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Abstract—Distributed algorithms for solving coupled semidef-
inite programs (SDPs) commonly require many iterations to
converge. They also put high computational demand on the
computational agents. In this paper we show that in case the
coupled problem has an inherent tree structure, it is possible
to devise an efficient distributed algorithm for solving such
problems. This algorithm can potentially enjoy the same effi-
ciency as centralized solvers that exploit sparsity. The proposed
algorithm relies on predictor-corrector primal-dual interior-point
methods, where we use a message-passing algorithm to compute
the search directions distributedly. Message-passing here is closely
related to dynamic programming over trees. This allows us
to compute the exact search directions in a finite number of
steps. Furthermore this number can be computed a priori and
only depends on the coupling structure of the problem. We use
the proposed algorithm for analyzing robustness of large-scale
uncertain systems distributedly. We test the performance of this
algorithm using numerical examples.

Keywords—SDPs, distributed algorithms, primal-dual methods,
robustness analysis, interconnected uncertain systems.

I. INTRODUCTION

Semidefinite programs are convex optimization problems
that include linear matrix inequalities (LMIs) or semidefinite
constraints. The computational complexity of solving such
problems commonly scales badly with the number of opti-
mization variables and/or the dimension of the semidefinite
constraints in the problem. This limits our ability to solve large
SDPs. Despite this, large SDPs are appearing more and more in
different engineering fields, e.g., in problems related to sensor
networks, smart grids and analysis of uncertain systems, e.g.,
see [2], [4], [7], [29], [31]. This has been the driving force
for devising efficient and tailored centralized solvers for such
problems. These solvers exploit the structure in the problem
to reduce the computational burden of solving the problem
in a centralized manner, see e.g., [2], [19], [25], [40], [41].
Despite the success of such approaches for solving medium
to large-scale problems, there are still problems that cannot
be solved using centralized solvers, see e.g., [1], [8], [14],
[36]. This can be due to limited available computational power
and/or memory that prohibits us from solving the problem.
Also it can be due to certain structural constraints, e.g.,
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privacy requirements, that obstructs us from even forming the
centralized problem.

For such instances, distributed algorithms may be used for
solving the problem. These algorithms facilitate solving the
problem using a network of computational agents, without the
need for a centralized unit. Due to this, the computational com-
plexity of these algorithms scales better, and they potentially
enable us to address structural constraints in the problem. The
main approach for designing distributed algorithms consists
of two major phases. First the structure in the problem is
exploited to decompose the problem or reformulate it as a
coupled problem. Then first-order splitting methods are used
for solving the resulting problem distributedly, see e.g., [27],
[37]. This approach has been used in many applications, e.g.,
see [14], [23], [36]. In [36] the authors consider a sensor
localization problem and use a so-called edge-based decompo-
sition for reformulating the underlying SDP as a coupled one.
They then employ alternating direction method of multipliers
(ADMM) to solve the problem distributedly. An optimal power
flow problem has been considered in [14], where the authors
reformulate the problem as a coupled SDP using semidefinite
relaxation techniques. They then use ADMM to solve the
coupled problem distributedly. In [23] the authors consider
robustness analysis of large-scale interconnected uncertain
systems. They exploit the sparsity in the interconnections
to decompose the underlying SDP and reformulate it as a
coupled problem. This problem is then solved distributedly
using algorithms that rely on proximal splitting methods.

The algorithms designed using the aforementioned ap-
proach, although effective, suffer from some issues. For in-
stance, since these algorithms rely on first-order splitting
methods, with convergence rates O(1/k) or O(1/k2) where
k is the number of iterations, they require many iterations
to converge to an accurate enough solution. Furthermore,
exploiting structure and decomposing problems is commonly
done through introduction of consensus constraints, which
describe the coupling structure in the problem. The number
of such constraints is commonly large for SDPs, which can
in turn adversely affect the computational and/or convergence
properties. Moreover the agents involved in these distributed
algorithms need to solve an SDP at every iteration of the algo-
rithm, which can potentially put a considerable computational
burden on the agents.

In this paper we propose a distributed algorithm for solving
coupled SDPs with a tree structure. These SDPs are defined
in Section IV. This algorithm does not suffer from any of
the aforementioned issues. We achieve this by avoiding the
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use of first-order splitting methods and instead rely on primal-
dual interior-point methods, which have superior convergence
properties. The proposed algorithm is produced by distributing
the computations conducted at each iteration of the primal-
dual method. Particularly, we use a message-passing algorithm
for computing the search directions. Message passing, here, is
closely related to non-serial dynamic programming, [5], [22],
[26]. We also present a similar approach for distributing the
remaining computations at every iteration. As a consequence,
at each iteration of the primal-dual method, the computational
burden on each agent is very low. In fact during each iteration,
an agent is required to factorize a relatively small matrix once
and is required to communicate with its neighbors twelve
times.

The proposed algorithm in this paper is closely related to
that of [22]. In fact, the authors in [22] use the same approach
for devising a distributed algorithm for solving coupled non-
conic problems. However, the computation of search directions
for SDPs is not as straightforward as for non-conic problems.
This is due to introduction of scaling matrices and their
inverses in the KKT system, which destroys the structure in
the problem. In order to circumvent this issue, we here put
forth a novel way for computing the search directions at each
iteration. This in turn enables us to use the message-passing
algorithm for computing the search directions.

Notice that by using this approach for computing the search
directions, we implicitly solve the so-called augmented system.
This is done by computing a block LDLT factorization of
its coefficient matrix using a fixed pivoting ordering, where
the ordering is enforced by the coupling structure in the
problem, [22]. This is in contrast to existing methods that
commonly solve the so-called Schur complement system or
normal equations. As a result, the proposed algorithm provides
us with more stable and accurate implementation, [12], [42].
Solving the augmented system is also considered in [30],
where the authors also compute the search directions through
solving the augmented system by computing an LDLT fac-
torization using fixed pivoting ordering. This is particularly
done by using regularization and iterative refinement. In this
paper, however, a block LDLT factorization is computed using
a fixed pivoting ordering without the use of regularization.
Hence, the augmented system is solved without the need for
iterative refinement.

We then use the proposed algorithm for analyzing large-
scale interconnected uncertain systems, distributedly. This is
made possible by exploiting the sparsity in the interconnec-
tions, as outlined in [2]. A similar approach was also used
in [23]. There, the authors utilized the so-called range-space
decomposition for reformulating the analysis problem as a
coupled feasibility problem. They then used algorithms that
rely on proximal splitting methods for solving it distributedly.
We here instead use the so-called domain-space decomposition
to reformulate the analysis problem as a coupled SDP. The
coupling structure of this coupled problem is less complicated
than that of in [23], and has a tree structure. This then enables
us to use the presented distributed algorithm for solving
the problem efficiently and distributedly. We illustrate the
performance of the algorithm using numerical examples.

Outline

Next we first define some notations that are used throughout
the paper. In Section II we put forth a definition of coupled
and loosely coupled SDPs. We review a predictor-corrector
primal-dual interior-point method in Section III and briefly
discuss how the structure in coupled problems is reflected in
the computations conducted at every iteration of this method.
Section IV expresses coupled problems with a tree structure
and discusses the use of message-passing algorithm for solving
coupled problems with a tree structure. This is then used in
Section V where we present the proposed distributed algorithm
for solving coupled SDPs with tree structure. In Section VI
we discuss a decomposition approach for sparse SDPs. This
approach is used in Section VII for reformulating the problem
of robustness analysis of large-scale interconnected uncertain
systems as coupled SDPs with a tree structure. We test the per-
formance of the proposed distributed algorithm when applied
to this problem using numerical experiments in Section VIII.
Finally we finish the paper with some concluding remarks in
Section IX.

Notation

We denote the set of real and complex numbers with R and
C, and the set of m×n real and complex matrices with Rm×n
and Cm×n, respectively. The transpose and conjugate trans-
pose of a matrix X is denoted by XT and X∗, respectively.
The null space of a matrix X is denoted by N (X). With Sn
and Hn we denote the set of n× n symmetric and Hermitian
matrices. The set of integer numbers {1, . . . , n} is denoted
by Nn. Given a set of positive integers J ⊆ Nn, the matrix
EJ ∈ R|J|×n is a 0–1 matrix obtained from an n× n identity
matrix with rows indexed by Nn \ J removed, where |J |
denotes the number of elements in J . This means that EJx is a
|J |-dimensional vector that contains the elements of x indexed
by J . We denote this vector by X

J
. By xi,(k)

l and Xi,(k)
mn we

denote the lth element of vector xi and the element at row m
and column n of matrix Xi at the kth iteration, respectively.
Given matrices Xk for k = 1, . . . , N , blk diag(X1, . . . , XN )
denotes a block-diagonal matrix with blocks specified by
the given matrices. Similarly diag(x1, . . . , xN ) is a diagonal
matrix with diagonal elements x1, . . . , xN . Given vectors xk
for k = 1, . . . , N , the column vector (x1, . . . , xN ) is all of
the given vectors stacked. The generalized matrix inequality
G ≺ H (G � H) means that G−H is negative (semi)definite.
Given a matrix X ∈ Rm×n, vec(X) is an mn-dimensional
vector that is obtained by stacking all columns of X on top
of each other. Given two matrices X,Y ∈ Rm×n, X • Y :=
vec(X)T vec(Y ). For a symmetric matrix X ∈ Sn

svec(X) := (X11,
√

2X21, . . . ,
√

2Xn1, X22,√
2X32, . . . ,

√
2Xn2, . . . , Xnn).

