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Data Rate for Distributed Consensus of Multi-agent
Systems with High Order Oscillator Dynamics
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Abstract

Distributed consensus with data rate constraint is an itapbresearch topic of multi-agent systems. Some reswis been
obtained for consensus of multi-agent systems with integidynamics, but it remains challenging for general higtieo systems,
especially in the presence of unmeasurable states. In &lpisrpwe study the quantized consensus problem for a spéoethbf
high-order systems and investigate the correspondingrdégarequired for achieving consensus. The state matriadh egent is
a 2m-th order real Jordan block admitting identical pairs of conjugate poles on the unit circle; eagbna has a single input,
and only the first state variable can be measured. The casarwiohic oscillators corresponding to = 1 is first investigated
under a directed communication topology which containsansimg tree, while the general casermaf> 2 is considered for a
connected and undirected network. In both cases it is cdadldhat the sufficient number of communication bits to gutee
the consensus at an exponential convergence rate is amririetyveenn and2m, depending on the location of the poles.

I. INTRODUCTION

Distributed consensus is a basic problem in distributedrobof multi-agent systems, which aims to reach an intecst
common value of the states for a team of agents or subsystgregdhanging information with their neighbors. A variety
of consensus protocols have been proposed for differemskaf applications; see the survey papérs [2], [3], [4] anal th
reference therein. Nonetheless, to apply the consenstscpian a digital network with limited bandwidth, it is nessary to
introduce quantization and devise the corresponding eéngetecoding scheme. With static uniform quantizationamized
consensus was first studied [ [5] to achieve the approximnadeage consensus for integer-valued agents by applyissjmo
algorithms. For a large class of averaging algorithms ofvelied agents| [6] established the bounds of the stetdg-srror
and the convergence times, as well as their dependence omuthber of quantization levels. Logarithmic quantizershwit
infinite quantization levels were adopted [0 [7] to guarantee asymptotic average consensus. To achieve the asyenptot
average consensus with finite quantization levels, a dfiaite-level uniform quantizer with a dynamic encoding stigewas
proposed in[[8], and used to shown that an exponentiallyciassensus can be ensured by finite-level quantizers for-agdint
systems with general linear dynamics, whether the statellis ineasurable [9], or the state is only partially measleamnd
yet detectable [10]. However, the lower bound of sufficieatadrate for the consensus obtained in these works are overly
conservative, and it is more appealing to achieve the causewith fewer bits of information exchange from the peripec
of reducing communication load.

Some works have been devoted to exploring the sufficient idd¢ato guarantee the consensus of multi-agent systems with
integrator dynamics, and single-integrator systems vecttie most attention. With a presumed bound of the initiatesof
each agent, Li et. all [8] showed that the average consemsube achieved by 1 bit of information exchange for a fixed and
undirected network, which was further extended to the casenvthe network is balanced and contains a spanning tréelfiL1]
an undirected network where the duration of link failureasibded, 5-level quantizers suffices for the consensus fdtwalso
holds when the network is periodically strongly conneclE2] [ With a novel update protocol carefully screening thargized
message, the presumed bound of initial values was shownuorecessary iri [13] and it was concluded that ternary messag
are sufficient for the average consensus under a periogimatinected network. Then, for double-integrator systetitis @nly
position being measurable, |14] concluded that 2 bits of momications suffice for the consensus. By employing a tptall
different technique based on matrix perturbationbits were found to be sufficient to achieve the consensus dii-agent
systems withn-th integrator agent dynamics in [15]. Still, it is uncledoat the sufficient data rate to guarantee the consensus
for general high-order systems, especially when the st@tales are only partially measured.

In this paper, we explore the data rate problem in achievirantized consensus of another kind of discrete-time higlero
critical systems as a complement of integrator systems.dynamics of each agent is described bra-th order real Jordan
block admittingm identical pairs of conjugate poles on the unit circle withgse input, and only the first state variable
can be measured. We design the encoding-decoding schenme dragis of the constructability of the state variables chea
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individual system: at each time instant the quantizer witbduce a signal to make an estimate for the current measurabl
state, which is combined with the previoRs: — 1 estimates of the measurable state to obtain the estimatesafurrent full
state. The same quantized signal will also be sent to neighdpents to generate the identical estimate of state. Theaton
input is constructed in terms of the estimate of its own stasewell as those of its neighbor agents. For harmonic asmil

(m = 1), it is shown that 2 bits of communications suffice to guagarthe exponentially fast consensus for a directed network
containing a spanning tree. For higher-order casencf 2, the exponentially fast consensus can be achieved with at mo
2m bits under an undirected network, provided that the untilecommunication topology is connected. The exact number
of bits for achieving consensus in both the cases is an integfgreenm and 2m, depending on the frequency of oscillators
or the location of poles on the unit circle.

Although the analysis of consensus and data rate in thisrapeloys similar perturbation techniques as in [15], thabpem
posed here is much different, and it is much more challengingbtain an explicit data rate required for consensus in the
oscillator case (corresponding to complex eigenvaluasgontrast to[[15] where the special structure of integrdioramics
enables a direct connection between the encoder’s pastitstapd those at the present moment which leads to a convenien
iteration in the encoding scheme, a similar iteration is orogker available for the estimation of state variables indagse of
oscillator dynamics. As such, a new observer-based engatiheme is devised. However, such an encoding scheme leads
to the involvement of control inputs into the estimationogrivhich makes the consensus analysis challenging. Fuortive,
the expression of data rate for the oscillator case requaésilating a linear combination of some rows of a matrix chhi
is a multiplication of the(2m — 1)-th power of the system matrix and the inverse of the obsdityatmatrix, and is hard to
obtain by a direct computation. To overcome this difficwityg transform the linear combination into a set of linear ¢igua
and employ techniques of combinatorics. It is shown thatta dete betweem and2m, depending on the frequencies of the
oscillations, suffices to achieve the consensus. It is wonibting that the result not only provides a sufficient datz far
consensus of the systems under consideration but alsolseugeanteresting connection between the data rate and gtersy
dynamics. We believe it will shed some further light on théadate problem for multi-agent systems of general dynamics

The rest of the paper is organized as follows. Some prelingsaabout graph theory and the problem formulation are
presented in Sectidnl Il. Then the data rate problem foridiggd consensus of the coupled harmonic oscillators islected
in Sectior1ll, which is followed by the general caseraf> 2 in SectionIV. For illustration, a numeric example is given i
Sectior Y. Some concluding remarks are drawn in Se¢fidn Y& froofs of the main lemmas can be found in the Appendix.

Some notations listed below will be used throughout thisepalor a matrixU, U (¢, j) andU (i, -) respectively denote its
(i,4)-th entry andi-th row; U7 is its transpose, andU || is its infinity-norm.N* is the set of positive integers, and], |a|
respectively denote the smallest integer not less thaand the largest integer not greater tharC(n, k) is the number of
k-combinations from a given set of elementsly is the N dimensional vector with every component being 1, dndis
the identity matrix of ordem. 3 = \/—1 is the unit imaginary numberl, ,, denotes the: dimensional Jordan block with
eigenvalue\. A ® B denotes the Kronecker product between matridesnd B. (-,-) denotes the standard inner product in
Euclidean spaces.

Il. PROBLEM FORMULATION
Consider a multi-agent system in the following form:
it + 1) = Axi(t) + buy(t),
{ yi(t) = za(t),
wherez®(t) = [x1(t), Ti2(t), . .. ’ILQngt)]T € R*™, y;(t),u;(t) € R, i =1,..., N represent the state, output and input of
I

Q

1)

agenti, respectively. Moreoverd = € R?mx2m g a real Jordan form consisting of pairs of conjugate
1o
Q

cosf sinf .o 01" e m2m,
—sinf cosf

Suppose that the total number of agent&isAssumed to be error-free, the digital communication cletmbetween agents
are modeled as edges of a directed or undirected graph. A diaponsists of a node sé&t = {1,..., N} and an edge
set€ = {(i,v) : i,v € V} where self-loop(, ) is excluded. An edgéi,v) of a directed graph implies that nodecan
receive information from nodé but not necessarily vice versa. In contrast, for an untéegraph (i, v) € £ means mutual
communications betweenandv. For nodei, N;" = {v : (v,i) € £} and N, = {v : (i,v) € £} respectively denote its in-
neighbors and out-neighbors, which coincid€ ifs undirected, and will be denoted A§. A directed path(iy, i2), (i2,3), - - -
is formed by a sequence of edges. For a directed géaphthere exists a directed path connecting all the node=n ¢his
said to contain a spanning tree, which is equivalent to tise cd being connected whehis undirected.

