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Abstract—In this paper, we consider distributed optimization
problems where the goal is to minimize a sum of objective func-
tions over a multi-agent network. We focus on the case when the
inter-agent communication is described by a strongly-connected,
directed graph. The proposed algorithm, ADD-OPT (Accelerated
Distributed Directed Optimization), achieves the best known
convergence rate for this class of problems, O(µk), 0 < µ < 1,
given strongly-convex, objective functions with globally Lipschitz-
continuous gradients, where k is the number of iterations.
Moreover, ADD-OPT supports a wider and more realistic range
of step-sizes in contrast to existing work. In particular, we show
that ADD-OPT converges for arbitrarily small (positive) step-
sizes. Simulations further illustrate our results.

Index Terms—Distributed optimization, directed graph, linear
convergence, DEXTRA.

I. INTRODUCTION

In this paper, we consider distributed optimization problems
where the goal is to minimize a sum of objective functions over
a multi-agent network. Formally, we consider a decision vari-
able, z ∈ Rp, and a strongly-connected network containing n
agents, where each agent, i, only has access to a local objective
function, fi : Rp → R. The goal is to have each agent
minimize the sum of objectives,

∑n
i=1 fi(z), via information

exchange with the neighbors. This formulation has gained
great interest due to its widespread applications in, e.g., large-
scale machine learning, [1, 2], model-predictive control, [3],
cognitive networks, [4, 5], source localization, [6, 7], resource
scheduling, [8], and message routing, [9].

Most of the existing algorithms assume information ex-
change over undirected networks (graphs), where the commu-
nication between the agents is bidirectional, i.e., if agent i
sends information to agent j then agent j can also send
information to agent i. Related work includes Distributed
Gradient Descent (DGD), [10–13], which achieves O( ln k√

k
)

convergence for arbitrary convex functions, and O( ln k
k ) for

strongly-convex functions, where k is the number of iter-
ations. The convergence rates can be accelerated with an
additional Lipschitz-continuity assumption on the associated
gradient. For example, see DGD [14] that converges at O( 1

k )
for general convex functions but within a ball around the
optimal solution, whereas, it converges linearly to the optimal
solution for strongly-convex functions. The distributed Ne-
strov’s method, [15], converges at O( ln k

k2 ) for general convex
functions. Of significant relevance is EXTRA, [16], which
converges to the optimal solution at O( 1

k ) for general convex
functions and is linear for strongly-convex functions. The work
in [17] improves EXTRA by relaxing the weight matrices
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to be asymmetric. Besides the gradient-based methods, the
distributed implementation of ADMM, [18–20], has also been
considered over undirected graphs.

The aforementioned methods, [10–20], are applicable to
undirected graphs that allow the use of doubly-stochastic
weight matrices; row-stochasticity guarantees that all agents
reach consensus, while the column-stochasticity ensures that
each local gradient contributes equally to the global objec-
tive, [21]. On the contrary, when the underlying graph is
directed, the weight matrix may only be row-stochastic or
column-stochastic but not both. In this paper, we provide
a distributed optimization algorithm that does not require
doubly-stochastic weights and thus is applicable to directed
graphs (digraphs). See [22, 23] for work on balancing the
weights in strongly-connected digraphs.

Optimization in continuous-time over weight-balanced di-
graphs has been studied earlier in [24, 25]. Existing discrete-
time algorithms include the following: Gradient-Push (GP),
[26–29], that combines DGD, [10], and push-sum consen-
sus, [30, 31]; Directed-Distributed Gradient Descent (D-
DGD), [21, 32], which uses Cai and Ishii’s work on sur-
plus consensus, [33], and combines it with DGD; and [34],
where the authors apply the weight-balancing technique, [35],
to DGD. These gradient-based methods, [21, 26–29, 32,
34], restricted by the diminishing step-size, converge rela-
tively slowly at O( ln k√

k
). When the objective functions are

strongly-convex, the convergence rate can be accelerated
to O( ln k

k ), [36].
A recent paper proposed a fast distributed algorithm, termed

DEXTRA, [37, 38], to solve the distributed consensus op-
timization problem over directed graphs. By combining the
push-sum protocol, [30, 31], and EXTRA, [16], DEXTRA
achieves a linear convergence rate given that the objective
functions are strongly-convex. However, a limitation of DEX-
TRA is a restrictive step-size range, i.e., the greatest lower
bound of DEXTRA’s step-size is strictly greater than zero. In
particular, DEXTRA requires the step-size, α, to follow α ∈
(α, α), where α > 0. Estimating α in a distributed setting
is challenging because it may require global knowledge. In
contrast if α = 0, agents can pick a small enough positive
constant to ensure the convergence. In this paper, we propose
ADD-OPT (Accelerated Distributed Directed Optimization) to
address the step-size limitation inherent to DEXTRA. In par-
ticular, ADD-OPT’s step-size follows α ∈ (0, α), i.e., α = 0,
ensuring that the lower bound of ADD-OPT’s step-size does
not require any global knowledge. We show that ADD-OPT
converges linearly for strongly-convex functions.

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem and describes ADD-OPT. We
also present appropriate assumptions in Section II. Section III
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states the main convergence results. In Section IV, we present
some lemmas as the basis of the proof of ADD-OPT’s conver-
gence. The proof of main results is provided in Section V. We
show numerical results in Section VI and Section VII contains
the concluding remarks.