Operators mat and smat are defined as inverses of vec and
svec, respectively. Given two matrices X and Y by X ⊗ Y
we denote the standard Kronecker product. Given X ∈ Sn,
define U as an n(n+ 1)/2×n2 matrix such that U vec(X) =
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svec(X). Then for two matrices X,Y ∈ Rn×n, ⊗s denotes
the symmetrized Kronecker product that is defined as

X ⊗s Y :=
1

2
U(X ⊗ Y + Y ⊗X)UT .

For properties of the symmetrized Kronecker product refer to
[38]. Given two sets J1 and J2, J1 × J2 denotes the standard
cartesian product and by J1×s J1 we denote the symmetrized
cartesian product defined as

J1 ×s J1 := {(j, k) ∈ J1 × J1 | j ≤ k}.
For these two sets J1 \ J2 denotes the standard set minus.
By min we denote the minimum value and with arg min we
denote the minimizing argument of a function. By Ln2 we
denote the set of n-dimensional square integrable signals, and
RHm×n∞ represents the set of real, rational m × n transfer
function matrices with no poles in the closed right half plane.
A graph is denoted by Q(V, E) where V = {v1, . . . , vn} is
its set of vertices or nodes and E ⊆ V × V denotes its set of
edges. An induced graph by V ′ ⊆ V on Q(V, E), is a graph
QI(V

′, E ′) where E ′ = E ∩ (V ′ × V ′).

II. COUPLED AND LOOSELY COUPLED SDPS

Let us consider a coupled SDP given as

minimize
X

N∑
i=1

W i •XJiJi
(1a)

subject to Qij •XJiJi
= bij , j = 1, . . . ,mi,

i = 1, . . . , N, (1b)
XJiJi

� 0, i = 1, . . . , N, (1c)

where Qij ,W
i ∈ S|Ji| such that

[
svec(Qi1) . . . svec(Qimi

)
]

has full column rank for all i = 1, . . . , N , with the ordered
sets Ji ⊆ Nn such that

⋃N
i=1 Ji = Nn, and X

JiJi
= EJiXE

T
Ji

with X ∈ Sn such that Xjk = 0 if (j, k) /∈ J and
J =

⋃N
i=1 Ji := Ji ×s Ji. This problem can be seen as

a combination of N coupled subproblems, each of which
defined by the objective function W i •X

JiJi
and constraints

Qij • XJiJi
= bij for j = 1, . . . ,mi and X

JiJi
� 0. Let us

now define I(i,j) = {k | (i, j) ∈ Jk}, which denotes the set
of subproblems that are coupled in that they all depend on the
variable Xij . Notice that agents a and b are members of I(i,j)

if and only if {i, j} ⊆ Ja∩Jb. It is possible to provide a more
explicit description of the coupling among the subproblems by
decomposing (1) as

minimize
X,X̄i

N∑
i=1

W i • X̄i (2a)

subject to Qij • X̄i = bij , i = 1, . . . , N, (2b)

X̄i � 0, i = 1, . . . , N, (2c)

X̄i = EJiXE
T
Ji , i = 1, . . . , N. (2d)

Notice that in (2), the objective function terms and constraints
in (2a)–(2c) are decoupled and the coupling in the problem
is described using the consensus constraints in (2d). It is
also possible to provide a graphical representation of the
coupling using undirected graphs. Particularly let Qs(J , Es)

be a graph with vertex set J as defined above and edge
set Es =

{
((i, j), (v, t)) | I(i,j) ∩ I(v,t) 6= ∅

}
. We refer to

this graph as the sparsity graph of the problem. Let us now
illustrate the definitions above using an example given as

minimize
X

W 1 •X{1,2,4}{1,2,4}+

W 2 •X{1,3,4}{1,3,4} +W 3 •X{4,5}{4,5} (3a)

subject to


x11 x12 x13 0 0
x12 x22 0 x24 0
x13 0 x33 x34 0
0 x24 x34 x44 x45

0 0 0 x45 x55

 � 0. (3b)

Notice that the constraint in (3b) can be rewritten as
x11 x12 x13 0 0
x12 x22 0 x24 0
x13 0 x33 x34 0
0 x24 x34 x44 x45

0 0 0 x45 x55

 =

ETJ1

x11
2

x12 0
x12 x22 x24

0 x24
x44
3

EJ1

+ ETJ2

x11
2

x13 0
x13 x33 x34

0 x34
x44
3

EJ2

+ ETJ3

[
x44
3

x45

x45 x55

]
EJ3 � 0.

with J1 = {1, 2, 4}, J2 = {1, 3, 4} and J3 = {4, 5}. Then the
optimal objective value of

minimize
X

W 1 •X{1,2,4}{1,2,4}+

W 2 •X{1,3,4}{1,3,4} +W 3 •X{4,5}{4,5} (4a)

subject to

x11
2

x12 x14

x12 x22 x24

x14 x24
x44
3

 � 0, x14 = 0, (4b)

x11
2

x13 x14

x13 x33 x34

x14 x34
x44
3

 � 0, x14 = 0, (4c)

[
x44
3

x45

x45 x55

]
� 0, (4d)

defines an upperbound for the optimal objective value of (3).
The problem in (4) is a coupled SDP with smaller semidefinite
constraints. This method for reformulating the problem is
commonly used for cases when the original problem is either
impossible or very difficult to solve. Notice that this problem
is in the same format as (1). The sparsity graph of this problem
is illustrated in Figure 1, where for instance there is an edge
between the nodes (1, 1) and (1, 2) since the intersection
between the sets I(1,1) = {1, 2} and I(1,2) = {2} is nonempty.

In case for a coupled problem
• |Ji ∩ Jj | � n for all i, j ∈ NN ;
• |I(i,j) ∩ I(v,t)| � N for all (i, j), (v, t) ∈ J ,

then we call this problem loosely coupled. As we will see
later, it is possible to devise efficient distributed solvers based
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Fig. 1. Sparsity graph for the coupled SDP in (4).

on primal-dual interior-point methods for solving coupled and
loosely coupled SDPs. To this end, let us first briefly review
primal-dual interior-point methods for solving SDPs.

III. PRIMAL-DUAL INTERIOR-POINT METHODS FOR
SOLVING SDPS

It is possible to iteratively solve a standard-form SDP,
given as

minimize
X

C •X

subject to Ai •X = bi, i = 1, . . . ,m,

X � 0,

(5)

where b ∈ Rm and X,Ai, C ∈ Sn such that
[svec(A1) . . . svec(Am)] has full column rank, using
primal-dual interior-point methods. Particularly, given the it-
erates (X(k) � 0, S(k) � 0, v(k)), a primal-dual interior-point
method generates the next iterates (X(k+1), S(k+1), v(k+1)) by
taking a single Newton step applied to the perturbed KKT
conditions

Ai •X = bi, i = 1, . . . ,m, (6a)
m∑
i=1

viAi + S = C, (6b)

XS = δI, (6c)

together with S � 0 and X � 0 where δ > 0. Specifically this
Newton step can be computed by solving the following linear
system of equations

Ai •∆X = bi −Ai •X(k), i = 1, . . . ,m, (7a)
m∑
i=1

∆viAi + ∆S = C − S(k) −
m∑
i=1

v
(k)
i Ai, (7b)

HD(∆XS(k) +X(k)∆S) = δI −HD(X(k)S(k)), (7c)

where HD(M) = 1/2(DMD−1 + D−TMDT ), δ = σµ is
the perturbation parameter with µ = X(k) • S(k)/n denoting
the surrogate duality gap and σ ∈ [0, 1], and where (7c) is a
modified linearization of (6c) that ensures that the computed
directions ∆S and ∆X are symmetric. There are different
choices for the scaling matrix D in (7c), e.g., see [38] and
references therein. For the sake of brevity, we limit our

discussion to the choices presented in [32], [33], that is we
choose D = G−1 with W = GGT where

W : = (X(k))
1
2

(
(X(k))

1
2 S(k)(X(k))

1
2

)− 1
2

(X(k))
1
2

= (S(k))−
1
2

(
(S(k))

1
2X(k)(S(k))

1
2

) 1
2

(S(k))−
1
2 .