Usually, a nonnegetive matri&' = [g;,] € RV*Y is assigned to the weighted gragh whereg,, > 0 if and only if
(v,i) € €, andg;, = gy is further required for an undirected graph. The connegtivi G can be examined from an algebraic

eigenvaluegosf + ysin 6 with sinf # 0 and@Q =



point of view, by introducing the Laplacian matrix = D¢ — G, where D¢ = diagd§, ...,d$) anddS = ) | g;,. By
L1y =0, L has at least one zero eigenvalue, with the other non-zeemeidues on the right half plané.has only one zero

eigenvalue if and only ifj contains a spanning tree [16]. We can always find a nonsingudérix Uy, = [¢1 ¢ ... ¢n] with
¢1 = 1n/V/N and||¢;|| = 1, such thatU; ' LU, = diag{Jo,n,, Sy, Nos- - -» Ja,n } = Ly, where0 < Re\p < --- < Re),
with \; being an eigenvalue of. In particular, we denote); = UL‘I(z',-)T. Moreover, L; = diag{0, Az, ..., Ay} with

0< A <--- <Ay andy; = ¢f if G is undirected.
We adopt the following finite-level uniform quantizes(-) in the encoding scheme, whefé(t) € N*:

07 _% <y< %7
. 2j—1 241 . .
) g = <y< A= =10, M(t) - 1

—q(-y), y<-—3.

Remark 2.1:Clearly, the total number of quantization levelsgf-) is 2M (¢) + 1. Demanding that agertdoes not send
out any signal when the output is zero, it is enough to [Usg,(2M (¢))] bits to represent all the signals.

The problem of distributed quantized consensus is solveg i€an design a distributed control protocol based on theutsit
of the encoding-decoding scheme, making the states ofreliffeagents reach the agreement asymptotically:

Jim [2'(t) =2/ ()] =0, i,j=1,2,...,N. (3)
—00

Ill. HARMONIC OSCILLATOR CASE

In this section, we will start with the harmonic oscillataase as an example to investigate how many bits of information
exchange are enough to achieve consensus exponentidilyithsquantized neighbor-based control. We separate infro
higher-order cases due to its speciality and simplicitg: gblution of this basic case not only provides a result uadtirected
communication topology, but also serves to facilitate thdarstanding of higher-order cases. Some relevant remallkise
included in the next section, as a comparison between semaled and higher-order cases, or a summary of general.cases
Note that now the system matrix = { CO.SH sin 6

—sinf cosf

A. Encoding-decoding scheme and distributed control law

An encoding-decoding scheme has a paramount importandeeiquantized consensus, which should not only provide
estimates for all the states from the partially measurataiges, but also help reduce the data rate. Accordingly, titeder
should serve as an observer based on iterations. To be spéusipired by the constructability in the sense that thesgme
state of the system can be recovered from the present andyipsits and inputs, namely

€T; (t) o 0 1 xX; (t — 1) 0
[ () } = [ —esch coth } [ 2 (1) ]* [ it — 1) ] @
we propose the following encoder; for agenti'

si(1) = (551, #a(1) = p(0)si(1);
5i(2) = q (L), #a(2) = p(1)s:(2),

Z2(2) = cot 9:1: 1(2) — esc 041 (1); (5)
Sz(t) _ qt(yl(t) [cos Hmll(i(ft 11))+sm 02,2(t—1)] )’

i1 (t) = cosOi (t — 1) +s8in 022 (t — 1) + p(t — 1)s;(¢),

Zio(t) = cot 041 (t) — csc by (t— 1), t > 2,

wherep(t) = poy?,0 < v < 1 is a decaying scaling function.
After s;(t) is received by one of théth agent’s out-neighbors, saye N, a decoderp;, will be activated:

Ziv1(1) = p(0)si(1);
i’ivl (2) = p(l)sl(2), i‘ivg (2) = cot ei'ivl (2) — CSC 6‘,@“}1 (1),
jivl (t) = COS ei'ivl (t — 1) + sin 6‘,@1'1,2 (t — 1) + p(t — 1)Si(t),
jiv2 (t) = cot 6‘,@“}1 (t) — CSC 6‘,@“}1 (t — 1), t 2 2.

Remark 3.1:As in [15], a scaled “prediction error” is quantized to geaterthe signa;(t), in an effort to reduce the number

of gquantization levelss;(¢) is then used to construct the estimate(t) of the first component;; (¢), which is combined with
Z;1(t — 1) to obtain the estimaté&;»(¢) for x;2(t). DenoteA,(t) = s;(t) — d;(t) as the quantization error, where

(6)

{ Z(Jz(?) t=1,2
di(t) = 3 B reos 00 (1 1) 4sin 030 (t—1) (7)
CHOML 11()(,5,1) 2( ]a t> 2,



ande;;(t) = &;;(t) — z;;(t) as the estimation fot;;(t), j = 1, 2. Then comparind(4)[{5) andl(6) we have
{ en(t) =2 (t) —za(t) = p(t — A1), t = 1 )
81'2(15) = :EZQ(t) — :CZQ(t) = cot 981'1 (t) — CSC@eil(t — 1) — Uz(t — 1), t Z 2.

Evidently the estimation error is related with control itpin addition to quantization errors, which may impair tleasensus.
But as shown in the consensus analysis below, the influentteeafontrol inputs can be ignored by making the control gains
arbitrarily small.

Based on the outputs of the encoding-decoding scheme, stibdted control law of agentis given by

o for=01 o
=) T2k et ginliu (0) — 2 (0], ¢ 2 2. ®)

B. Consensus Analysis and Data Rate
Some notations are defined as follows:

u(t) = [ua(t), .. ( I

<? {Aaw, %y,
a(t) = [di(1),... . dx (D)7,

25(8) = [ (1), . o5 ()], (10
5(t) = UN—¢mqnﬂw OO

ej(t) = [ex; (1), ... eny ()]
We adopt the following two assumptions in the subsequenysisa
Assumption 3.1The communication grap§ contains a spanning tree.
Assumption 3.2There exist known positive constari$ andC; such thainax;—1 2 ||z;(0)|| < C* andmax;—1 2 ||d;(0)|| <
Cs.
Remark 3.2:Assumptior 31 is a standard assumption, under which we hiav&Re\; < --- < Re\;, with 0 as the simple
eigenvalue. Assumptidn 3.2 enables us to make the quanti¢z¢runsaturated at initial steps.

The following lemma is critical in the consensus analysis.
Lemma 3.1:Denote K = IS IS and 4; = A — K with Re\; > 0. Let k; = ¢je,7 = 1,2 ande > 0. Then the
1 2
following results hold with sufficiently"smal:
1). The spectral radiug; of A; is less than 1 ifcocosf — ¢y1sinf > 0 and ¢; cosf + cosinf = 0. Moreover, p; =
— 2(Re\;)(cz cosf — c1 sinb)e + o(e).
2). Takecy, ¢ as in 1). For any vectaf € R?, the entries ofd¢, which are denoted as; andé,o, satisfy thatlé,;| < 5/2p¢
forj=1,2.

_ . e1? L 11 a1 =
Proof: 1). Noticing that4d = P _p | P7H with P = andP~+ = 3 , we have
e’ J =7 211 g
S
uI—AzP[ P e ]P—l
11
o (=) H (=) —p(p— )+ g(p—e ) B
2lap=e?)=gn—e)  (p—e®)+(u—e’) |
Consequently the characteristic polynomial4f can be obtained as
Ai _
Xi(p) = (g =) (p =) + Tel(ea + erp)(p = ) + (c2 = cag) (= 7). (12)
By perturbation theory[[17] it is readily seen that the twatpeed roots of[(12) are given by
pir = € + pine +o(e), piz = € + pig1e + o(e). (13)
Substitutingu = w41 into x,; (1) = 0 and comparing the coefficient efyield
1
wi11(2sin ) + 5/\1'(62 —¢17)(29sin0) =0
and ;11 = —%/\Z—(CQ — ¢17) follows immediately. Direct computation shows that; |2 = 1 + 2Re(u;11¢77%)e + o(e), where

1
Re(uﬂle*ge) = —§[CL1' (CQ cosf — C1 sin 9) + bl (Cl cosf + co sin 9)]

if we let \; = a; + b;y. Clearly |u;1] =1 — %(Re&-)(@ cos @ — ¢ sinf)e + o(e) whenc; cos + cosin = 0. Similarly we
can showpi2; = —3Ai(c2 + c17) and|uiz| = 1 — 1Re\;(cz cosf — ¢ sinf)e + o(e), which implies the conclusion.