Basic Notation: We use lowercase bold letters to denote
vectors and uppercase italic letters to denote matrices. The
matrix, In, represents the n×n identity; 1n and 0n are the n-
dimensional column vectors of all 1’s and 0’s, respectively. We
denote by A⊗ B, the Kronecker product of two matrices, A
and B. For any f(x), ∇f(x) denotes the gradient of f at x.
The spectral radius of a matrix, A, is represented by ρ(A). For
an irreducible, column-stochastic matrix, A, we denote its right
and left eigenvectors corresponding to the eigenvalue of 1 by
π and 1>n , respectively, such that 1>nπ = 1. Depending on its
argument, we denote ‖ · ‖ as either a particular matrix norm,
the choice of which will be clear in Lemma 2, or a vector
norm that is compatible with this particular matrix norm,
i.e., ‖Ax‖ ≤ ‖A‖‖x‖ for all matrices, A, and all vectors, x.
The notation ‖ · ‖2 denotes the Euclidean norm of vectors and
matrices. Since all vector norms on finite-dimensional vector
space are equivalent, we have the following: c′‖ · ‖ ≤ ‖ · ‖2 ≤
c‖ · ‖, d′‖ · ‖2 ≤ ‖ · ‖ ≤ d‖ · ‖2, where c′, c, d′, d are some
positive constants.

II. ADD-OPT DEVELOPMENT

In this section, we formulate the optimization problem and
describe ADD-OPT. We first derive an informal but intuitive
proof showing that ADD-OPT enables the agents to achieve
consensus and reach the optimal solution of Problem P1,
described below. After propose ADD-OPT, we relate it to
DEXTRA and discuss the applicable range of step-sizes.
Formal convergence results are deferred to Sections III.

Consider a strongly-connected network of n agents com-
municating over a directed graph, G = (V, E), where V
is the set of agents, and E is the collection of ordered
pairs, (i, j), i, j ∈ V , such that agent j can send information to
agent i, j → i. Define N in

i to be the collection of in-neighbors,
i.e., the set of agents that can send information to agent i.
Similarly, N out

i is the set of out-neighbors of agent i. Note
that both N in

i and N out
i include node i. Note that in a directed

graph when (i, j) ∈ E , it is not necessary that (j, i) ∈ E .
Consequently, N in

i 6= N out
i , in general. We assume that each

agent i knows1 its out-degree (the number of out-neighbors),
denoted by |N out

i |; see [39] for details. We focus on solving
a convex optimization problem that is distributed over the
above multi-agent network. In particular, the network of agents
cooperatively solves the following optimization problem:

P1 : min f(z) =

n∑
i=1

fi(z),

where each local objective function, fi : Rp → R is known
only by agent i. We assume that each local function, fi(z), is
strongly-convex and differentiable, whereas the optimal solu-
tion of Problem P1 exists and is finite. Our goal is to develop

1Such an assumption is standard in the related literature, see e.g., [21, 26–
29, 32, 34, 37].

a distributed algorithm such that each agent converges to the
global solution of Problem P1 via exchanging information with
nearby agents over a directed graph. We formalize the set of
assumptions as follows. These assumptions are standard in
the literature for optimization of smooth convex functions, see
e.g., [14, 16, 37].

Assumption A1. The communication graph, G, is a strongly-
connected digraph. Each agent in the network has the knowl-
edge of its out-degree.

Assumption A2 (Lipschitz-continuous gradients and strong–
convexity). Each local function, fi, is differentiable and
strongly-convex, and the gradient is globally Lipschitz-
continuous, i.e., for any i and z1, z2 ∈ Rp,
(a) there exists a positive constant l such that

‖∇fi(z1)−∇fi(z2)‖2 ≤ l‖z1 − z2‖2;

(b) there exists a positive constant s such that,

fi(z1)− fi(z2) ≤ ∇fi(z1)>(z1 − z2)− s

2
‖z1 − z2‖22.

Clearly, the Lipschitz-continuity and strongly-convexity con-
stants for the global objective function f(z) are nl and ns,
respectively.

Assumption A3. The optimal solution exists and is bounded
and unique. In particular, we denote z∗ ∈ Rp the optimal
solution, i.e.,

z∗ = min
z∈Rp

f(z).

A. ADD-OPT Algorithm

To solve Problem P1, we describe the implementation of
ADD-OPT as follows. Each agent, j ∈ V , maintains three
vector variables: xjk, zjk, wj

k, all in Rp, as well as a scalar
variable, yjk ∈ R, where k is the discrete-time index. At the kth
iteration, agent j assigns a weight to its states: aijx

j
k, aijw

j
k,

and aijy
j
k; and sends these to each of its out-neighbors, i ∈

N out
j , where the weights, aij’s are such that:

aij =

 > 0, i ∈ N out
j ,

0, otherwise,

n∑
i=1

aij = 1,∀j. (1)

With agent i receiving the information from its in-neighbors,
it updates xik+1, yik+1, zik+1 and wi

k+1 as follows:

xik+1 =
∑
j∈N in

i

aijx
j
k − αw

i
k, (2a)

yik+1 =
∑
j∈N in

i

aijy
j
k, (2b)

zik+1 =
xik+1

yik+1

, (2c)

wi
k+1 =

∑
j∈N in

i

aijw
j
k +∇fi(zik+1)−∇fi(zik). (2d)

In the above, ∇fi(zik) is the gradient of fi(z) at z = zik. The
step-size, α, is a positive number within a certain interval.
We will explicitly show the range of α in Section III. For any
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agent i, it is initialized with arbitrary vectors, xi0 and zi0, wi
0 =

∇fi(zi0), and yi0 = 1. It is worth noting that yik 6= 0, ∀k,
given its initial condition and Assumption A1, [40]. We note
that Eq. (1) leads to a column-stochastic weight matrix, A =
{aij}, by only requiring each agent to know its out-degree. It
is indeed possible to construct such weights, e.g., by choosing

aij =

 1/|N out
j |, i ∈ N out

j ,

0, otherwise,
,∀j. (3)

For analysis purposes, we now write Eq. (2) in a matrix
form. We use the following notation:

xk =


x1
k

...

xnk

 , wk =


w1
k

...

wn
k

 , zk =


z1k
...

znk

 , (4)

∇fk =


∇f1(z1k)

...

