3 constitutes an interesting stability result in that

it provides a finite upper bound on the distance from Ao to

the set Ψ(Y,X) as a function of the amplitude of the dense

noise matrix E. It applies to any estimator Ψ defined as in (3)

with ϕ a function obeying (4)-(6). In particular, in the situation

where ϕ is a norm (in which case ε can be taken equal to zero

in (6)), the inequality in (20) simplifies to

‖A⋆ −Ao‖q ≤
2

γℓ,q(X,Sc)
ℓ(ES0). (22)

If ϕ is defined as in (7) (which, recall, is not a norm) and

1The notation Ic
ε

is used for simplicity reasons.

if the dense noise matrix E is such that ℓo(et) ≤ εo for

all t ∈ I, then by taking ε = εo the set Icε defined in the

statement of Theorem 3 corresponds to the empty set so that

(22) holds as well in this case. In connection with the concept

of estimator gain discussed earlier, one can interpret the factor

2/γℓ,q(X,Sc) as an estimate of the gain (of the estimator Ψ)

with respect to dense noise.

Lastly, it is interesting to see that when ϕ is a norm, if E =
0 then the result of Theorem 3 implies that Ψ(Y,X) = {Ao}
provided (19) is true.

V. DISCUSSIONS ON SOME SPECIAL CASES

For the purpose of illustrating the extent of the results above,

let us discuss further the situation where ϕ reduces to a norm.

A. Scenario when the loss function is a norm

Corollary 1. Let (Y,X) be the data generated by system (1)

subject to the noise components E and F . Let S0 and Sc be

defined as in the statement of Theorem 3. Assume that ϕ is a

norm i.e., it satisfies (4)-(6) with ε = 0.

If X is self-decomposable and |Sc| < T
(

ξ(X)
)

, then for any

A⋆ ∈ Ψ(Y,X),

‖A⋆ − Ao‖q ≤ Bϕ,q(|S
0|, X)ϕ(ES0) (23)

where

Bϕ,q(r,X) =
2

σϕ,q(X)
[

1−
N − r

T (ξ(X))

]

, (24)

σϕ,q(X) = inf
Λ6=0

ϕ(ΛX)

‖Λ‖q
(25)

Proof: The principle of the proof is to show that

γℓ,q(X,Sc) is well-defined and then find a positive under-

estimate of it. Using the property (4) of ϕ and the fact that

ϕ = ℓ, we can write

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
=

2ϕ(ΛX)

‖Λ‖q

[

1

2
−

ϕ(ΛXSc)

ϕ(ΛX)

]

.

On the other hand we know from the proof of Theorem 2 (see

Eq. (15)) that

ϕ(ΛXSc)

ϕ(ΛX)
≤

1

2T (ξ(X))
|Sc|

so that
[

1−
|Sc|

T (ξ(X))

]

ϕ(ΛX)

‖Λ‖q
≤

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q

Taking now the infimum on both sides of the inequality symbol

over all nonzero matrices Λ ∈ R
m×n yields

σϕ,q(X)

[

1−
|Sc|

T (ξ(X))

]

≤ γℓ,q(X,Sc).

It follows from the rank condition imposed on X (by the self-

decomposability assumption) that σϕ,q(X) > 0. This shows

that γℓ,q(X,Sc) is well defined and is strictly positive. Finally,

since ϕ = ℓ, invoking (22) gives the result.

Two important comments can be made at this stage.
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• First it is interesting to note that the bound Bϕ,q(r,X)
is an increasing function of ξ(X). Therefore it is all the

smaller as ξ(X) is small. That is, the error bound will be

small if the data matrix X is rich enough.

• Second, Bϕ,q(r,X) is a decreasing function of r. This

means that the upper bound on the estimation error

decreases when the number of gross error columns in F
decreases. In the extreme case where

∣

∣S0
∣

∣ = N (no gross

error), Bϕ,q(|S0|, X) in (23) reduces to 2/σϕ,q(X).