2). Here we need to compute the Jordan decompositiod;ofThe eigenvector corresponding to the eigenvalye is

given by w;; = w19 + wi11€ + o(e). Substituting it into the equatiod,;w;1 = p;1w;; and comparing the coefficients of
constant term, we hav&w;o = e?w;1o. With the normalization condition”w;; = 1 wherev” = (1 — ), wio = (1 5)7.

Similarly, the eigenvector corresponding to the eigermaliy is given byw;s = wj20 + wiz1€ + o(e) with w0 = (1 —
T o ooy | 1+0() 1+0() L [ =14+0() —1+0()
J)7. Letting R; = (wi wi2) = [ J+0(E) —)+0() detRi | —74+0(e) 1+0()

, it is clear thatR; ' =

1+0() —5+0() } : " -1
. The result follows directly by noticing that; = R; . [ |
14+0() 7+0() y by g piz | *
Remark 3.3:Denotep = IrQlaX pi and leth be a constant if0, Re\;]. Takingc; = —sinf/h andcz = cos6/h, we have
p<1l—e+o0(e) <1-¢e/2 with sufficiently smalle.
We also need to define some constants as follows:
Co = 3|c1| + 2|ez esc 0] = 5-(| sin 6] + 3| cot 6)),
A =max;—2_ 1|\,
C(1) = [U7 Y] + 2CoA||UL ], (14)
C(k) = UL ||+ 2Co (A + D||UL|[ +10(|e1| + [e2])O(k = 1), k > 2,
C = 5(ler] + |e2)C(Nmax) + Col UL,
where Npax = max;=2 . ; N;.
Lemma 3.2:Let v = 1 — ¢/4. Then we can choose sufficiently smalto satisfy the following inequalities:
(A +1)Ce < y]escb]|UL]l; (15a)
%(2|cos€|+%) < 2[cosf] + 1+ %; (15b)
(N = 1)C(A+1)e < ] eschy>. (15¢)

Theorem 3.1:Takec¢,’s as in Remark3]3 and let = 1 — ¢/4. Select sufficiently smalt to satisfy Lemma$§ 311 arid 3.2
with p < 1 — /2. Then under Assumptiois—3.1 and13.2, consensus can be edhiéwa convergence rate 6f+!) provided
that go > max{5-C*,C;} and M (t) satisfies

M(t) > |cosO|+1/2, t=2m+1,....
Therefore, the number of bits used to achieve the consesgusg, 2[| cos 6| + 1/2]].
Proof: 1) Preparation. The closed-loop system of disagreemenbnrgecan be established as
0(t+1) | | cosfly sinfly 01(¢) n 0
dat+1) | | —sinfly cosfly d2(t) u(t)
with 0 t—o1
uty =4 o 17
0={ 25 0+, 122 an
by noticing [9) andL = L(Ix — ¢197). Letting d;(t) = U; *8;(t) = [61;(t), .- .,dn,,(1)]T, we obtain
§1 t+1) | cos Oy sin 01 (El(t) n 0
52(t + 1) o —sin 9[]\] — leJ COS 9[]\[ - kQLJ 62(t) n(t) ’

wheren(t) = —L;U; " (k1e1(t) + kaea(t)). Denoted’(t) = (9,1 (t), 62(t)]T for i = 1,...,N. Clearly §'(¢) = 0 due to that
o1;(t) = ¥ (In — @] )z;(t) = 0 for j = 1,2. Without loss of generality we assume th§g = 2 (the Jordan block with
respect to), is two-dimensional) and consequendi(t) andé3(t) are coupled in the following way:

Si(t+1) = Adi(t), t=0,1, i =2,3;

P2(t+1) = Aﬁ%w K33(t) — ma(t), (18)
B3t +1) = Ax83(t) — ma(t), t > 2,
[

whereA; andK have been defined in LemmaB.1 apdt) = [0, (Ao +9T) (krer (t)+kae2(t)]T, n3(t) = [0, AotpT (kre1 (t)+
kaea(t))]".

2) Estimation error and exponential convergence. Remethbée, (t) = cot fe; (t) — cscleq (t — 1) —u(t — 1) is dependent
on the control input by[{8), we have to first make an estimate:{o) before establishing the consensus result. Below we shall
show [T u(t)] < e(A +1)Cpoy'~2,¢ > 2 for i > 2 by induction.



With the choice ofp, and v it is easy to seds;(t)| < 3/2 whent < 2 by noticing |y;(t)| < 2C*, hence we obtain
max [|A(t)]] < 1/2if M(1), M(2) > 1. Fori =2, we haveyl L = X9pd + 47 and as a result

[T u(2)] = [WIL Y5 ki(5;(2) + ¢;(2))]
< (A + D|UL[[ea] 2118(0)]] + p(1)[|A)]])
+ [e2|(2][6(0)]| + | cot Blp(1)[|A(2)]] + | esc Olp(0)|[A(L)]])]
< e(A+ DULII(lex] + e 2I8(0)]] + | esc8]po)
< e(A+D)|ULlI(lex] + [e2)(2 + | esc])po
S E(A + 1 Cp(),

which also holds foriy)] u(2)| for i > 2.
Now assume that

[ u(t)] <e(A+1)Cpoy'—2, t > 2;
1AM < 1/2(= lea(r)] < Spor™Y), 1< 7 <.
Then by combining[{119) and (I5a) it follows that
I3 ()] = [A2|[93 (krex(7) + kaea(T))|

< e[Aalpoy™ ULl (Fler] + |eal| esc0]) + e Aalea| [1hF u(r — 1) (20)
< e|X||UL|Copoy™ 2.

Recalling [I8) we get that far > 2
0%(t+1) = A57165(2) — T2, AFT s (r + 1),
which produces the following estimate by Lemmal 3.1 dnd (20)

163t + DI < 5(05 1 116°(2)[] + 4[A2|Co||Ur[[por' )
<5y (UL HI16(0)]] + 2[A2|Col[UL[po) (21)
< 5C(1)poy* 1.
Similarly, an estimate fof|d( + 1)|| can be found aglé>(t + 1)|| < 5C(2)poy~", if we notice that||K6°(7)|| < 5e(|ei| +

le2|)C(1)poy™2 and||n2(7)]| < e(|X2| + 1)||UL||Copoy™ 2 for 2 < 7 < t. For anyi > 2, by proceeding along the same line
as in the above it is concluded that

(19)

18°(t + )| < 5C(Nmax)poy' ™. (22)

3) Data rate. Now we are able to discuss the estimatioh/fbr(¢+1)|, which is bounded by the sum pE kT Lo, (t+
1) and|zj Lkl Le;(t + 1)|. For the first term, by[(22) it is readily seen that

|Z?:1 k! Loj(t +1)| < |Z2—1 ko UL L 50;(t + 1)

23
< 5e(|er| + [e2])C(Nmax)poy' ™1 (@3)

while the second term is essentially related witlit + 1), or more exactlyA(¢ + 1). By (7) and [(8) we have
dit+1) = (t)( cosfey(t) — sinfes(t)) (24)

— _2:/059A(t) + %A(t — 1) + ﬁ s1n9u(t - 1),

which is obviously dependent on the previous quantizativore A(¢) and A(t — 1), as well as the previous control input
u(t — 1). Hence with the induction assumptidn19) the quantizerlmamade unsaturated with sufficiently many bits at time
t+1, and||A(t + 1)|] < 1/2 follows directly. Consequently

|35y kT Lej(t +1)] < el Xol||UL]|Copory! ™ (25)

as in [20). The induction is then established by combining).(Moreover, by [(2R) the consensus can be achieved at a
convergence rate ab(+?).
Below we are to calculate the number of required quantimdtwels at each time step. The situation when 2 has been
discussed. When > 2, from (24) we can see that
[d(®)]] < (2 cos ] + L) + L8 |ju(t — 2)]]
1(2| cos 6] + 1) +1+ AV -+ 1)0
2(2|cos| +1) + 3

by noticing [15b), [(15¢c) and(t) = ZfVZQ T u(t) (W¥u(t) = 0). In summary, the proof is completed. [ ]

ININ



Remark 3.4:For the coupling system shown ih{18), we divide it into twdsystems with disturbance. Each subsystem
can be stabilized as long as the disturbance decays expalhent a speed slower thaps, i.e. ||n3(t)|| ~ O(y') and
|K&3(t) 4 na(t)|] ~ O(?), with po < v < 1. The interference ofi(t) in the estimation erroe(t) can be ignored, as long
as [|u(t)|| ~ O(e™)poy' with o > 0, yielding that||n3(t)|| ~ O()poy*, and then||63(t)|] ~ O(y?) follows. As a result,
[|K83(t)|| ~ O(e)yt and||63(2)|| ~ O(~") follows by combining||ns(t)|| ~ O(e)poy'. Such a reasoning still applies when
(18) involves more than two subsystems. Finally we show fhdt)|| ~ O(e)poy?, and by [2#) we conclude that the control
input does not consume extra bits in exchanging the infdonavhen the control gains are sufficiently small.