(8)

This scaling is referred to as the Nesterov-Todd or NT scaling.
In order to make the notation less complicated, from now on
we drop the iteration index k, and we use lowercase notation
for denoting vectorized variables or residuals, e.g., we use
∆x as svec(∆X) or rdual as svec(Rdual). Using symmetrized
Kronecker product we can then rewrite (7) more compactly as 0 A 0

AT 0 I
0 U F

[∆v
∆x
∆s

]
=

[
rprimal
rdual
rcent

]
, (9)

where A = [svec(A1) . . . svec(Am)]
T , U = D ⊗s D−TS,

F = DX ⊗s D−T and

rprimal = b−Ax

Rdual = C − S −
m∑
i=1

viAi,

Rcent = δI −HD(XS),

(10)

see [38]. One way of solving (9), is to first solve for ∆s as in

∆s = F−1 (rcent − U∆x) , (11)

and then solve[
−F−1U AT

A 0

] [
∆x
∆v

]
=

[
r

rprimal

]
(12)

for ∆X and ∆v, where r = rdual−F−1rcent. Notice that since
F−1U is positive definite, [38, Thm. 3.2], (12) also describes
the optimality condition for the following convex optimization
problem

minimize
∆x

1

2
∆xTF−1U∆x+ rT∆x

subject to A∆x = rprimal.
(13)

So it is possible to compute ∆X and ∆v by either solving
the system of equations in (12) or the problem in (13). In this
paper we focus on predictor-corrector primal-dual methods that
rely on modified Newton directions. In order to compute these
directions, at each iteration, we need to solve (12) or (13) twice
with different choices of r. We lay out a predictor-corrector
primal-dual interior-point method in Algorithm 1, based on the
work in [38].

Remark 1: Algorithm 1 can detect infeasibility of the prob-
lem if either the primal or dual iterates diverge. This means
that this algorithm is unable to detect weak infeasibility, [15],
[28], and generally in such cases converges to a near-feasible
solution, [39].
The major computational burden of each iteration of this
primal-dual method concerns the computation of the predictor
and corrector directions. Next we will investigate how the
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Algorithm 1 Predictor-corrector Primal-dual Interior-point
Method, [38]

1: Given k = 0, τ ∈ (0, 1), a ∈ {1, 2, 3}, ε > 0, εfeas > 0, initial
iterates (X(0), S(0), v(0)) such that X(0) � 0 and S(0) � 0 and
µ = X(0) • S(0)/n.

2: repeat
3: Compute D.
4: Predictor step: Set σ = 0 and compute the search direc-

tions ∆Xpred, ∆vpred by either solving (12) or (13) and ∆Spred
using (11).

5: Compute primal and dual step sizes as

αp := min

(
1,

−τ
λmin ((X(k))−1∆Xpred)

)
,

αd := min

(
1,

−τ
λmin ((S(k))−1∆Spred)

)
.

6: Set σ =

(
(X(k)+αp∆Xpred)•(S(k)+αd∆Spred)

X(k)•S(k)

)a
.

7: Corrector step: Having computed σ compute the search
directions ∆Xcorr, ∆vcorr by either solving (12) or (13) with

r(k) = r
(k)
dual − (F (k))−1r

(k)
cent+

(F (k))−1 svec(HD(∆Xpred∆Spred)),

and ∆Scorr using

∆scorr = (F (k))−1
(
r

(k)
cent−

svec(HD(∆Xpred∆Spred))− U (k)∆xcorr

)
.

8: Compute primal and dual step sizes as above, though using
∆Xcorr and ∆Scorr.

9: Update

X(k+1) = X(k) + αp∆Xcorr,

S(k+1) = S(k) + αd∆Scorr,

v(k+1) = v(k) + αd∆vcorr.

10: Set k = k + 1.
11: µ = X(k) • S(k)/n.

12: until
∥∥∥r(k)

primal

∥∥∥2

,
∥∥∥svec

(
R

(k)
dual

)∥∥∥2

≤ εfeas and µ ≤ ε.

structure in coupled problems is reflected in (13) and how
this structure can be used to our advantage.

Let us apply the primal-dual method in Algorithm 1 to the
coupled SDP in (2). The perturbed KKT optimality conditions
for this problem can be written as

Qij • X̄i = bij , j = 1, . . . ,mi, (14a)
mi∑
j=1

vijQ
i
j − smat(v̄i) + Si = W i, (14b)

X̄iSi = δI, (14c)
X̄i −X

JiJi
= 0, (14d)

for i = 1, . . . , N , together with

N∑
i=1

(EJi ⊗s EJi)T v̄i = 0, (15)

and X̄i, Si � 0 for i = 1, . . . , N . Define Qi =[
svec(Qi1) . . . svec(Qimi

)
]T

. Similar to (7), given iterates
X and X̄i � 0 such that they satisfy (2d), Si � 0, vi and v̄i

such that
∑N
i=1(EJi ⊗sEJi)T v̄i = 0 for all i = 1, . . . , N , the

Newton step corresponding to the above system of equations
can be computed by solving

Qi∆x̄i = bi −Qix̄i, (16a)
mi∑
j=1

∆vijQ
i
j − smat(∆v̄i) + ∆Si =

W i −
mi∑
j=1

vijQ
i
j + smat(v̄i)− Si, (16b)

HDi(∆X̄iSi + X̄i∆Si) = δI −HDi(X̄iSi), (16c)
∆X̄i −∆X

JiJi
= 0, (16d)

for i = 1, . . . , N , together with
∑N
i=1(EJi ⊗sEJi)T∆v̄i = 0,

where the scaling matrices Di are computed as discussed
above and in (8), though based on the given local iterates
X̄i,(k) and Si,(k). This system of equations can be rewritten
in a more compact manner as

0 0 Q 0 0
0 0 I −Ē 0
QT I 0 0 I
0 −ĒT 0 0 0
0 0 U 0 F




∆v
∆v̄
∆x̄
∆x
∆s

 =


rprimal

0
rdual

0
rcent

 (17)

where Q, U and F are block-diagonal with diagonal blocks
Qi and

U i = Di ⊗s (Di)−TSi,

F i = DiX̄i ⊗s (Di)−T ,

and ĒT =
[
(EJ1

⊗s EJ1
)T . . . (EJN ⊗s EJN )T

]
. Also

here ∆v, ∆v̄, ∆x̄ and ∆s denote all the corresponding
variables stacked, e.g., ∆v =

(
∆v1, . . . ,∆vN

)
. Similarly

rprimal, rdual and rcent denote all the primal, dual and centering
residuals stacked, where each of the stacked terms in the
residual vectors are based on

riprimal = bi −Qixi, (18a)

Ridual = W i −
mi∑
j=1

vijQ
i
j + smat(v̄i)− Si, (18b)

Ricent = δI −HDi(X̄iSi). (18c)

Similar to before, we compute the primal-dual directions by
first solving for ∆s as

∆si = (F i)−1
(
ricent − U i∆x̄i

)
, (19)
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or equivalently as

∆si = (F i)−1
(
ricent − U i svec(ETJi∆XEJi)

)
, (20)

for i = 1, . . . , N . Then we solve
−F−1U 0 QT I

0 0 0 −ĒT
Q 0 0 0
I −Ē 0 0


∆x̄

∆x
∆v
∆v̄

 =

 r
0

rprimal
0

 , (21)

where r = (r1, . . . , rN ) with ri = ridual − (F i)−1ricent.
Notice that the system of equations in (21) also describes the
optimality conditions for

minimize
∆x̄,∆x

N∑
i=1

1

2
(∆x̄i)T (F i)−1U i∆x̄i + (ri)T∆x̄i (22a)

subject to Qi∆x̄i = riprimal, i = 1, . . . , N, (22b)

∆X̄i −∆X
JiJi

= 0, i = 1, . . . , N. (22c)

where (F i)−1U i � 0 for i = 1, . . . , N . So the predictor and
corrector directions can also be computed by solving (22). To
be more precise, for the predictor directions, we solve (22),
with σ = 0, for ∆x̄pred,∆xpred,∆vpred and ∆v̄pred, and com-
pute ∆spred using (19). For the corrector directions, using the
updated σ, we compute the directions ∆x̄corr,∆xcorr,∆vcorr
and ∆v̄corr by solving (22) with

ri = ridual

− (F i)−1
(
ricent − svec(HDi(∆X̄i

pred∆Sipred)
)