∇fn(znk )

 , yk =


y1k
...

ynk

 . (5)

Let A ∈ Rn×n be the weighted adjacency matrix, i.e., the
collection of weights, aij ; define

A = A⊗ Ip, (6)
Yk = diag (yk)⊗ Ip. (7)

where ‘⊗’ is the Kronecker product. Clearly, we have A, Yk ∈
Rnp×np, and A is a column-stochastic matrix. Given that y0 =
1n, the graph, G, is strongly-connected and the correspond-
ing weight matrix, A, is non-negative, Yk is invertible for
any k, [40]. Then, we can write Eq. (2) in the matrix form,
equivalently, as follows:

xk+1 =Axk − αwk, (8a)
yk+1 =Ayk, (8b)

zk+1 =Y −1k+1xk+1, (8c)

wk+1 =Awk +∇fk+1 −∇fk, (8d)

where we have the initial condition w0 = ∇f0, y0 = 1n.

B. Interpretation of ADD-OPT

Based on Eq. (8), we now give an intuitive interpretation
on the convergence of ADD-OPT to the optimal solution. By
combining Eqs. (8a) and (8d), we obtain that

xk+1 = Axk − α [Awk−1 +∇fk −∇fk−1] ,

= Axk − αA
[
Axk−1 − xk

α

]
− α [∇fk −∇fk−1] ,

= 2Axk −A2xk−1 − α [∇fk −∇fk−1] . (9)

Assume that the sequences generated by Eq. (8) converge to
their limits (note that this is not necessarily true), denoted
by x∞, y∞, w∞, z∞, ∇f∞, respectively. It follows from
Eq. (9) that

x∞ = 2Ax∞ −A2x∞ − α [∇f∞ −∇f∞] , (10)

which implies that (Inp − A)2x∞ = 0np or [(In − A)2 ⊗
Ip]x∞ = 0np. Considering that y∞ = Ay∞, we obtain
that x∞ ∈ span{y∞ ⊗ up} for some arbitrary p-dimensional
vector, up. Therefore, it follows that

z∞ = Y −1∞ x∞ ∈ span{1n ⊗ up}, (11)

where up is some arbitrary p-dimensional vector. The consen-
sus is reached.

By summing up the updates in Eq. (9) over k from 0 to ∞,
we obtain that

x∞ = Ax∞ +

∞∑
r=1

(A− Inp)xr −
∞∑
r=0

(A2 −A)xr − α∇f∞.

Noting that x∞ = Ax∞, it follows

α∇f∞ =

∞∑
r=1

(A− Inp)xr −
∞∑
r=0

(A2 −A)xr.

Therefore, we obtain that

α(1n ⊗ Ip)>∇f∞

=
(
1>n (A− In)⊗ Ip

) ∞∑
r=1

xr −
(
1>n (A2 −A)⊗ Ip

) ∞∑
r=0

xr,

= 0p,

which is the optimality condition of Problem P1 consid-
ering that z∞ ∈ span{1n ⊗ up}. To summarize, if we
assume that the sequences updated in Eq. (8) have lim-
its, x∞, y∞, w∞, z∞, ∇f∞, we arrive at a conclusion
that z∞ achieves consensus and reaches the optimal solution
of Problem P1. We next discuss the relations between ADD-
OPT and DEXTRA.

C. ADD-OPT and DEXTRA

Recent papers provide a fast distributed algorithm, termed
DEXTRA [37, 38], to solve Problem P1 over directed graphs.
It achieves a linear convergence rate given that the objective
functions are strongly-convex. At the kth iteration of DEX-
TRA, each agent i keeps and updates three states, xk,i, yk,i,
and zk,i. The iteration, in matrix form, is shown as follows.

xk+1 = (Inp +A)xk − Ãxk−1 − α [∇fk −∇fk−1] , (12a)
yk+1 =Ayk, (12b)

zk+1 =Y −1k+1xk+1, (12c)

where Ã is a column-stochastic matrix satisfying that Ã =
θInp + (1− θ)A with any θ ∈ (0, 12 ], and all other notation is
the same as from earlier in this paper.

By comparing Eqs. (9) and (12a), (8b) and (12b), and (8c)
and (12c), it follows that the only difference between ADD-
OPT and DEXTRA lies in the weighting matrices used when
updating xk. From DEXTRA to ADD-OPT, we change (Inp+

A) in (12a) to 2A in (9), and Ã to A2, respectively. Math-
ematically, if A = Inp, (equivalently A = In), the two
algorithms are the same. With this modification, we will
show in Section III that ADD-OPT supports a wider range of
step-sizes as compared to DEXTRA, i.e., the greatest lower
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bound, α, of ADD-OPT’s step-size is zero while that of DEX-
TRA’s is strictly positive. This also reveals the reason why
in DEXTRA constructing A to be an extremely diagonally-
dominant matrix is preferred, see Assumption A2(c) in [37].
The more similar A is to In, the closer α approaches zero.
However, in DEXTRA, α can never reach zero since A
cannot be the identity, In, which otherwise means there is no
communication between agents. In Section V, we provide a
totally different proof, that is further more compact and elegant
when compared to DEXTRA’s analysis, to show the linear
convergence rate of ADD-OPT.

III. MAIN RESULT

In this section, we analyze ADD-OPT with the help of
the following notation. From Eqs. (4)-(7), we further de-
fine xk, wk, z∗, gk, hk ∈ Rnp as

xk =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip)xk, (13)

wk =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip)wk, (14)

z∗ = 1n ⊗ z∗, (15)

gk =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip)∇fk, (16)

hk =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip)∇f(xk), (17)

where

∇f(xk) =


∇f1( 1

n (1>n ⊗ Ip)xk)
...