IV. HIGHER-ORDER CASES

In this section, we will conduct the same task as in the lastiare for general higher-order cases. The analysis agtuall
proceeds along a similar line, but the assignment of comfaihs to achieve consensus is much more challenging, and we
have to resort to combinatorial identities for an explicital rate. As before, we first provide an encoding-decodihgrse
for all the agents and devise a control protocol in terms efdhtputs of the scheme. Then we present some lemmas, which
will play a crucial role in the convergence analysis and thewdtion of the data rate in the final part.

A. Encoding-decoding scheme and distributed control law

As pointed out in the last section, the construction of theoding scheme should follow two principles: firstly, the eder
is able to estimate other state variables given that onlyfiteecomponent is measurable; secondly, the estimationldHme
based on iterations in an effort to reduce quantizationl$e\®uch an idea can be stated more clearly as follows. At iaeh
step, the scaled difference between the ouip(t) and its estimate is quantized to obtain a signaét). Based ons;(t) we
construct an estimate;; (t) of the first component;; (¢), and combine previous estimates (¢t — 1) through;; (t —2m +1)
to obtain estimates of the other componentgt) throughz; 2., ().

Io(1,4)
A1)
To be detailed, denote the observability maitix= ) ,

A2m71(1’_)
jz(t) = [Ill(t —2m + 1),$i1(t —2m + 2), e ,.Iil(t)]T,
b,(0) =1[0,...,0,A(1,2m),..., A"~ 1(1,2m)]T € R>™.

We have

2m—

Ti(t) = Ox'(t —2m + 1) Z Nu;(t —n) (26)

if we notice by [1) that

k—2
it —2m+k)=AFtat(t —2m+ 1) + > AR 27"y (t — 2m + 1+ n),

n=0 (27)
k=1,...,2m.
As a result,
2t —2m+1) = Z 0)u;(t — n)] (28)
and

2i(t) = APl (t— 2m 4 1) + Y5002 AP b (t — 2m 4 1+ )
= 5z;(t) + ZQm 'b bj(O)ui(t — j),
where S = A?m~1(0~1 (the existence o®~! can be easily verified by PBH test [18]dfn 6 # 0) and b, (6) = —Sb,(0) +

A™=1(. 2m). Inspired by [(2P), the encoding scheme for ageistimplemented below:
for t < 2m,

(29)

Si(t)A: Qt(p%zgi))v i1 (1) :Ap(t = 1)si(t);

Tiom(2m) T41(2m)



for t > 2m,

Sz(t) _ qt(yi(t)f[cos 0@1'1(tf1204(rtsi_n1§£i2(tfl)Jriig(tfl)] )7
i’il (t) = COS 6‘,@1'1 (t — 1) + sin ei'ig(t — 1) + fi3 (t — 1) + p(t — 1)Si(t),
i‘ig (t) i’il (t —2m+ 1) (31)
L =S : :
Tiom (1) Zi1(t)
where S,,, = S(2 : 2m,-) is a submatrix ofS obtained by deleting the first row, andt) = po7t,0 < v < 1 is a decaying
scaling function.
After s;(t) is generated, transmitted and received by one of agentt-neighbors, say € N,”, a decoder will be activated:
for ¢t < 2m,
Tiv1 (t) = p(t — 1)s4(t);

Zip2(2m) Zip1(1)
jiv,Qm(2m) Tivl (277’),)
for t > 2m,
jivl (t) = COS ei'ivl (t — 1) + sin Hi'ivg (t — 1) + j’iv3 (t — 1) +p(t — 1)Si(t);
j1'1)2 (t) ‘%ivl (t —2m+ 1)
| =5a : %3
Ziv2m (1) Ziv1 (1)
Remark 4.1:Comparing [(3D) with[(32),[(31) witH (33), it is clear thaf,;(t) = 245(t), j =1,....2m, forv e N ,i =
1,...,N. Denotee;; (t) = &;;(t) — z;;(t) as the estimation errof);(¢) = s;(t) — d;(¢t) as the quantization error, where
p%;(ji), t=1,2,...,2m;
di(t) =< (6~ [cos Oiil(t—l)-ﬁ(-sin é;im(t—nﬁm(t—l)] > 9m (34)
p(t—1 ) :

Comparing[(Z2B) with[(31), the estimation errors are giverthsy following:
eil(t) = p(t — I)Az(t), t Z 1,

eij(t) = 3o S(j,n)en (t — 2m +n) — 30T by (O)ua(t — n), (35)
t>2m,j=2,...,2m,

whereb,,; is the j-th entry ofb,,.

Remark 4.2:The encoding schemels] (5) and1(31) proposed in our work isrdift from those in[10] of [15]. Actually, to
address the general dynamics with unmeasurable statdsd¢s@ned the encoding scheme respectively for the outpdit a
control input, and used Luenberger observer to estimatethgeasurable states. If we compare withl [15], we can als@see
big difference: the special structure ofth order integrator dynamics enables it to easily “recbttlee control input atn steps
earlier, based on which an estimate of the unmeasurable@ungs can be made with time delay, and the encoding scheme
can be designed accordingly. However, in our case it is alylito achieve the same task and we resort to the constrlitstabi
of the system, namely we estimate the unmeasurable statgtlylifrom 2, (¢) throughi;; (t — 2m + 1). Although such a
method introduces the control input into the estimatiomrsrit is able to make an estimation without time delay, aedde
avoids the stabilization of a time-delayed closed-loogesysin the consensus analysis.

For agent:, the outputs of encoder arg;(¢), ..., &2, (t), while the outputs of decoders afg;1(t), ..., Tvi2m(t) for
v € N;". Based on these outputs, the distributed control law of agénproposed as
® 0,t=0,1,...,2m—1; (36)
(173 = m ~ ~
ST by Cpenrt GivlBoi(t) = 2i5(D)), t = 2m.

B. Lemmas

The following two lemmas are respectively needed in anatyzionsensus and data rate. The first one is to stabilize the
closed-loop system of disagreements, and the second orsedsfar estimating the magnitude of(t) andd;(t).
Lemma 4.1:Denote4; = A — N\ K with \; > 0, where K € R?™*2™ and its nonzero entries are only at the last row
[kl, ko,... kom—1, kzm]. Take
kzj_l _ { CQJ:,lémiJ;j =1,....m—1;
023715‘, ] =m,

m—j S .
fp; = coje™ 7, g=1,...,m—1;
J Co4€, j=m.

(37)



Then we can find constants;_; andce;(j = 1,...,m) such that, when is sufficiently small, the spectral radiys of A;
is less than 1 with distinct eigenvalues. Moreover, denote

1 1 m— - m— —
R, ==+ i(Cmel sin @ — cop, cosf), H = Re[we 29

(38)
2 Com—3) — Cam—2
The requirements about;_1’s andc;’s corresponding to different:’s are listed below.
1).m =2 letc; = —sin260 andcs = cos26. If Ry < 0, thenp; =1+ %)\iRQE +o(e);
2). m > 3: let ca, 3 = —sin26 and ey, o = cos20. If \;R,, + H < 0 and Ré,,;e= %) < 0 with 9,,;,n = 3,...,m
denoting them — 2 distinct roots of the equation

72 (Cam—2 — Com—37) + -+ + V1(ca — c39) + (c2 — c19) =0, (39)

thenp, =1+ % max,—3 . n{NiRm + H,2REVJ,1¢77%)}e + o(e).
Lemma 4.2:Assume that Lemmia4.1 holds. Wheris sufficiently small, for any vectaf € R?™, the entries ofd:¢, which
are denoted ag; 2;—1 and{; 25,7 = 1,...,m, satisfy that

1€[|Mijp3ei=m=D j=1,2,...,m—2;

j— S ; 40
OIS e (40)
where .
[ m n . )
23)%(2”:3 I1 1‘19k1*19n1|)’ J=1...,m—=3;
3<k<m,k#£n
5 m ‘19,,7, |7n73 - .
Mij = 2N (ang 11 : [Ok1—Un1] + 1)’ Jj=m=2;
3<k<m,k#n
%7 J=m-—1
5/2, j =m.