(23)

and compute ∆scorr as

∆sicorr = (F i)−1
(
ricent−

svec(HDi(∆X̄i
pred∆Sipred))− U i∆x̄icorr

)
, (24)

for i = 1, . . . , N . As a result having computed predictor
or corrector versions of the directions ∆x̄,∆x,∆v and ∆v̄,
computing ∆sipred and ∆sicorr can be done independently by
N computing agents in parallel. Also notice that the coupling
structure in (22) is the same as in (2). This allows us to employ
distributed computational algorithms to distributedly solve for
the search directions using N collaborating agents. To illustrate
this, note that the problem in (22) can be written as

minimize
x̄,x

F1(x̄)

subject to Ax̄+Bx = c,
(25)

with x̄ = (∆x̄1, . . . ,∆x̄N ) and x = ∆x. This problem
can be solved distributedly using proximal splitting methods,
e.g., ADMM, [6], [10], [34]. The use of proximal splitting
methods for computing the primal-dual directions has been
considered in [3], [21]. Devising distributed algorithms for
solving coupled SDPs that also rely on this approach can be
seen as an extension of the use of the algorithm proposed
in [3] to SDPs. Even though distributed algorithms based
on proximal splitting are effective for non-conic problems,
they suffer from certain issues when used for solving SDPs.
Particularly, notice that the computed search directions using

Fig. 2. Clustered sparsity graph.

Fig. 3. Tree representation of the sparsity graph .

this approach are inexact and first-order splitting methods
generally require many iterations to compute accurate enough
search directions. Furthermore, the number of consensus con-
straints in (22c) are generally large for coupled SDPs which
can in turn adversely affect the performance and numerical
properties of such splitting methods. Also notice that for a
predictor-corrector primal-dual method the search directions
are computed through solving a system of the form (22) twice.
This means that the iterative scheme for solving (22) needs
to be run twice at each iteration of the primal-dual method.
Hence, distributed algorithms that rely on proximal or first-
order splitting for computing the search directions, potentially,
require many iterations to converge to the solution. Despite all
such issues, in many cases such splitting methods are among
the only resorts for distributedly solving coupled or loosely
coupled SDPs. However for coupled problems that have an
inherent tree structure, which is common in loosely coupled
SDPs, we can devise an efficient algorithm for solving coupled
SDPs. This is the focus of the upcoming sections. But first we
express what we mean by the tree structure.

IV. TREE STRUCTURE IN COUPLED PROBLEMS AND
MESSAGE PASSING

Let us reconsider the coupled SDP in (4). Notice that for this
problem it is possible to cluster the variables or the nodes in
its sparsity graph as shown in Figure 2. As can be seen from
the figure, each of the clusters induce a complete subgraph
on the sparsity graph. We can then provide a more compact
representation of the sparsity graph using the tree in Figure 3.
Each node in this tree corresponds to each of the clusters of
variables denoted by Ki. Furthermore, for this problem, the
tree is such that for every two nodes i and j in the tree, Ki∩Kj
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is contained in all the clusters in the path connecting the two
nodes in the tree. We refer to problems that enjoy this inherent
structure as coupled with a tree structure. Next we lay out an
approach for exploiting this structure in coupled problems.

Let us start by describing some definitions relating to graphs.
Consider a graph Q(V, E). A clique Ci of this graph is a
maximal subset of V that induces a complete subgraph on
Q, i.e., no clique is properly contained in another clique, [9].
Assume that all cycles of length at least four of Q(V, E) have a
chord, where a chord is an edge between two non-consecutive
vertices in a cycle. This graph is then called chordal [17,
Ch. 4]. It is possible to make a non-chordal graph chordal by
adding edges to the graph. The resulting graph is then referred
to as a chordal embedding. Let CQ = {C1, . . . , Cq} denote
the set of its cliques, where q is the number of cliques of the
graph. Then there exists a tree defined on CQ such that for
every Ci, Cj ∈ CQ where i 6= j, Ci ∩ Cj is contained in all
the cliques in the path connecting the two cliques in the tree.
This property is called the clique intersection property, [9],
and trees with this property are referred to as clique trees. As
a result it is possible to represent chordal graphs using clique
trees. This means that in case the sparsity graph is chordal,
it is possible to use algorithms for generating clique trees for
chordal graphs, to extract the aforementioned tree structure
in the problem. In fact this has been used for the coupled
example in (4). Notice that the sparsity graph for this example
is chordal, and the clusters marked in Figure 2 are its cliques.
Their corresponding clique tree is depicted in Figure 3. Also
notice that in case the sparsity graph is not chordal, the same
procedure can be used on its chordal embedding for extracting
the tree structure. Coupled problems with a tree structure can
be solved using a message-passing algorithm. Consider the
following coupled convex optimization problem

minimize
x

f1(x) + f2(x) + · · ·+ fN (x), (26)

where fi : Rn → R for i = 1, . . . , N . This problem can be
seen as a combination of N subproblems, each of which is
defined by a term in the cost function and depends only on a
few elements of x. Let us describe the coupling structure in
this problem in a similar manner as we did for the coupled
SDP in (1). That is we denote the ordered set of indices of x
that each subproblem i depends on by Ji, and we denote the
ordered set of indices of functions that depend on xj by Ij .
We can equivalently rewrite this problem as

minimize
x

f̄1

(
x

J1

)
+ · · ·+ f̄N (x

JN
), (27)

where the functions f̄i : R|Ji| → R are lower dimensional
descriptions of fis such that fi(x) = f̄i(EJix) for all x ∈ Rn
and i = 1, . . . , N . Let us assume that the sparsity graph of this
problem, Qs(Vs, Es), has an inherent tree structure with a set of
cliques CQs

= {C1, . . . , Cq} and a clique tree, T (Vt, Et). This
problem can be solved distributedly using the message-passing
algorithm that utilizes the clique tree as its computational
graph. This means that the nodes Vt = {1, . . . , q} act as
computational agents that communicate or collaborate with
their neighbors defined by the edge set Et. In order to describe
the message-passing algorithm, we first need to assign each

subproblem in (27) to each of the agents. We can assign a
subproblem or function f̄i to an agent j if Ji ⊆ Cj . Let us
denote the set of indices of the subproblems assigned to agent
j by φj . Then we can rewrite (26) as

minimize
x

q∑
i=1

Fi
(
x

Ci

)
, (28)

where Fi
(
x

Ci

)
:=

∑
j∈φi

f̄j
(
x

Ji

)
. The message-passing

algorithm, much the same as dynamic programming, solves
(28) by performing an upward-downward pass through the
clique tree, see e.g., [22, Sec. 4], [26] and references therein.
Next we show how the message-passing algorithm can be used
for devising distributed solvers for coupled SDPs with a tree
structure.

V. DISTRIBUTED PRIMAL-DUAL INTERIOR-POINT
METHODS FOR COUPLED SDPS

Let us reconsider the coupled SDP in (1), and assume that
the sparsity graph of this problem, Qs(Vs, Es), has an inherent
tree structure with clique set CQs

= {C1, . . . , Cq} and clique
tree T (Vt, Et). Here we propose a method that allows us to
solve this problem distributedly over the clique tree. To this
end, we first need to assign the constituent subproblems of (1)
to each of the agents in the tree. Firstly define C̄i ⊆ Nn
such that C̄i ×s C̄i = Ci. Then we can assign a subproblem
i to agent j if Ji ⊆ C̄j . As in Section IV, let us denote
the set of indices of subproblems assigned to agent j by
φj . The proposed algorithm in this section relies on primal-
dual interior-point methods. As was discussed in Section III,
the most computationally demanding stage within the primal-
dual method in Algorithm 1 concerns the computation of the
predictor and corrector directions. Hence the first step for
devising a distributed algorithm for solving coupled SDPs
is to distribute the computation of these directions, which is
discussed next.

A. Distributed Computation of Primal-dual Directions Using
Message-passing

Recall that we can compute the predictor and corrector
directions by solving the problem in (22) for different choices
of ri,(k). Firstly notice that the problem in (22) is equivalent
to the problem

minimize
∆x

N∑
i=1

1

2
(∆xi)T (F i)−1U i∆xi + (ri)T∆xi (29a)

subject to Qi∆xi = riprimal, i = 1, . . . , N, (29b)

with ∆xi := svec(∆X
JiJi

), that is achieved by eliminating
the constraints in (22c). It is then possible to compute the
search directions by solving the problem in (29). Particularly,
by solving this problem we compute primal variables direction
svec(∆X) and dual variables directions ∆v. Then we can
construct the remaining primal and dual directions as

∆X̄i = ∆X
JiJi

,

∆v̄i = (F i)−1U iQi∆x̄i + ri − (Qi)T∆vi.
(30)
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for i = 1, . . . , N . Next theorem shows that these directions in
fact satisfy the system of equations in (21).