∇fn( 1
n (1>n ⊗ Ip)xk)

 ,
stacks its components in a column. We denote constants, τ , ε,
and η as

τ = ‖A− Inp‖2 , (18)
ε = ‖Inp −A∞‖2 , (19)
η = max (|1− nαl| , |1− nαs|) , (20)

where A is the column-stochastic weight matrix used in Eq.
(8), A∞ = limk→∞Ak represents A’s limit, α is the step-size,
and l and s are respectively Lipschitz and strong-convexity
constants from Assumption A2. Let Y∞ be the limit of Yk in
Eq. (7),

Y∞ = lim
k→∞

Yk, (21)

and y and y− be the supremum of ‖Yk‖2 and ‖Y −1k ‖2 over k,
respectively, i.e.,

y = sup
k
‖Yk‖2 , (22)

y− = sup
k

∥∥Y −1k

∥∥
2
. (23)

Note that the existence of the limits, A∞ and Y∞, will
be clear in the following lemmas. Moreover, we define two
constants, σ, and, γ1, through the following two lemmas,
which are related to the convergence of A and Y∞.

Lemma 1. (Nedic et al. [26]) Let Assumption A1 hold.
Consider Yk and its limit Y∞ as defined before. There ex-
ist 0 < γ1 < 1 and 0 < T <∞ such that for all k

‖Yk − Y∞‖2 ≤ Tγ
k
1 . (24)

Lemma 2. Let Assumption A1 hold. Consider Y∞ in Eq. (21)
with A being the column-stochastic matrix used in Eq. (8).
For any a ∈ Rnp, define a = 1

n (1n ⊗ Ip)(1>n ⊗ Ip)a. Then,
there exists 0 < σ < 1 such that for all k

‖Aa− Y∞a‖ ≤ σ ‖a− Y∞a‖ . (25)

Proof. First note that A = A ⊗ Ip. Since A is ir-
reducible, column-stochastic with positive diagonals, from
Perron-Frobenius theorem we note that ρ(A) = 1, every
eigenvalue of A other than 1 is strictly less than ρ(A), and π
is a strictly positive (right) eigenvector corresponding to the
eigenvalue of 1 such that 1>nπ = 1; thus limk→∞Ak =
π1>n . Recalling Eq. (6), we have A∞ = limk→∞Ak =
limk→∞ (A⊗ Ip)k = (limk→∞Ak) ⊗ Ip = (π1>n ) ⊗ Ip. It
follows that:

AA∞ = (A⊗ Ip)
(

(π1>n )⊗ Ip
)

= (Aπ1>n )⊗ Ip = A∞;

A∞A∞ =
(

(π1>n )⊗ Ip
)(

(π1>n )⊗ Ip
)
,

= (π1>nπ1
>
n )⊗ Ip = A∞.

Thus AA∞−A∞A∞ is a zero matrix. It can also be verified
that 1

nY∞(1n⊗ Ip)(1>n ⊗ Ip) = A∞. Based on the discussion
above, we have

Aa− Y∞a = (A−A∞)(a−A∞a) = (A−A∞)(a− Y∞a).

Next we note that

ρ(A−A∞) = ρ
(

(A− π1>n )⊗ Ip
)

= ρ(A− π1>n ) < 1,

and there exists a matrix norm such that ‖A−A∞‖ < 1 with
a compatible vector norm, ‖·‖, see [41]: Chapter 5 for details,
i.e.,

‖Aa− Y∞a‖ ≤ ‖A−A∞‖ ‖a− Y∞a‖ , (26)

and the lemma follows with σ = ‖A−A∞‖.

Based on the above notation, we finally denote tk, sk ∈ R3,
and G, Hk ∈ R3×3, for all k as

tk =


‖xk − Y∞xk‖

‖xk − z∗‖2
‖wk − Y∞gk‖

 , sk =


‖xk‖2

0

0

 ,

G =


σ 0 α

αcly− η 0

cdεly−(τ + αlyy−) αdεl2yy− σ + αcdεly−

 ,

Hk =


0 0 0

αly−Tγ
k−1
1 0 0

(αly + 2)dεly2−Tγ
k−1
1 0 0

 . (27)
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We now state a key relation of this paper.

Lemma 3. Let the directed graph be strongly-connected and
the optimal solution of Problem P1 exist (Assumption A1 and
A3). Let tk, sk, G, and Hk be defined in Eq. (27), in which xk
is the sequence generated by ADD-OPT, Eq. (8), over k. Under
the smooth and strong-convexity assumptions (Assumption A2),
we have tk, sk, G, and Hk satisfy the following linear relation,

tk ≤ Gtk−1 +Hk−1sk−1. (28)

Proof. See Section V.

We leave the complete proof to Section V, with the help of
several auxiliary relations in Section IV. Note that Eq. (28)
provides a linear iterative relation between tk and tk−1 with
matrices, G and Hk. Thus, the convergence of tk is fully
determined by G and Hk. More specifically, if we want to
prove linear convergence of ‖tk‖2 to zero, it is sufficient to
show that ρ(G) < 1, where ρ(·) denotes the spectral radius,
as well as the linear decaying of Hk, which is straightforward
since 0 < γ1 < 1. In Lemma 4, we first show that with
appropriate step-size, the spectral radius of G is less than 1.
Afterwards, in Lemma 5, we study the convergence properties
of the matrices involving G and Hk.

Lemma 4. Consider the matrix G defined in Eq. (27) as a
function of the step-size, α, denoted in this lemma as Gα to
motivate this dependence. It follows that ρ(Gα) < 1 if the
step-size, α ∈ (0, α), where

α = min


√

∆2 + 4ns(1− σ)2cdεl2yy2−(l + ns)−∆

2cdεl2yy2−(l + ns)
,

1

nl

 ,

(29)

and ∆ = nscdεly−(1−σ+τ), where c and d are the constants
from the equivalence of ‖ · ‖ defined in Lemma 2 and ‖ · ‖2.