Remark 4.3:The proofs of the above lemmas can be found in the AppendixinAL5], the basic idea is to combine
the bifurcation analysis of the roots of characteristicypomials and the Jordan basis of a perturbed maitrix [19]. évaw
the situation here is much different. On one hand, the compimjugate eigenvalues of the original matrix complicates
the analysis of the perturbed eigenvalues, as seen fromrtod pf Lemmal4.1l. On the other hand, unlike[15] where the
unperturbed matrix admits multiple eigenvalues of 0 andhd unperturbed matrix here admits eigenvaluesi.dfientical pairs
of complex conjugate numbers, which allows a less cumbegsmaitulation of the perturbed Jordan basis, as in the prbof o
Lemmal4.2.

Remark 4.4:Assumel < A\ < --- < Ay and letp = max_ pi, h € (0, A2]. Givencs,,—3 = —sin 260 andca,,—2 = cos 26,

the other constanis;_; andcy; can be selected as follows such that 1 —e+o(e) < 1—¢/2 holds with sufficiently small
e

1). m = 2: selectcg = —(4/h + 1)sinf, ¢4 = (4/h + 1) cos§ such thatR, = —2/h < 0;

2). m > 3: first selectea,, 4, com_s5,- -+ , c1 such that the solutions of (B9) are given By, = —(n —2)e?’, n=3,...,m
andH is determined by[(38). In fact, direct computation shows tha 4 — can—5) = 2 (m —1)(m —2)e3% and consequently
H=(m-1)(m—2)/2>0. Now letcy,,—1 = —[(2H +4)/h + 1]sinb, c2,,, = [(2H +4)/h + 1] cos§ such that

/\lRm+H:H(1—)\Z/h)—2)\Z/h< —2)\1/h§ —2.

j—1

With such a selection}/;; = 53~ (372 —I =a)» i =1 m=3andM; ;o = (o —ﬁ’WS =0k
1)

2>\i n=1
1<k<m=—2,k#n 1<k<m—2,k#n

To explicitly express the data rate, another lemma is requir
Lemma 4.3:Denote

1(9) = [10(9), l1 (9), c. ,lgm_g(e), lgm_l(e)] = COS 95(1, ) + sin 95(2, ) + 5(3, )

Then /2]
Ik(0) = (=) > C(m,k —2h)C(m — (k — 2h),h)(2cos0)F=2" k=0,1,...,2m — 1.
h=0
Moreover,> 2" [1.(6)] = [2(1 + | cos 8])]™ — 1.
The proof of Lemma&_4]3 can be found in the Appendix. The idesirgple and direct: by viewing(d) as the solution to
an equation, we are left to the verification whi¢fl) takes the form in the lemma. Still, the computation is quienplicated
and requires special techniques from combinatorics [Z1].[



C. Convergence analysis and data rate

The notations in[(10) will still be used, except that is replaced byp,. The following assumptions are adopted in the
subsequent analysis.

Assumption 4.1The communication grap§ is undirected and connected.

Assumption 4.2There exist known positive constari$ andC} such thag_gna%m||xj(o)|| < CO* andj_xlnaxm [16;(0)]| <
Cs. o o

Remark 4.5:Assumption 4.1l is a standard assumption, under which theneidues ofL. can be rearranged ds= \; <
A2 < --- < Ay. The reason that we only consider the undirected graph wittlarified in Remark 4]7. Assumptign #.2 serves
the same purpose as Assumption] 3.2.

We also need the following constants:

b= max{lbyl}, ¢ = max {el}, "
1/2 3/2 ~ — *
Ay = max{;2 02}, C = LU+ 5emN (1S +2)].
Lemma 4.4:Let v = 1 — ¢/4. Then we can choose sufficiently smalto satisfy the following inequalities:
26* Y i im 1 M;je'/? < My, i =2,...,N; (42a)
2o I(0)] /7™ < [2(1+ | cos )™ — 1/2; (42b)
(2m — 1)b*(N — 1)ACe'/? < LyAm=1, (42c)

where A = max; A;.

Theorem 4.1:Takek;'s as in [37),c;’s as in Remark 414 ang = 1 — /4. Select sufficiently smal to satisfy Lemma 414
andp; <1—¢/2fori=2,...,N. Then under Assumptiofis 4.1 and]4.2, consensus can be edhaewa convergence rate of
O(~") provided thatM (t) satisfies

{ M@t)>1,t=1,...,2m;

M(t) > 2™ 1+ [cosf))™ — 3, t=2m+1,..., “3)

andpg > (V2 + 1) max{C*, C}}.
Therefore, we can usfog, 2[2™!(1 + | cos6])™ — 417 bits of information exchange to achieve the consensus.
Proof: 1) Preparation. By[(36) we have

0, t=0,1,...,2m —1;
u(t) = { =SB L) + e (1), ¢ > 2m. (44)
j=1

Direct computation shows
01(t+1) 91 (t) 0
: =Aelv)| L
Oom (t + 1) Jom (1) u(t)

Let 6;(t) = U;'0;(t) = [01(t),...,0n ()] and §(t) = [di1(t), ..., di2m(t)]T. Then we obtaini'(t) = 0, and for
i=2,...,N N

- [ AS, t=0,1...,2m—1;
Ot+1) _{ Adi(t) — ei(t), t>2m

wheree;(t) = [0,...,0, 357 kjAigTe;(1)]T € R2™.

2) Estimation error and exponential convergence. To aeallge influence of:(¢) on the error terme;(t), we will show
|pTu(t)| < A;Cpoyt=2™e'/2 t > 2m by induction.

With the choice ofpy and~ it's easy to seeés;(t)| < 3/2 whent < 2m by noticing |y;(¢)| < (v/2 + 1)?™C*, hence we
0btainl<nt1§)2¢m [|A(t)]| < 1/2 providedM (t) > 1,¢t = 1,...,2m. Moreover,||5;(2m)|| < (v2 + 1)?™C}. Recalling [36) and

(45)

) <
¢i(2m) < pol|S]| | max [IA(H)] we have

6T u(2m)| = [¢F 3237 k;L(5;(2m) + €;(2m))]
< 2XmNc*e((V2+ 1)*™C5 + pol|S11/2)
<2\xmNc*e(1+ ||S]1/2)po
< AiCpoe'/?

by noticingpy > (v2 +1)?*™C; ande < 1.



Assume that _
|67 u(r)| < AiCpony™?mel/?, 2m < 7 < t;

46
A < 2(= lea(n)] < 2pr™ ), 1< T < ¢, (46)
611(T—2m+1) 611(7’) S(],l)
e;(1) = : O : — 3 by (O)u(r =),
€N1(T—2m+1) 6]\/1(7') S(],Qm)
we have B
67e;(MI < Npo__ max _[JA(s)|[772"|S]| + N (2m — 1)b Aie!/2Cpory—im+
and

. < \:c* T—2m _ *\ . ~1/20 T—4m+1
eIl < Aiez2mNlpo_ max _ [IA()7 2" S]]+ (2m = Db At/ *Cpoy 4+ “
< 2Xie"mN([[S]]/2 + Dpoy™*™e

by (4249), if || A(s)|| < 1/2 for 7 — 2m + 1 < s < 7. Recalling [45) we obtain
t—2m
Si(t + 1) At+1 2m61 Z At 2m—r (2m + 7_)
7=0
By applying Lemma4]2 and taking into accountl(47), it yieldat
101,251 (¢ + 1], 65,25 (¢ + 1)|
Mijed=(m= Dyt 1=2m 1158 2m) || + 4Xic*mN (|| S]] + 2)po]
j=1...,m—2; } (48)
Myl 2yt t=2m [1154(2m)|| + 4hie*mN (|[S]] + 2)po]
j=m—1m,