Theorem 1: The primal-dual directions computed by solv-
ing (29) and using (30) satisfy the system of equations in (21).

Proof: Notice that any solution of (29) satisfies

ĒT
(
F−1UĒ∆x−QT∆v

)
= −ĒT r, (31a)

QĒ∆x = rprimal. (31b)

By choosing ∆X̄i = ∆X
JiJi

, the primal directions, ∆x and
∆x̄, will satisfy the third and fourth block equations in (21).
Furthermore, notice that by (31a) we have that

F−1U∆x̄−QT∆v + r ∈ N (ĒT ).

So if we set

∆v̄i = (F i)−1U iQi∆x̄i + ri − (Qi)T∆vi. (32)

for i = 1, . . . , N , not only the primal-dual iterates satisfy the
first block equation in (21), but also we have ĒT∆v̄ = 0. This
completes the proof.
Consequently, we can construct the primal-dual solutions for
the problem in (22) by first solving the problem in (29) and
constructing the remainder of the solution as outlined in (30).
Notice that the coupling structure of (29) is the same as that
of (1). This means that both problems have the same sparsity
graph and tree representation of the coupling structure. We can
equivalently rewrite (29) as

minimize

N∑
i=1

f̄i
(
∆xi

)
, (33)

where f̄i
(
∆xi

)
:= fi

(
∆xi

)
+ ICi

(
∆xi

)
, with

fi
(
∆xi

)
= (∆xi)T (F i)−1U i∆xi + (ri)T∆xi, (34)

for i = 1, . . . , N , and functions ICi for i = 1, . . . , N , are the
indicator functions for the constraints in (29b), i.e.,

ICi
(
∆xi

)
=

{
0 Qi∆xi = riprimal

∞ Otherwise
.

This problem is in the same format as (27), and due to its
coupling structure, can be solved distributedly using message
passing, see [22, Sec. 6.2].

So far we have described how to distribute the computation
of the search directions using message passing. However, it
remains to discuss how to distributedly compute the primal and
dual step sizes, update the perturbation parameter and decide
on terminating the algorithm. We discuss these next.

B. Distributed Step-size Computation and Termination Check
The clique tree used for computing the search directions

can also be used for performing the remaining computations
in Algorithm 1 distributedly. Notice that the computations
described in this section are different than that of presented
in [22]. This is because here we rely on a predictor-corrector
method and we are concerned with SDPs. Let us first focus
on step size computation. Similar to the message-passing

algorithm, in order to compute the primal and dual step sizes
we need to perform an upward-downward pass over the clique
tree. We start the computation from the agents at the leaves of
the tree, where every such agent first computes

λip = min
j∈φi

(
λmin

(
(X̄j)−1∆X̄j

pred

))
, (35a)

λid = min
j∈φi

(
λmin

(
(Sj)−1∆Sjpred

))
, (35b)

and communicates them to its corresponding parent. Each
agent i that has received these quantities from their children,
will then compute

λip = min

(
min
j∈ch(i)

(
λjp
)
,min
j∈φi

(
λmin

(
(X̄j)−1∆X̄j

pred

)))
,

(36a)

λid = min

(
min
j∈ch(i)

(
λjd

)
,min
j∈φi

(
λmin

(
(Sj)−1∆Sjpred

)))
,

(36b)

and will communicate them to its parent. This procedure is
then continued until we arrive at the root of the tree. At this
point, the agent at the root computes the primal and dual step
sizes as

αp := min

(
1,
−τ
λrp

)
, αd := min

(
1,
−τ
λrd

)
, (37)

where λrp and λrd are calculated as in (36). These quantities
are then communicated downwards through the tree until they
reach the agent at the leaves. At this point, all agents will know
the primal and dual step sizes. So the step sizes computation
can be done by an upward-downward pass over the tree.
Notice that the need for computing primal and dual step sizes
also appear in Step 7 of Algorithm 1. We can use the same
procedure for computing the step sizes at this step by simply
replacing the predictor directions with corrector ones.

As can be seen from Algorithm 1, in order to compute the
corrector directions we first need to update the parameter σ
in Step 6 of the algorithm. We can use a similar approach to
perform this update distributedly over the clique tree. Let us
start the computations from the leaves of the tree. Every agent
i at the leaves will then compute and communicate

σi1 =
∑
j∈φi

(X̄j + αp∆X̄
j
pred) • (Sj + αd∆S

j
pred), (38a)

σi2 =
∑
j∈φi

X̄j • Sj , (38b)

to its corresponding parent. Then every agent i that has
received these quantities from its children computes and com-
municates

σi1 =
∑

j∈ch(i)

σj1

+
∑
j∈φi

(X̄j + αp∆X̄
j
pred) • (Sj + αd∆S

j
pred), (39a)

σi2 =
∑

j∈ch(i)

σj2 +
∑
j∈φi

X̄j • Sj , (39b)
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to its parent. This procedure is then continued until we reach
the agent at the root. Then this agent also computes the
quantities σr1 and σr2 as in (39) and calculates the update for
σ as

σ =

(
σr1
σr2

)a
. (40)

This quantity is then communicated downwards through the
tree until it reaches the leaves of the tree. Hence, at every
iteration of the primal-dual method all agents will have an
update of σ after an upward-downward pass over the clique
tree.

It now remains to discuss distributed computation of terms in
the stopping criteria. This concerns the computation of primal
and dual residuals norms together with the surrogate duality
gap. These quantities can also be computed distributedly over
the clique tree using an analogous approach as above. Similarly
as before let us start the computations from the leaves of the
tree where every such agent computes

rid =
∑
j∈φi

∥∥∥rjdual

∥∥∥2

, rip =
∑
j∈φi

∥∥∥rjprimal

∥∥∥2

, (41a)

µi =
∑
j∈φi

X̄j • Sj , (41b)

based on the updated iterates, and communicates them to its
parent. Then every agent i that has received the necessary
information from its children will compute

rid =
∑

j∈ch(i)

rjd +
∑
j∈φi

∥∥∥rjdual

∥∥∥2

, (42a)

rip =
∑

j∈ch(i)

rjp +
∑
j∈φi

∥∥∥rjprimal

∥∥∥2

, (42b)

µi =
∑

j∈ch(i)

µj +
∑
j∈φi

X̄j • Sj , (42c)

based on the updated iterates, and communicates them to the
respective parent. This procedure is then continued until we
reach the agent at the root, which will compute the primal and
dual residuals as∥∥∥r(k)

primal

∥∥∥2

=
∑

j∈ch(r)

rjp +
∑
j∈φr

∥∥∥rjprimal

∥∥∥2

, (43a)

‖rdual‖2 =
∑

j∈ch(r)

rjd +
∑
j∈φr

∥∥∥rjdual

∥∥∥2

, (43b)

and the surrogate duality gap as

µ =
1∑N

j=1 |Jj |

 ∑
j∈ch(r)

µj +
∑
j∈φr

X̄j • Sj
 . (44)

This agent will then check the stopping criteria as in Step 12 of
Algorithm 1. If these criteria are satisfied, then the agent at the
root will communicate the decision to terminate the algorithm
downwards through the tree. Otherwise, this agent will instead
communicate the surrogate duality gap. Agents will need this
parameter for updating the perturbation parameter for the next
iteration of the primal-dual method.

So far we have expressed how to distribute the computa-
tions in every iteration of the primal-dual method. Next we
summarize the outlined distributed algorithm in this section.

C. Summary of the Algorithm and Its Computational Proper-
ties

Let us reconsider the coupled SDP in (1). Given such
a problem and its corresponding sparsity graph, Qs(Vs, Es),
we extract its tree structure based on clique set CQs

=
{C̄1, . . . , C̄q}. Having done so we have the computational
graph for our algorithm and it is possible to assign the con-
stituent subproblems to each of the agents using the guidelines
in Section IV or at the beginning of Section V. We can now
summarize our proposed distributed algorithm as below.

Given k = 0, τ ∈ (0, 1), a ∈ {1, 2, 3}, ε > 0, εfeas > 0,
initial iterates X(0), X̄i,(0) = X(0)

JiJi
� 0, Si,0 � 0, vi,0,

v̄i,0 such that
∑N
i=1(EJi ⊗s EJi)T v̄i,(0) = 0, for

i = 1, . . . , N , and µ =
∑N
i=1 X̄

i,(0) • Si,(0)/
(∑N

j=1 |Jj |
)

repeat
for i = 1, . . . , q do

Agent i, given X̄j,(k), Sj,(k), v̄j,(k), vj,(k), σ = 0,
and rj,(k) = r

j,(k)
dual − (F j,(k))−1r

j,(k)
cent , form

f̄i
(
∆xi

)
as in (33) for j ∈ φi.

end for

Perform an upward-downward pass and compute the
predictor directions using message-passing, and (19)
and (30).