Proof. First, if α < 1
nl then η = 1 − αns, since l ≥ s (see

e.g., [42]: Chapter 3 for details). When α = 0, we have that

G0 =


σ 0 0

0 1 0

cdεlτy− 0 σ

 , (30)

the eigenvalues of which are σ, σ, and 1. Hence, ρ(G0) = 1.
We now consider how the eigenvalue of 1 is changed if we
slightly increase α from 0. Let PGα(q) = det(qIn−Gα), i.e.,
the characteristic polynomial of Gα. Setting det(qIn−Gα) =
0, we get the following equation.

((q − σ)2 − αcdεly−(q − σ))(q − 1 + nαs)− α3cdεl3yy2−

−α(q − 1 + nαs)(cdεlτy− + α(cdεl2yy2−)) = 0.
(31)

Since we have already shown that 1 is one of the eigenvalues
of G0, Eq. (31) holds when q = 1 and α = 0. By taking the
derivative on both sides of Eq. (31), with q = 1 and α = 0,
we obtain that dq

dα |α=0,q=1 = −ns < 0. This leads to the fact
that when α slightly increases from 0, ρ(Gα) < 1 since the

eigenvalues are continuous functions of the parameters of a
matrix.

We next calculate all possible values of α for which Gα
has an eigenvalue of 1. Let q = 1 in Eq. (31) and solve for
the step-size, α; we obtain three solutions: α1 = 0, α2 < 0,
and

α3 =

√
∆2 + 4ns(1− σ)2cdεl2yy2−(l + ns)−∆

2cdεl2yy2−(l + ns)
> 0.

Since there are no other values of α with which Gα has
an eigenvalue of 1, all eigenvalues of Gα are less than 1,
i.e., ρ(Gα) < 1, when α ∈ (0, α).

We note that ᾱ depends on the global knowledge and it may
not be possible to precisely compute it in a distributed fashion.
However, this value may be estimated as we will show in
Section VI, see e.g., [16], for a similar approach.

Lemma 5. With the step-size, α ∈ (0, α), where α is defined
in Eq. (29), the following statements hold: ∀k,
(a) there exists 0 < γ1 < 1 and 0 < Γ1 < ∞, where γ1 is

defined in Eq. (24), such that

‖Hk‖2 = Γ1γ
k
1 ;

(b) there exists 0 < γ2 < 1 and 0 < Γ2 <∞, such that∥∥Gk∥∥
2
≤ Γ2γ

k
2 ;

(c) let γ = max{γ1, γ2} and Γ = Γ1Γ2/γ, such that for
all 0 ≤ r ≤ k − 1,∥∥Gk−r−1Hr

∥∥
2
≤ Γγk.

Proof.
(a) This can be verified according to Eq. (27) and by letting

Γ1 =
1

γ1

√
(αly−T )2 + (αyl + 2)2(dεly2−T )2.

(b) Note that ρ(G) < 1 when α ∈ (0, α). Therefore, the value
of some matrix norm of G, denoted by γ2, is strictly less
than 1. Since all matrix norms are equivalent, we have
‖Gk‖2 ≤ Γ2γ

k
2 , for some positive constant Γ2.

(c) The proof of (c) is achieved by combining (a) and (b).

Lemma 6. (Polyak [43]) If nonnegative sequences
{vk}, {uk}, {bk} and {ck} are such that

∑∞
k=0 bk <

∞,
∑∞
k=0 ck <∞ and

vk+1 ≤ (1 + bk)vk − uk + ck, ∀t ≥ 0,

then {vk} converges and
∑∞
k=0 uk <∞.

We now present the main result of this paper in Theorem 1,
which shows the linear convergence rate of ADD-OPT.

Theorem 1. Let the Assumptions A1-A3 hold. With the step-
size, α ∈ (0, α), where α is defined in Eq. (29), the se-
quence, {zk}, generated by ADD-OPT, converges exactly to



6

the unique optimizer, z∗, at a linear rate, i.e., there exist some
positive constant M > 0, such that for any k,

‖zk − z∗‖2 ≤M(γ + ξ)k, (32)

where γ is used in Lemma 5(c) and ξ is a arbitrarily small
constant.

Proof. We write Eq. (28) recursively, leading to

tk ≤Gkt0 +

k−1∑
r=0

Gk−r−1Hrsr. (33)

By taking the norm on both sides of Eq. (33) and considering
Lemma 5, we obtain that

‖tk‖2 ≤
∥∥Gk∥∥

2
‖t0‖2 +

k−1∑
r=0

∥∥Gk−r−1Hr

∥∥
2
‖sr‖2 ,

≤Γ2γ
k
2 ‖t0‖2 +

k−1∑
r=0

Γγk ‖sr‖2 , (34)

in which we can bound ‖sr‖2 as

‖sr‖2 ≤‖xr − Y∞xr‖2 + ‖Y∞‖2 ‖xr − z∗‖2 + ‖Y∞‖2 ‖z
∗‖2 ,

≤(c+ y) ‖tr‖2 + y ‖z∗‖2 . (35)

Therefore, we have that for all k

‖tk‖2 ≤
(

Γ2‖t0‖2 + Γ(c+ y)

k−1∑
r=0

‖tr‖2 + Γyk‖z∗‖2
)
γk.