IN

due toe/(y — pi) < 4.
With (@8) it is ready to estimate? u(t + 1), which is a sum ofy 2", k;¢T L6;(t + 1) and 35" k;¢Te;(t + 1). For the
first part, by [@8) and|o*(2m)|| < ||U; *||]|6:(2m)|| we have

|03 kT Lo (t + 1)
=\ |22’” k;dij(t 4 1)]
< Aipoy TP @M 1P+ 27 YLy Mig)- (49)
[[16°(2m)|| + 4Xic*mN (||S|| 4 2)po]
< BNM; 1 [||U |+ 4N mN (]|S]] + 2)]poryt—2mH1el/?
if we note thafco,, 2|, |cam—3| < 1. For the second part, as in the second order case, it is glodated with||A(¢+1)|| and
similarly it can be inferred fron{(34) thak(t + 1) is only dependent on the past quantization eréd(s),t —2m+1 < 7 < ¢

and the past control inputg7),t —2m+1 < 7 < ¢t — 1. Hence with the induction assumptidn{46) the quantizerimmade
unsaturated at time+ 1 with finite bits, namelyi|A(¢ 4+ 1)|| < 1/2. In consequence we get an estimation similaifg (47) that

|2 ki Les(t + 1) < 20c mN([|S]1/2 + Dpory' =27 +1e. (50)

Combining [49) and[(80), it is clear thap! u(t 4 1)| < A;Cpoy'~2™+1!/2, which establishes the induction. Furthermore,
by (48) clearly the consensus can be achieved at a convergatecofO(~?).

3) Data rate. Below we are to discuss the number of quardizdgvels at each time step. The situation when 2m has
been discussed. When> 2m, we have

[ld(®)]]

cos sin 6.5 S . * 2m—1 ||u(t—1—j
<A - 1)+ 3 BOEDOD A~ 1 - om )] + 20 T L

= Z e [cos 05 (1, 1) +sin05(2, ) + (3, 7)]A( — 1 —2m + j)|

w y2m—1 |lu(t—1—7)||
+2b 27 1 p(t— 1)J

< b YR (0)] + 26%(2m — 1)(N — 1)ACH ~4mel/2

by noticing S(1,-) = [0,...,0,1] andu(t) = Zf.vzl ¢ipFu(t), Ay = 0. By taking into accoun{{42b) anfi{42c) it can be seen
that ||d(¢)|| is bounded by2™~1(1 + | cos#])™ and the proof is completed by rememberihg] (43). [ |



Fig. 1. Communication topology

Remark 4.6:Noticing that[ [, ., —,,, o ., [k—n| = (n—1){(m—2—n)! attains the minimum at = | =2 | and multiplying
by a positive); on both sides does not change the direction of an inequ@®4) can be substituted by the following stronger
one, which is easier to check:

" m—2 m—2 ni—1 A
5¢* (X551 Lonmt TETmim——TE T Lt An)el/? < 3,/22. (51)

Remark 4.7:From the proof it is readily seen that we can still use the saumaber of bits to achieve the quantized consensus
once the Laplacian of the directed topology satisfies that \s < --- < Ay. However, unlike the case of the 2nd-order
oscillator, it does not hold for the general topology, whiea Laplacian contains complex eigenvalues, or real Jorbak$ of
multiple dimensions. For one reason, note that Lerhmia 4.% dotehold for a complex,. For another one, note the disparity
in the order ofs between the disturbance term and the weighted sum of disagr entries, i.€lle;(t)|| ~ O(s)port and
||K&i(t)|| ~ O(/?)pory*. Therefore, if we assumer = 2 and the Jordan block correspondingXe > 0 is two-dimensional
as in [18), then it follows from|K6%(t)|| ~ O(eY/?)port that ||6%(t)]] ~ O(e~V)poyt and [|u(t)|| ~ O(1)pe~t, suggesting
that the input term can no longer be neglected in the estmairors, nor in the quantization inpdft). Such a situation is
also encountered in_[15].

Remark 4.8:At the first glance it may seem doubtful that the data rate feeddent o cos 8|; but a little further inspection
is enough to clarify. Similar to the situation of theth order integrator system investigated in|[15], the conimput does
not consume any bit in exchanging the estimates of the stétes < is sufficiently small. In other words, we only need to
focus on how many bits it needs to estimate the output of aivitheal open loop system. Take the second-order case as an
example. Noticing thap;(¢t) = cosz;1(t — 1) +sinfz;a(t — 1) = 2cos bz (t — 1) — 21 (t — 2), we can estimate; (¢) based
on &;1(t — 1) and &;1 (t — 2) with an error bound no larger thaf(2|cos 6| + 1) + 3. Generally speaking, whejrros 6| ~ 0
or equivalently|sinf| ~ 1, z;2;—1(t) and z; 2,(¢) are tightly coupled, and it needs oniy bits of information exchange
to achieve the consensus; in the casd @k | ~ 1, after rearranging of state4 can be approximated bf; ® J1 ., and
2m bits are sufficient. Anyway, for &mn-th order system studied in this pap@rm bits are enough to realize the consensus
asymptotically, which is consistent with the conclusion feth order integrator systems [15].

V. NUMERICAL EXAMPLE

For simplicity we only show an example af = 2. Consider a 5-node network with 4-th order dynamics, whieeeedges
are generated randomly according to probabifti, j) € £ = 0.5 with 0-1 weights. The initial states are randomly chosen
asz;;(0) € (0,5),¢=1,...,5,j=1,...,4. Givend = /3, it is enough to use 3 bits of information exchange to realiee

—4/(3V3) 2/v3 —4/(3V3) 5/(3V3)
consensus, and we can compite= -1/3 1 -1 2/3 to construct the encoder and decoder
-1/V3  1/v/3  —1/V3 0
respectively ad(30J-(33). The communication topologyeseyated as in Figure 1 witk, = 0.8299, andc¢;’s are determined
as in Remark™l4 by choosirfg= \;. Moreover, lete = 0.01, po = 10, v = 0.9975 to satisfy the conditions in Theordm #.1.
From Figure 2 which depicts the trajectory &f,....(t) = {d,;(t) : n = argmax; |4;;(¢)|}, we can see that the consensus is
achieved asymptotically.

VI. CONCLUDING REMARKS

In this paper, we explored the data rate problem for quathtznsensus of a special kind of multi-agent systems. The
dynamics of each agent is described bgra-th order real Jordan form consisting of pairs of conjugate poles on the unit
circle with single input, and only the first state can be meaduThe encoding-decoding scheme was based on the obitigrvab
matrix. Perturbation techniques were employed in the amseanalysis and the data rate analysis, and combindtmfadiques
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Fig. 2. Trajectories of disagreements,, o (t)

were used to explicitly obtain the data rate. The seconérardse ofn = 1 and higher-order cases of > 2 were investigated
separately. For the second-order case, we showed that a2nbits of information exchange suffice to achieve the cossen
at an exponential rate, if the communication topology hagamsing tree. For the higher-order cases, consensus wevedh
with at most2m bits, provided that the undirected communication topolisgyonnected. The exact number of bits for achieving
consensus in both cases is an integer which increasesrfréo2m when| cos 6| increases from 0 to 1. The case of switching
directed topology is still under investigation, and noisymenunication channels will be considered in the future wéwk for
general unstable systems with poles outside the unit ¢ipggturbation techniques no longer apply and new methodd te
be developed to serve the same purpose of stabilizing thandigs of disagreements.