Compute the primal and dual step sizes, by performing
an upward-downward pass through the tree as
discussed in Section V-B.

Update σ by performing an upward-downward pass
through the tree as discussed in Section V-B.

for i = 1, . . . , q do
Agent i reforms their subproblems with rj,(k) as
in (23) for j ∈ φi.

end for

Perform an upward-downward pass and compute the
corrector directions using message-passing, and (24)
and (30).

Compute the primal and dual step sizes, by performing
an upward-downward pass through the tree as
discussed in Section V-B.

for i = 1, . . . , q do
Agent i updates

X(k+1)
JjJj

:= X(k)
JjJj

+ αp(∆XJjJj
)corr,

X̄j,(k+1) := X̄j,(k) + αp∆X̄
j
corr,

Sj,(k+1) := Sj,(k) + αd∆S
j
corr,

vj,(k+1) := vj,(k) + αd∆v
j
corr,

v̄j,(k+1) := v̄j,(k) + αd∆v̄
j
corr,

for j ∈ φi.
end for
k = k + 1.

Evaluate µ and the termination criteria by performing
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an upward-downward pass through the tree and
decide whether to terminate the algorithm.

until the algorithm is terminated

From the outlined algorithm, we can observe that each iteration
of the primal-dual method is accomplished within six upward-
downward passes through the tree. Namely, two passes for
computing the predictor and corrector directions, two for
computing primal and dual step sizes, one for updating σ
and one for evaluating the stopping criteria and computing
the surrogate duality gap. Let the height of the tree, that is
the maximum number of edges in a path from the root to
a leaf, be h. As a result, each iteration of the primal-dual
method is accomplished in 6×2×h steps. Furthermore, among
these passes the ones required for computing the predictor
and corrector directions are by far the most computationally
demanding ones. This is mainly because during the upward
message-passing for these passes, every agent i needs to fac-
torize a matrix, see [22, Sec. 6.2]. However, notice that at every
iteration of the primal-dual method, this matrix is the same
for the predictor and corrector directions computations. This
means that if each agent pre-caches the factorization of this
matrix during predictor directions computations, it can reuse
it for corrector directions computation, see [22, Remark 8].
This significantly reduces the computational burden of the
upward-downward pass for computing corrector directions. Let
us assume that the primal-dual method converges within p
iterations. Then the major computational burden for each agent
concerns the computation of p factorizations of a matrix, that
is commonly of comparatively small size for loosely coupled
problems. This is in stark contrast to distributed algorithms
that purely rely on first-order splitting methods, as at every
iteration of such algorithms each agent is required to solve an
SDP.

Remark 2: The algorithm presented in this section, can
distributedly detect infeasibility in the sense discussed in
Remark 1, by monitoring their local primal and dual variables.
In case any agent detects divergence of these variables, it can
then communicate the occurrence through the tree to terminate
the algorithm.
Next we discuss a class of sparse SDPs, that appear in robust-
ness analysis of large-scale interconnected uncertain systems,
and we will describe how such problems can be reformulated
as coupled SDPs with an inherent tree structure.

VI. CHORDAL SPARSITY AND DOMAIN-SPACE
DECOMPOSITION

In order to describe sparsity in SDPs, we first briefly discuss
the use of graphs for expressing sparsity patterns of symmetric
matrices.

A. Sparsity and Semidefinite Matrices
Consider a symmetric matrix X ∈ Sn, and an undirected

graph H(V, E) with V = {1, . . . , n} and E = {(i, j) ∈
(V × V ) | Xij 6= 0, i 6= j}. We refer to this graph as
the sparsity pattern graph of X . It is also possible to use
undirected graphs to describe partial symmetric matrices. A

partial symmetric matrix is a symmetric matrix where only a
subset of its elements are specified and the rest are free. For
the symmetric matrix X this structure can be expressed using
H(V, E) with V = {1, . . . , n} and E ⊆ (V × V ). Particularly,
the edge set is such that we can express the set of indices of
specified elements using Is = E ∪ {(i, i) | i = 1, . . . , n}. We
denote the set of partial symmetric matrices over H(V, E) by
SnH . A matrix X ∈ SnH is then said to be positive semidefinite
completable if by choosing its free elements, i.e., elements
with indices in If = (V × V ) \ Is, it is possible to produce
a positive semidefinite matrix. Such matrices play a central
role in the upcoming discussions. Let us review a fundamental
result concerning semidefinite completable matrices.

Theorem 2: [18, Thm. 7] Let H(V, E) be a chordal graph
with clique set CH = {C̄1, . . . , C̄l} such that clique inter-
section property holds. Then X ∈ SnH is positive semidefinite
completable, if and only if

XC̄iC̄i
� 0, i = 1, . . . , l. (45)

We will next discuss how this theorem can be used for
reformulating sparse SDPs.

B. Domain-space Decomposition
Consider the following inequality-form SDP

minimize
y

cT y (46a)

subject to

g∑
i=1

ETJiQ
iEJiyi +

g∑
i=1

ETJiM
iEJi � 0 (46b)

where y ∈ Rg , Qi,M i ∈ S|Ji| and Ji ⊂ Nn for i =
1, . . . , g. Let us denote the sparsity pattern graph for the matrix∑g
i=1E

T
Ji
EJi with H(V, E). Assume that this graph is chordal,

or that we can produce a chordal embedding by adding a few
edges, with clique set CH = {C̄1, . . . , C̄l}. The dual problem
for (46) is given as

minimize
Z

−
g∑
i=1

Z
JiJi
•M i (47a)

subject to Z
JiJi
•Qi = −ci, i = 1, . . . , g, (47b)

Z � 0. (47c)

We can observe that the only elements that affect the equality
constraints and the cost function are the ones specified by Is.
The rest are only used in the semidefinite constraint. This in
turn implies that Z ∈ SnH , and using Theorem 2, allows us to
equivalently rewrite (47) as

minimize
ZC̄1C̄1

,...,ZC̄lC̄l

−
g∑
i=1

Z
JiJi
•M i (48a)

subject to Z
JiJi
•Qi = −ci, i = 1, . . . , g, (48b)

Z
C̄iC̄i

� 0, i = 1, . . . , l. (48c)

This method of reformulating (47) as (48) is referred to as the
domain-space decomposition [16], [24]. Notice that for every
Ji there exists a C̄j such that Ji ⊆ C̄j . This is because every
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set Ji induces a complete subgraphs on H(V, E), and hence
based on the definitions of cliques, it is either a subset of a
clique or a clique itself. Let us denote the set of indices of
sets Ji that are a subset of C̄j by φj . We can then group the
equality constraints in (48b) and rewrite the problem in (48) as

minimize
ZC̄1C̄1

,...,ZC̄lC̄l

−
g∑
i=1

Z
JiJi
•M i (49a)

subject to Z
JjJj
•Qj = −cj , j ∈ φi, i = 1, . . . , l,

(49b)
Z

C̄iC̄i
� 0, i = 1, . . . , l. (49c)

which is in the same format as (1). This problem comprises
l subproblems. Furthermore, due to its construction has a
chordal sparsity graph with q cliques and a clique tree that has
the same structure as the clique tree for H(V, E), where instead
of C̄i, the cliques are given as C̄i×s C̄i. In fact the chordality
of the sparsity graph follows, since the ordering defined by
the clique tree is also a perfect elimination ordering for this
graph, see [17] for more details.

Remark 3: Notice that the discussion in this section also
extends to matrices in positive semidefinite Hermitian cones,
[18]. This means that the decomposition scheme described
here, can also be used for problems with complex data matri-
ces.
Next we will discuss robustness analysis of interconnected
uncertain systems and will show how the approach described
here can be used for reformulating this problem as a coupled
SDP.

VII. ROBUSTNESS ANALYSIS OF INTERCONNECTED
UNCERTAIN SYSTEMS

In this section, we discuss robustness analysis of intercon-
nected uncertain systems using integral quadratic constraints
(IQCs). We start this discussion by first reviewing the IQC
analysis framework.