(36)

Denote vk =
∑k−1
r=0 ‖tr‖2, sk = Γ2‖t0‖2 + Γyk‖z∗‖2,

and b = Γ(c+ y), then Eq. (36) can be written as

‖tk‖2 = vk+1 − vk ≤ (sk + bvk)γk, (37)

which implies that vk+1 ≤ (1 + bγk)vk + skγ
k. Applying

Lemma 6 with bk = bγk and ck = skγ
k (here uk = 0),

we have that vk converges2. and therefore is bounded. By
Eq. (37), ∀µ ∈ (γ, 1) we have

lim
k→∞

‖tk‖2
µk

≤ lim
k→∞

(sk + bvk)γk

µk
= 0. (38)

Therefore, ‖tk‖2 = O(µk). In other words, there exists some
positive constant Φ such that for all k, we have:

‖tk‖2 ≤Φ(γ + ξ)k, (39)

where ξ is a arbitrarily small constant. Moreover, ‖zk − z∗‖2
and ‖tk‖2 satisfy the relation that

‖zk − z∗‖2 ≤
∥∥Y −1k xk − Y −1k Y∞xk

∥∥
2

+
∥∥Y −1k Y∞z∗ − z∗

∥∥
2

+
∥∥Y −1k Y∞xk − Y −1k Y∞z∗

∥∥
2
,

≤y−(c+ y) ‖tk‖2 + y−Tγ
k
1 ‖z∗‖2 , (40)

where in the second inequality we use the relation

‖Y −1k Y∞ − Inp‖2 ≤ ‖Y −1k ‖2‖Y∞ − Yk‖2 ≤ y−Tγ
k
1 ,

2In order to apply Lemma 6, we need to show that
∑∞
k=0 skγ

k < ∞,

which follows from the fact that limk→∞
sk+1γ

k+1

skγ
k = γ < 1.

achieved from Eq. (24). By combining Eqs. (39) and (40), we
obtain that

‖zk − z∗‖2 ≤
(
y−(c+ y)Φ + y−T‖z∗‖2

)
(γ + ξ)k,

where ξ is a arbitrarily small constant. The proof of theorem
is completed by letting M = y−(c+ y)Φ + y−T‖z∗‖2.

Theorem 1 shows the linear convergence rate of ADD-OPT.
Although ADD-OPT works for a small enough step-size, how
small is sufficient may require some estimation of the upper
bound, which we discuss this in Section VI. This notion of
sufficiently small step-sizes is not uncommon in the literature,
see e.g., [10, 26]. Next, each agent must agree on the same
value of step-size that may be pre-programmed to avoid
implementing an agreement protocol. We now prove Lemma
3 in Sections IV and V.

IV. AUXILIARY RELATIONS

We provide several basic relations in this section, which
will help the proof of Lemma 3. Lemma 7 derives iterative
equations that govern the average sequences, xk and wk.
Lemma 8 gives inequalities that are direct consequences of
Eq. (24). Lemma 9 can be found in the standard optimization
literature, see e.g., [42]. It states that if we perform a gradient-
descent step with a fixed step-size for a smooth, strongly-
convex function, then the distance to optimizer shrinks by at
least a fixed ratio.

Lemma 7. Recall xk from Eq. (13) and wk from Eq. (14).
The following equations hold for all k,
(a) wk = gk;
(b) xk+1 = xk − αgk.

Proof. Since A is column-stochastic, satisfying (1>n ⊗Ip)A =
1>n ⊗ Ip, we obtain that

wk =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip) (Awk−1 +∇fk −∇fk−1) ,

= wk−1 + gk − gk−1.

Do this recursively, and we have that

wk = w0 + gk − g0.

Recall that we have the initial condition that w0 = ∇f0, which
is equivalent to w0 = g0. Hence, we achieve the result of (a).
The proof of (b) is obtained by the following derivation,

xk+1 =
1

n
(1n ⊗ Ip)(1>n ⊗ Ip) (Axk − αwk)

= xk − αwk,

= xk − αgk,

where the last equation uses the result of (a).

Lemma 8. Recall Lemma 1, Yk from Eq. (7), and Y∞ from
Eq. (21). The following inequalities hold for all k ≥ 1,
(a)

∥∥Y −1k−1Y∞ − Inp
∥∥
2
≤ y−Tγk−11 ;

(b)
∥∥Y −1k − Y −1k−1

∥∥
2
≤ 2y2−Tγ

k−1
1 ,

where y− is defined in Eq. (23).
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Proof. By considering Eq. (24), it follows that∥∥Y −1k−1Y∞ − Inp
∥∥
2
≤
∥∥Y −1k−1

∥∥
2
‖Y∞ − Yk−1‖2 ≤ y−Tγ

k−1
1 .

The proof of (b) follows by∥∥Y −1k − Y −1k−1
∥∥
2
≤
∥∥Y −1k−1

∥∥
2
‖Yk−1 − Yk‖2

∥∥Y −1k

∥∥
2
,

≤ 2y2−Tγ
k−1
1 ,

which completes the proof.

Lemma 9. (Bubeck [42]) Let Assumption A2 hold for the
objective functions, fi(z), in Problem P1, and let s and l
be the strong-convexity and Lipschitz-continuity constants,
respectively. For any z ∈ Rp, define z+ = z − α∇f(z),
where 0 < α < 2

nl . Then

‖z+ − z∗‖2 ≤ η ‖z− z∗‖2 ,

where η = max (|1− αnl| , |1− αns|).

V. CONVERGENCE ANALYSIS

We now provide the proof of Lemma 3. We will
bound ‖xk−Y∞xk‖, ‖xk−z∗‖2, and ‖wk−Y∞gk‖, linearly
in terms of their past values, i.e., ‖xk−1−Y∞xk−1‖, ‖xk−1−
z∗‖2, and ‖wk−1 − Y∞gk−1‖, as well as ‖xk−1‖2. The
coefficients are the entries of G and Hk−1.