APPENDIX

Proof of Lemmé&4]Here we mainly deal with the case of > 3, since the proof can be slightly adaptedif= 2 and the
modification will be pointed out accordingly. The charaisic equation ofA; can be computed as

Xi(p) = det[(pl — Q)™ + XK (uI — Q)™ + - + NiKa(ul — Q) + NiK1],
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whereQ = cosf sinf ]

—sinf cos6
we rewritex;(u) as

Xi() = (=)™ (= e )™ + (1 — )™ + (u — e77%)™] 3
[22( kaj19 4 k2j)(p — €)1 4 2ka + ;(k%u + koj) (e — e %)
+ %[(M - 6'79)1” - (:u - e_Je)m]%' (52)

[ (k2j—1 + ko) (p — €)1 + 2k + 3 (koj1 — kojg)(p — e77%)I71]
2 Jj=2

Jj=
= (u—)™[(n— e )™ + F (ke + kag)] + F (u — e770)m _Zl(ﬂ — &) (—kajo1g + kay).
J:

andK; = { 0 0 ] for j =1,...,m. By employing [I1) in the proof of Lemnia_3.1,

With A; being real, we only need to focus on the perturbed roots aretffy which are denoted by = ¢’ + Ap. Noticing
thaty — e =79 = 1 — €7 + 2sin 6, we substituteu = ¢’ + Ay into (52) and obtain

xi(e?? + Ap) = Z ain(€)(Ap)™ ™™ + Z (m,m —n)(2sin 7)™ " + O(e))(Ap)™ " (53)

with the selection of,;_; andk; in (37), where
i (2) = { (2sin07)™ 2 sin 09(cam — cam—17) + m(cam—2 — cam—37)]e +o(e), n = 1;
" (281119]) (CQm n+1) — C2(m— n)Jrl]) gn1 +O( " 1)7 n=2....,m

Now the Newton diagram [17] can be depicted as in Fig. 3, by fiistting pointsPs,,—; (j, @2m—;), j = 0,...,2m and then
connecting the segments on the lower boundary of the convitohthe above points, where,,,—; is the leading exponent
of ¢ in the coefficient of(Au)?™~7. The slopes of the two non-horizontal segments are 1/2, deogisely, implying thatA
has the following two forms of expansions:

Ap = e + e’ + o(eP), p # 0; (54a)
Ap = vie + o(e), 9 #0. (54b)

Substituting[(54a) intd (83) and finding the coefficientshaf terme™/2, it yields thatu (27 sin )™+ 7" > 3¢ (27 sin )™ (cam—2—

cam—37) = 0, and thus
i N
SRV ETE R ) 55)

wherea = arg(cam-37 — cam—2). Moreover, to determing, and 8, we substitute[{54a) intd_(b3) again and find the lowest
order term as

mul u2(2]sm9 me(m=1)/28

)
+ )5 ny" ~1(2gsin 9) (Com — Cam_17)e(mH1/2 )
+%(m ) ptt " p2(278in0)™ (cam—2 — C2”%3])5(771—1)/265
+%u1 (2] sin 9)’”(02,”74 _ 02m75])6(m+1)/2 —0,

which impliess =1 and s = 2 (Com—1) — Cam) + M% In the form of [54h), the module of is determined as

4 2(cam—3)—c2

uf? = pfi =1+ 2Re(p1e™)e? + (|ua|? + 2Re(uze ™)) + o(e), (57)



with Re(pe ™) = i\/%,/cgmg +¢3,,_5cos(§ — 0). In order that|u| < 1 with sufficiently smalle, we must have

@ _fH=—=x
2 ___ 2!
condition as

and hence it suffices to lel,|? + 2Re(uze™7%) < 0. Combining these arguments gives rise to a sufficient

—Com—3/Cam—2 = tan(20 + ), c3,,_5 + Cop_o 7 0; (58a)

)\7; >\1 s m—5]"C2m — —
T\ Bins + o + % (Cam—1 500 — oy cOs ) + Re[2=2=22mt e 700] < (), (58b)

With ¢3,,,_3 = —sin 26 and ca,,,_2 = cos 20 satisfying [58R),[(58b) is equivalent ioR,, + H < 0. Whenm = 2, u only
takes the form of{{54a) and, = %(czm,lj — cam), leading to the sufficient conditioRy < 0 for |u| < 1.

On the other hand, substituting (34b) infa](52) and finding ¢befficients of the term™~!, we obtain the equatiofh (B39).
Similarly, the module ofx with the form [54b) is determined by

lu)?> =14 2Re(1e77%)e + o(e) (59)

and it suffices to let R@,e~7?) to be negative such that| < 1 with sufficiently smalle. For prescribeds,, 3 andca,, 2,
the roots of [(3P) can be assigned arbitrarily such thatRe %) < 0 with m — 2 distinct;; after determining:,,_4 and
com—5, (68B) can always be satisfied by properly chosgp and cs,,_1 since%(czm_l sin @ — ca,, cos @) can be assigned
to any number. In summary, the proof is complemd.
Proof of Lemm&4]2s in the last proof, we only focus on the casenef> 3 which essentially includes the caseraf= 2.

For A;, we are to find the following Jordan decomposition:

m—1

j=1
where 4; is a diagonal matrix consisting &n different eigenvalues determined in Lemmal4.1. To find arr@mate R;

and the corresponding; !, we first determine the Jordan basis of the unperturbed xnatriThe Jordan chain corresponding
to the eigenvalug, = e?? is given by

A—pol A—pol A—pol A—pol

Um—1 Um—2 B Ui Uo,
wherewu; = ezj+1 + je2ji2,5 = 0,...,m —1 ande, € R?>™ denotes the vector with a 1 in theth coordinate and 0’s
elsewhere. Similarly, the Jordan chain corresponding ¢oeflgenvalugio = e=7? is given by

_ A—pol  _ A—fiol A—pol _  A—pol _

Um,—1 Um,—2 . U1 Uugp.
Hence the two Jordan chains df can be rearranged @y = (ug @ ... Um—1 Um-1) = I, @ P with P = 1 _1 l
With A; being real, once we obtain the eigenvectors correspondirigetm different perturbed eigenvalues aroungl the

other eigenvectors can be obtained by taking conjugatascéd@e only need to find the eigenvectors corresponding tenthe
different perturbed eigenvalues aroumgl
The eigenvectors corresponding to theperturbed eigenvalues aroupd have the following form of Puiseux series [19]:

_ o k/2 _ o k/2 _ .
Min = Ho + § :k:l Hink€ / y WUin = Uino + § :k:l Uink€ / , = 11 27
_ 00 k o 00 k o
Min = Mo + § :k:l 19ink5 s WUin = Uino + § :k:l Uink€™, N = 37 <y,

where u;1; = \/%,/cgm_?, + 30677, pin1 = —pi1 and Y1 = 9,1, = 3,...,m have been defined in Lemnia.1.
Substitutingg;,,, us, into the equatiom; u;, = i uiy, respectively, and collecting coefficients of equal powdrs; anoreover,
noticing the fact thatd;;u, =0, =1,....,m —2;k =0,...,m — 2 — j, where 4;; has been defined if_(60) and imposing

the normalization condition as!,_,u;, = 1, wherev, , =1[1 —3 0 ... 0 ]is the left associated eigenvector of
A with respect to the eigenvalye, such thatvl jug = 1,0. ju; = -+ = vl _u,_1 = 0, the m eigenvectors can be
obtained as: .
m— ’
win = o + 33 2 (pfiun + gy, ) +o(e™?), n=1,2
k—
moi ,
Uin, = up + Y PN, u +uy,) +o(E™), n=3,...,m,
k=1
wherew;,, = 0 andu,,, € spafuy,...,ux_1},k=2,...,m—1forn=1,...,m.
Letting R; = [ Wil Wil .- Uim  Uim ] we are to investigate the magnitude of each entrRZi_ri by adjoint method.

Therefore we need to find the order @t R; and the corresponding cofactor, both of which can be expdeas Puiseux
series. The following facts should be mentioned before #ieutation:
1). Determinant is a multi-linear function of column ve&pand it vanishes when two or more columns coincide.



2). There exist two types of series in the columng®f and we categorize;;, u,2 and their conjugates for type I, the others

for type II.

With these facts, we can see that the lowest degree can daebtay taking out terms with(=2/2y,,, 5 ande(m—1/2y,,,
respectively fromu;; andu;1, terms withug, euq, . . ., €™ 3u,,_3 respectively fromu;s, . .., u;m, as well as the corresponding
conjugates fromi;y, . .., @;m, and calculated b(0 +1+---+m — 3+ msz + mgl) =m? — 3m + 3. Moreover,

— — — j— 2_
| det Ri| = |piiy 1#?211 2 — iy iy Pl det Vol? det Role™ ~#™F3(1 4 o(1)) 61)
2

= |2 (i — prio) ] det Vo [22mem =3mH3(1 4 o(1)),

1 W3 ... U950

1 Wy ... 903 | _

whereVy =V (¥31,...,9m1) = | . . ) . is a Vandermonde matrix of orden — 2.

1 Oy ... 9778

On the other hand, we need to determinate the order of thetomfﬁgft) of the (s, t) entry, and we illustrate it by calculating
Cﬁ with m = 3. After deleting the first columm,;, we delete the first row and use the same notations. andes, ..., e.

Now R, has been reduced to a square mal!iﬁf()1 consisting of the following 5 columns:

a1 = —jes + Y2 it + efid U + O(e)ur + O(e2),
az = jea + Y% pinur + epdius + O(e)ur + O(e?), az = ao,
ay = jea + e¥z1ur + 293 uz + O(e?)uy + O(e2), a5 = aa.