Beyond these observations it should be noted that a key

assumption of Corollary 1 is that |Sc| < T
(

ξ(X)
)

with Sc

being the index set of the nonzero columns in F . Realizing

this condition requires on the one hand that the number of

nonzero columns in the sparse noise matrix F be small and

on the other hand that ξ(X) be small2 (which means that the

data must be generic). Indeed this condition is not necessarily

as strong as it might appear to be at first sight. For example,

it can be relaxed as follows. Observe that the sum E + F
is not uniquely defined from model (2). Taking advantage of

this, one can always absorb in E all nonzero columns of F
whose magnitude does not exceed a certain level. To see this,

let I = {t ∈ Sc : ℓ(et + ft) ≤ εo} where εo = maxt∈I ℓ(et).
Then we can define Ẽ and F̃ such that E + F = Ẽ + F̃ and

F̃S0∪I = 0 that is, we set ẽt = ft+et and f̃t = 0 for any t ∈ I
and (ẽt, f̃t) = (et, ft) otherwise. As a consequence, E and F
in Corollary 1 can be replaced by Ẽ and F̃ respectively so

that |S| and |Sc| are replaced by |S|+ |I| and |Sc| − |I|. The

condition of the corollary then becomes |Sc|−|I| < T
(

ξ(X)
)

,

which is potentially easier to fulfill.

Remark 4 (sum of p-norms). Evaluating numerically the

bound Bϕ(r,X) might prove to be a hard problem due to

the potential difficulty in computing the term σϕ,q(X) in (25).

A particular case of interest is when ϕ consists of a sum

of p-norms of the column vectors, i.e. when it is defined by

ϕ(B) =
∑N

i=1 ‖bi‖p for B = [b1 · · · bN ]. In this case

if we take q = 2 in (23) and (25), it is easy to see that

λ
1/2
min(XX⊤) ≤ σϕ,2(X) with λ

1/2
min(·) denoting the square

root of the minimum eigenvalue. Replacing σϕ,2(X) with

λ
1/2
min(XX⊤) in (24) yields an overestimate of Bϕ(r,X) which

is computable.

Remark 5. Corollary 1 still holds true if one replaces

T (ξ(X)) with πc
ϕ(X) defined in (11). As shown in [18], the

number πc
ϕ(X) in (11) is computable although at the price

of a combinatorial complexity. However if the n-dimension of

X is small enough the complexity of the algorithm proposed

there can be affordable. Then by using our formula (24) and

Remark 4 above, it is possible therefore to obtain a smaller

bound on the estimation error.

B. Single output case: ℓ1 norm

In this section, we discuss for an illustrative purpose, the

applicability of Theorem 3 to the case of single-output sys-

tems. This is an interesting case to highlight since it represents

2Recall that T is a decreasing function hence implying that T (ξ(X)) is
large when ξ(X) is small.

the most classical situation. Consider the single-output system

defined by

yt = (θo)⊤xt + ft + et (26)

where yt, et, ft are scalars and xt and θo are n-dimensional

vectors. By letting Y = [y1 · · · yN ] ∈ R
1×N and defining

E and F similarly, we obtain

Y = (θo)⊤X + F + E. (27)

This last equation corresponds indeed to (2) where the matrix

Ao reduces to the row vector (θo)⊤. In this case, if we let

ϕ(B) =
∑N

i=1 ‖bi‖2 then for any θ ∈ R
n, the columns of

(the row vector) Y −AX are scalars so that

ϕ(Y − θ⊤X) =

N
∑

t=1

∥

∥yt − θ⊤xt

∥

∥

2
=

N
∑

t=1

∣

∣yt − θ⊤xt

∣

∣. (28)

As a result, Ψ coincides in this case with the Least Absolute

Deviation (LAD) estimator. The following corollary special-

izes the result of Theorem 3 to the LAD estimator.

Corollary 2. Let (Y,X) ∈ R
1×N × R

n×N be generated by

model (26). Let Sc =
{

t ∈ I : ft 6= 0
}

, S0 = I \ Sc. Assume

that X is self-decomposable and |Sc| < T
(

ξ(X)
)

. Then for

any θ⋆ ∈ argmin
θ∈Rn

∥

∥Y − θ⊤X
∥

∥

1
,

‖θ⋆ − θo‖2 ≤ B1,2

(

|S0|, X
)

‖ES0‖1

where

B1,2(r,X) =
2

σ1,2(X)
[

1−
N − r

T (ξ(X))

]

,

σ1,2(X) = inf
η 6=0

∥

∥X⊤η
∥

∥

1

‖η‖2
.