A. Robustness Analysis using IQCs
Consider the following uncertain system

p = Gq, q = ∆(p), (50)

where G ∈ RHm×m∞ is the system transfer function matrix,
and ∆ : Rm → Rm is a bounded and causal operator
representing the uncertainty in the system. We can characterize
the uncertainty in the system using IQCs. Particularly it is said
that ∆ satisfies the IQC defined by Π, i.e., ∆ ∈ IQC(Π), if∫ ∞

0

[
v

∆(v)

]T
Π

[
v

∆(v)

]
dt ≥ 0, ∀v ∈ Ld2 , (51)

where Π is a bounded and self-adjoint operator. This constraint
can also be written in frequency domain as∫ ∞

−∞

[
v̂(jω)

∆̂(v)(jω)

]∗
Π(jω)

[
v̂(jω)

∆̂(v)(jω)

]
dω ≥ 0, (52)

where v̂ and ∆̂(v) are the Fourier transforms of the signals
[20], [31]. The uncertain system is then said to be robustly
stable if the interconnection between G and ∆ remains stable
for all ∆ ∈ IQC(Π). This can be established using the
following theorem.

Theorem 3: The uncertain system in (50) is robustly sta-
ble, if

1) for all τ ∈ [0, 1] the interconnection described in (50),
with τ∆, is well-posed;

2) for all τ ∈ [0, 1], τ∆ ∈ IQC(Π);
3) there exists ε > 0 such that[

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
� −εI, ∀ω ∈ [0,∞].

(53)

Proof: See [20], [31].
Satisfaction of the conditions in this theorem is a sufficient
condition for robustness of the uncertain system. As a result,
for robustness analysis of this system it is required to find
a multiplier Π such that ∆ ∈ IQC(Π) and that it satisfies
the semi-infinite LMI in (53). The condition ∆ ∈ IQC(Π)
commonly imposes structural constraints on Π, and hence the
analysis problem is then to find Π with a particular structure
such that it satisfies (53). It is possible to do this using
either the KYP lemma, [20], [35], or approximately using
frequency-gridding, which establishes satisfaction of (53) over
a finite frequencies. We utilize the latter approach later as
it preserves the structure in the problem. Next we describe
how this framework can be used for analyzing interconnected
uncertain systems.

B. Robustness Analysis of Interconnected Uncertain Systems
using IQCs

An interconnected uncertain system can be viewed as a
network of N uncertain subsystems. We describe each of these
subsystems as

pi = Gipqq
i +Gipww

i

zi = Gizqq
i +Gizww

i

qi = ∆i(pi),

(54)

where Gipq ∈ RHdi×di∞ , Gipw ∈ RHdi×mi
∞ , Gizq ∈ RHli×di∞ ,

Gizw ∈ RHli×mi
∞ , and ∆i : Rdi → Rdi . It is possible to

describe the interconnection among the subsystems using a
0–1 matrix Γ as

w1

w2

...
wN

 =


Γ11 Γ12 · · · Γ1N

Γ21 Γ22 · · · Γ2N

...
...

. . .
...

ΓN1 ΓN2 · · · ΓNN


︸ ︷︷ ︸

Γ


z1

z2

...
zN

 , (55)

where each Γij describes which components of zj is connected
to which components of wi. Let us define p = (p1, . . . , pN ),
q = (q1, . . . , qN ), w = (w1, . . . , wN ) and z = (z1, . . . , zN ).
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Then we can compactly describe the entire interconnected
uncertain system as

p = Gpqq +Gpww

z = Gzqq +Gzww

q = ∆(p)

w = Γz,

(56)

where G?• = diag(G1
?•, . . . , G

N
?•) and ∆ =

diag(∆1, . . . ,∆N ). Let us assume that the interconnected
system is nominally or internally stable, i.e.,
(I − ΓGzw)−1 ∈ RHm̄×m̄∞ with m̄ =

∑N
i=1mi. It was

then shown in [2] that the system is robustly stable if there
exist

Π̄ =

[
Π̄11 Π̄12

Π̄21 Π̄22

]
,

with Π̄?• = diag(Π1
?•, . . . ,Π

N
?•) and ∆i ∈

IQC

([
Πi

11 Πi
12

Πi
21 Πi

22

])
, and a diagonal matrix X � 0

such that[
Gpq Gpw
I 0

]∗ [
Π̄11 Π̄12

Π̄21 Π̄22

] [
Gpq Gpw
I 0

]
−[

−G∗zqΓT
I −G∗zwΓT

]
X [−ΓGzq I − ΓGzw] � −εI. (57)

It is possible to rewrite this problem in the following standard
form

find y (58a)

subject to

m∑
i=1

yiQ̄
i +W � 0 (58b)

where Q̄i ∈ Hm̄+d̄ for all i = 1, . . . ,m and W ∈ Sm̄+d̄ with
d̄ =

∑N
i=1 di. We can equivalently rewrite the problem in (58)

as below

find y (59a)

subject to

m∑
i=1

yi

[
Re(Q̄i) − Im(Q̄i)
Im(Q̄i) Re(Q̄i)

]
+

[
W 0
0 W

]
� 0

(59b)

where all the data matrices are real, [11]. In case Γ is sparse,
then this SDP is also sparse and can be written in the same
format as in (46) with c = 0. As a result we can use
the approach presented in Section VI for reformulating this
problem as a coupled problem, and employ the algorithm
presented in Section V for solving it.

Remark 4: As was discussed in Remark 3, the decomposi-
tion can be conducted directly on (57) or (58). However, we
here choose to reformulate the problem in (59), with real data
matrices, for ease of notation and ease of use of the algorithm
described in Section V.

Next we illustrate this approach and study the performance
of the algorithm using numerical experiments.

G1(s) G2(s) GN (s)

δ1 δ2 δN

p1 q1

z1

z2
1

p2 q2

z2
2

z3
1

pN qN

zN−1
2

zN
· · ·

Fig. 4. A chain of N uncertain subsystem.
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Fig. 5. Convergence behavior of the algorithm for analysis of a chain
of uncertain systems. The figure on the left shows the sum of primal
and dual residuals and the figure on the right depicts the surrogate
duality gap.

VIII. NUMERICAL EXPERIMENTS

In this section we consider two examples, namely a chain
of uncertain systems and an interconnected uncertain system
over a so-called scale-free network. These examples are taken
from [2]. Let us start with the analysis of a chain of uncertain
systems, as illustrated in Figure 4. As can be seen from the
figure, for subsystems 1 < i < N , zi, wi ∈ R2 and for
subsystems i = 1, N , zi, wi ∈ R. The uncertainty in each
subsystem i is represented using δi, which is assumed to
be an unknown gain in the normalized interval [−1, 1]. We
can hence describe the uncertainties as δi ∈ IQC(Πi) with

Πi =

[
ri(jω) 0

0 −ri(jω)

]
, and ri(jω) ≥ 0, [31]. The inter-

connection matrix for this interconnected system is described
by the nonzero blocks Γi,i−1 = ΓTi−1,i for i = 2, . . . , N ,

where Γi,i−1 = ΓTi−1,i =

[
0 1
0 0

]
, i = 3, . . . , N − 1,

and Γ21 = ΓT12 = (1, 0), ΓN−1,N = ΓTN,N−1 = (0, 1).
We considered the analysis problem for this system with
N = 100 subsystems in the chain, at a single frequency
ω = 1 rad/s. We solved 10 instances of this problem with
different transfer function matrices for the subsystems. The
transfer function matrices for each instance were randomly
generated using the approach presented in [2]. This guar-
antees that the interconnected system is robustly stable for
all instances. Furthermore, for this problem the multiplier X
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was chosen as X = diag(x1, . . . , x2N−2). This resulted in a
problem in the same format as in (58), with m = 298 and
W ∈ S298.

Forming (59) for this analysis problem, resulted in an LMI
with a chordal sparsity pattern, with 198 cliques where the
largest clique was of size 8. The clique tree over these cliques
had a height of 99. In order to establish chordality of the
sparsity pattern graph and generate its cliques a greedy search
algorithm with min degree criterion was used, [13]. If we
now form the problem in (49), this problem will comprise
198 subproblems and can be solved distributedly over the
clique tree. The parameters within the primal-dual method
were chosen to be the same for all instances and are chosen as
a = 1, τ = 0.98, ε = εfeas = 10−12, v̄i,(0) = 0 and vi,(0) = 0
for all i = 1, . . . , N , and X(0) and Si,(0) for i = 1, . . . , N
were chosen to be diagonal matrices with positive diagonal
entries generated randomly with a uniform distribution in the
interval (0.1, 2). In the worst case the primal-dual method
converged after 12 iterations. The convergence behavior of this
instance is illustrated in Figure 5, and as can be seen mimics
that of a standard primal-dual method, i.e., convergence within
10 to 50 iterations with a quadratic convergence phase, [11].
Considering the height of the tree, this algorithm then, in the
worst case, converged after 6 × 2 × 99 × 12 = 14256 steps.
During the run of the algorithm, each agent was required to
compute a factorization 12 times and needed to communicate
with its neighbors 144 times. The computations in the remain-
ing steps were trivial.