Step 1: Bound ‖xk − Y∞xk‖.
According to Eq. (8a) and Lemma 7(b), we obtain that

‖xk − Y∞xk‖ ≤‖Axk−1 − Y∞xk−1‖
+ α ‖wk−1 − Y∞gk−1‖ . (41)

Noticing that ‖Axk−1 − Y∞xk−1‖ ≤ σ‖xk−1 − Y∞xk−1‖
from Eq. (25), we have

‖xk − Y∞xk‖ ≤σ ‖xk−1 − Y∞xk−1‖
+ α ‖wk−1 − Y∞gk−1‖ . (42)

Step 2: Bound ‖xk − z∗‖2.
By considering Lemma 7(b), we obtain that

xk = [xk−1 − αhk−1]− α [gk−1 − hk−1] . (43)

Let x+ = xk−1 − αhk−1, which is a (centralized) gradient-
descent step with respect to the global objective function in
Problem P1. Therefore, from Lemma 9,

‖x+ − z∗‖2 ≤ η ‖xk−1 − z∗‖2 . (44)

From the Lipschitz-continuity, Assumption A2(a), we obtain

‖gk−1 − hk−1‖2 ≤
∥∥∥∥ 1

n
(1n1

>
n )⊗ Ip

∥∥∥∥
2

l ‖zk−1 − xk−1‖2 .

(45)

Therefore, it follows that

‖xk − z∗‖2 ≤ ‖x+ − z∗‖2 + α ‖gk−1 − hk−1‖2 ,
≤ η ‖xk−1 − z∗‖2 + αl ‖zk−1 − xk−1‖2 . (46)

From Eq. (8c) and Lemma 8(a), it follows that

‖zk−1 − xk−1‖2 ≤
∥∥Y −1k−1 (xk−1 − Y∞xk−1)

∥∥
2

+
∥∥(Y −1k−1Y∞ − Inp

)
xk−1

∥∥
2
,

≤y− ‖xk−1 − Y∞xk−1‖2
+ y−Tγ

k−1
1 ‖xk−1‖2 , (47)

where in the second inequality we also make use of the
relation ‖xk−1‖2 ≤ ‖xk−1‖2. By substituting Eq. (47) into
Eq. (46), we obtain that

‖xk − z∗‖2 ≤αcly− ‖xk−1 − Y∞xk−1‖+ η ‖xk−1 − z∗‖2
+ αly−Tγ

k−1
1 ‖xk−1‖2 . (48)

Step 3: Bound ‖wk − Y∞gk‖.
According to Eq. (8d), we have

‖wk − Y∞gk‖ ≤‖Awk−1 − Y∞gk−1‖
+ ‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖ .

With Lemma 7(a) and Eq. (25), we obtain that

‖Awk−1 − Y∞gk−1‖ = ‖Awk−1 − Y∞wk−1‖ ,
≤ σ ‖wk−1 − Y∞wk−1‖ . (49)

It follows from the definition of gk that

‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖2

=

∥∥∥∥(Inp − 1

n
Y∞(1n ⊗ Ip)(1>n ⊗ Ip)

)
(∇fk −∇fk−1)

∥∥∥∥
2

.

(50)

Since 1
nY∞(1n ⊗ Ip)(1>n ⊗ Ip) = A∞, we obtain that

‖(∇fk −∇fk−1)− (Y∞gk − Y∞gk−1)‖2 ≤εl ‖zk − zk−1‖2 ,

where we use the Lipschitz-continuity, Assumption A2(a).
Therefore, we have

‖wk − Y∞gk‖ ≤σ ‖wk−1 − Y∞gk−1‖
+ dεl ‖zk − zk−1‖2 . (51)

We now bound ‖zk − zk−1‖2. Note that

‖hk−1‖2 =

∥∥∥∥ 1

n
(1n ⊗ Ip)(1>n ⊗ Ip)∇f(xk−1)

∥∥∥∥
2

≤ l ‖xk−1 − z∗‖2 . (52)

As a result, we have∥∥Y −1k wk−1
∥∥
2
≤
∥∥Y −1k (wk−1 − Y∞gk−1)

∥∥
2

+
∥∥Y −1k Y∞hk−1

∥∥
2

+
∥∥Y −1k Y∞ (gk−1 − hk−1)

∥∥
2
,

≤y− ‖wk−1 − Y∞gk−1‖2
+ y−yl ‖xk−1 − z∗‖2
+ y−yl ‖zk−1 − xk−1‖2 ,
≤y− ‖wk−1 − Y∞gk−1‖2

+ y−yl ‖xk−1 − z∗‖2
+ y2−yl ‖xk−1 − Y∞xk−1‖2
+ y2−ylTγ

k−1
1 ‖xk−1‖2 , (53)

where the last inequality holds due to Eq. (47). With the upper
bound of ‖Y −1k wk−1‖2 provided in the preceding relation and
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the equality that (A−Inp)Y∞xk−1 = 0n, we can bound ‖zk−
zk−1‖2 as follows.

‖zk − zk−1‖2 ≤
∥∥Y −1k (xk − xk−1)

∥∥
2

+
∥∥(Y −1k − Y −1k−1

)
xk−1

∥∥
2
,

≤
∥∥Y −1k (A− Inp)xk−1

∥∥
2

+ α
∥∥Y −1k wk−1

∥∥
2

+
∥∥Y −1k − Y −1k−1

∥∥
2
‖xk−1‖2 ,

≤(y−τ + αy2−yl) ‖xk−1 − Y∞xk−1‖2
+ αy− ‖wk−1 − Y∞gk−1‖2
+ αy−yl ‖xk−1 − z∗‖2
+ (αyl + 2)y2−Tγ

k−1
1 ‖xk−1‖2 . (54)

By substituting Eq. (54) in Eq. (51), we obtain that

‖wk − Y∞gk‖ ≤(cdεlτy− + αcdεl2yy2−) ‖xk−1 − Y∞xk−1‖
+ αdεl2yy− ‖xk−1 − z∗‖2
+ (σ + αcdεly−) ‖wk−1 − Y∞gk−1‖
+ (αyl + 2)dεly2−Tγ

k−1
1 ‖xk−1‖2 . (55)

Step 4: By combining Eqs. (42) in step 1, (48) in step 2,
and (55) in step 3, we complete the proof.