Again here the bound B1,2(r,X) can be numerically over-

estimated by following the idea of Remark 4.

VI. NUMERICAL ILLUSTRATIONS

The performance of the estimator Ψ has been extensively

tested in some existing papers in the special case of the LAD

(see e.g., [3]) . We therefore concentrate here on evaluating

numerically an estimate of the gain of the estimator based on

Corollary 1 and Remark 4. The estimation is carried out for

the case where ϕ consists in the sum of 2-norms and q = 2.

Four different cases are studied:

(a) Static data: X ∈ R
2×200 is sampled from a Gaus-

sian distribution N (0, I2) with zero-mean and identity-

covariance.

(b) Dynamic data generated by a switched linear system:

X ∈ R
2×200 is formed with the regressors (yt−1, ut−1)

generated by a switched linear system composed of 3

subsystems of order 1. This is a switched ARX sys-

tem defined by yt = aσ(t)yt−1 + bσ(t)ut−1 with the

switching signal σ(t) ∈ {1, 2, 3} generated from a

uniform distribution and input ut being a white noise

with Gaussian distribution; (a1, b1) = (−0.40,−0.15),
(a2, b2) = (1.55,−2.10) and (a3, b3) = (1,−0.65).
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(b) switched system: ξ(X) = 0.0127

0 2 4 6 8 10 12

1

2

3

PSfrag replacements

B
o
u
n
d

Percentage of nonzeros [%]

πc
ϕ(X)

T(ξ(X))

(c) linear system: ξ(X) = 0.0188
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(d) nonlinear system: ξ(X) = 0.0107

Fig. 1: An overestimate of Bϕ using respectively πc
ϕ(X) and T (ξ(X)) for a data matrix X ∈ R

2×200: (a) static data sampled

from a Gaussian distribution; (b) data generated by a switched system; (c) data generated by a linear dynamic system ; (d) data

generated by a dynamic nonlinear system. In each case, the x-axis is limited to the range of nonzero gross errors proportions

which statisfy the stability condition |Sc| /N < T
(

ξ(X)
)

/N (see e.g., Corollary 1).

(c) Dynamic data generated by a linear ARX system defined

by yt = a1yt−1+ b1ut−1 with the (a1, b1) defined above

in case (b).

(d) Dynamic data generated by a nonlinear NARX system

defined by yt = (yt−1 + 2.5)/(1 + y2t−1) + ut−1.

Following Remark 1, the columns of all data matrices X have

been normalized to unit 2-norm before being processed.

Figure 1 plots the obtained estimate of the estimator gain

against the proportion of correctable outliers. As remarked in

Section V, the gain estimate increases as the proportion of

outliers gets larger. But the growth rate of the gain estimate

depends on the genericity of the data matrix X . The more

generic the columns of X are, the smaller the growth rate

of the estimation error is when regarded as a function of

the proportion of outliers. The experiment confirms also the

intuition according to which static data tend to be more generic

than data generated by a dynamic system. Among the three

cases of dynamic systems, the linear system appears to be the

one generating the least generic data.

VII. CONCLUSIONS

In this paper we have discussed a somewhat general frame-

work for designing a robust estimator. Given the training data,

the estimator is defined as the minimizing set of a certain

performance index applying to the data. We have shown that

if the performance function possesses some key properties,

then the so-defined estimator will inherit robustness properties.

Considering a data set generated by a linear model subject to

both sparse and dense noises, we showed that the estimator is

insensitive to the sparse noise when this latter is acting alone

and provided that the number of its nonzero components is no

larger than a certain (computable) threshold. Conditions are

proposed for the exact recovery of the true parameter matrix

when only the sparse noise is active. When both types of noises

affect the measurements we propose computable bounds on

the parametric estimation error. By assuming stochasticity of

the dense noise sequence, the obtained bounds are probably

improvable by exploiting appropriately the statistics of the

dense noise. This is a matter than can be investigated in future

research.
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