We further tested the performance of the algorithm on
a larger example with a more complicated interconnection
description. Particularly we used the same scale-free net-
work as in [2, Sec. 5.2] for describing the interconnections
among the subsystems. This resulted in an extremely sparse
interconnection matrix. The transfer function matrices for the
subsystems were also generated using the approach presented
in [2]. Forming (59) for this analysis problem resulted in an
LMI that is sparse with m = 1498 and W ∈ S1498. The
chordal embedding for the sparsity pattern graph of this LMI
was generated by introducing 2.4% fill-in, also using a greedy
search algorithm, with 579 cliques. The largest of these cliques
had a size of 261. The corresponding clique tree for this
problem was of height 35. This means that the corresponding
problem in (49) will comprise of 579 subproblems and can
be solved distributedly over this clique tree. We tested the
performance of the proposed algorithm over 10 instances of
this problem. The parameters of the primal-dual method were
chosen to be the same as above. In the worst case the algorithm
converged after 14 iterations. The convergence behavior of this
instance is illustrated in Figure 6. As a result, in the worst
case, the algorithm converged after 6 × 2 × 35 × 14 = 5880
steps. During the run of the algorithm, each agent needed to
compute a factorization only 14 times and were required to
communicate with its neighbors 168 times.

IX. CONCLUSIONS

In this paper we put forth a distributed algorithm for solving
coupled SDPs with a tree structure. The proposed algorithm,
unlike the existing ones, does not use first-order splitting
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Fig. 6. Convergence behavior of the algorithm for analysis of an
interconnected system over a scale-free network. The figure on the
left shows the sum of primal and dual residuals and the figure on the
right depicts the surrogate duality gap.

methods but instead uses primal-dual interior-point methods.
Particularly, this algorithm utilizes the inherent tree structure
in the problem as its computational graph, and distributes
the computations at each iteration of the primal-dual method
among the computational agents. In order to compute the
search directions at every iteration, we employ a message-
passing algorithm. This enables us to compute the exact search
directions in a finite number of iterations. Furthermore, we
showed that this number can be computed a priori and only
depends on the height of the tree. We applied the proposed
algorithm for solving robustness analysis of large-scale inter-
connected uncertain systems, and illustrated the performance
of the algorithm using numerical experiments.

As was discussed in the introduction, designing distributed
algorithms are commonly conducted in two phases. Namely,
a decomposition or reformulation phase and a splitting phase.
In this paper, we mainly focused on the second phase of this
procedure, that is design of efficient methods to distribute
the computations of solving a given coupled SDP. However,
it is possible to further improve the computational and/or
implementation properties of the devised algorithm, by using
the available flexibilities in decomposition or reformulation
phase. We will explore such possibilities as future line of
research. This will mainly concern devising heuristics for
clique or cluster merging to reduce the overall computational
cost of the algorithm and/or to better represent the intuitive
properties of the problem, such as physical structure in the
problem.

REFERENCES

[1] M. S. Andersen, A. Hansson, S. Khoshfetrat Pakazad, and A. Rantzer.
Distributed robust stability analysis of interconnected uncertain systems.
In Proceedings of the 51st IEEE Conference on Decision and Control,
2012.

[2] M. S. Andersen, S. Khoshfetrat Pakazad, A. Hansson, and A. Rantzer.
Robust stability analysis of sparsely interconnected uncertain systems.
IEEE Transactions on Automatic Control, 19(1):2594–2599, 2014.



14

[3] M. Annergren, S. Khoshfetrat Pakazad, A. Hansson, and B. Wahlberg. A
distributed primal-dual interior-point method for loosely coupled prob-
lems using admm. Submitted to Optimization Methods and Software,
2015.

[4] X. Bai, H. Wei, K. Fujisawa, and Y. Wang. Semidefinite programming
for optimal power flow problems. International Journal of Electrical
Power and Energy Systems, 30(6-7):383–392, 2008.

[5] U. Bertel and F. Brioschi. On non-serial dynamic programming. Journal
of Combinatorial Theory, Series A, 14(2):137–148, 1973.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

[7] P. Biswas, T. C. Lian, T. C. Wang, and Y. Ye. Semidefinite programming
based algorithms for sensor network localization. ACM Transactions on
Sensor Networks, 2(2):188–220, May 2006.

[8] P. Biswas, K. C. Toh, and Y. Ye. A distributed SDP approach for large-
scale noisy anchor-free graph realization with applications to molecular
conformation. SIAM Journal on Scientific Computing, 30(3):1251–
1277, March 2008.

[9] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and
clique trees. In J. A. George, J. R. Gilbert, and J. W-H. Liu, editors,
Graph Theory and Sparse Matrix Computations, volume 56, pages 1–
27. Springer-Verlag, 1994.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] Z. Cai and K. Toh. Solving second order cone programming via a
reduced augmented system approach. SIAM Journal on Optimization,
17(3):711–737, 2006.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
To Algorithms. MIT Press, 2001.

[14] E. Dall’Anese, H. Zhu, and G.B. Giannakis. Distributed optimal
power flow for smart microgrids. IEEE Transactions on Smart Grid,
4(3):1464–1475, September 2013.

[15] E. de Klerk, T. Terlaky, and K. Roos. Self-dual embeddings. In
H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook
of semidefinite programming: Theory, algorithms, and applications,
volume 27, pages 111–138. Springer Science & Business Media, 2000.

[16] M. Fukuda, M. Kojima, , K. Murota, and K. Nakata. Exploiting
sparsity in semidefinite programming via matrix completion I: General
framework. SIAM Journal on Optimization, 11:647–674, 2000.

[17] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Elsevier, 2nd edition, 2004.

[18] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz. Positive
definite completions of partial hermitian matrices. Linear Algebra and
its Applications, 58:109–124, 1984.

[19] A. Hansson and L. Vandenberghe. Efficient solution of linear matrix
inequalities for integral quadratic constraints. In Proceedings of the 39th
IEEE Conference on Decision and Control, volume 5, pages 5033–5034,
2000.

[20] U. Jönsson. Lecture notes on integral quadratic constraints, May 2001.

[21] S. Khoshfetrat Pakazad, A. Hansson, and M. S. Andersen. Distributed
interior-point method for loosely coupled problems. In Proceedings of
the 19th IFAC World Congress, Cape Town, South Africa, August 2014.

[22] S. Khoshfetrat Pakazad, A. Hansson, and M. S. Andersen. Distributed
primal-dual interior-point methods for solving loosely coupled problems
using message passing. ArXiv e-prints, February 2015.

[23] S. Khoshfetrat Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer.
Distributed robustness analysis of interconnected uncertain systems
using chordal decomposition. In Proceedings of the 19th IFAC World
Congress, volume 19, pages 2594–2599, 2014.

[24] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. Exploiting spar-
sity in linear and nonlinear matrix inequalities via positive semidefinite
matrix completion. Mathematical Programming, 129(1):33–68, 2011.

[25] S. Kim, M. Kojima, and H. Waki. Exploiting sparsity in SDP relaxation
for sensor network localization. SIAM Journal on Optimization,
20(1):192–215, 2009.

[26] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

[27] Z. Lu, A. Nemirovski, and R. C. Monteiro. Large-scale semidefinite
programming via a saddle point mirror-prox algorithm. Mathematical
Programming, 109(2):211–237, January 2007.

[28] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Duality and self-duality for
conic convex programming. Technical Report technical report 9719/A,
Erasmus University Rotterdam, 1996.

[29] R. Madani, S. Sojoudi, and J. Lavaei. Convex relaxation for optimal
power flow problem: Mesh networks. IEEE Transactions on Power
Systems, 30(1):199–211, January 2015.

[30] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1):1–27, 2012.

[31] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Transactions on Automatic Control, 42(6):819–830,
June 1997.

[32] Y. Nesterov and M. J. Todd. Primal-dual interior-point methods for
self-scaled cones. SIAM Journal on Optimization, 8:324–364, 1995.

[33] Y. Nesterov and M. J. Todd. Self-scaled barriers and interior-point meth-
ods for convex programming. Mathematics of Operations Research,
22(1):1–42, February 1997.

[34] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):127–239, 2014.

[35] A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Systems and
Control Letters, 28(1):7–10, 1996.

[36] A. Simonetto and G. Leus. Distributed maximum likelihood sen-
sor network localization. IEEE Transactions on Signal Processing,
62(6):1424–1437, March 2014.

[37] Y. Sun, M. S. Andersen, and L. Vandenberghe. Decomposition in
conic optimization with partially separable structure. SIAM Journal
on Optimization, 24(2):873–897, 2014.

[38] M. J. Todd, K. C. Toh, and R. H. Tütüncü. On the nesterov–todd
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