VI. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of ADD-OPT.
Our numerical experiments are based on the distributed logistic
regression problem over a directed graph:

z∗ = argmin
z∈Rp

β
2
‖z‖22 +

n∑
i=1

mi∑
j=1

ln
[
1 + exp

(
−bijc>ijz

)] .

Each agent i has access to mi training examples, (cij , bij) ∈
Rp × {−1,+1}, where cij includes the p features of the jth
training example of agent i and bij is the corresponding label.
This problem can be formulated in the form of Problem P1
with the local objective function, fi, being

fi =
β

2n
‖z‖22 +

mi∑
j=1

ln
[
1 + exp

(
−
(
c>ijz

)
bij
)]
.

In our setting, we have n = 10, mi = 10, for all i, and p = 3.

A. Convergence rate

In our first experiment, we compare the convergence rate
of algorithms that solve the above distributed consensus opti-
mization problem over directed graphs, including ADD-OPT,
DEXTRA, [37], Gradient-Push, [26], Directed-Distributed
Gradient Descent, [21], and the Weight Balanced-Distributed
Gradient Descent, [34]. The network topology is described in
Fig. 1, where we apply the weighting strategy from Eq. (3).
The step-size used in Gradient-Push, Directed-Distributed
Gradient Descent, and Weight Balanced-Distributed Gradient
Descent is αk = 1/

√
k. The constant step-size used in

DEXTRA and ADD-OPT is α = 0.3. The convergence rates
for these algorithms are shown in Fig. 2. It shows that ADD-
OPT and DEXTRA have a fast linear convergence rate, while
other methods are sub-linear.

23 1

56 47

10 89

Fig. 1: A strongly-connected directed network.
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Fig. 2: Convergence rates comparison over directed networks.

B. Step-size range

We now compare ADD-OPT and DEXTRA in terms of
their step-size ranges again with the weighting strategy from
Eq. (3). It is shown in Fig. 3 that the greatest lower bound of
DEXTRA is around α = 0.2. In contrast, ADD-OPT works for
a sufficiently small step-size. In the given setting, we have τ =
1.25, ε = 1.11, y = 1.96, y− = 2.2, l = 1, and σ < 1;
resulting into α =

√
8.7

9.57 , where we choose c and d to be 1. It
can be found in Fig. 4 that the practical upper bound of step-
size is much bigger, i.e., α = 1.12. Since the computation of α
is related to the global knowledge, e.g., the network topology,
and the strong-convexity and Lipschitz-continuity constants, it
is preferable to estimate α. According to Eq. (29), we have that
α u

√
s(1−σ)2

εyy2−(l+s)l2
given that εy(l + s)s(1 − σ)2 � (ετs)2.

By estimating τ = ε = y = y− = 1, σ = 0.9, and noting
that s ≤ l, we can estimate α as α u 1

10l .

C. Convergence rate vs. step-sizes

We note that the convergence rate of ADD-OPT is related
to the spectral radius of matrix G, i.e., ρ(G), see Eq. (28).
Therefore, it is possible to achieve the best convergence rate
by picking some α such that the ρ(G) is minimized. In Fig. 5,
we show the relationship between the spectral radius, ρ(Gα),
of G, and the step-size, α, as well as the residual at the
200-th iteration, ‖z200−z∗‖

‖z0−z∗‖ , and α. We observe that the best
convergence rate is achieved when α = 0.3, at which ρ(G) is
minimized. Fig. 5 also demonstrates our previous theoretical
analysis in Lemma 4, where we show that ρ(G) = 1,
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Fig. 3: Comparison between ADD-OPT and DEXTRA in terms of step-sizes.
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Fig. 4: The range of ADD-OPT ’s step-size.

when α = 0 or α = α, and ρ(G) < 1 for α ∈ (0, α).
We further note that ρ(Gα) < 1, when α lies approximately
in (0, 0.3), which is our theoretical bound of the step-size.

0   0.05 0.1 0.15 0.2 0.25 0.3 0.35
α
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0.96

0.98

1   

ρ
(G

α
)
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100

‖z
20
0
−
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∗
‖

‖z
0
−
z
∗
‖

Fig. 5: Spectral radius, ρ(Gα) and the residual at the 200th iteration versus α.

D. Convergence rate vs graph sparsity

In our last experiment, we observe how does the conver-
gence rate change as a function of the sparsity of the directed
graph. We consider three strongly-connected directed graphs
as shown in Fig. 6. It can be observed that the residuals
decrease faster as the number of edges increases, from Ga to Gb
to Gc, see Fig. 7. This indicates faster convergence when there
are more communication channels available for information
exchange.

23 1

56 47

10 89

23 1

56 47

10 89

23 1

56 47

10 89

Fig. 6: Three examples of strongly-connected directed graphs.

VII. CONCLUSIONS

In this paper, we focus on solving the distributed opti-
mization problem over directed graphs. The proposed algo-
rithm, termed ADD-OPT (Accelerated Distributed Directed
Optimization), can be viewed as an improvement of our
recent work, DEXTRA. The proposed algorithm, ADD-OPT,
achieves the best known rate of convergence for this class of
problems, O(µk), 0 < µ < 1, given that the objective func-
tions are strongly-convex with globally Lipschitz-continuous
gradients, where k is the number of iterations. Moreover,
ADD-OPT supports a wider and more realistic range of step-
sizes in contrast to the existing work. In particular, we show
that ADD-OPT converges for arbitrarily small (positive) step-
sizes. Simulations further illustrate our results.
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