Consequently the order uﬂ’ 1.1 is found in such a way: take out terms with/ 2%, , e@, respectively fromay, as, terms with
es from as, terms with eus from az, terms witheuy; from a4. Now thataq, as, as jointly contribute the same degree of
1

§(m2 —3m + 3) as 1, U, i3, we are left to choose terms withy and u, respectively fromas and ay. The above can

be conducted similarly for calculating the order @ﬁ whenm > 3, and actually for every cofactor. Moreover, by the
symmetry of conjugatesc% 1.2n— 1,02(}3 1.2n> Oégzn_l,(}% », have an identical order. So we only focus Gék 12n—1
below. Reminded by the case dfl% whenm = 3, we suffice to choose linearly independent terms with a lbvses

of degrees from the modified columm:-;.J for j # n, whereu,_; has been subtracted from each column. Recall that in
finding the order of| det R;|, terms withcuy, . ..,e™ 3u,,_ 3 from type Il columns are first selected, and then terms with
em=2/2y,, 5 em=1/2y,, _, from type | columns. Such a method still applies in finding teler of cofactors, and we
conclude thaCéZ)_l an—1 has the lowest order for fixed if and only if k& = m. In other words, for any row in adj;, the
entries at them — 1-th and2m-th column exclusively have the lowest order when comparitd ether entries at the same
row. To be detailed,

|Cn—1.9n—11s 1CSh 1 20ls [CSoh 51, OS]
2m;1| det Vo2 |ufiy i iy — o) |||
£ —3mA3=(m=1)/2(7 4 0(1)), n=12; (62)
2m= 1|de‘5 Vo||d€tV i ? Mm ?(pir1 — pio1)|
|,LL111 a1 (Uzll priz1)|e™ 3m+37(m72)(1 +0(1)), n=3,....m

whereV,, = V(¥31,...,%-11,%1,-..,%n1) is @ Vandermonde matrix of order — 3. Together with [(6l) it yields that by
Hill = —MHi21

IR ' (2n —1,2m — 1)|, |R; *(2n,2m — 1), |R; ' (2n — 1, 2m)], | R; ! (2n, 2m)|
74Iu111\m‘dliv(7‘n DR(1+0(1)), n=1,2
1 e m— — .
M Tdet Vil € “m=D(140(1)), n=3,...,m;
|R;1(2n - 17k)|7 |R;1(2n7k)|
B o(e=(m=1/2) n=1,2;
T o(e ), n=23,...,m;

In the meanwhile, the following holds fdrgj < m:
I/ﬂ 1|€<J b + O(sm), n=12 (64)
|97 el + O(e7), n=3,...,m;

(63)

forl1 <k <2m.



Combining [€D), [(6B) and (64) we can obtain

|€s,2j-1]
< pslIEN[>omey [Ri(25 — 1,2n — D)|(|R; ' (2n — 1,2m — 1)| + |R; ' (2n — 1,2m)])
+ 3 Ri(25 — 1,2n)|(|R; (20, 2m — 1)| + |R; (20, 2m)])] (1 + o(1))

S 2 in m det Vi, ™m—
< oiliell2[ 3, it et- V”+zn3ﬂmd&ﬁm%ﬂ< D](1+o(1)).

and the conclusion follows by noticing that— (m—-1) < 5% for j<m-=2,j—(m-1)= % for j = m —2 and
j—(m—1)> 2’” for j =m —1,m, as well as|;ml|_\/ 'ﬁiﬂ;‘ = 1T [Pk1 — Opi1|. B
3<k<m,k#n

Proof of LemmaZ]3he proof of Lemm& 413 relies on the following combinatordentity.
Lemma A.1:[21] Let f(t) = >, fxt" be a formal power serie5 [20]. Then the following rule holdg i= 0 and f(t) is
a polynomial:
> Cn+ ak,m+ bk)2™ O o= [ (1+ 2)" f(E0(1+ 2t)"),

where[t™]g(t) denotes the extraction of the coefficienttf from the formal power serieg(t).
Now let we return to the proof. Denoting

v(0) = cos QA 7L(1, ) + sin AT L(2,) + AZm—L(3,)
= [’Ul (9) ’02(9) N ’Ugmfl(@) V2am, (9)]
and recallingS = A?™~10~!, the original equation is equivalent t¢)O = v(#). Direct computation shows that the entries
of v(#) are given by
vgj-1(0) = C(2m, j — 1) cos(2m — j +1)9,
v2;(0) = C(2m,j —1)sin(2m —j+1)0, j=1,...,m;

and the entries of are given by

O(k,2j—1)=C(k—1,7—1)cos(k — 5)b,
O(k,2j)=C(k—1,j— )sin(k—4)0, k=1,...,2m, j=1,...,m
As a result, the equatio{f)O = v(0) is equivalent to the followingn equations:
2m—1
> (O)C(k, )™M = C(2m, )’ b =0,1,...,m— 1, (65)
k=0
or equally

Zlk Clk,h)e? M0 =0 h=01,...,m—1, (63)

if we let lo,, (8) = —1. Noticing that2 cos§ = e?? + =79, we substitute the expression if(¢) into the left-hand side of the
aboveh-th equation, and expand it into a power serieg8fas 7" 1x(0)C (k, h)e! =m0 = S, ,e?2w =10 with

Qoy,h = Z Z C(maj)c(m - j7 k)C(.77w - k)C(j + 2k7 h)(_l)'j-i_zk_l'
k=0 j=w—k
Therefore, if we can show that,, ; for w = 0,1,...,m andh = 0,1,...,m — 1, then the prescribet{f) is a solution of
(63), and by the nonsigularity a it is also unique.
We first transformy,, ;, as follows. By remembering that

C(m,])C(m _j7 k)C(]vw - k) = C(m,k)C(m - k,])C(],’w - k)
=C(m,k)C(m —k,w—k)C(m —w,j — (w—k))

and lettings = j — (w — k), it is clear that

awn =Y Clm,k)C(m —kw—k) (=) " C(m —w,5)C(s +w+ k, h)(—1)°.
s=0
Now we claim that
1.3, Cm—w,s)C(s +w+ k,h)(-1)* =Clw+k
w)

h—(m—-w)(-1)"™* w=0,1,...,m,
2.3 C(m,k)C(m — k,w—k)C(w+ k,h — (m —w))(—

N=1)mth=1 =0, h=0,1,...,m—1,



and the proof of the first part is completed by combining th®se claims.
1). Let fs = (=1)C(m — w,s) and f(¢t) = >_ fst* = (1 — t)™ ™. Applying Lemm&(A.l, we have

> C(m—w,s)C(s +w+ k,h)(—1)*
zzmsz(w—i—k—i—l s,h+0-8)-1- fq

= [thi(f+ Utk f(1+t)

— [th](l—i—t)erk( )m w

= (—1ymmwghmmmw(1 4 gyt
=(-1)"m*C(w+k,h— (m—w)),

which establishes the first claim.
2). For the second claim,

Yoheo C(m, E)C(m — k,w — k)C(w + k,h — (m — w))(—1)mtk-t
1

= (1) S Clm, ) (= DFCm — by w — K)C(w 4 kb — (m —w))
= (1) S I 0O e
= (1) o (1 o) (L) S [ (HER (1 )
= (1) (0 ot~ (L

R i D1 4wyl

= (—1)m T o () (o — )

) () )1+ ) (o — )
(=)™ o] S Claw, r = K)YC(m, ko™ F (~1)%

= (_1)m_1[vk_w] ZZ:O C(w’ r—= k)C(m, k)(_l)k’

wheret, v, u are indeterminates. Noticing that> w < h — (m —w) > w < h > m is contradictory toh = 0,1,...,m — 1,
we haver < w andk < r < w, which suggests the vanishing of the last equation in theglend the proof for the first part
is complete.

As for the second part, by noting that the exponent=ef in [, (6) are even whek is an even number, while the exponents
are odd wherk is an odd number, it can be noted that the sign of each terin(#) is the same. Therefore we obtain

o (0)] = 37 S O,k — 20)C(m — (k — 2), )2 cos 0] 2"
= Zj:O ﬁ]l cos 07,
with 3y = 2™ — 1 and 8; = 29C(m,j) Z’,Zoj C(m — j,h) = 2mC(m,j) for j = 1,...,m, and the conclusion follows

directly. m
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